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Abstract This paper concerns some practical issues associated with the formula-
tion of sequential quadratic programming (SQP) methods for large-scale nonlinear
optimization. SQP methods find approximate solutions of a sequence of quadratic
programming (QP) subproblems in which a quadratic model of the Lagrangian is
minimized subject to the linearized constraints. Numerical results are given for 1153
problems from the CUTEst test collection. The results indicate that SQP meth-
ods based on maintaining a quasi-Newton approximation to the Hessian of the La-
grangian function are both reliable and efficient for general large-scale optimization
problems. In particular, the results show that in some situations, quasi-Newton SQP
methods are more efficient than interior methods that utilize the exact Hessian of the
Lagrangian. The paper concludes with discussion of an SQP method that employs
both approximate and exact Hessian information. In this approach the quadratic pro-
gramming subproblem is either the conventional subproblem defined in terms of a
positive-definite quasi-Newton approximate Hessian, or a convexified subproblem
based on the exact Hessian.
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1 Introduction

This paper concerns the formulation of a sequential quadratic programming (SQP)
method for the solution of the nonlinear optimization problem

minimize
x∈Rn

f (x)

subject to `≤

 x
Ax

c(x)

≤ u,
(1)

where f (x) is a linear or nonlinear objective function, c(x) is a vector of m nonlinear
constraint functions ci(x), A is a matrix, and ` and u are vectors of lower and upper
bounds. For simplicity, in our discussion of the theoretical aspects of SQP methods
we assume that the problem has the form

(NP) minimize
x∈Rn

f (x) subject to c(x)≥ 0,

where f and the m components of the constraint vector c are assumed to be twice
continuously differentiable for all x ∈ Rn. Any linear constraints and simple bound
constraints are included in the definition of c. However, we emphasize that the ex-
ploitation of the properties of linear constraints is an important issue in the solution
of large-scale problems.

No assumptions are made about f and c, other than twice differentiability; for
example, the problem need not be convex. The vector g(x) denotes the gradient of
f evaluated at x, and J(x) denotes the m×n constraint Jacobian, which has ith row
∇ci(x)T , the gradient of the ith constraint function ci evaluated at x. The Lagrangian
associated with (NP) is L(x,y) = f (x)− c(x)Ty, where y is the m-vector of dual
variables associated with the inequality constraints c(x) ≥ 0. The Hessian of the
Lagrangian with respect to x is denoted by H(x,y) = ∇2 f (x)−∑

m
i=1 yi∇

2ci(x).
Sequential quadratic programming methods find approximate solutions of a se-

quence of quadratic programming (QP) subproblems in which a quadratic model
of the Lagrangian function is minimized subject to the linearized constraints. In a
merit-function based SQP method, the QP solution provides a direction of improve-
ment for a function that represents a compromise between the (often conflicting)
aims of minimizing the objective function and reducing the constraint violations.
Many SQP methods use an active-set quadratic programming method to solve the
QP subproblem. In this situation, the SQP method has a major/minor iteration struc-
ture in which each minor iteration is an iteration of the active-set QP solver. The
work for a minor iteration is dominated by the cost of solving a system of sym-
metric indefinite linear equations defined in terms of a subset of the variables and
constraints.

Interior-point (IP) methods use a completely different approach to handle the
inequality constraints of problem (NP). Interior methods follow a continuous path
that terminates at a solution of (NP). In the simplest case, the path is parameterized
by a positive scalar parameter µ that may be interpreted as a perturbation for the
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first-order optimality conditions for the problem (NP). If x(µ) denotes a point on the
path associated with the parameter value µ , then x(0) = x∗, where x∗ is a solution
of (NP). Each point on the path may be found by applying Newton’s method to a
system of nonlinear equations that represents perturbed optimality conditions for
the original problem (NP). Each iteration of Newton’s method involves a system of
linear equations defined in terms of the derivatives of f and c. The Newton equations
may be written in symmetric form, in which case each iteration requires the solution
of a single symmetric indefinite system of equations involving the derivatives of
every constraint in the problem.

The conventional wisdom is that when solving a general nonlinear problem “from
scratch” (i.e., with no prior knowledge of the properties of a solution), software
based on an IP method is generally faster and more reliable than software based
on an SQP method. However, as SQP methods have the potential to capitalize on a
good initial starting point, they are considered to be more effective for solving a se-
quence of similar problems, such as a sequence of discretized continuous problems
for which some underlying discretization is being refined. This claim is difficult
to verify, however, as most test collections include unrelated problems of varying
sizes and difficulty, or groups of problems with similar characteristics but slightly
different formulations. Providing a fair comparison of SQP and IP methods is also
complicated by the fact that very few SQP software packages are able to exploit
the second derivatives of a problem. (This issue is considered further in Section 4.)
Moreover, IP methods are more straightforward to implement with second deriva-
tives, and most software test environments for optimization provide test problems
for which second derivatives are available automatically. Unfortunately, there are
many practical problems for which even first derivatives are difficult or expensive to
compute. Test results from second-derivative methods are unlikely to be representa-
tive in this case.

The purpose of this paper is twofold. First, we provide a comparison of two
widely-used software packages for general nonlinear optimization, one an IP method
(IPOPT [48, 45, 47]) and one an SQP method (SNOPT7 [16]). These packages are
applied to almost all the problems from the CUTEst testing environment [27]. The
tests are formulated so that the same derivative information is provided to both pack-
ages. In this environment it is shown that conclusions concerning the relative per-
formance of first-derivative IP and SQP methods are more nuanced than the conven-
tional wisdom. In particular, it is shown that active-set methods can be efficient for
the solution of “one-off” problems, as is the case with active-set methods for linear
programming. In other words, SQP methods may be best suited for some problems,
and IP methods may be best for others.

If software is intended to be used in an environment in which second derivatives
are available, then it is clear that the method that can best exploit these derivatives
should be used. The second purpose of this paper is to extend conventional SQP
methods so that second-derivatives can be exploited reliably and efficiently when
they are available. These extensions are motivated by some comparisons of first-
derivative SQP methods with second-derivative IP methods.
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2 Background on SQP methods

The two principal ingredients of a merit-function based SQP method are: (i) a scalar-
valued merit function M that provides a measure of the quality of a given point as
an estimate of a solution of the constrained problem; and (ii) a direction of improve-
ment for M defined as the solution of a quadratic programming subproblem. As in
the unconstrained case, the merit function is used in conjunction with a line-search
model to define a sufficient decrease in M at each major iteration. Here we focus
on the formulation and solution of the QP subproblem. For more background on the
properties of SQP methods see, e.g., Gill and Wong [23].

2.1 Properties of the QP subproblem

Given the kth estimate (xk,yk) of the primal and dual solution of (NP), a conventional
line-search SQP method defines a direction pk = x̂k− xk, where x̂k is a solution of
the QP subproblem

minimize
x∈Rn

g(xk)
T (x− xk)+

1
2 (x− xk)

TĤk(x− xk)

subject to J(xk)(x− xk)≥−c(xk),
(2)

with Ĥk an exact or approximate Hessian of the Lagrangian. If the QP subproblem
(2) has a solution, then the QP first-order optimality conditions imply the existence
of a primal-dual pair (x̂k, ŷk) such that

g(xk)+ Ĥk(x̂k− xk) = J(xk)
T ŷk, ŷk ≥ 0, (3)

r(x̂k) · ŷk = 0, r(x̂k)≥ 0, (4)

where r(x) is the vector of constraint residuals r(x) = c(xk)+J(xk)(x−xk), and a · b
denotes the vector with ith component aibi. At any feasible point x for (2), the active
set associated with the QP subproblem is given by

A (x) = { i : ri(x) = [c(xk)+ J(xk)(x− xk)]i = 0}.

The optimality conditions for the QP subproblem (2) may be characterized in terms
of an index set Wk ⊆ A (x̂k) such that the rows of J(xk) with indices in Wk are
linearly independent. If the conditions (3)–(4) hold for at least one primal-dual pair,
then there must exist a nonnegative ŷk and index set Wk such that [ŷk ]i = 0 for i 6∈Wk,
and

g(xk)+ Ĥk(x̂k− xk) = Jw(xk)
T ŷw, ŷw ≥ 0, (5)

cw(xk)+ Jw(xk)(x̂k− xk) = 0, r(x̂k)≥ 0, (6)
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where cw(xk) and Jw(xk) denote the rows of c(xk) and J(xk) associated with indices
in Wk, and ŷw is the subvector of ŷk associated with the indices in Wk. The linear
equalities associated with the conditions (5)–(6) may be written in matrix form(

Ĥk Jw(xk)
T

Jw(xk) 0

)(
pk

−ŷw

)
=−

(
g(xk)

cw(xk)

)
, (7)

where pk = x̂k − xk. The index set Wk is said to be second-order consistent with
respect to Ĥk if the reduced Hessian ZT

w ĤkZw is positive definite, where the columns
of Zw form a basis for the null-space of Jw(xk). If Wk is second-order consistent with
respect to Ĥk, then the system of equations (7) is nonsingular and defines unique
vectors pk and ŷw satisfying

pT
k Ĥk pk =−

(
g(xk)− Jw(xk)

T ŷw
)T pk =−gL(xk, ŷk)

Tpk, (8)

where gL(x,y) denotes the gradient of the Lagrangian function with respect to x, i.e.,
gL(x,y) = g(x)− J(x)Ty. This identity implies that if Ĥk is positive definite, then pk
is a descent direction for the Lagrangian function defined with the QP multipliers.

The dimension of the reduced Hessian ZT
w ĤkZw can have a crucial influence on

the efficiency of an SQP method. This quantity is an estimate of the number of
degrees of freedom in problem (NP), i.e., the dimension of the underlying uncon-
strained problem defined by restricting f to the surface of the active constraints at a
solution of the nonlinear problem.

2.2 Active-set methods for the QP subproblem

The SQP methods discussed in this paper exploit certain benefits derived from using
a primal-feasible active-set method to solve the QP subproblem. Primal active-set
QP methods have two phases: in phase 1, a feasible point is found by minimizing
the sum of infeasibilities; in phase 2, the quadratic objective function is minimized
while maintaining feasibility. At each QP iterate, a working set of QP constraints is
known for which the constraint gradients are linearly independent. At a solution of
the QP, this working set is the index set Wk associated with the QP optimality condi-
tions (5)–(6). At each QP iterate, the working set defines the constraints of an equal-
ity constrained subproblem (EQP) whose solution satisfies a system of equations
of the form (7). (The precise definition of the working set varies with the method.
Some methods restrict the working set to be a subset of the active constraints, while
others allow some constraints in the working-set to be strictly satisfied.) If the final
QP working set is used to define the initial working set for the next QP subproblem,
it is typical for the later QP subproblems to reach optimality in a single iteration
because the QP optimality conditions (5)–(6) are satisfied by the solution of the first
EQP subproblem, i.e., the EQP solution satisfies the system (7).
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3 Numerical results

Before addressing the use of second-derivatives in SQP methods, we present nu-
merical results that have motivated our work. This section includes a summary of
the results obtained by running the SQP package SNOPT7 [16] and the IP package
IPOPT [48, 45, 47] on problems in the CUTEst test collection [27]. IPOPT is
arguably the most successful and widely-used package for nonlinearly constrained
optimization. The version of IPOPT used in the runs was version 3.11.8, compiled
with the linear solver MA57.
SNOPT7 version 7.4 is a Fortran implementation of the general sequential

quadratic programming method discussed in Section 2. SNOPT7 is designed to
solve large-scale problems of the form (1). Internally, SNOPT7 transforms this prob-
lem into standard form by introducing a vector of slack variables s. The equivalent
problem is

minimize
x,s

f (x) subject to
(

Ax
c(x)

)
− s = 0, l ≤

(
x
s

)
≤ u. (9)

All runs were made on a MacPro configured with a 2.7GHz 12-core Intel Xeon
E5 processor and 64GB of RAM. Both IPOPT and SNOPT7 were compiled us-
ing gfortran 4.6 with full code optimization and the optimized BLAS library in the
Accelerate framework from Apple. The floating-point precision was 2.22×10−16.

3.1 The active-set method of SNOPT7

To solve the QP subproblems, SNOPT7 employs the convex QP solver SQOPT
[17], which is an implementation of a reduced-Hessian, reduced-gradient active-
set method. For a QP subproblem associated with a problem expressed in the form
(9), all the inequality constraints are simple bounds. Let Ĥ, ĝ and Â denote the Hes-
sian, gradient and general constraint matrix associated with the kth QP subproblem.
In a reduced-gradient method, the general QP constraints Âx− s = 0 are partitioned
into the form BxB + SxS +NxN = 0, where the matrix B is square and nonsingular,
and the matrices S, N are the remaining columns of

(
Â − I

)
. The vectors xB, xS,

xN are the associated basic, superbasic, and nonbasic components of (x,s) (see Gill,
Murray and Saunders [16]). The reduced Hessian ZTĤZ is defined in terms of the
matrix Z such that

Z = P

−B−1S
I
0

, (10)

where P permutes the columns of
(

Â − I
)

into the order
(

B S N
)
. The matrix Z

is used only as an operator, i.e., it is not stored explicitly. Products of the form Zv
or ZTĝ are obtained by solving with B or BT . The package LUSOL [19] is used to
maintain sparse LU factors of B as the BSN partition changes.
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Table 1 The 1156 CUTEst problems listed by frequency and type.

Type Frequency Characteristics

LP 26 Linear objective, linear constraints
QP 238 Quadratic objective, linear constraints
UC 173 Nonlinear objective, no constraints
BC 141 Nonlinear objective, bound constraints
LC 70 Nonlinear objective, linear constraints
NC 408 Nonlinear objective, nonlinear constraints
FP 100 Constant objective function
NS 19 Non-smooth

At each QP-iteration, the reduced Hessian is positive semidefinite with at most
one zero eigenvalue. If the reduced Hessian is nonsingular, a direction in the super-
basic variables is computed from the system

ZTĤZpS =−ZTĝ (11)

using a dense Cholesky factor of ZTĤZ. If the reduced Hessian is singular, the
Cholesky factor is used to define pS such that ZTĤZpS = 0 and pT

S ZTĝ < 0. In this
implementation, the number of degrees of freedom associated with the QP subprob-
lem is the number of superbasic variables. If this number is large, then solving the
reduced Hessian equations (11) dominates the cost of a QP iteration.

3.2 The CUTEst test collection

The CUTEst distribution of January 14, 2015 (Subversion revision 245) contains
1156 problems in standard interface format (SIF). A list of CUTEst problem types
and their frequency is given in Table 1. Although many problems allow for the num-
ber of variables and constraints to be adjusted in the SIF file, all the tests are based on
the default problem dimensions set in the CUTEst distribution. The three problems
recipe, s365, and s365mod are omitted because of the potential for a floating-point
exception when the problem functions are evaluated at feasible points. The remain-
ing problems form a grand total of 1153 problems ranging in size from hs1 (two
variables and no constraints) to bdry2 (251001 variables and 250498 constraints).
Of these 1153 problems attempted, 137 have more than 3000 degrees of freedom,
with the largest nonlinearly constrained problem (jannson3) having almost 20000
degrees of freedom at the solution.

The 19 problems bigbank, bridgend, britgas, concon, core1, core2, gridgena,
hs67, hs85, hs87, mconcon, net1, net2, net3, net4, stancmin, twiribg1, twirimd1,
and twirism1 are non-smooth, but are included in the test-set nevertheless. The 11
problems fletcbv3, fletchbv, gridgena, indef , lukvle2, mesh, ncvxbqp1, ncvxbqp2,
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BEGIN SNOPT Problem
Superbasics limit 150000
Reduced Hessian dimension 4000
Major iterations 1000000
Iteration limit 1000000
Major optimality tolerance 1.22e-4
Time limit 1800

END SNOPT Problem

#BEGIN IPOPT Problem
max_iter 1000000
# next option for L-BFGS only
hessian_approximation limited-memory
linear_solver ma57
time_limit 1800

#END IPOPT Problem

Fig. 1 The SNOPT7 and IPOPT run-time option files.

qrtquad, static3, and lukvli4 are known to have an objective function that is un-
bounded below in the feasible region.

Many of the problems are either infeasible or have no known feasible point.
The 15 problems a2nndnil, a5nndnil, arglale, arglble, arglcle, flosp2hh, flosp2hl,
flosp2hm, ktmodel, lincont, model, nash, synpop24, toysarah, and woodsne have in-
feasible linear constraints. For nonlinear constraints, no local optimization method
is guaranteed to find a feasible point unless certain restrictions are imposed on the
class of constraint functions. In the nonlinear case, the failure of an algorithm to
find a feasible point does not imply that the problem is infeasible. In the CUTEst test
set, the nonlinear problem burkehan is known to be infeasible. Another 14 prob-
lems have no known feasible point: argauss, arwhdne, cont6-qq, drcavty3, eigenb,
growth, himmelbd, junkturn, lewispol, lubrif , lubrifc, nuffield, nystrom5, tro41x9.
We conjecture that these problems are infeasible. (Problems junkturn and nystrom5
are feasible if the constraints are perturbed by 10−3.)

3.3 User-specified options

Both SNOPT7 and IPOPT allow the user to replace the values of certain default
run-time options. With the exception of an 1800-second time-limit, all IPOPT runs
were made using the default options. Figure 1 lists the SNOPT7 and IPOPT op-
tions that differ from their default values. (For a complete list of these options see
[48] and [16].) Reduced Hessian dimension specifies the maximum size
of the dense reduced Hessian available for SQOPT. If the number of degrees of
freedom exceeds this value during the QP solution, SQOPT solves a perturbed ver-
sion of (11) using the conjugate-gradient solver SYMMLQ [38]. The default Major
optimality tolerance for SNOPT7 is 2×10−6 (see Section 2.11 of Gill, Murray
and Saunders [16]) The larger value of 1.22× 10−4 was used to match the default
optimality tolerance of IPOPT.
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3.4 Results obtained using first derivatives only

Table 2 summarizes the results of running SNOPT7 and IPOPT with the L-BFGS
option on the 1153 test problems. The constraint format (9) allows SNOPT7 to find
a feasible point for the linear constraints before evaluating the objective function
and nonlinear constraints. If the linear constraints are infeasible, SNOPT7 termi-
nates immediately without computing the nonlinear functions. Otherwise, all sub-
sequent major iterates satisfy the linear constraints. (Sometimes this feature helps
ensure that the functions and gradients are only computed at points where they are
well defined.) For brevity, Table 2 lists the number of infeasible problems found by
SNOPT7 without distinguishing between linear and nonlinear constraints.

Table 2 SNOPT7 and first-derivative IPOPT on 1153 CUTEst problems.

SNOPT7

Optimal 1006
Optimal, but low accuracy 8
Unbounded 11
Infeasible constraints 16
Locally infeasible constraints 16

Total successes 1057

False infeasibility 25
Iteration limit 4
Time limit 45
Numerical problems 13
Final point cannot be improved 9

Total failures 96

IPOPT (first derivatives)

Optimal 772
Optimal, but low accuracy 161
Unbounded 3
Infeasible constraints 10
Locally infeasible constraints 3

Total successes 949

False infeasibility 9
Iteration limit 37
Time limit 40
Diverges 8
Restoration failed 70
Too few degrees of freedom 33
Regularization too large 1
Invalid derivative entry 5
Segmentation fault 1

Total failures 204

Of the 19 nonsmooth problems, SNOPT7 solved all but hs87 and net4. IPOPT
solved all but bigbank, gridgena, hs87, and net4. All 11 unbounded problems were
identified correctly by SNOPT7. IPOPT terminated 11 cases with an “unbounded
or diverging” diagnostic message, with indef , mesh and static3 being correctly iden-
tified as unbounded. Problem gausselm terminated with a segmentation fault after
IPOPT failed to allocate sufficient memory for MA57.

If any QP subproblem is infeasible, or the Lagrange multipliers of the subprob-
lem become large, then SNOPT7 switches to “elastic mode”. In this mode, the
nonlinear constraint functions are allowed to violate their bounds by an amount
that is multiplied by a positive weight and included in the objective function (see,
e.g., Gill, Murray and Saunders [16]). This feature allows SNOPT7 to find a lo-
cal minimizer of the sum of infeasibilities if the nonlinear constraints appear to
be infeasible. As mentioned above, the calculation of such a point does not nec-
essarily imply the problem is infeasible. A run was considered to have “failed”
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if a final point of local infeasibility was declared for a problem that is known
to be feasible. SNOPT7 terminated at a “false” infeasible point for 25 problems:
a4x12, broydnbd, discs, drugdis, eigmaxc, eigminc, flosp2th flt, hadamard, hatfldf ,
hs61, lukvle11, lukvle16, lukvle17, lukvle18, mss1, mss2, mss3, optcdeg3, powellsq,
s316-322, tro21x5, vanderm1, vanderm2, and vanderm3. This large number of
false infeasibilities provides a somewhat misleading picture of the effectiveness of
SNOPT7 for finding a feasible point. In particular, a total of 11 of the “infeasible”
problems: broydnbd, discs, drugdis, eigmaxc, eigminc, flt, hadamard, hs61, mss2,
mss3, and tro21x5, solve to optimality with the default optimality tolerance 10−6.
Similarly, the final sum of infeasibilities for the 7 problems a4x12, flosp2th hatfldf ,
lukvle17, lukvle18, vanderm1, and vanderm2, was of the order of 10−5. Problems
fletcher and lootsma have feasible solutions, but their initial points are infeasible
and stationary for the sum of infeasibilities. In this situation, the initial point sat-
isfies the first-order conditions for a minimizer of the merit function and SNOPT7
terminates immediately. As this study does not recognize a qualitative distinction
between a local and global solution, the outcomes for fletcher and lootsma are listed
as successful.

IPOPT with L-BFGS determined that 22 problems are infeasible. Of these, 9
problems: artif , cresc100, lippert2, lukvle16, lukvli17, pfit2, pfit4, powellsq,
and wachbieg, are listed as failures because of the existence of known feasible
points.

The results are summarized using performance profiles proposed by Dolan and
Moré [6]. A performance profile provides an “at-a-glance” comparison of the per-
formance of a set S of ns solvers applied to a test set P of np problems. For each
solver s ∈ S and problem p ∈P in a profile, the number tps is the performance
measure (i.e., the solve-time or number of function evaluations) for solver s on prob-
lem p. To compare the performance of a problem p over the different solvers, the
performance ratio for each successfully solved problem and solver is defined as

rps =
tps

min{tps : s ∈S } .

If rms denotes the maximum time (or function evaluations) needed over all problems
that were solved successfully, then the performance ratio for problems that failed
is defined as some value greater than rms. Given the set of performance ratios, a
function Ps(σ) is defined for each solver such that

Ps(σ) =
1
np
|{p ∈P : rps ≤ σ}|,

where σ ∈ [1,rms]. The value Ps(σ) is the fraction of problems for solver s that were
solved within σ of the best time. Ps(1) is the fraction of problems for which s was the
fastest solver. The value Ps(rms) gives the fraction of problems solved successfully
by solver s. The presented performance profiles are log-scaled, with τ = log2(σ) on
the x-axis and the function
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Ps(τ) =
1
np
|{p ∈P : log2(rps)≤ τ}|,

on the y-axis for each solver. The y-axis can be interpreted as the fraction of prob-
lems that were solved within 2τ of the best time. Because the y-axis is the fraction
of problems solved, and the x-axis is the factor of time needed to solve a problem,
the “best” solver should have a function Ps(τ) that lies towards the upper-left of the
graph. Recorded solve times of less than 0.001 seconds are replaced by 0.001 to
prevent division by zero in the calculation of the performance ratios.

Figure 2 gives the performance profiles for the solve times (in seconds) and total
number function evaluations required by SNOPT7 and IPOPT on all 1153 prob-
lems. The left figure profiles the solve times, the right figure profiles function eval-
uations. In these profiles, an algorithm is considered to have solved a problem suc-
cessfully if one of the first five outcomes listed in Table 2 occurs.
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Fig. 2 Performance profiles for SNOPT7 and IPOPT on 1153 CUTEst test problems using
first derivatives. The IPOPT results were obtained using an L-BFGS approximate Hessian.
The left figure profiles solve times (in seconds); the right figure profiles function evalua-
tions.

3.5 Comparisons with IPOPT using second-derivatives

In this section we consider results obtained by running SNOPT7 with first deriva-
tives (the only option) and IPOPT with the second derivatives (the default option).
The results are summarized in Table 3.

The second-derivative version of IPOPT solved all of the 19 nonsmooth prob-
lems except britgas, net2 and net4. IPOPT identified 26 problems as being in-
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Table 3 SNOPT7 and second-derivative IPOPT on 1153 CUTEst problems.

SNOPT7

Optimal 1006
Optimal, but low accuracy 8
Unbounded 11
Infeasible constraints 16
Locally infeasible constraints 16

Total successes 1057

False infeasibility 25
Iteration limit 4
Time limit 45
Numerical problems 13
Final point cannot be improved 9

Total failures 96

IPOPT (second derivatives)

Optimal 1013
Optimal, but low accuracy 18
Unbounded 2
Infeasible constraints 9
Locally infeasible constraints 6

Total successes 1048

False infeasibility 11
Iteration limit 3
Time limit 28
Too few degrees of freedom 33
Diverges 5
Restoration failed 19
Regularization too large 2
Invalid derivative entry 2
Search direction too small 2

Total failures 105

feasible. Of these, the 11 problems artif , brainpc2, cresc100, cresc132, cresc50,
lukvle16, net4, pfit1, pfit2, powellsq, and wachbieg, have known feasible points and
are included in the list of failures. Of the 7 problems that IPOPT identified as being
unbounded, only mesh and static3 were feasible with an unbounded objective. The
other 5 problems are listed as “diverging” in Table 3.
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Fig. 3 Performance profiles for SNOPT7 (first derivatives only) and second-derivative
IPOPT on 1153 CUTEst test problems. The left figure profiles the solve times (in seconds),
the right figure profiles function evaluations.
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Figure 3 gives the performance profiles for the solve times and function evalua-
tions required by SNOPT7 (first derivatives only) and second-derivative IPOPT on
all 1153 problems. As above, an algorithm is considered to have solved a problem
successfully if one of the first five outcomes listed in Table 3 occurs.

Two conclusions may be drawn from these results. First, IPOPTwith the second-
derivative option is significantly more robust than IPOPT with first derivatives
only, which is why the IPOPT documentation strongly recommends the second-
derivative option. Second, software based on a first-derivative SQP method can be
competitive with software based on an IP method using second derivatives. The re-
maining discussion focuses upon the source of this competitiveness and how it may
be exploited for the development of second-derivative SQP methods.

An important quantity that influences the efficiency of an optimization method
is the number of degrees of freedom ndf at a solution. The 1153 problems in the
CUTEst test collection include 1016 problems with ndf ≤ 3000 and 1095 prob-
lems with ndf ≤ 40001. Generally speaking, methods that maintain an explicit re-
duced Hessian when solving the QP subproblem (such as the QP solver SQOPT used
in SNOPT7) become less efficient as the number of degrees of freedom increases.
Figure 4 illustrates how the efficiency of SNOPT7 is influenced by the number of
degrees of freedom. Figure 4 profiles the solve times for SNOPT7 and IPOPT on
the 1016 CUTEst test problems with ndf ≤ 3000. A comparison of the solution-time
profiles of Figures 3 and 4 indicates that overall, SNOPT7 is more competitive on
problems with few degrees of freedom at the solution. The IPOPT package uses a
direct factorization of the KKT matrix, which implies that the efficiency is relatively
unrelated to the number of degrees of freedom. It follows that as the number of de-
grees of freedom increases, the number of problems for which IPOPT has a faster
solution time increases. For example, on the 68 problems with ndf > 4000 only 24
problems are solved faster with SNOPT7. These 68 problems provide a substantial
test of the conjugate-gradient linear system solver in SQOPT.

This inefficiency may be removed by using a QP solver that maintains an explicit
reduced Hessian when the number of degrees of freedom is small, and uses di-
rect factorization when the number of degrees of freedom is large. The QP-package
SQIC [24] implements a method based on this strategy.

Given an efficient QP solver, once the QP working set settles down, the effi-
ciency of SNOPT7 depends largely on whether or not the limited-memory method
is able to adequately represent the Lagrangian Hessian. For example, many of the
68 large problems have no constraints or only simple bounds, and in these cases, the
large number of major iterations is consistent with results obtained by other limited-
memory quasi-Newton methods (see, e.g., [4, 14]). This is one situation in which
the use of second derivatives, when available, can have a significant impact on the
rate of convergence of the SQP method. Figure 5, which profiles the solve times for
SNOPT7 and IPOPT on all 296 CUTEst test problems with either no constraints or
only simple bounds, indicates that, overall, second derivatives provide a significant
edge on this class of problem.

1 Here, the value of ndf is taken as the the number of degrees of freedom at a solution found by
SNOPT7.
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Fig. 4 Performance profiles of solve times for SNOPT7 (first derivatives only) and second-
derivative IPOPT on 1016 CUTEst test problems with no greater that 3000 degrees of
freedom.
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Fig. 5 Performance profiles of solve times for SNOPT7 (first derivatives only) and second-
derivative IPOPT on all 296 CUTEst test problems with either no constraints or only simple
bounds.
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4 Second-derivative SQP methods

The numerical results of the previous section confirm the widely-held view that
quasi-Newton SQP methods are effective at providing a good estimate of the indices
of the active constraints at a solution of (NP). Once the QP working set settles down,
the efficiency of a quasi-Newton SQP method then depends largely on whether or not
the limited-memory method is able to adequately represent the Lagrangian Hessian.
It is in this situation that the use of second derivatives, when available, can have a
significant impact on the rate of convergence of the SQP method.

In this section we outline an SQP method that incorporates both approximate and
exact Hessian information. First, the method uses the solution of a convex QP based
on a quasi-Newton Hessian to identify an estimate of the working set at a solu-
tion. This estimate is used to initiate a sequence of QP subproblems defined by the
Hessian of the Lagrangian. The approach is to proceed to solve the nonconvex QP
subproblem as in a conventional SQP method. However, as the QP iterations pro-
ceed, the QP Hessian is modified implicitly in such a way that the sequence of QP
iterates is equivalent to that associated with a related convex QP subproblem. This
“convexification” process is related to some well-known methods for unconstrained
optimization that modify a subproblem “on-the-fly”.

Other methods that identify the active set using a convex QP based on a BFGS
approximation of the Hessian have been proposed by Byrd et al. [1] and Gould and
Robinson [28, 29, 30].

4.1 Difficulties associated with using second derivatives in SQP

If the Hessian of the Lagrangian H(xk,yk) at (xk,yk) is positive definite and the QP
subproblem Hessian is Ĥk = H(xk,yk), then the SQP search direction pk satisfies
the inequality gL(xk, ŷk)

Tpk < 0, and pk is a descent direction for the Lagrangian
defined with multipliers y= ŷk (see. (8)). The curvature condition pT

k H(xk,yk)pk > 0
is sufficient for the existence of a step length that provides a sufficient decrease
for several merit functions that have been proposed in the literature; e.g., the `1
penalty function (Han [35] and Powell [39]) and various forms of the augmented
Lagrangian merit function (Han [35], Schittkowski [40], and Gill, Murray, Saunders
and Wright [20]).

If problem (NP) is not convex, the Hessian of the Lagrangian may be indefinite,
even in the neighborhood of a solution. This situation creates a number of difficulties
in the formulation and analysis of a conventional SQP method.

(i) The QP subproblem (2) may be nonconvex, which implies that the objective
of (2) may be unbounded below in the feasible region, and that there may
be many local solutions. In addition, nonconvex QP is NP-hard—even for the
calculation of a local minimizer [5, 12]. The complexity of the QP subprob-
lem has been a major impediment to the formulation of second-derivative SQP
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methods (although methods based on indefinite QP subproblems have been
proposed [7, 8]).

(ii) If H(xk,yk) is not positive definite, then pk may not be a descent direction for
the merit function. This implies that an alternative direction must be found or
the line search must allow the merit function to increase on some iterations
(see, e.g., Grippo, Lampariello and Lucidi [32, 33, 34], Toint [44], and Zhang
and Hager [49]).

Over the years, algorithm developers have avoided these difficulties by solving a
convex QP subproblem defined with a positive semidefinite quasi-Newton approx-
imate Hessian. Some methods follow the convex QP solve with an EQP phase that
uses exact second derivatives (see, e.g., [9, 2, 3, 28, 29, 30, 37]). However, the com-
mon feature of all these approaches is to rely on the convex QP to identify the active
constraints at a solution of (NP). In this form, SQP methods have proved reliable
and efficient for many problems. For example, under mild conditions the general-
purpose solvers NLPQL [41], NPSOL [18, 20], DONLP [43], and SNOPT7 [16] typ-
ically find a (local) optimum from an arbitrary starting point, and they require rela-
tively few evaluations of the problem functions and gradients.

In the next three sections we outline the basic components of an SQP method that
incorporates exact second derivatives but avoids the difficulties discussed above.

4.2 Overview of convexification methods

Convexification is a process for defining a local convex approximation of a non-
convex problem. This approximation may be defined on the full space of vari-
ables or just on some subset. Many model-based optimization methods use some
form of convexification. For example, line-search methods for unconstrained and
linearly-constrained optimization define a convex local quadratic model in which
the Hessian H(xk,yk) is replaced by a positive-definite matrix H(xk,yk)+Ek (see,
e.g., Greenstadt [31], Gill and Murray [15], Schnabel and Eskow [42], and Forsgren
and Murray [13]). All of these methods are based on convexifying an unconstrained
or equality-constrained local model. Here we consider a method that convexifies the
inequality-constrained subproblem directly. The method extends some approaches
proposed by Gill and Robinson [21, Section 4] and Kungurtsev [36].

In the context of SQP methods, the purpose of the convexification is to find a
matrix ∆Hk such that

pT
k
(
H(xk,yk)+∆Hk

)
pk ≥ γ̄ pT

k pk,

for a given primal-dual pair (xk,yk), where γ̄ is a fixed positive scalar that defines
a minimum acceptable value of the curvature of the Lagrangian. Ideally, any algo-
rithm for computing ∆Hk should satisfy two requirements. First, the convexification
should be minimal, i.e., if H(xk,yk) is positive definite or pT

k H(xk,yk)pk ≥ γ̄ pT
k pk,
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then ∆Hk should be zero. Second, it must be possible to store the modification ∆Hk
implicitly, without the need to modify the elements of H(xk,yk).

The proposed convexification scheme can take three forms: preconvexification,
concurrent convexification, and post-convexification. We emphasize that not all of
these modifications are necessary at a given iteration.

4.3 Concurrent QP convexification

Concurrent convexification is based on a specific method for solving a general (i.e.,
potentially nonconvex) QP (see Gill and Wong [25]). We start by giving a brief
description of this method applied to a generic QP of the form

minimize
x∈Rn

ϕ(x) = gT(x− xI)+
1
2 (x− xI)

TH(x− xI)

subject to Ax≥ AxI−b,
(12)

where xI , b, A, g, and H are constant. In the SQP context, xI = xk, g= g(xk), b= c(xk),
A = J(xk), and H is the exact or approximate Hessian of the Lagrangian. Thus, the
objective is not necessarily convex and the QP subproblem may be indefinite.

The method described by Gill and Wong in [25] and implemented in the software
package SQIC [24] is a two-phase method for general QP. In the first phase, the ob-
jective function is ignored while a conventional phase-one linear program is used to
find a feasible point x0 for the constraints Ax ≥ AxI− b. On completion of the first
phase, a working set W0 is available that contains the indices of a linearly indepen-
dent subset of the gradients of the active constraints at x0. If A0 and b0 denote the
m0× n matrix of rows of A and the vector of m0 components of b with indices in
W0, then

A0x0 = A0xI−b0.

In the second phase, a sequence of primal-dual iterates {(x j,y j)} j≥0 and working
sets {W j} is generated such that: (i) {x j} j≥0 is feasible; (ii) ϕ(x j) ≤ ϕ(x j−1); and
(iii) for every j ≥ 1, (x j,y j) is the primal and dual solution of the equality con-
strained problem defined by minimizing ϕ(x) subject to the constraints in the work-
ing set W j. The vector x j associated with the primal-dual pair (x j,y j) is known as a
subspace minimizer with respect to W j. If A j denotes the m j× n matrix of rows of
A with indices in W j, then a subspace minimizer is formally defined as the point x j
such that g(x j) = AT

j y j, and the KKT matrix

K j =

(
H AT

j
A j 0

)
(13)

has exactly m j negative eigenvalues. Equivalently, the associated reduced Hessian
ZT

j HZ j, where the columns of Z j form a basis for the null-space of A j, is positive
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definite. Thus, for any K j satisfying this property, the working set W j is second-
order consistent with respect to H.

In general, the first iterate x0 will not minimize ϕ(x) on W0, and one or more
preliminary iterations are needed to find the first subspace minimizer x1. An estimate
of x1 is defined by solving the equality-constrained QP subproblem

minimize
x

ϕ(x) subject to A0(x− xI)+b0 = 0. (14)

If the KKT matrix K0 is second-order consistent, then the solution of this subproblem
is given by x0 + p0, where p0 satisfies the nonsingular system(

H AT
0

A0 0

)(
p0
−ŷ0

)
=−

(
g(x0)

b0 +A0(x0− xI)

)
=−

(
g(x0)

0

)
. (15)

If x0 + p0 is feasible for (14), then (x1,y1) = (x0 + p0, ŷ0) is a subspace minimizer;
otherwise one of the constraints violated at x0 + p0 is added to the working set
and (15) is solved again with the new working set. Eventually, the working set will
include enough constraints to define a primal-dual pair (x1,y1) at a subspace mini-
mizer.

If the first subspace minimizer x1 is not optimal for (12), then the method pro-
ceeds to find the sequence of subspace minimizers x2, x3, . . . , described above. At
any given iteration, not all the constraints in W j are necessarily active at x j. If every
working-set constraint is active, then W j ⊆A (x j), and x j is called a standard sub-
space minimizer; otherwise x j is a nonstandard subspace minimizer. The method
is formulated so that there is a subsequence of “standard” iterates intermixed with
a finite number of consecutive “nonstandard” iterates. If the multipliers y j are non-
negative at a standard iterate, then x j is optimal for (12) and the algorithm is ter-
minated. Otherwise, a working set constraint with a negative multiplier is identified
and designated as the nonbinding working-set constraint associated with the subse-
quent consecutive sequence of nonstandard iterates. If the index of the nonbinding
constraint corresponds to row s of A, then [y j ]s < 0. There follows a sequence of “in-
termediate” iterations in which the constraint aT

s x≥ aT
s xI−bs remains in the working

set, though it is no longer active, while its multiplier is driven to zero. At each of
these iterations, a search direction is defined by solving the equality-constrained
subproblem

minimize
p∈Rn

ϕ(x j + p) subject to aT
i p =

{
0 if i 6= s, i ∈W j,

1 if i = s.
(16)

In matrix form, the optimality conditions for subproblem (16) are(
H AT

j
A j 0

)(
p j
−q j

)
=

(
0
es

)
, (17)

where y j + q j are the multipliers at the minimizer x j + p j, and es denotes the sth
column of the identity matrix. (To simplify the notation, it is assumed that the non-
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binding constraint corresponds to the sth row of A, which implies that aT
s is the

sth row of both A and A j.) Any nonzero step along p j increases the residual of
the nonbinding constraint while maintaining the residuals of the other working-set
constraints at zero (i.e., the nonbinding constraint becomes inactive while the other
working-set constraints remain active).

Once the direction (p j,q j) has been computed, the computation of the next iterate
x j+1 depends on the value of pT

j H p j, the curvature of ϕ along p j. There are two
cases to consider.

Case 1: pT
j H p j > 0. In this case the curvature is positive along p j. This will always

be the outcome when ϕ is convex. In this case, the step to the minimizer of ϕ along
the search direction p j is given by

α
∗
j =−g(x j)

Tp j/pT
j H p j =−[y j ]s/pT

j H p j. (18)

The definition of α∗j implies that the multiplier [y j + α∗j q j ]s associated with the
nonbinding constraint at x j +α∗j p j is zero. This implies that if x j +α∗j p j is feasible
with respect to the constraints that are not in the working set, then the nonbinding
constraint index can be removed from W j as the conditions for a subspace minimizer
continue to hold. This gives a new standard iterate x j+1 = x j +α∗j p j, with working
set W j+1 =W j \{s}. Either x j+1 is optimal for the QP or a new nonbinding constraint
is identified and the process is repeated by computing a search direction from the
system (17) defined at x j+1. If x j +α∗j p j is not feasible, then x j+1 is defined as
x j +α j p j, where α j is the largest step that gives a feasible x j +α j p j. The point
x j+1 must have at least one constraint that is active but not in W j. If t is the index
of this constraint, and at and the vectors {ai}i∈W j are linearly independent, then
t is added to the working set to give W j+1. At the next iteration, a new value of
(p j,q j) is computed using system (17) defined with A j+1. If at and {ai}i∈W j are
linearly dependent, then it is shown in [25] that the working set W j+1 = {W j \{s}}∪
{t} defined by replacing the index t with index s defines a linearly-independent set
of constraint gradients. Moreover, x j+1 = x j +α j p j is a subspace minimizer with
respect to W j+1.

Case 2: pT
j H p j ≤ 0. In this case H is not positive definite and ϕ(x j +α p j) is un-

bounded below for positive values of α . Either the QP is unbounded, or there exists a
constraint index t and a nonnegative step α̂ j such that the constraint residuals satisfy
rt(x j + α̂ j p j) = 0, r(x j + α̂ j p j) ≥ 0, and α̂ j minimizes ϕ(x j +α p j) for all feasi-
ble x j +α p j. In this case, x j+1 = x j + α̂ j p j and, as above, either at and {ai}i∈W j
are linearly independent, in which case W j+1 = W j ∪{t}, or the constraint gradi-
ents associated with the working set defined by replacing the index t with index s,
are linearly independent. Moreover, x j+1 = x j +α j p j is a subspace minimizer with
respect to W j+1.

To determine whether at and the vectors {ai}i∈W j are linearly independent, a
second KKT system of the form(

H AT
j

A j 0

)(
u j
−v j

)
=

(
at
0

)



20 Philip E. Gill, Michael A. Saunders and Elizabeth Wong

is solved. It is shown in [25] that u j 6= 0 if and only if at and {ai}i∈W j are linearly
independent. Furthermore, if u j 6= 0, then uT

j at > 0 so that linear independence can
be determined by checking the sign of the inner product of u j and at .

In both cases, the process is repeated at the next subspace minimizer defined
by an appropriate working set until an optimal solution is found or the problem is
declared to be unbounded.

The proposed concurrent convexification scheme is based on defining an implicit
modification of H when negative curvature is detected following the identification
of the nonbinding constraint. Assume that a QP search direction p j with zero or
negative curvature is detected after the selection of aT

s x≥ bs as the nonbinding con-
straint (i.e., [y j ]s < 0). In this case, H is not positive definite and the QP Hessian is
modified so that it has sufficiently large positive curvature along p j. As pT

j H p j ≤ 0,
the objective ϕ(x j +α p j) is unbounded below for positive values of α . In this case,
either the unmodified QP is unbounded, or there exists a constraint index t and a
nonnegative step α̂ j such that the constraint residuals satisfy rt(x j + α̂ j p j) = 0,
r(x j + α̂ j p j)≥ 0, and α̂ j minimizes ϕ(x j +α p j) for all feasible x j +α p j.

If pT
j H p j < 0, the positive semidefinite rank-one matrix σasa

T
s is added to H

implicitly. This modifies the quadratic program being solved, but the current iter-
ate x j remains a subspace minimizer for the modified problem. The only computed
quantities altered by the modification are the curvature and the multiplier ys asso-
ciated with the nonbinding working-set constraint. The modified Hessian is defined
as H(σ̄) = H + σ̄asa

T
s for some σ̄ > 0. Gill and Wong [25] show that the curvature

pTH p is nondecreasing during a sequence of nonstandard iterations associated with
a nonbinding index s. This implies that a modification of the Hessian will occur only
at the first nonstandard iterate.

For an arbitrary σ , the gradient of the modified objective at x j is

g+H(σ)(x j− xI) = g+(H +σasa
T
s )(x j− xI).

As (x j,y j) is a standard subspace minimizer for the unmodified problem, the identi-
ties g(x j) = g+H(x j− xI) = AT

j y j and aT
s (x j− xI) =−bs hold, and the gradient of

the modified objective is given by

g+H(σ)(x j− xI) = g+H(x j− xI)+σasa
T
s (x j− xI)

= g(x j)+σaT
s (x j− xI)as

= AT
j
(
y j−σbses

)
= AT

j y(σ), with y(σ) = y j−σbses.

This implies that x j is a subspace minimizer of the modified problem for all σ ≥ 0.
Moreover, the multipliers of the modified problem are the same as those of the un-
modified problem except for the multiplier ys associated with the nonbinding con-
straint, which is shifted by −σbs.

Once the Hessian is modified, the system (17) for the primal-dual direction be-
comes
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H + σ̄asa

T
s AT

j
A j 0

)(
p̄ j
−q̄ j

)
=

(
0
es

)
,

which is equivalent to (
H AT

j
A j 0

)(
p j

−(q̄ j− σ̄es)

)
=

(
0
es

)
.

A comparison with (17) yields

p̄ j = p j and q̄ j = q j + σ̄es,

which implies that the QP direction is not changed by the modification.
For any σ ≥ 0, let α j(σ) denote the step associated with the search direction

for the modified QP. The identities aT
s p j = 1. aT

s (x j− xI) = −bs and ys = g(x j)
Tp j

imply that

α j(σ) =−
(
g+(H +σasa

T
s )(x j− xI)

)T p j

pT
j (H +σasaT

s )p j

=−g(x j)
Tp j +σaT

s (x j− xI)

pT
j H p j +σ

=−g(x j)
Tp j−σbs

pT
j H p j +σ

=− ys−σbs

pT
j H p j +σ

=− ys(σ)

pT
j H p j +σ

. (19)

This implies that σ̄ must be chosen large enough to satisfy

σ̄ > σmin =−pT
j H p j.

The derivative of α j(σ) with respect to σ is given by

α
′
j(σ) =

1
(pT

j H p j +σ)2

(
ys +bs pT

j H p j

)
=

ys(σmin)

(pT
j H p j +σ)2 . (20)

The choice of σ̄ that we propose depends on two parameters ytol and dmax. The
scalar dmax defines the maximum change in x at each QP iteration. The scalar ytol is
the dual optimality tolerance and is used to define what is meant by a “nonoptimal”
multiplier. In particular, the multiplier of the nonbinding constraint must satisfy
ys <−ytol in order to qualify as being nonoptimal.

There are two cases to consider for the choice of σ̄ .

Case (i): bs < 0. In this case, ys(σ) is an increasing function of σ , which implies
that there exists σopt = (ys − ytol)/bs > 0 such that ys(σopt) = ytol > 0. This
modification changes the multiplier associated with the nonbinding constraint from
nonoptimal to optimal. However, if σopt<σmin, then the curvature is not sufficiently
positive and σ must be increased so that it is larger than σmin. The definition
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σ̄ =

{
σopt if σopt ≥ 2σmin;
2σmin if σopt < 2σmin,

guarantees that the curvature along p j is sufficiently positive with an optimal mod-
ified multiplier ys(σ̄). In either case, the QP algorithm proceeds by selecting an
alternative nonbinding constraint without taking a step along p j.

If ys(σmin) < 0, it is possible to choose σ̄ > σmin such that ys(σ̄) remains neg-
ative. The multiplier ys(σ) increases from the negative value ys(σmin) to the value
−ytol as σ increases from σmin to the positive value σnonopt = (ys+ytol)/bs. This
implies that if σ is chosen in the range σmin < σ ≤ σnonopt, then the multiplier for
the nonbinding constraint remains nonoptimal, and it is possible to both convexify
and keep the current nonbinding constraint. However, in the SQP context it is un-
usual for a nonbinding constraint to have a negative value of bs when xk is far from
a solution. For an SQP subproblem, b is the vector c(xk), and a negative value of bs
implies that the sth nonlinear constraint is violated at xk. The linearization of a vio-
lated nonlinear constraint is likely to be retained in the working set because the SQP
step is designed to reduce the nonlinear constraint violations. The picture changes
when xk is close to a solution of (NP) and the violations of the nonlinear constraints
in the QP working set are small. In this case, if strict complementarity does not hold
at the solution of the nonlinear problem2 and xk is converging to a point that satisfies
the second-order necessary conditions, but not a second-order sufficient condition,
then both bs and ys may be small and negative. It is for this reason that even if
ys(σmin) is negative, σ̄ is chosen large enough that the multiplier changes sign and
the nonbinding constraint is retained in the QP working set.

Case (ii): bs ≥ 0. In this case, ys(σmin) = ys− bsσmin < 0 and ys(σmin) decreases
monotonically for all increasing σ > σmin. The step-length function α j(σ) has
a pole at σ = −pT

j H p j and decreases monotonically, with α j(σ) → bs ≥ 0 as
σ → +∞. The behavior of x(σ) is depicted in Figure 6 for a two-variable QP with
constraints aT(x−xI)≥−b, x1 ≥ 0, and x2 ≥ 0. The next iterate of the QP algorithm
lies on the ray x(σ) = x j +α j(σ)p j. As σ → ∞, x(σ) moves closer to the point
x j +bs p j on the hyperplane aT(x− xI) = 0.

A preliminary value of σ̄ is chosen to give an x j+1 such that

‖x j+1− x j‖2 ≤ dmax,

where dmax is the preassigned maximum change in x at each QP iteration. If
αT = dmax/‖p j‖2, then the substitution of α j(σ̄) = αT in (19) gives σ̄ = −(ys +
αT pT

j H p j)/(αT −bs). However, the limit α j(σ)→ bs ≥ 0 as σ →+∞, implies that
this value of σ̄ may be large if α j(σ̄) is close to bs. In order to avoid this difficulty,
the value of σ̄ is used as long as the associated value of α j(σ̄) is sufficiently larger
than bs, i.e.,

2 i.e., c j(x
∗)y∗j = 0 and c j(x

∗)+ y∗j > 0 at the optimal primal-dual pair (x∗,y∗).
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x2

x1

aT(x− xI) ≥ −b

xI

aTx = aTxI

aT(x− xI) = −b

xj

limσ→∞ x(σ) = xj + b pj

limσ→σmin
x(σ)

x(σ) = xj + α(σ)pj

Case (ii): b > 0

Fig. 6 The figure depicts the feasible region for a QP with constraints aT(x− xI)≥−b,
x1 ≥ 0, and x2 ≥ 0. The point x j is a standard subspace minimizer with working-set
constraint aT(x− xI) ≥ −b. The surface of the hyperplane aT(x− xI) = 0 is marked in
green. The QP base point xI is feasible for b ≥ 0. The QP search direction is the red
dotted line. The next iterate of the QP algorithm lies on the ray x(σ) = x j +α j(σ)p j .
As the modification parameter σ increases from its initial value of σmin, the new iterate
x(σ) moves closer to the point x j +b p j on the hyperplane aT(x− xI) = 0.

α j(σ̄) =

{
αT if αT ≥ 2bs;
2bs if αT < 2bs,

so that σ̄ =


−

ys +αT pT
j H p j

αT −bs
if αT ≥ 2bs,

−
ys +2bs pT

j H p j

bs
if αT < 2bs.

If this algorithm is applied to a nonconvex QP of the form (12), then a solution is
found for the convexified QP

minimize
x∈Rn

ϕ(x) = gT(x− xI)+
1
2 (x− xI)

T(H +E)(x− xI)

subject to Ax≥ AxI−b,
(21)
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where E is a positive-semidefinite matrix of the form E = AT Σ̄A, with Σ̄ a positive
semidefinite diagonal matrix. In general, most of the diagonal elements of Σ̄ are
zero. The modification E may be reconstructed from A and a sparse representation
of Σ̄.

4.4 Preconvexification

The concurrent convexification method of Section 4.3 has the property that if x0 is a
subspace minimizer, then all subsequent iterates are subspace minimizers. Methods
for finding an initial subspace minimizer utilize an initial estimate x0 of the solution
together with an initial working set W0 of linearly independent constraint gradients.
These estimates are often available from a phase-one linear program or, in the SQP
context, the solution of the previous QP subproblem.

If the KKT matrix K0 defined by these initial estimates has too many negative
or zero eigenvalues, then W0 is not a second-order consistent working set. In this
case, an appropriate K0 may be obtained by imposing temporary constraints that are
deleted during the course of the subsequent QP iterations. For example, if n vari-
ables are temporarily fixed at their current values, then A0 is the identity matrix
and K0 necessarily has exactly n negative eigenvalues regardless of the eigenval-
ues of H(xk,yk). The form of the temporary constraints depends on the method
used to solve the KKT equations; see, e.g., Gill and Wong [25, Section 6]. Once
the temporary constraints are imposed, concurrent convexification can proceed as in
Section 4.3 as the temporary constraints are removed from the working set during
subsequent iterations.

A disadvantage of using temporary constraints is that it may be necessary to
factor two KKT matrices if the initial working set is not second-order consistent. An
alternative approach is to utilize the given working set W0 without modification and
use preconvexification, which involves the definition of a positive-semidefinite E0
such that the matrix

K0 =

(
H +E0 AT

0
A0 0

)
(22)

is second-order consistent. A suitable modification E0 may be based on some vari-
ant of the symmetric indefinite or block-triangular factorizations of K0. Appropriate
methods include: (i) the inertia controlling LBLT factorization (Forsgren [10], Fors-
gren and Gill [11]); (ii) an LBLT factorization with pivot modification (Gould [26]);
and (iii) a conventional LBLT factorization of (22) with E0 = σ I for some nonneg-
ative scalar σ (Wächter and Biegler [46]). In each case, the modification E0 is zero
if W0 is already second-order consistent.



On the Performance of SQP Methods for Nonlinear Optimization 25

4.5 Post-convexification

As concurrent convexification generates a sequence of second-order-consistent work-
ing sets, the SQP search direction pk = x̂k − xk must satisfy the second-order-
consistent KKT system(

Hk +Ek Jw(xk)
T

Jw(xk) 0

)(
pk

−ŷw

)
=−

(
g(xk)

cw(xk)

)
, (23)

where Hk =H(xk,yk) is the exact Hessian of the Lagrangian, Ek is the matrix defined
by the pre- and/or concurrent convexification, and cw(xk) and Jw(xk) are the rows
of c(xk) and J(xk) associated with indices in the final QP working set W (cf. (7)).
In most cases, concurrent convexification is sufficient to give pT

k(Hk +Ek)pk > 0,
but it may hold that pT

k(Hk +Ek)pk ≤ 0. In this case, pk is not a descent direction
for gL(xk, ŷk), and an additional post-convexification step is necessary. In the fol-
lowing discussion, there is no loss of generality in assuming that Ek = 0, i.e., it is
assumed that Hk has not been modified during the preconvexification or concurrent
convexification stages. Post-convexification is based on the following result.

Result 4.1 If Jw is a second-order-consistent working-set matrix associated with a
symmetric H, then there exists a nonnegative σ̄ such that the matrix H̄ =H+ σ̄JT

w Jw
is positive definite. In addition, the solutions of the systems(

H JT
w

Jw 0

)(
p

−ŷw

)
=−

(
g
cw

)
and

(
H̄ JT

w
Jw 0

)(
p̄

−ȳw

)
=−

(
g
cw

)
are related by the identities p̄ = p and ȳw = ŷw− σ̄cw.

If the solution (x̂k, ŷk) of the QP subproblem does not satisfy the descent condi-
tion, then pk = x̂k− xk is such that

pT
k H(xk,yk)pk =−gL(xk, ŷk)

Tpk < γ̄ pT
k pk

for some positive γ̄ . The result implies that multipliers ȳk such that [ȳk ]i = 0, for
i 6∈W , and [ȳk ]w = ŷw− σ̄cw(xk), provide the required curvature

pT
k H̄(xk,yk)pk =−gL(xk, ȳk)

Tpk = γ pT
k pk,

where σ̄ =
(
γ pT

k pk− pT
k H(xk,yk)pk

)
/‖cw(xk)‖2 with γ chosen such that γ ≥ γ̄ . (If

cw(xk) = 0, then pk is a descent direction for the objective function and no post-
convexification is required; see, e.g., Gill, Murray, Saunders and Wright [20].) The
extension of this result to the situation where (x̂k, ŷk) satisfies the modified KKT
system (23) is obvious.
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5 Summary

The numerical results presented in Section 3 indicate that the optimization packages
SNOPT7 and IPOPT are very efficient and robust in general, solving over 85% of
problems in the CUTEst test collection. However, the results also show that the
performance of these codes depends greatly on the characteristics of the problem.
These characteristics include the size of the problem, the availability of first and
second derivatives, the types of constraints, and the availability of a good initial
starting point. Ultimately, for every problem that is best solved by an SQP code,
there will likely exist another that is best solved by an IP code.

To extend SQP methods so that second derivatives may be exploited reliably
and efficiently, we propose convexification algorithms for the QP subproblem in an
active-set SQP method for nonlinearly constrained optimization. Three forms of con-
vexification are defined: preconvexification, concurrent convexification, and post-
convexification. The methods require only minor changes to the algorithms used
to solve the QP subproblem, and are designed so that modifications to the original
problem are minimized and applied only when necessary.

It should be noted that the post-convexification Result 4.1 holds even if a con-
ventional general QP method is used to solve the QP subproblem (provided that the
method gives a final working set that is second-order consistent). It follows that
post-convexification will define a descent direction regardless of whether concur-
rent convexification is used or not. The purpose of concurrent convexification is to
reduce the probability of needing post-convexification, and to avoid the difficulties
associated with solving an indefinite QP problem.

The methods defined here are the basis of the second-derivative solvers in the
dense SQP package DNOPT of Gill, Saunders and Wong [22] and the forthcoming
SNOPT9. All of the methods may be extended to problems in which the constraints
are written in the form (9) (see Gill and Wong [25, Section 4]). In this case, the
inequality constraints for the QP subproblem are upper and lower bounds, and all
the modification matrices are diagonal.
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