
Department of Mathematics at University of California, San Diego

Computational Finance
Optimization Techniques [Lecture 2]

Michael Holst

January 17, 2018

Contents

1 Optimization Techniques 3
1.1 Examples from Finance Involving Optimization 3

1.1.1 Portfolio Optimization . 3
1.2 Overview of Optimization Problems and Techniques 4

1.2.1 Unconstrained Univariate and Multivariate Optimization 5
1.2.2 Equality- and Inequality-Constrained Optimization 9
1.2.3 Linear Programming (LP) . 14
1.2.4 Quadratic Programming (QP) . 15
1.2.5 Non-smooth Optimization and Optimization with Uncertainty 15

1.3 Methods and Software for Quadratic Programming 16
1.3.1 The Quadratic Programming (QP) Problem 16
1.3.2 Optimality Conditions for QP . 17
1.3.3 Interior Point (IP) Methods for QP . 18
1.3.4 Software Packages for using QP . 20
1.3.5 Portfolio Optimization using QP . 21

References 23

ccom.ucsd.edu/~mholst/teaching/ 1

ccom.ucsd.edu/~mholst/teaching/

List of Algorithms

1 Method of Steepest Descent . 7
2 Global Inexact Newton Iteration . 8
3 Method of Lagrange Multipliers for Equality-Constrained NLP 13
4 Interior Point Method for QP . 21

ccom.ucsd.edu/~mholst/teaching/ 2

ccom.ucsd.edu/~mholst/teaching/

1 Optimization Techniques

One of the first applications of the derivative in first-year undergraduate mathematics is to find
maxima and minima of real-value functions of a single real variable (or univariate functions), with
no constraints placed on that variable. This was likely the first exposure at the undergraduate
level to what is known as unconstrained optimization. In Section 1.1, we examine a particularly
important optimization problem arising in finance, and we will use this problem as our motivation
for understanding optimization problems and developing solution techniques. In Section 1.2, we
begin by reviewing the basic approach we took in Calculus involving the search for critical points
of unconstrained optimization problems in one variable, and show how it extends naturally to
several variables. We then discuss how one incorporates both equality and inequality constraints
placed on the independent variable, leading to what is referred to as constrained optimization.
Given some function f : Rn → R, and a set S ⊂ Rn, we will be interested in the problem:

min
x∈Rn

f(x)

s.t. x ∈ S,

where here and throughout we abbreviate “such that” as “s.t.”. The function f is called
the objective function, and S is called the feasible region. The feasible region S is typically
represented by equations and/or inequalities known as constraints. We will discuss in some
detail the general form of this problem, its associated optimality conditions, and techniques for
its solution, along with some special cases of this problem known as Linear Programming (LP),
Quadratic Programming (QP), and some related problems. We will also look at a couple of more
advanced topics, such as non-smooth optimization and optimization under uncertainty. Finally,
in Section 1.3, we will focus entirely on QP Problems along with methods for their solution, and
finally come back to some specific QP problems arising in finance.

Two good references for all of the optimization material appearing in these notes are [2, 1].

1.1 Examples from Finance Involving Optimization

Finance is rich with optimization problems: portfolio construction, models of markets, mean-
variance optimization for portfolios, construction of index funds, and value-at-risk models, to
name only a few. Let’s look at a specific example to motivate our development of some tools for
solving optimization problems in finance.

1.1.1 Portfolio Optimization

The theory of optimal selection of portfolios is due to Harry Markowitz in the 1950’s. His work
formalized the “diversification principle” in portfolio selection, and earned him the 1990 Nobel
Prize in Economics. The basic idea here is to consider an investor with a certain amount of
money to invest in n different securities. For each security Si, i = 1, . . . , n, we assume we have
estimates of expected return µi and variance σ2i . Also, for any two securities i and j, we assume
we have their correlation ρij . If xi represents the total portion of funds allocated for security Si,
one can compute the expected return and variance:

E[x] =
n∑
i=1

xiµi = µTx,

V [x] =

n∑
i,j=1

ρijσiσjxixj = xTQx,

ccom.ucsd.edu/~mholst/teaching/ 3

ccom.ucsd.edu/~mholst/teaching/

where we have defined:

Qij = ρijσiσj , ρii = 1, µ = [µ1, µ2, . . . , µn]T .

If we assume that we have a single unit of money (or have normalized or units so that we start
with a single unit of money), then

n∑
i=1

xi = 1,

is a reasonable “feasibility” constraint (we spend all our money). There may be other feasibility
constraints also, but we will just use this constraint here. Note that if we define the constant
n-vector of ones as e = [1, 1, . . . , 1]T , then we can write this feasibility constraint in matrix form
as:

eTx = 1.

One now defines an efficient portfolio as one which gives the maximal expected return over all
portfolios with the same variance, or (equivalently as it turns out) one that gives the minimal
variance among all portfolios that have an expected return above some given target. The efficient
frontier is defined as the collection of efficient portfolios. The Markowitz portfolio optimization
problem, or mean-variance optimization (MVO) can be written in several mathematically
equivalent ways. Here is the version we will focus on: We look for a minimum variance portfolio
of securities that gives the expected return target R. Mathematically, this reads:

min
x∈Rn

xTQx

eTx = 1,

µTx ≥ R,
x ≥ 0,

where the last constraint is taken to mean: xi ≥ 0, i = 1, . . . , n. The first constraint is the
feasibility constraint (we spend all our money). The second constraint is that the expected
return is at least R. The third constraint is to exclude “short sales”, i.e., we can only invest a
non-negative amount of money in a particular security. The objective function is the quadratic
polynomial

f(x) = xTQx =

n∑
i,j=1

Qijxixj .

This type of optimization problem is called a constrained quadratic minimization problem, or
more commonly a Quadratic Program, or QP for short. We build some tools specifically for QP
problems in Section 1.3 below.

1.2 Overview of Optimization Problems and Techniques

In this section, we first review the approach we took Calculus for finding minimizers of real-
valued functions of a single real variable. We then show how this approach extends naturally
to real-valued functions of several variables, giving us a general set of techniques for solving
unconstrained optimization problems. We then discuss how one incorporates both equality and
inequality constraints placed on the independent variables, leading to what is referred to as
constrained optimization. We will discuss briefly some special cases of this problem known as
Linear Programming (LP) and Quadratic Programming (QP). We will also look at a couple of
more advanced topics, such as non-smooth optimization and optimization under uncertainty.

ccom.ucsd.edu/~mholst/teaching/ 4

ccom.ucsd.edu/~mholst/teaching/

1.2.1 Unconstrained Univariate and Multivariate Optimization

Unconstrained optimization, where we have only an objective function to consider and no
constraints on the independent variable, is much easier to conceptualize than constrained
optimization, as well as to develop techniques for solving problems. This is the case for both
real-valued functions of a single variable, as well as for real-valued functions of several variables.
The idea we remember from calculus is that if one is given a smooth (infinitely differentiable)
function f : R→ R, then its (local) maximum and minima are the points along the curve where
the slope of the curve is “flat”. Calculus gives us an actual mathematical object for the slope,
namely f ′(x), and so we are led to the equation for the critical points of f :

f ′(x) = 0. (1.1)

In other words, if x ∈ R solves a minimization or a maximization problem:

min
x∈R

f(x), or max
x∈R

f(x), (1.2)

then x must satisfy (1.1). It is worth noting once and for all that if we are given a maximization
problem involving a function g, we can always turn it into an equivalent minimization problem by
defining f(x) = −g(x). Therefore, here (and throughout the study of optimization), we tend to
focus only on the case of minimization problems. When we refer to optimization problems below,
either unconstrained or constrained, we will be focusing primarily on minimization problems.

Here is an example: Let f(x) = x2−4x. The equation for the critical point is f ′(x) = 2x−4 = 0,
and by solving for x, we find the (unique) critical point, x = 2. If we draw the curve of f(x),
then we see in fact that f(x) does appear to have a unique global minimum value of −4 at the
point x = 2. Can we know ahead of time whether or not the critical point is gives a maximum
or a minimum of f(x)? The answer is yes, if we are willing to compute one more derivative. If
f ′′(x) > 0, then we know that the curvature of f at x is positive, and in that case f is called
concave up, or convex ; this tells us that x is a (local) minimizer of f . If f ′′(x) < 0, then f is
concave down (or just concave), and so we know x is a (local) maximizer of f . If f ′′(x) = 0,
then we potentially have multiple local minimizers or maximizers near x, or possible a saddle
point, in which case f(x) is neither a local maximum or minimum. In our example above, we
had f(x) = x2 − 4x and f ′(x) = 2x − 4, and so f ′′(x) = 2. Since this is strictly positive, we
know f(x) is convex at x = 2, and so f has a local minimizer at x = 2. In fact, since f ′′(x) is
constant, f(x) is convex at every x, and since x was the unique critical point, this tells us that
x is in fact the unique global minimizer of f .

In the multivariate case where F : Rn → Rm, the only case of interest for optimization is the
case m = 1, i.e., for functions of the form f : Rn → R. The reason is that the “target” for f
must be an ordered set such as R, so that we can talk about whether f is larger or smaller at
various values of x. This allows us to pose an unconstrained optimization problem of the form:

min
x∈Rn

f(x). (1.3)

Just as in the case of a single real variable, we have the notion of critical points. However,
we now must consider all partial derivatives, and look for points x ∈ R such that all partial
derivatives vanish. This is one of the uses of the gradient vector we encountered earlier; it is the
convenient column vector collection of all of the first partial derivatives of f(x), and we have
our critical point equation:

∇f(x) = 0.

This is referred to as the first-order necessary condition for optimality ; the idea is that if x ∈ Rn
is a point at which f is (locally) minimized, then the tangent plane to the surface traced out by

ccom.ucsd.edu/~mholst/teaching/ 5

ccom.ucsd.edu/~mholst/teaching/

f must be flat, analogous to the case in one dimension. The expression for this flatness is that
all of the partial derivatives of f , evaluated at that one point x, must be zero.

Here is an example: Let f(x) = x21 + 2x22 + 3, so that f : R2 → R. The first-order necessary
condition for optimality reads:

∇f(x) =

[
2x1
4x2

]
=

[
0
0

]
.

The unique solution to this equation is x1 = x2 = 0, so the unique critical point is x = [0, 0]T . If
we draw f(x) as a two-dimensional surface over the x1− x2 plane, we see that it takes the shape
of a bowel that touches the plane f(x) = 3 at the point x = [0, 0]T . The picture implies that
this is a local minimizer, and in fact a unique global minimizer. Again the same question arises:
can we know this is the case before looking at a picture? The answer is again yes, but we must
generalize what we did earlier in terms of looking at the second derivative in the case of a scalar
function. It turns out that the appropriate generalization if the condition f ′′(x) > 0 is to have
the eigenvalues of the Hessian Matrix of f(x) be positive. We discussed the Hessian matrix of
f(x) earlier; it is is simply the square matrix of all second partial derivatives of f(x) arranged
as a square n× n matrix. The second-order necessary and sufficient condition for optimality of
f(x) at a point x is then the following together:

1) The first-order necessary condition holds at x;

2) The eigenvalues of the Hessian matrix f ′′(x) at x are positive.

We recall that an equivalent condition to having positive eigenvalues for a symmetric matrix
A ∈ Rn×n is the condition that A is symmetric positive definite (SPD):

xTAx > 0, ∀x ∈ Rn, x 6= 0.

Therefore, we can view the second order condition alternatively as:

1) ∇f(x) = 0 at x.

2) f ′′(x) is positive definite at x.

Here is again our example: Let f(x) = x21 +2x22 +3, so that f : R2 → R. The first-order condition
for optimality reads:

∇f(x) =

[
2x1
4x2

]
=

[
0
0

]
,

and we saw that x = [0, 0]T was the unique critical point. If we now compute f ′′(x) we find:

f ′′(x) =

[
2 0
0 4

]
.

Since a diagonal matrix has its eigenvalues displayed on its diagonal, we can skip the characteristic
equation and quadratic formula and just read off the two eigenvalues: λ1 = 2, λ2 = 4. Since
these are both positive, we know that x = [0, 0]T is a local minimizer of f(x). Moreover, since
f ′′(x) is a constant matrix in this case, it is positive definite at every x. Since x = [0, 0]T was
the unique critical point, it must be the unique global minimizer of f(x).

Computing Minimizers Directly: Method of Steepest Descent. From the discussion above, we
now know how to identify a minimizer when we have a candidate in our hands (we just check the
first- and second-order conditions). However, what about finding a minimizer to begin with? As
we saw in the examples above, the first-order condition gives us a set of equations that we can

ccom.ucsd.edu/~mholst/teaching/ 6

ccom.ucsd.edu/~mholst/teaching/

in principle solve, and we can then check the second-order condition once we have a candidate
minimizer.

However, solving the equations for the first-order condition can be formidable. We could
instead look for minimizers directly by focusing on the objective function, by trying to move
“down hill” from the current position on the surface generated by f at each step of an algorithm.
We could then use the necessary condition ∇f(xk) = 0 to check whether xk is a critical point,
and if so then check the eigenvalues of f ′′(xk), but we would not actually have to solve the
necessary condition equations for xk in this approach.

The down-hill direction from the current position on the surface that has the steepest slope,
known as the direction of steepest descent, can be shown to be minus the gradient of the objective
function, or:

pk = −∇f(xk). (1.4)

The idea is to step a certain distance α in the direction of steepest descent pk, and then call this
our new approximation:

xk+1 = xk + αpk.

How far do we go in the direction pk? We can either take a unit step α = 1 in the direction pk,
or we can let f tell us how far to step, by solving a one-dimensional minimization problem:

min
α∈R

f(xk + αpk).

This problem can be solved by findings its critical points using any root finding algorithm for
real-valued functions of a single real variable (such as the bisection method, or a one-dimensional
Newton iteration).

If we were to build an iteration that successively tries to move in the direction of steepest
descent, we would end up with Algorithm 1. (This algorithm could be improved in various ways,
such as a more sophisticated and robust stopping criterion.)

Algorithm 1 Method of Steepest Descent

• Pick an initial guess: x0 ∈ Rn.

• Select a tolerance: 0 < TOL� 1.

• Initialize the iteration: k = 0.

• While (‖∇f(xk)‖ ≥ TOL) do:

1) pk = −∇f(xk) (Steepest Descent Direction pk)

2) xk+1 = xk + αkp
k (αk = 1, or find αk by minimizing f(xk + αkp

k))

3) k = k + 1 (Update k)

• End While

Computing Minimizers Indirectly: Solving for Critical Points. If we want to go directly for
the critical points rather than letting f gently guide us down to them, then we would need to
solve the equations representing the first-order necessary condition:

F (x) = 0, F : Rn → Rn, (1.5)

where F (x) = ∇f(x). How do we actually solve such a (generally nonlinear) equation?

ccom.ucsd.edu/~mholst/teaching/ 7

ccom.ucsd.edu/~mholst/teaching/

Algorithm 2 Global Inexact Newton Iteration

• Pick an initial guess: x0 ∈ Rn

• Select a tolerance: 0 < TOL� 1

• Select a robustness parameter: 0 < µ < 1

• Initialize the iteration: k = 0

• While (‖F (xk)‖ ≥ TOL) do:

1) Solve for the Newton direction pk:
F ′(xk)pk = −F (xk) + rk

2) Find the damping parameter αk:
αk = 1
While ‖F (xk + αkp

k)‖ > (1− αkµ)‖F (xk)‖ do:
αk = αk/2

End While

3) Update the solution:
xk+1 = xk + αkp

k

4) Increment k:
k = k + 1

• End While

As it turns out, the most effective techniques are based on the method we derived in the first
lecture: Newton’s method. We will repeat the algorithm here, but will add a few more bells and
whistles. The version of the Newton iteration given here as Algorithm 2, which we call Global
Inexact Newton Iteration, is modified in several ways from the vanilla Newton Algorithm from
the first lecture in order to improve its performance. This version of Newton’s method is quite
robust, and is used as the basic nonlinear equation solver in many application areas, including
optimization. (More sophisticated stopping criteria can be employed that are more robust to
varying input functions than the simple condition that is shown above in the outer-most WHILE
loop.)

The terminology Global in the name of Algorithm 2 comes from the introduction of the
damping parameter into Step 2), which implements backtracking line-search to allow the method
to improve the solution as much as possible at each iteration. (This idea is stolen from the
Steepest Descent algorithm above.) It helps control the behavior of Newton’s method when the
initial guess is not within the basin of attraction for the method to begin to contract quadratically.
The search for a good damping parameter is the inner-most WHILE loop in Algorithm 2; one
can show that Newton’s method always produces a direction of decrease for ‖F (x)‖, meaning
that it is always possible to find a sufficiently small αk so that the condition of the WHILE loop
fails, and then the loop terminates with that finite positive αk to use as the damping parameter.
The robustness parameter µ features into this search for αk; it is there to make sure the damping
allows for sufficient decrease in ‖F (x)‖ so that the overall Newton iteration does not stall.

The terminology Inexact in the name of Algorithm 2 comes from a modification to Step 1)
that allows one to solve the linear system for pk only approximately rather than exactly; this
accounts for the appearance of rk in Step 1). The accuracy of the solution pk, measured by
the magnitude of the residual vector rk, becomes critical only later in the iteration, where one

ccom.ucsd.edu/~mholst/teaching/ 8

ccom.ucsd.edu/~mholst/teaching/

begins to need rk = 0. By allowing for the approximate solution for pk instead of the exact
solution for early iterations makes it possible to produce a more efficient method overall.

Note that with F (x) = ∇f(x), and then also F ′(x) = f ′′(x), the only fundamental difference
between Algorithm 2 and Algorithm 1, other than the extra bells and whistles that we added to
Algorithm 2, is the choice of the direction vector pk at each step:

1) Steepest Descent: pk = −∇f(xk).

2) Newton Method: pk = −[f ′′(xk)]−1∇f(xk).

In other words, Steepest Descent is exactly the Newton method, except that Steepest Descent
approximates the Hessian matrix f ′′(x) by the identity matrix. The Newton method uses more
information about the function, and for that reason generally outperforms Steepest Descent.

Newton’s method is in the best case quadratically convergent, and with the addition of the
damping parameter in Step 2), can generally be made superlinearly convergent even in the case
of a poor initial approximation. As noted, Newton’s method outperforms Steepest Descent
(which generally converges linearly), and it is still generally considered the “go-to” method for
nearly any type of nonlinear equation involving functions of the form F : Rn → Rn. It also
forms the basis of the most effective algorithms that have been developed for unconstrained
and constrained optimization, based on the approach of solving the equations for the first-order
necessary condition.

1.2.2 Equality- and Inequality-Constrained Optimization

Our portfolio optimization example was both nonlinear (the objective function was quadratic)
and came with constraints. It is one particular example from a large class of problems of the
following form. Given a function f : Rn → R, and a set S ⊂ Rn, we are interested in the problem:

min
x∈Rn

f(x)

s.t. x ∈ S.

Note that a mathematically equivalent formulation is:

Find x∗ ∈ S s.t. f(x∗) ≤ f(x), ∀x ∈ S.

This (either formulation) is called a constrained optimization problem; f is called the objective
function, and S is called the feasible region. If S is empty, the problem is called infeasible. If there
is a sequence of elements {xk}∞k=1 from S such that f(xk)→ −∞ as k →∞ (so f is not bounded
from below), we say the problem is unbounded. If the problem is neither infeasible nor unbounded,
then it is possible that we might be able to find a solution to the problem; the solution x∗ is then
called the global minimizer of f over S. If x∗ is such that f(x∗) < f(x),∀x ∈ S, x 6= x∗, then we
say that x∗ is a strict global minimizer. This implies that x∗ is a unique solution to the problem.

Unfortunately, for general optimization problems, most of the time we will have to be content
with finding local minimizers:

Find x∗ ∈ S s.t. f(x∗) ≤ f(x), ∀x ∈ S ∩Bx∗(ε),

where here Bx∗(ε) is the open “ball” of radius ε centered at x∗:

Bx∗(ε) = { x ∈ Rn | ‖x− x∗‖ < ε }.

Usually one describes the feasible set S using equations and/or inequalities; for example,

S = { x ∈ Rn | gi(x) = 0, i ∈ E , gi(x) ≥ 0, i ∈ I }

ccom.ucsd.edu/~mholst/teaching/ 9

ccom.ucsd.edu/~mholst/teaching/

where E and I are index sets for equality and inequality constraints, respectively. If we define S
in this way, our problem now reads:

min
x∈Rn

f(x), (1.6)

gi(x) = 0, i ∈ E ; (1.7)

gi(x) ≥ 0, i ∈ I. (1.8)

This is the most general form of constrained nonlinear optimization we will typically come across
in finance and in other applications; we will refer to it as the Nonlinear Programming (NLP)
Problem.

Method of Lagrange Multipliers for General Constraints. In the case of unconstrained
optimization, we used the first-order necessary condition to turn the optimization problem into
the solution of a nonlinear equation for a critical point, followed by use of the second-order
condition to check that the critical point was a local minimizer. The computationally challenging
part of the process is the use of Newton’s method for solving the nonlinear equation for the
critical point, yet armed with Newton’s method the problem is within reach.

Can we incorporate the equality and inequality constraints into a similar algorithm, so that
we can find a (local) minimizer of f that is in the feasible region defined by the constraints? Is
there an analogue of the first- and second-order conditions for optimality in this general case of
an NLP with constraints? The answer to both questions is yes; the key is to start with a new
function that we call a Lagrangian that is built from a combination of f and the constraints gi:

L(x, λ) = f(x)−
∑
i∈E∪I

λigi(x). (1.9)

The λi are additional variables that we are introducing into the problem, called Lagrange
Multipliers. One can view the Lagrangian L(x, λ) as penalizing f(x) for violating any constraint.
The key mathematical result we need at this point is something that connects the (constrained)
stationary point of f with the (unconstrained) stationary points of L. To state the theorems we
will rely on, we first need a definition.

Definition 1.1. Let x ∈ Rn satisfy: gi(x) = 0, ∀i ∈ E, and gi(x) ≥ 0, ∀i ∈ I. Let J ⊂ I be
the set of indices for which gi(x) = 0. The set E ∪ J is called the active constraints. If the
constraint gradient vectors ∇gi(x) for each i ∈ E ∪ J are linearly independent, then x ∈ Rn is
called a regular point of the constraints.

Assuming that x ∈ Rn is a regular point of the constraints ensures that the constraints are not
degenerate in some way when evaluated at x; we note that this condition will be automatically
satisfied, for example, in the case of linear constraints. We can now state the analogue of the
first- and second-order conditions for optimality which incorporate constraints; these are known
as the KKT (Karash-Kuhn-Tucker) Theorems.

Theorem 1.2 (First-Order Necessary Condition for NLP Optimality). Let x∗ be a local min-
imizer of (1.6), feasible (eqns (1.7)–(1.8) hold), and regular. Then, there exists λi, i ∈ E ∪ I
such that:

1) ∇f(x∗)−
∑

i∈E∪I λi∇gi(x∗) = 0,

2) λigi(x
∗) = 0, i ∈ I,

3) λi ≥ 0, i ∈ I.

ccom.ucsd.edu/~mholst/teaching/ 10

ccom.ucsd.edu/~mholst/teaching/

Theorem 1.3 (Second-Order Sufficient Condition for NLP Optimality). Assume f , gi, i ∈ E ∪I
are twice continuously differentiable. Let x∗ be feasible (eqns (1.7)–(1.8) hold) and regular. Let
A(x∗) denote the Jacobian matrix of the active constraints at x∗, and let N(x∗) have as its
columns a basis for the null-space of A(x∗). If there exists λi, i ∈ E ∪ I such that both:

1) The conclusions of Theorem 1.2 hold;

2) NT (x∗)[f ′′(x∗)−
∑

i∈E∪I λig
′′
i (x∗)]N(x∗) is positive definite;

then x∗ is a local minimizer of (1.6)–(1.8).

The proofs of these two key theorems are beyond the scope of this course. (However, the
proofs require only basic ideas from Calculus and Linear Algebra that we have reviewed earlier
in the notes.) The usefulness for us here is that, similar to the unconstrained case, the first-order
necessary condition (Theorem 1.2) can be used as the basis for building an algorithm around
solving equations for critical points. In particular, what the theorem says is that we need to find
a pair x ∈ Rn, λ ∈ Rm+p, where m is the number of equality constraints and p is the number of
inequality constraints, such that:

∇f(x∗)−
∑
i∈E∪I

λi∇gi(x∗) = 0, (1.10)

gi(x
∗) = 0, i ∈ E , (1.11)

λigi(x
∗) = 0, λi ≥ 0, i ∈ I. (1.12)

Equation (1.10) contains n equations, which arise from the Lagrangian (1.9) by differentiation
with respect to x. Equation (1.11) contains m equations corresponding to the equality constraints
(the indices i in E), which arise from the Lagrangian (1.9) by differentiation with respect to
λi for i ∈ E . Equation (1.12) contains p equations corresponding to the inequality constraints
(the indices i in I); these arise from the Lagrangian (1.9) by differentiation with respect to λi
for i ∈ I, and then using the corresponding λi as what are known as slack variables. This is
then a system of n+m+ p equations in the n+m+ p unknowns, and one could potentially
try to solve this system using Newton’s Method. However, one difficulty that does not arise
in the unconstrained case is the need for maintaining λi ≥ 0 for i ∈ I, which shows up in
Equation (1.12). The most effective techniques developed so far are to modify Newton’s method
so that the iterates remain strictly in the interior of the feasible region defined by the combination
of equality and inequality constraints; these methods are called Interior Point (IP) Methods. We
note that our primary interest here is in developing algorithms for solving QP problems arising
in finance; therefore, we will postpone our discussion of IP Methods until Section 1.3 below, and
we restrict our discussion in that section to IP methods specifically designed for QP problems.

Method of Lagrange Multipliers for Equality Constraints. Before leaving this section on the
general NLP problem, it is worth discussing the important case where there are only equality
constraints. In this case, even though the problem can still be quite general (both the objective
function and the remaining equality constraints can be arbitrarily nonlinear), we will be able to
avoid developing an IP method, and instead will be able to simply apply the Newton method
without modification (i.e., we can use Algorithm 2 as it stands).

We now explain how the Lagrange-multiplier framework makes this possible in the case of pure
equality constraints. In this version of the NLP problem, the number of inequality constraints
p = 0, so that corresponding index set is empty: I = {}. We will therefore label the remaining
equality constraints with indices from the nonempty index set E as gi(x) = 0, i = 1, . . . ,m. The
first-order necessary condition from Theorem 1.2 can now be written more simply as Theorem 1.4
below, where we include in the statement of the theorem an equivalent characterization involving
the null-space of the constraint Jacobian.

ccom.ucsd.edu/~mholst/teaching/ 11

ccom.ucsd.edu/~mholst/teaching/

Theorem 1.4 (First-Order Necessary Condition for NLP with Pure Equality Constraints). Let
x∗ be a local minimizer of (1.6), feasible (eqn (1.7) holds), and regular (with respect to the
equality constraints (1.7)). Then, there exists λ ∈ Rm such that:

1) ∇f(x∗)− g′(x∗)Tλ = 0,

or, equivalently

1) N(x∗)T∇f(x∗) = 0,

where N(x∗) denotes a matrix with columns formed from a basis for the null-space of g′(x∗).

We also can state a simpler version of the second-order condition from Theorem 1.3:

Theorem 1.5 (Second-Order Sufficient Condition for NLP with Pure Equality Constraints).
Assume f , g, are twice continuously differentiable. Let x∗ be feasible (eqn (1.7) holds), and
regular (with respect to the equality constraints (1.7)). If there exists λ ∈ Rm such that both:

1) The conclusions of Theorem 1.4 hold;

2) NT (x∗)[f ′′(x∗)−
∑m

i=1 λig
′′
i (x∗)]N(x∗) is positive definite;

where N(x∗) denotes a matrix with columns formed from a basis for the null-space of g′(x∗),
then x∗ is a local minimizer of (1.6)–(1.7).

The quantity N(x)T∇f(x) = 0 is called the reduced gradient of f at x. Similarly, the quantity
NT (x∗)[f ′′(x∗)−

∑m
i=1 λig

′′
i (x∗)]N(x∗) is called the reduced Hessian of f at x.

In summary, the first-order necessary condition from Theorem 1.4 now becomes simply the
coupled system of equations:

F (x, λ) =

[
F1(x, λ)

F2(x, λ)

]
=

[
∇f(x)− g′(x)Tλ

g(x)

]
=

[
0

0

]
. (1.13)

The unknowns are the variables x ∈ Rn and the Lagrange multipliers λ ∈ Rm, giving a total of
n+m unknowns. The first block in the equations (1.13) represent n equations, and the second
block are the m constraint equations, giving a total of n + m equations. Since we will need
it below, let us also compute the (n+m)× (n+m) Jacobian matrix associated with F (x, λ).
Denoting as Dx and Dλ the partial derivatives with respect to all of the variables in the vectors
x and λ, respectively, the Jacobian matrix F ′(x, λ) has the form:

F ′(x, λ) =

[
DxF1(x, λ) DλF1(x, λ)

DxF2(x, λ) DλF2(x, λ)

]
=

[
f ′′(x)−

∑m
i=1 λig

′′
i (x) −g′(x)T

g′(x) 0

]
. (1.14)

This can be viewed as a 2× 2 block matrix, where the upper-left block is an n× n matrix; the
lower-right block is an m×m matrix of zeros; the lower-left block is the m× n Jacobian matrix
of the constraints; and finally the upper-right block is the n ×m transpose of the constraint
Jacobian. Since there are no other constraints on the variables (x, λ) in the system (1.13) we
are free to apply the Global Inexact Newton Iteration in Algorithm 2 directly to solve this
system, using (1.14) as the associated Jacobian matrix. We have written this out completely as
Algorithm 3. (Again, the stopping criterion to terminate the outer WHILE loop can be made to
be more sophisticated and robust.)

Finally, note that (1.13) can be viewed as arising as the critical point equation, sometimes
called the condition of stationarity, of the Lagrangian

L(x, λ) = f(x)−
m∑
i=1

λigi(x). (1.15)

ccom.ucsd.edu/~mholst/teaching/ 12

ccom.ucsd.edu/~mholst/teaching/

Algorithm 3 Method of Lagrange Multipliers for Equality-Constrained NLP

• Pick an initial guess: (x0, λ0) ∈ Rn × Rm.

• Select a tolerance: 0 < TOL� 1

• Select a robustness parameter: 0 < µ < 1

• Initialize the iteration: k = 0

• While (‖F (xk, λk)‖ ≥ TOL) do:

1) Solve for the Newton direction [δxk, δλk]T :

F ′(xk, λk)

[
δxk

δλk

]
= −F (xk, λk)

2) Find the damping parameter αk:
αk = 1
While ‖F (xk + αkδx

k, λk + αkδλ
k)‖ > (1− αkµ)‖F (xk, λk)‖ do:

αk = αk/2
End While

3) Update the solution:[
xk+1

λk+1

]
=

[
xk

λk

]
+ αk

[
δxk

δλk

]
4) Increment k:

k = k + 1

• End While

The first block equation in (1.13) arises from differentiating (1.15) with respect to x, and the
second block equation in (1.13) arises from differentiating (1.15) with respect to λ. Therefore, in
the case case of pure equality constraints (with no inequality constraints), the method of Lagrange
multipliers may be viewed as a technique for turning a constrained minimization problem into
an unconstrained one, where we simply look for critical points of the Lagrangian (1.15) without
regard to constraints; the constraints are now baked into the formulation. We can simply apply
Algorithm 2 to the system (1.13) for its complete solution, which for completeness we have
presented here as Algorithm 3.

Before moving on to the next topic, it is useful to look at a specific example of a pure
equality-constrained NLP:

min
x∈R2

f(x)

s.t. g(x) = 0,

where
f(x) = x21 + x22 − 3x1x2 + x1 + x2, g(x) = x1 + 2x2 − 2. (1.16)

For this simple example, we can compute the various objects of interest:

∇f(x) =

[
2x1 − 3x2 + 1
2x2 − 3x1 + 1

]
, ∇f ′′(x) =

[
2 −3
−3 2

]
, g′(x) =

[
1 2

]
, g′′i (x) = 0.

ccom.ucsd.edu/~mholst/teaching/ 13

ccom.ucsd.edu/~mholst/teaching/

If one were to use Algorithm 3, one would find that the point x∗ = [7/22, 15/22]T and the
Lagrange multiplier λ = 5/22, satisfy the first-order condition of Theorem 1.4:

g′(x)Tλ∗ =

[
1

2

]
λ∗ =

[
5
22

5
11

]
= ∇f(x∗).

We also note that the equivalent characterization of the first-order condition involving the
null-space of the constraints is also satisfied; to see this, we need to identify a basis for the
null-space. Since taking Z = [2,−1]T gives g′(x)Z = 0, for any x ∈ R2, we can use this matrix
as Z. The equivalent first-order condition involving the reduced gradient is then:

ZT∇f(x∗) = [2 − 1]

[
5
22

5
11

]
=

[
0

0

]
.

The eigenvalues of the Hessian are easily seen to be 5 and −1 (from our discussion earlier in
the notes), and so the Hessian is indefinite. However, the reduced Hessian, as needed for the
second-order condition of Theorem 1.5 is in fact positive definite:

Z(x∗)T f ′′(x∗)Z(x∗) = [2 − 1]

[
2 −3

−3 2

][
2

−1

]
= 22 > 0.

Therefore, the point x∗ = [7/22, 15/22]T and the Lagrange multiplier λ = 5/22 satisfies the
first-order necessary condition for optimality in Theorem 1.4 and the second-order sufficient
condition for optimality in Theorem 1.5.

1.2.3 Linear Programming (LP)

A special case of the NLP Problem is Linear Programming, or LP for short. This is when both
the objective function f and all of the constraint functions gi are linear, in which case the
problem simplifies to:

min
x∈Rn

cTx,

Ax = b,

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, m ≤ n. We have n independent variables and m equality constraints.
Since the inequality constraints now involve all of the variables, the number of inequality
constraints is p = n. We have the same terminology as for the NLP: Feasible vs. infeasible, and
bounded vs. unbounded. The standard solution techniques for LP are:

1) The Simplex Method.

2) Interior-Point Methods.

While the Interior-Point Methods are similar to the techniques we discuss below for QP Problems,
Simplex Methods are completely different; we will not discuss LP problems further in these
notes. Note that if any one of f(x) or gi(x) (for even one i) is nonlinear, then this is a case of
the fully general NLP problem, and the options open to us are then:

1) Gradient Search-Type Methods (Steepest Descent, Newton’s Method, etc).

2) Interior-Point Methods (Based on Newton’s Method).

ccom.ucsd.edu/~mholst/teaching/ 14

ccom.ucsd.edu/~mholst/teaching/

3) Sequential Quadratic Programming (SQP, again based on Newton’s Method).

However, if the constraints remain linear, and the objective function f(x) is a purely quadratic
nonlinearity, then we are facing what is known as the Quadratic Programming (QP) Problem.
In this case, we have access to somewhat better techniques (based on simplifications that occur
to the three types of methods above); we will discuss QP problems in the next section.

Some problems closely related to LP are the following. The Conic Programming (CP) Problem
has the form:

min
x∈Rn

cTx,

Ax = b,

x ∈ C.

When C = Rn+ (the set of n-vectors with non-negative entries), then this is just the LP Problem
again. However, more generally one finds applications which require C to be a subset of Rn
known as a cone. One can often modify LP methods to solve CP problems efficiently.

The Integer Programming (IP) Problem has the form:

min
x∈Nn

cTx,

Ax = b,

x ≥ 0, x ∈ Nn.

Here, the free variable x is restricted to have non-negative integers N as its components; we
denote this set as Nn. Methods for solving IP problems are very different from those discussed
here, although Interior-Point Methods for standard LP problems can play a role.

1.2.4 Quadratic Programming (QP)

When the constraints are linear and the objective function is quadratic (plus possibly lower-order
terms that are linear and/or constant), then we have a standard Quadratic Programming
Problem, or QP for short:

min
x∈Rn

1

2
xTQx+ cTx,

Ax = b,

x ≥ 0,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, with m ≤ n. As in the case of LP, we have n
independent variables and m equality constraints. Again, since the inequality constraints now
involve all of the variables, the number of inequality constraints is p = n. We again have the
same terminology as for the NLP and LP: Feasible vs. infeasible, and bounded vs. unbounded.
We will discuss QP problems and algorithms for their solution in some detail in Section 1.3
below.

1.2.5 Non-smooth Optimization and Optimization with Uncertainty

A particularly difficult type of NLP problem arising in finance is know as the Nonsmooth
Optimization Problem. These are problems for which the objective function and/or the constraints
are not differentiable. Since the best techniques that have been developed for the NLP problem
rely on using derivatives of both the objective function and the constraints as the foundation of

ccom.ucsd.edu/~mholst/teaching/ 15

ccom.ucsd.edu/~mholst/teaching/

the algorithms, in the non-smooth case one has to develop alternative techniques based on the
notion of sub-gradients.

In the case of the NLP, LP, and QP Problems discussed so far, we have only considered
deterministic optimization, meaning that we assume that we know all data for the problem (the
objective function and the constraints) deterministically. However, in applications either the
objective function and/or some (or all) of the constraints may not be known deterministically.
Two particularly important cases and corresponding techniques:

• Stochastic Programming: Techniques for handling cases where the data uncertainty is
random, and can be explained by a probability distribution.

• Robust Optimization: These are techniques for making sure that the solution behavior of
the optimization problem is well-behaved with respect to all possible configurations of the
uncertain data.

These two general techniques can be applied to all of the types of optimization problems described
above.

1.3 Methods and Software for Quadratic Programming

As noted earlier, finance is rich with optimization problems: data fitting, portfolio construction,
models of markets, mean-variance optimization for portfolios, construction of index funds, value-
at-risk models, to many others. One of the examples we discussed in some detail earlier was the
theory of optimal selection of portfolios, due to Harry Markowitz in the 1950’s. We noted that
the Markowitz portfolio optimization problem, or mean-variance optimization (MVO) can be
written in several mathematically equivalent ways. The version of the problem that gives rise to
a QP was based on finding a minimum variance portfolio of securities that gives the expected
return target R. We will now map this QP problem into what we have learned in previous
sections about NLP.

1.3.1 The Quadratic Programming (QP) Problem

Solving a general constrained optimization problem (1.6)–(1.8) can be quite formidable, involving
the solution of a large coupled system of nonlinear equations when using the method of Lagrange
multipliers. However, when the constraints are linear and the objective function is quadratic
(plus possibly lower-order terms that are linear and/or constant), then we have a simplification
of the NLP to what is known as a Quadratic Programming problem, or QP for short:

min
x∈Rn

1

2
xTQx+ cTx, (1.17)

Ax = b, (1.18)

x ≥ 0, (1.19)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, Q ∈ Rn×n, with m ≤ n. As in the case of LP, we have n
independent variables and m equality constraints. Again, since the inequality constraints now
involve all of the variables, the number of inequality constraints is p = n. We again have the same
terminology as for the NLP and LP: Feasible vs. infeasible, and bounded vs. unbounded. It is
worth noting that similar to the case of LP, it is sometimes useful to formulate a mathematically

ccom.ucsd.edu/~mholst/teaching/ 16

ccom.ucsd.edu/~mholst/teaching/

equivalent dual problem; in the case of QP, the dual problem has the form:

max
x,y∈Rn

bT y − 1

2
xTQx, (1.20)

AT y −Qx+ s = c, (1.21)

x ≥ 0, s ≥ 0, (1.22)

where s ∈ Rn is a set of slack variables.
Note that since

xTQx =
1

2
(Q+QT)x,

we can always assume Q is symmetric without loss of generality. When Q is also positive
semi-definite (has only non-negative eigenvalues), then the objective function

f(x) =
1

2
xTQx+ cTx, (1.23)

is a convex function, in that it satisfies the following inequality:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ Rn, ∀α ∈ [0, 1].

The point z = αx+ (1− α)y is called a convex combination of the points x and y. Any point z
on the line connecting x and y can be realized by a particular choice of α ∈ [0, 1]. If S ⊂ Rn
and it holds that:

z = αx+ (1− α)y ∈ S, ∀x, y ∈ Rn, ∀α ∈ [0, 1],

then we say that S is a convex set. In other words, S is convex if and only if the line connecting
any two points from S is contained entirely in S. Note that any vector space such as Rn is
automatically a convex set, since it is closed with respect to linear combinations.

As noted above, when Q is positive semi-definite, the QP objective function (1.23) is a convex
function; in this case QP, is a called a convex optimization problem. This is quite useful, because
all convex optimization problems have two very convenient features:

1) Any local minimizer is also a global minimizer.

2) There exist Algorithms to solve these problems in polynomial time.

An algorithm is said to be of polynomial time if its running time to produce a solution is bounded
from above by an expression that is a polynomial in the size of the algorithm input. Problems
for which a (deterministic) polynomial time algorithm exists are said to belong to complexity
class P . Another term for polynomial time (algorithms and/or problems) is tractable. Therefore,
if Q is positive semi-definite, then the corresponding QP has a global solution(s), is in class P,
and can therefore be solved with efficient algorithms.

1.3.2 Optimality Conditions for QP

Our first order of business is to identify the QP analogue of the first- and second-order conditions
for optimality conditions for the NLP, which we presented earlier as Theorems 1.2 and 1.3. The
analogue of the first-order necessary condition for NLP is the following in the case of QP.

Theorem 1.6 (First-Order Necessary Condition for QP Optimality). Assume Q is positive
semi-definite. Let x be a local solution of (1.17)–(1.19), meaning it is a local minimizer of (1.17)

ccom.ucsd.edu/~mholst/teaching/ 17

ccom.ucsd.edu/~mholst/teaching/

that is also feasible (equations (1.18)–(1.19) hold). Then, there exists y, s ∈ Rn such that:

AT y −Qx+ s = c, (1.24)

s ≥ 0, (1.25)

xisi = 0, i = 1, . . . , n. (1.26)

Moreover, x is a global solution of (1.17)–(1.19).

The analogue of the second-order sufficient condition for the NLP reduces to the following in
the case of QP.

Theorem 1.7 (Second-Order Sufficient Condition for QP Optimality). Assume Q is positive
semi-definite. Then the following five conditions for (x, y, s) are necessary and sufficient for x
to be a global solution of (1.17)–(1.19).

Ax = b, (1.27)

x ≥ 0, (1.28)

AT y −Qx+ s = c, (1.29)

s ≥ 0, (1.30)

xisi = 0, i = 1, . . . , n. (1.31)

Both QP and LP produce optimality conditions of the form:

1) Primal Feasibility: (1.27) and (1.28).

2) Dual Feasibility: (1.29) and (1.30).

3) Complementary Slackness: (1.31).

The challenge then is to develop an algorithm for satisfying all of the optimality conditions at
the same time.

1.3.3 Interior Point (IP) Methods for QP

Interior Point (IP) Methods for QP (as well as other instances of NLP) are based on the following
general approach:

1) Identify (x0, y0, s0) so that the primal and dual feasibility conditions hold with strict
inequality :

Ax0 = b, (1.32)

x0 > 0, (1.33)

AT y0 −Qx0 + s0 = c, (1.34)

s0 > 0. (1.35)

(The strict inequality gives rise to the terminology “interior point”.)

2) Now generate (xk, yk, sk) so that:

• Solution (xk, yk, sk) continues to satisfy conditions (1.32)–(1.35).

• Solution (xk, yk, sk) progressively approaches complementary slackness condition:

xisi = 0, i = 1, . . . , n. (1.36)

ccom.ucsd.edu/~mholst/teaching/ 18

ccom.ucsd.edu/~mholst/teaching/

Interior Point methods (IP) based on the core idea above can be implemented using a modification
of Newton’s Method, and can be shown to converge in polynomial time. Since they are based
on the second-order sufficient condition for optimality, which involve both primal and dual
feasibility conditions, interior point methods are sometimes called primal-dual interior point
methods. To discuss IP Methods for QP in more detail, it is useful to define two distinct sets
represented by the non-strict and strict inequality constraints:

F = { (x, y, s) | Ax = b, AT y −Qx+ s = c, x ≥ 0, s ≥ 0 }, (1.37)

F0 = { (x, y, s) ∈ F | x > 0, s > 0 }. (1.38)

The set F represents the feasible set, whereas F0 is the strictly feasible set, also called the
relative interior of F . As noted above, IP Methods will generate iterates that begin inside F0,
and remain there throughout the iteration.

In order to explain a bit about the structure of these algorithms, it is useful first to formulate
the complementary condition (1.36) in matrix form. To this end, we define two square diagonal
matrices X,S ∈ Rn×n with the variables x and s laid out on their diagonals:

Xii = xi, Sii = si, Xij = Sij = 0, i 6= j. (1.39)

The complementary condition (1.36) can now be written as:

XSe = 0,

where e = [1, . . . , 1]T is the n-vector with all entries equal to one. A solution (x, y, s) satisfying
the five conditions from Theorem 1.6 can be viewed now as a solution to the following system,

F (x, y, s) =

 F1(x, y, s)
F2(x, y, s)
F3(x, y, s)

 =

 AT y −Qx+ s− c
Ax− b
XSe

 =

 0
0
0

 , (1.40)

with the additional requirement that:

x ≥ 0, s ≥ 0. (1.41)

The first block equation in (1.40) has n equations, the second block has m equations, and
the third block has again n equations, giving 2n + m equations. We also have n unknowns
represented by x, m unknowns represented by y (playing the role of Lagrange multipliers), and
n unknowns represented by s (the slack variables), giving then 2n+m unknowns. Hence, we
have then defined F : R2n+m → R2n+m. If we did not have to worry about condition (1.41), then
we could simply apply Newton’s method to this system (1.40) of 2n+m equations in 2n+m
unknowns. However, (1.41) represents 2n inequality constraints that we must also satisfy.

Recall Newton’s method that we formulated as Algorithm 2. Applied to the problem (1.40)
and for the moment ignoring the constraints (1.41), the first step of the algorithm involves
solving the Jacobian system for the Newton direction:

F ′(xk, yk, sk)

 δxk

δyk

δsk

 = −F (xk, yk, sk). (1.42)

The solution to this linear system is the Newton direction [δxk, δyk, δsk]T . Denoting as Dx, Dy,
and Ds the partial derivatives with respect to all of the variables in the vectors x, y, and s,
respectively, the Jacobian matrix F ′ has the form:

F ′(xk, yk, sk) =

 DxF1 DyF1 DsF1

DxF2 DyF2 DsF2

DxF3 DyF3 DsF3

 =

 −Q AT I
A 0 0
Sk 0 Xk

 , (1.43)

ccom.ucsd.edu/~mholst/teaching/ 19

ccom.ucsd.edu/~mholst/teaching/

where Xk and Sk are again diagonal matrices formed by taking xk and sk along their diagonals.
Note that if we are starting with (xk, yk, sk) ∈ F0, then

F (xk, yk, sk) =

 F1(x
k, yk, sk)

F2(x
k, yk, sk)

F3(x
k, yk, sk)

 =

 0
0
XkSke

 . (1.44)

Therefore, the Newton system takes the simplified form: −Q AT I
A 0 0
Sk 0 Xk

 δxk

δyk

δsk

 =

 0
0
−XkSke

 . (1.45)

At each step of the Newton iteration in an IP for solving a QP, one first updates the Jacobian
matrix and right-hand side in (1.45) with the current xk and sk, and the solve the linear
system (1.45) for (xk, yk, sk). What remains is to decide how to do the update step in Newton’s
method: xk+1

yk+1

sk+1

 =

 xk

yk

sk

+ αk

 δxk

δyk

δsk

 , (1.46)

so that the new IP iterate (xk+1, yk+1, sk+1) remains in F0. This is done by suitable choice of
αk ∈ (0, 1], called a permissible step-length. That such a choice of αk is always possible follows
from the assumption that (xk, yk, sk) ∈ F0, and so that any sufficiently small change we make
to each component (the smallness is controlled by the size the parameter αk) will continue to
ensure that each component of x and s remain strictly positive. The goal would be to find
the largest permissible step length αk, so that we move toward a solution as quickly as possible
(which is what unconstrained Newton is trying to do), yet remain in F0.

This leads us finally to a complete algorithm for using an Interior Point Method to solve a QP
problem, which we give as Algorithm 4. There is a little twist to the algorithm that we have not
described yet, which is the appearance of the two parameters σk and µk. These two parameters
(both real numbers) are designed to increase the robustness (resistance to failure) of the IP
Method. The reason they are needed is that if one uses an IP Method without their inclusion,
then for many problems the search for the step length αk can “stall” the entire algorithm by
requiring exceedingly small steps to remain feasible. The solution is to stay well within F0

rather than near its boundary. The parameter σk is referred to as a centering parameter, which
attempts to steer the iteration toward what is known as the central path in F0. The setting
of σk = 1 is called the pure centering direction; the setting of σk = 0 just removes σk and µk
from the Newton system, giving us back the pure IP Method without the robustness condition
added. One can show empirically that a choice of σk chosen near the center of the interval [0, 1]
generally produces the most effective algorithm.

The IP Method is the basis for the most effective methods for QP problems, and its gen-
eralizations to NLP similarly form the foundation of the solution of more general classes of
problems.

1.3.4 Software Packages for using QP

There are a number of existing software packages, both open source and commercial, for solving
QP (and also LP) problems. One of the best resources for the practical solution of QP and
LP problems, as well as many other types of more general optimization problems, is the NEOS
website:

ccom.ucsd.edu/~mholst/teaching/ 20

ccom.ucsd.edu/~mholst/teaching/

Algorithm 4 Interior Point Method for QP

• Choose (x0, y0, s0) ∈ F0.

• For k = 0, 1, 2, . . . do:

1) Choose σk ∈ [0, 1], set µk = (xk)T sk/n.

2) Solve the system for the Newton direction: −Q AT I
A 0 0
Sk 0 Xk

 δxk

δyk

δsk

 =

 0
0
σkµke−XkSke

 (1.47)

3) Find the largest permissible step length αk for remaining in F0, meaning that:

xk + αkδx
k > 0, sk + αkδs

k > 0. (1.48)

4) Update current iterate so that it remains in F0: xk+1

yk+1

sk+1

 =

 xk

yk

sk

+ αk

 δxk

δyk

δsk

 (1.49)

• End For

http://www.neos-server.org/neos/

Particularly useful on the NEOS website is the Optimization Guide:

http://neos-guide.org/Optimization-Guide

which includes a thorough introduction to optimization, and the Optimization Taxonomy :

http://neos-guide.org/content/optimization-taxonomy

which shows the relationship between various optimization problems as an insightful tree.
Fortunately, MATLAB has a number of built-in functions for solving nonlinear equations

and optimization problems, in many cases using the best available open source software from
the numerical analysis community. The MATLAB Optimization Toolbox adds additional
functionality for solving more complex optimization problems. We will explore some QP
problems from finance, and their solution using MATLAB, in the homework.

1.3.5 Portfolio Optimization using QP

As we described briefly earlier, the theory of optimal selection of portfolios is due to Harry
Markowitz in the 1950’s. The basic idea is to consider an investor with a certain amount of
money to invest in different securities. For each security Si, i = 1, . . . , n, we assume we have
estimates of expected return µi and variance σ2i . Also, for any two securities i and j, we assume
we have their correlation ρij . If xi represents the total portion of funds allocated for security i,

ccom.ucsd.edu/~mholst/teaching/ 21

http://www.neos-server.org/neos/
http://neos-guide.org/Optimization-Guide
http://neos-guide.org/content/optimization-taxonomy
ccom.ucsd.edu/~mholst/teaching/

one can compute the expected return and variance:

E[x] =
n∑
i=1

xiµi = µTx,

V [x] =
n∑

i,j=1

ρijσiσjxixj = xTΣijx,

where we have defined:

Σij = ρijσiσj , ρii = 1, µ = [µ1, µ2, . . . , µn]T .

Clearly, Σ is symmetric positive semidefinite, since it is symmetric, and since variance is always
non-negative. If we assume that there are no redundant assets (all our distinct), then it can be
shown that this implies Σ is positive definite.

We considered a simplified set of portfolio constraints in our first look at portfolio optimization;
here we want to allow that set to be a bit more general. We will define the set of admissible
portfolios as those forming the following the nonempty polyhedral set:

X = { x ∈ Rn | Ax = b, Cx ≥ d }, (1.50)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, and d ∈ Rp, where n is the number of variables (so
x ∈ Rn), m is the number of equality constraints, and p is the number of inequality constraints.
In our first look at the MVO problem, we assumed that X had the simplified structure:

X̂ = { x ∈ Rn | eTx = 1, x ≥ 0 }, (1.51)

which implied that p = n. Assuming we had a single unit of normalized money to work with,
the first equation defining X̂ stated the constraint that we spent all our money. The inequality
defining X̂ stated the constraint that we allowed no short sales. We will now focus on the more
general feasible set X defined in (1.50) in this section; it of course includes the set X̂ defined
in (1.51) as a special case.

We noted earlier that the Markowitz portfolio optimization problem, or mean-variance op-
timization (MVO) can be written in several mathematically equivalent ways. The version we
mentioned earlier is the one will mostly focus on here: We look for a minimum variance portfolio
of securities that gives the expected return target R. We wrote this down mathematically earlier
(using slightly different notation due to the simplified constraints), and we repeat it again here
using our more general constraints:

min
x∈Rn

1

2
xTΣx, (1.52)

µTx ≥ R, (1.53)

Ax = b, (1.54)

Cx ≥ d, (1.55)

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, and d ∈ Rp, where n is the number of variables, m is the
number of equality constraints represented by A, and p is the number of inequality constraints
represented by C. (Note that there is an additional inequality constraint, namely µTx ≥ R,
which we keep track of separately.) The objective function is the quadratic polynomial

f(x) =
1

2
xTΣx =

1

2

n∑
i,j=1

Σijxixj .

ccom.ucsd.edu/~mholst/teaching/ 22

ccom.ucsd.edu/~mholst/teaching/

As we now know, this is a QP problem. Note that we have multiplied the objective function
f(x) by the constant 1/2 for convenience, due to the way various expressions will simplify in the
optimality conditions below.

Two other variations of the MVO problem that are sometimes considered as well are:

max
x∈Rn

µTx,

xTΣx ≤ σ2,
Ax = b,

Cx ≥ d,

and

max
x∈Rn

δ

2
xTΣx,

xTΣx ≤ σ2,
Ax = b,

Cx ≥ d,

where in these two alternative formulations, σ2 is a given upper bound on the variance of the
allowed portfolio, and δ is a risk-aversion parameter.

Optimality Conditions for Portfolio Optimization. We can now just apply the KKT Theorems
for QP to characterize the solution; these were Theorems 1.6 and 1.7. Since we have assumed
that Σ is (symmetric) positive definite, we know that the QP problem we are facing has a global
solution, and the first-order conditions are both necessary and sufficient for optimality. The
first-order KKT conditions specifically for portfolio optimization are as follows (we simply write
down the conditions appearing in Theorem 1.7 in the case of our particular QP problem).

We know that x ∈ Rn is an optimal solution of the QP problem (1.52) if and only if there
exists λR ∈ R, γE ∈ Rm, and γI ∈ Rp, such that the KKT conditions hold:

Σx− λRµ−ATγE − CTγi = 0, (1.56)

Ax = b, (1.57)

Cx ≥ d, (1.58)

µTx ≥ R, (1.59)

λR ≥ 0, λR(µTx−R) = 0, (1.60)

γI ≥ 0, γTI (Cx− d) = 0. (1.61)

Solution of this simultaneous system of equations and inequalities is accomplished as in the case
of the general QP problem, namely, one applies the IP Method given earlier as Algorithm 4.

References

[1] G. Cornuejols and R. Tutuncu. Optimization Methods in Finance. Cambridge University
Press, New York, NY, 2011.

[2] P. Gill and M. Wright. Numerical Optimization (Class Notes for Math 171B). UCSD
(Available at Soft Reserves for Spring 2015), La Jolla, 1998.

ccom.ucsd.edu/~mholst/teaching/ 23

ccom.ucsd.edu/~mholst/teaching/

	Optimization Techniques
	Examples from Finance Involving Optimization
	Portfolio Optimization

	Overview of Optimization Problems and Techniques
	Unconstrained Univariate and Multivariate Optimization
	Equality- and Inequality-Constrained Optimization
	Linear Programming (LP)
	Quadratic Programming (QP)
	Non-smooth Optimization and Optimization with Uncertainty

	Methods and Software for Quadratic Programming
	The Quadratic Programming (QP) Problem
	Optimality Conditions for QP
	Interior Point (IP) Methods for QP
	Software Packages for using QP
	Portfolio Optimization using QP

	References

