

PCGM26 PROGRAM

All talks will take place in Room 2250 (Ledden Auditorium) in Building 250 (HSS -- Humanities and Social Sciences Building) on the UCSD campus. Each speaker will be alloted a maximum of 15 minutes for setup + the talk itself + questions and answers. Plan to limit your talk to no more than 12 minutes to allow time for setup and a question or two.

Speakers using computer generated talks: Please verify prior to your session that your laptop communicates correctly with the projector. Speakers should begin connecting their laptops to the projector during the question period of the speaker immediately preceeding their talk. Whenever possible, speakers from each session should collect talks onto a single loptop to minimize setup delays. Blackboards, chalk, and overhead transparancy projectors are also available.

Coffee, tea, sodas, and light snacks (bagels, pastrys, fresh fruit, cookies, etc.) will be available (provided fittingly by Einstein Brothers) before the morning sessions starting at 8am, and during the morning and afternoon coffee breaks. These will be served in Room 2402A of the APM Building, located immediately adjacent to the Lecture Auditorium.

Friday, March 26, 2010

Session I (Chair: Michael Holst, UC San Diego)

Name	Organization	Talk	Begin	End	Student
		Breakfast and Registration	8:00	9:00	
Michael Holst	UC San Diego	Welcome and Announcements	9:00	9:05	
Gary Horowitz	UC Santa Barbara	Holographic superconductors	9:05	9:20	
Tomas Andrade	UC Santa Barbara	Comments on Holography and Diffeomorphism Invariance	9:20	9:35	•
Ian A Morrison	UC Santa Barbara	The IR stability of de Sitter	9:35	9:50	•
Dinesh Singh	University of Regina	Effects of Space-Time Curvature on Spin-1/2 Particle Zitterbewegung	9:50	10:05	
		Coffee Break	10:05	10:45	

Session II (Chair: Lee Lindblom, Caltech)

Name	Organization	Talk	Begin	End	Student
Joseph Betzwieser	Caltech	Searching for Continuous Gravitational Waves with coherent methods	10:45	11:00	
Vladimir Dergachev	Caltech	All-sky search for continuous gravitational waves with PowerFlux	11:00	11:15	
Pinkesh Patel	Caltech	Search for continuous gravitational waves from a nearby neutron star	11:15	11:30	•
Mark Bennett	University of Melbourne	Continuous-wave gravitational radiation from pulsar glitch recovery	11:30	11:45	•
Antony Searle	Caltech	Multi-messenger astronomy with transient gravitational wave sources	11:45	12:00	
Michael Cohen	Caltech	Searches for Cosmic String Gravitational-Wave Bursts in Mock LISA Data	12:00	12:15	•
		Lunch	12:15	2:15	

Session III (Chair: Melvin Leok, UC San Diego)

Organization	Talk	Begin	End	Student
UC San Diego	Solution of the Einstein constraint equations on manifolds with boundary	2:15	2:30	
University of Oregon	Gluing Initial Data Sets at Asymptopia	2:30	2:45	
University of Oregon	Future Global Stability of Cosmological Models with Scalar and Electromagnetic Fields	2:45	3:00	•
University of Pittsburgh	Disembodied Boundary Data for Einstein's Equations	3:00	3:15	
Idaho State University	Towards a new definition of singularity	3:15	3:30	
	Coffee Break	3:30	4:00	
	Organization UC San Diego University of Oregon University of Oregon University of Pittsburgh Idaho State University	OrganizationTalkUC San DiegoSolution of the Einstein constraint equations on manifolds with boundaryUniversity of OregonGluing Initial Data Sets at AsymptopiaUniversity of OregonFuture Global Stability of Cosmological Models with Scalar and Electromagnetic FieldsUniversity of PittsburghDisembodied Boundary Data for Einstein's EquationsIdaho State UniversityTowards a new definition of singularityCoffee BreakCoffee Break	OrganizationTalkBeginUC San DiegoSolution of the Einstein constraint equations on manifolds with boundary2:10University of OregoGuing Initial Data Sets at Asymptopia2:30University of OregoFuture Global Stability of Cosmological Models with Scalar and Electromagnetic Friedu3:00University of PittsburgIosembodied Boundary Data for Einstein's Equations3:10Idaho State UniversityCoffee Break3:00	OrganizationTellUC San DiegoSolution of the Einstein constraint equations on mainfolds with boundary2:152:00University of OregonGuing Initial Data Stad Asymptopia2:002:45University of OregonFuture Global Stability of Cosmological Models with Scalar and Electromagnetic Field2:00University of PittsburgDisembodied Boundary Data for Einstein's Equations3:003:00Idaho State UniversityGroeg BeackSino3:00

Session IV (Chair: Steve Carlip, UC Davis)

Name	Organization	Talk	Begin	End	Student
Michael Kesden	Caltech	Spin alignment during black hole inspirals	4:00	4:15	
David Nichols	Caltech	A Hybrid Approximation Technique for Head-on Black-Hole-Binary Mergers	4:15	4:30	•
Marc Favata	Caltech	Comparisons between post-Newtonian and self-force calculations	4:30	4:45	
Ned S. Rasor	Consultant	Quasi-Newtonian Dynamics and Universal Expansion	4:45	5:00	
Franklin Felber	Starmark, Inc.	New exact time-dependent solution of Einstein's equation	5:00	5:15	

Saturday, March 27, 2010

Session V (Chair: Gary Horowitz, UC Santa Barbara)

Name	Organization	Talk	Begin	End	Student
		Breakfast and Registration	8:00	9:00	
Steven Carlip	UC Davis	A nonextremal Kerr/CFT correspondence	9:00	9:15	
Marcus Afshar	UC Davis	Quasilocal Energy in FRW Cosmology	9:15	9:30	
Reiko Toriumi	UC Irvine	Quantum Gravity and Cosmological Density Perturbations	9:30	9:45	
Joseph Smidt	UC Irvine	New Constraints On The Primordial Non-Gaussianity Parameters $\tau_{}$ and g $_{}_{}$ NL $_{}$ NL	9:45	10:00	•
		Coffee Break	10:15	11:00	

Session VI (Chair: Rana Adhikari, Caltech)

Name	Organization	Talk	Begin	End	Student
Douglas Singleton	CSU Fresno	Hawking-like radiation in a FRW Universe	11:00	11:15	
Paolo Bonifacio	University of Aberdeen	Spacetime conformal fluctuations and quantum dephasing	11:15	11:30	
Shau-Yu Lan	UC Berkeley	Atom Interferometry in Fundamental Physics	11:30	11:45	
Michael Hohensee	UC Berkeley	Matter Waves for Gravitational Wave Detection	11:45	12:00	
Cheong Chan	UC Berkeley	Atom Interferometric Measurement of Newton's Constant	12:00	12:15	•
		Lunch	12:15	2:15	

Session VII (Chair: David Meyer, UC San Diego)

Name	Organization	Talk	Begin	End	Student
Bela Szilagyi	Caltech	Spectral Numerical Simulations of High-spin Binary Black Hole Mergers	2:15	2:30	
Mark Scheel	Caltech	Spectral Numerical Simulations of Unequal-Mass Binary Black Hole Mergers	2:30	2:45	
Jeff Kaplan	Caltech	Simulations of Neutron-Star Binaries using SpEC	2:45	3:00	•
Tony Chu	Caltech	Estimating gauge errors in numerical waveforms	3:00	3:15	•
Fan Zhang	Caltech	Gauge Independent Tetrad for Numerical Waveform Extraction	3:15	3:30	•
Keith D. Matthews	Caltech	Quasi-Equilibrium Initial Data For Simulations of Generic Black-Hole Binaries in Harmonic Coordinates	3:30	3:45	•
		Coffee Break	3:45	4:15	

Session VIII (Chair: Jim Isenberg, University of Oregon)

Name	Organization	Talk	Begin	End	Student
		GGR Student Talk Award	4:15	4:20	
Nicholas Taylor	Caltech	Second order in space spectral methods for numerical relativity	4:20	4:35	
Lee Lindblom	Caltech	A Spectral Approach to the Relativistic Inverse Stellar Structure Problem	4:35	4:50	
Krzysztof Bolejko	University of Arizona	Inhomogeneous cosmology: from dark energy to homogenization of the Universe	4:50	5:05	

Google maps

Notes on relative locations of AP&M, Ledden Auditorium, and Muir Upper Lot for Parking.

RED = AP&M

YELLOW = Ledden Hall

Google maps

Notes on lunch options near UCSD:

RED = Ledden Hall and AP&M

BLUE = Subway, La Salsa, StarBucks, etc

PURPLE = Nice Food Court (ethnic foods, StarBucks, etc)

GREEN = More upscale (Piatti's Italian, etc)

