
Department of Mathematics at University of California, San Diego

Computational Finance
Mathematical Background [Lecture 1]

Michael Holst

June 1, 2015

Contents

1 Review of Some Undergraduate Mathematics Tools 3
1.1 Linear Algebra . 3

1.1.1 Vectors, Matrices, Addition and Multiplication Operations 4
1.1.2 Vector Spaces, norms, inner-products . 5
1.1.3 Matrix Equations . 8
1.1.4 Eigenvalue Problems . 10
1.1.5 Condition Number of a Matrix . 11

1.2 Calculus . 12
1.2.1 Univariate Functions . 12
1.2.2 Multivariate Functions . 14
1.2.3 Taylor Series and Remainder . 16
1.2.4 Newton’s Method . 18
1.2.5 Convergence Rates of Sequences in Rn . 20

1.3 Differential Equations . 20
1.3.1 Ordinary Differential Equations . 20
1.3.2 Partial Differential Equations . 21
1.3.3 Well-Posed Mathematical Problems and Their Solution 23

References 25

ccom.ucsd.edu/~mholst/teaching/ 1

ccom.ucsd.edu/~mholst/teaching/

List of Algorithms

1 Newton’s Method . 19

ccom.ucsd.edu/~mholst/teaching/ 2

ccom.ucsd.edu/~mholst/teaching/

1 Review of Some Undergraduate Mathematics Tools

We will need to recall some basic notation and concepts from calculus and linear algebra so
that we can understand how to formulate finance problems as optimization problems, and go
on to develop and use computational algorithms to solve these problems. We will review linear
algebra first before reviewing Calculus, since it will give us some natural notation for discussing
functions of several variables.

To this end, in Section 1.1 we first review some very basic ideas from a typical first- or
second-year undergraduate course on linear algebra, including concepts, notation, and the
interpretation of matrix equations and eigenvalue problems. In Section 1.2, we then review some
familiar material from a standard first-year undergraduate course on Calculus of functions of
one and several variables. In Section 1.3, we also discuss a small amount of additional material
from a typical second-year undergraduate course on ordinary and partial differential equations
(ODE and PDE). We will need at least some basic familiarity with terminology and notation for
ODE and PDE to understand how to use certain computational techniques in finance, such as
numerical methods for Black-Scholes models. However, we do not assume that the reader has
had any prior exposure to material on either ODE or PDE.

A good reference for the material in Section 1.2 on Calculus is any standard undergraduate
textbook for a first-year Calculus course, such as [3]. At UCSD, most of our first-year under-
graduates take a year-long Calculus sequence that goes well-beyond the material discussed in
Section 1.2. A good reference for the Linear Algebra material in Section 1.1 are some of the
later chapters in any standard undergraduate Calculus textbook such as [3], or any standard
undergraduate textbook for a first- or second-year Linear Algebra course, such as [4]. A good
reference for the ODE and PDE material below is any standard textbook for a second-year
undergraduate course on differential equations, such as [1]. Numerical methods for PDE problems
such as Black-Scholes is not a topic typically found in the references mentioned so far, but is still
at the level of a second- or third year undergraduate course for science or engineering students.
Again, we do not assume that the reader has had any prior exposure to material on either ODE
or PDE; however, for the adventurous reader, the book [2] contains an overview of the numerical
methods that we will study in the last several lectures of the course, as well as more advanced
material on ODE and PDE.

1.1 Linear Algebra

We now review some basic ideas from a typical first- or second-year undergraduate course on
linear algebra, including concepts, notation, and the interpretation of matrix equations and
eigenvalue problems. Although we will need these concepts from linear algebra to formulate and
understand algorithms for optimization problems and differential equation models in finance,
nailing down some basic notation and some simple ideas from linear algebra will also make our
discussion of Calculus in the next section a bit easier.

To get us started, recall that we use the symbol R to denote the set of real numbers. Given
two real numbers a ≤ b, we can define the closed interval [a, b] and the open interval (a, b), as
well as half-open/half-closed variants. It is standard to think of [a, b] as forming a subset of R,
and then write [a, b] ⊂ R, and similarly for the other various subsets we can form using a and
b. What makes the set R so useful is not that it is a collection of useful numbers, but that it
also comes with the structure of a field. A field is a set that has addition and multiplication
defined on it, such that it is closed under those operations, meaning that you can generate
only additional elements of the set through those operations. The two operations have the
properties we are all familiar with in the case of addition and multiplication of real numbers

ccom.ucsd.edu/~mholst/teaching/ 3

ccom.ucsd.edu/~mholst/teaching/

(associativity, commutativity, existence of identity and inverse elements, and distributivity
between the operations). The field R is actually an ordered field, in that the elements can be
placed in a left-to-right ordering (the real line); the complex numbers C also form a field under
complex addition and multiplication, but there is no natural ordering that we can place on C.

1.1.1 Vectors, Matrices, Addition and Multiplication Operations

We use the symbol Rn to denote the set of n-vectors of real numbers, i.e., the set of column
vectors of length n ≥ 1, each component of which is a real number. Note that if n = 1, then we
simply write R instead of R1. If x is a vector in the set Rn, we use the set inclusion notation:
x ∈ Rn. (We can also consider vectors of complex numbers, which we would denote as Cn;
however, we will stick mostly to Rn throughout these notes.) We consider x to be a column
vector of length n, and then denote as xT , meaning the transpose of x, as a row-vector of
length n:

x =


x1
x2
...
xn

 , xT = [x1, x2, . . . , xn] ,

where xk ∈ R for k = 1, . . . , n. Here are some specific examples:

x =


1
0
−3
6.25

 , y =

 0.1
−1
5

 , yT = [0.1,−1, 5] .

Notice that we do not need to put an arrow on x to make it clear it is a vector; the type of
object that x is will be clear from the context.

When we are working with an m× n matrix A of real numbers, with m the number of rows of
A, and n the number of columns of A, we use the notation A ∈ Rm×n. We denote the entry of
the matrix A located in the i-th row and j-th column as aij , or sometimes as Aij .

Matrix-Matrix addition is well-defined for matrices having the same shape; we simply add
their components together: If A,B ∈ Rm×n, then C = A+B ∈ Rm×n, and

C = A+B, cij = aij + bij .

Recall that if A ∈ Rm×n and if B ∈ Rn×p, then matrix-matrix multiplication is well-defined, and
the entries of the product matrix C ∈ Rm×p are given by:

C = AB, cij =
n∑

k=1

aikbkj .

A special case of this is when p = 1, so that the matrix B consists of only a single column vector
with length matching the number of columns of A. This is called matrix-vector multiplication,
and the formula above for the entries of the resultant C, which will now consist of a single
column vector with length matching the number of rows of A, reduces to:

C = AB, ci =

n∑
k=1

aikbk.

Recall that matrix-matrix multiplication is associative, but not commutative. In other words,
although we (generally) cannot swap the order of two matrices in a product, so that AB 6= BA,

ccom.ucsd.edu/~mholst/teaching/ 4

ccom.ucsd.edu/~mholst/teaching/

we can change the order of evaluation in a product involving more than two matrices: ABC =
(AB)C = A(BC). Matrix multiplication is a linear operation, meaning that it distributes across
linear combinations of arguments:

A(αB + βD) = αAB + βAD,

where α, β ∈ R, A ∈ Rm×n, and B,D ∈ Rn×p.

1.1.2 Vector Spaces, norms, inner-products

One of the central concepts in linear algebra is that of a vector space, and we make use of
this concept throughout all of mathematics (including optimization and differential equations!)
Recall that a vector space X can be though of as:

X = 〈V,K,+, ·〉,

where V denotes the set of vectors, where K is the set of scalars (assumed to have the structure
of a field), + represents the addition operation for vectors, and · represents scalar-vector multi-
plication. The two operations are taken to have certain properties (commutativity, associativity,
identity, inverse, compatibility, and distributivity), and the key idea of a vector space is that it
is closed with respect to these operations. I.e., if we form a new vector z from given vectors
u, v ∈ V , using a linear combination involving the + and · operations, such as w = αu + βv,
with α, β ∈ K, then w must also be in V . We will not review the explicit vector space properties
of the + and · operations that we learn in linear algebra, and instead will appeal to the intuition
we have from the “canonical” vector space that we have all worked with since our first-year
mathematics courses:

V = 〈Rn,R,+, ·〉.
The vector space V is the set Rn of length n column vectors, together with the field R of
real numbers, along with the usual operations of vector addition (component wise addition of
n-vectors) and scalar-vector multiplication (scaling the components of an n-vector by a real
number). For example, if n = 2, and if we have the two vectors u = [1, 0]T and v = [2, 2]T , can
take what is called a linear combination of them using e.g. α = 2 and β = 3 to produce a third
vector w:

w = αu+ βv = 2

[
1
0

]
+ 3

[
2
2

]
=

[
8
6

]
.

Some of the concepts we learn in linear algebra concerning vector spaces are the span of a given
set of vectors (the set of all vectors that can be reached by some linear combination of a given
set of vectors), and a basis for a vector space (the minimal spanning set that can produce any
vector in the vector space). Also important was the idea of linear independence (a set of vectors
which cannot be reached by a linear combination of other vectors in the same set), and linear
dependence (a set of vectors which are not linear independent). A concept that arises naturally
is that of a subspace S of a vector space V . The subset S ⊂ V qualifies as a subspace of the
vector space V if it is a self-contained vector space, meaning that it is closed with respect to the
vector space operations it inherits from V ; i.e., if u, v ∈ S ⊂ V , then any linear combination of
u and v remain in S.

Norms. The structure of a vector space is useful for understanding purely algebraic properties
of sets of vectors: are they linearly independent, do they form a basis for a vector space, and so
forth. However, there is no mechanism for discussing the “size” of a vector (other than its basic
dimension n), and no way to describe whether one vector is “close” to another. For these types
of questions, we need to add a function called a norm. A norm ‖ · ‖ : Rn → R is a function that
satisfies these three properties:

ccom.ucsd.edu/~mholst/teaching/ 5

ccom.ucsd.edu/~mholst/teaching/

1) ‖u‖ ≥ 0,= 0 iff (if and only if) u = 0.

2) ‖αu‖ = |α|‖u‖, ∀u ∈ Rn, ∀α ∈ R.

3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖, ∀u ∈ Rn.

The first property says that the only way the norm can be zero is if we plug in the special
“zero” vector that every vector space contains. The second property says that we can pull scalar
multiplication out of norms. The third property is the triangle inequality, which basically says
the shortest distance between two points is the line connecting them. We saw several different
norms in the study of linear algebra; the main ones were:

‖u‖p =

(
n∑

i=1

|ui|p
)1/p

, 1 ≤ p <∞, ‖u‖∞ = max
1≤i≤n

|ui|.

These are called the p-norms; the cases of p = 1, p = 2, and p =∞ are particularly important:

‖u‖2 =

(
n∑

i=1

|ui|2
)1/2

, ‖u‖1 =
n∑

i=1

|ui|, ‖u‖∞ = max
1≤i≤n

|ui|.

With these definitions, it is not difficult to show that for any p with 1 ≤ p ≤ ∞, the corresponding
norm satisfies the three properties above that every norm must satisfy. Here are some examples:

u =

[
1
2

]
, ‖u‖1 = 1 + 2 = 3, ‖u‖2 = (12 + 22)1/2 =

√
5, ‖u‖∞ = max{1, 2} = 2.

When we add one of these norms to the vector space formed from Rn, then we have what is
called a Normed (Vector) Space. One of the most useful properties of the norm is that it gives
us the ability to measure the distance between two points (vectors) in the space:

d(u, v) = ‖u− v‖. (1.1)

The function d : V × V → R is known as a metric, and it satisfies its own three properties:

1) d(u, v) ≥ 0,= 0 iff (if and only if) u = v.

2) d(u, v) = d(v, u), ∀u, v ∈ Rn.

3) d(u, v) ≤ d(u,w) + d(w, v), ∀u, v, w ∈ Rn.

The first property says that the only way the distance between two points can be zero is if they
are the same point. The second property says that the distance from a point u to a point v
is the same as the distance from the point v to the point u. The third property is again the
triangle inequality, which says the if we detour to a third point w on the way from a point u to
a point v, the distance we travel is at least as great as the direct distance from u to v. As long
as you start with a norm satisfying the three norm properties, the metric it “induces” via (1.1)
will automatically satisfy the three metric properties. (This is a standard simple theorem in the
theory of normed vector spaces.)

A metric adds to a vector space a structure called a topology ; this is the ability to define open
and closed sets in the space, convergence of sequences, continuity of maps, and so forth. In
fact, if you start with simply a set of points rather than an entire vector space, and you add a
metric to it, then you still get these features (open and closed sets, and so forth), independent
of whether you also have a vector space structure. A set together with a metric on the set is
called a metric space. Every normed space equipped with (1.1) as its metric can be viewed as a
metric space.

ccom.ucsd.edu/~mholst/teaching/ 6

ccom.ucsd.edu/~mholst/teaching/

While this is all very useful, one comparison between vectors still eludes us: how can we
measure whether or not two vectors are pointing in the same direction?

Inner-Products. To answer this question, we need one more function: the inner-product.
An inner-product on a vector space is two-argument function (·, ·) : Rn × Rn → R that satisfies
these three properties:

1) (u, u) ≥ 0,= 0 iff (if and only if) u = 0.

2) (u, v) = (v, u), ∀u, v ∈ Rn.

3) (u, αv + βw) = α(u, v) + β(u,w), ∀u, v, w ∈ Rn, ∀α, β ∈ R.

The first property says that the inner-product of a vector with itself is never zero unless it is
the special zero vector contained in every vector space. The second property says that the
inner-product is symmetric, so it does not matter what order we take the arguments. The third
property says that the inner-product is linear in its first argument; note that by the second
property, it must be linear in its second argument as well.

The inner-product gives a vector space an additional structure called a geometry. It gives us
the ability to measure the “angle” between vectors, and in particular it gives us the concept of
orthogonality : We say two vectors u and v are orthogonal if they have zero inner-product, and
write u ⊥ v:

(u, v) = 0.

The most useful inner-product for n-vectors is the Euclidean inner-product:

(u, v) = (u, v)2 =
n∑

i=1

uivi, u, v ∈ Rn.

Here are some examples using this standard inner-product:

u =

[
1
0

]
, v =

[
0
1

]
, w =

[
1
1

]
, (u, v)2 = 1 · 0 + 0 · 1 = 0, (u,w)2 = 1 · 1 + 0 · 1 = 1.

When we add an inner-product to a vector space, we call it an Inner-Product Space. One useful
observation is that every inner-product automatically defines a norm:

‖u‖ = (u, u)1/2. (1.2)

Similar to what we saw earlier when defining a metric using the norm, as long as we start with
an inner-product satisfying the three inner-product properties, the norm it “induces” via (1.2)
will automatically satisfy the three norm properties. (This is another standard theorem in the
theory of normed vector spaces.) In particular, note that the Euclidean inner-product induces
the 2-norm we encountered above:

‖u‖2 = (u, u)
1/2
2 =

(
n∑

i=1

u2i

)1/2

.

In other words, every inner-product space is automatically a normed space. (Additionally, since
we noted that every normed space is also a metric space, we have that every inner-product is
automatically a metric space as well.)

Matrix Norms. Note that the idea of taking linear combinations of matrices is really just
as natural as that of taking linear combinations of column vectors (which are just special cases
of matrices). This leads naturally to the idea of thinking about the set of m× n matrices as

ccom.ucsd.edu/~mholst/teaching/ 7

ccom.ucsd.edu/~mholst/teaching/

forming its own vector space; it is clearly closed with respect to matrix-matrix addition, since
we produce a matrix of the same dimension. This gives us access to one of the most useful
mathematical tools for working with matrices: The matrix norm, and when added to the vector
space of matrices it turns it into a normed vector space (of matrices). The most useful matrix
norms are the ones induced, or subordinate to the p-norms of the vector spaces that are associated
with the row and column dimensions of the matrix. In particular, if A ∈ Rm×n, we define the
induced matrix norm of A as:

‖A‖p = sup
x∈Rn,x 6=0

‖Ax‖p
‖x‖p

. (1.3)

Note that by defining the matrix norm in this way, we get access to the following useful inequality:

‖Ax‖p ≤ ‖A‖p‖x‖p, ∀x ∈ Rn. (1.4)

The reason that this holds is that since equality holds in (1.3) for the optimal choice of x ∈ Rn

that maximizes the right-hand-side of (1.3), then any other choice x ∈ Rn, x 6= 0, on the
right-hand gives the following inequality:

‖A‖p ≥
‖Ax‖p
‖x‖p

, ∀x ∈ Rn, x 6= 0.

Multiplying through by ‖x‖p we obtain (1.4), which we note continues to hold even when x = 0.
Another matrix norm that is often useful, which is not an induced norm, is the Frobenius

norm:

‖A‖F =

 m∑
i=1

n∑
j=1

A2
ij

1/2

.

In both cases, the matrix norms can be shown to satisfy the three properties of a proper norm.

1.1.3 Matrix Equations

One of the main problems we study in linear algebra is the solution of matrix equations:

Find x ∈ Rn such that Ax = b, where A ∈ Rm×n, b ∈ Rm.

There are three distinct cases with very different notions of solutions and techniques:

1) m = n: square (determined) systems,

2) m > n: over-determined systems,

3) m < n: under-determined systems.

In an undergraduate course in linear algebra, we typically study mainly the first two cases. For
over-determined systems, one has more equations than unknowns, and the notion of “solution”
is reduced to finding an x that minimizes the residual b−Ax, rather than trying to force Ax = b.
If one minimizes the 2-norm of the residual, ‖b−Ax‖2, then it can be shown that the minimizer
satisfies the normal equations:

ATAx = AT b,

where AT is the transpose of A, i.e., (AT)ij = Aji. Note the number of rows and columns in
ATA is n, so this is now an n× n matrix system. If A has linearly independent columns, then it
can be shown that ATA is invertible, so we have reduced the problem of solving the original
over-determined system to that of solving a square system.

ccom.ucsd.edu/~mholst/teaching/ 8

ccom.ucsd.edu/~mholst/teaching/

Solution of square systems, i.e., those where m = n, is possible when the target vector b on
the right hand side of the equation Ax = b is in the range of A, which is the space spanned by
the column vectors of A. I.e., there is some linear combination of columns of A that can exactly
recover b, and the solution x is nothing other than the linear combination coefficients:

b =
n∑

i=1

xiai,

where ai is the i-th column vector of A. If A ∈ Rn×n has n linearly independent columns, then
the columns form a basis for all of Rn, in which case any choice of b ∈ Rn can be written as
a linear combination of the columns of A. In this case the problem Ax = b is always uniquely
solvable for any b, and we say that A is nonsingular (or invertible), and write x = A−1b. A
standard test for invertibility of A is the determinant: det(A) 6= 0 if and only if A is nonsingular.
Here is a useful trick to remember for computing the determinant of a 2× 2 matrix:

det

[
a b
c d

]
= ad− bc.

Let us apply this to a specific case:

det

[
1 2
3 4

]
= 1 · 4− 2 · 3 = −2.

The inverse matrix A−1 can be formed explicitly, but in practice one uses algorithms to produce
the solution x without explicitly forming A−1, such as Gaussian elimination, LU -factorization
(which is really the same as Gaussian elimination), or iterative methods such as the Gauss-Seidel
iteration or the Conjugate Gradient Method.

For a general (potentially non-square) matrix A ∈ Rm×n, matrix-vector multiplication tells
us that A : Rn → Rm. The vector spaces Rn and Rm are the basic domain and range spaces of
A, respectively. Solvability of the associated linear system Ax = b can be understood through
what are known as the four fundamental subspaces of A, which are four distinct subspaces of
the basic domain and range spaces. These four fundamental subspaces are:

R(A) = { y ∈ Rm | y = Ax for some x ∈ Rn } ⊂ Rm,

N (A) = { x ∈ Rn | Ax = 0 ∈ Rm } ⊂ Rn,

R(AT) = { x ∈ Rn | x = AT y for some y ∈ Rm } ⊂ Rn,

N (AT) = { y ∈ Rm | AT y = 0 ∈ Rn } ⊂ Rm.

The subspace R(A) is called the (true) range of A, and N (A) is called the nullspace of A,
with similar terminology for R(AT) and N (AT). The Fundamental Theorem of Linear Algebra
(FTLA) tells us that the four fundamental subspaces have the following relationships:

R(A) = [N (AT)]⊥, R(AT) = [N (A)]⊥.

These relationships tell us something about solvability of the linear system Ax = b. If b ∈ R(A),
then there exists x ∈ Rn such that b = Ax; i.e., the system is solvable. The FTLA tells us that
we can infer that b ∈ R(A) by confirming that b ⊥ N (AT). The simplest statement of this
principle is the following: Ax = b is solvable if and only if bT y = 0 for all y such that AT y = 0.

ccom.ucsd.edu/~mholst/teaching/ 9

ccom.ucsd.edu/~mholst/teaching/

1.1.4 Eigenvalue Problems

Another important problem we study in linear algebra is the solution of eigenvalue problems:

Find (xi, λi) ∈ Rn × C such that Axi = λixi, where A ∈ Rn×n, xi 6= 0. (1.5)

In the case of eigenvalue problems, one is after the set of eigenpairs of a square matrix; every
square n × n matrix has n such pairs, (xi, λi), i = 1, . . . , n. We call λi an eigenvalue, and xi
is its associated eigenvector. Two features of any eigenvector xi are worth noting: first, they
are required to be nonzero; and second, we can always normalize them (give them unit length),
because we can multiply both sides of (1.5) by ‖xi‖−1 and absorb this factor into the definition
of the normalized eigenvector, vi = xi/‖xi‖. There are many possibilities for the eigenpairs of
a general square matrix; the eigenvalues might be complex, they might be repeated (several
eigenvalues might be the same value) and the eigenvectors might be linearly dependent. The
terms algebraic and geometric multiplicity are concerned with these possible degeneracies. In
the case of rectangular matrices, there is a generalization we call singular values and (left and
right) singular vectors, which (nearly) reduce to eigenpairs in the case of square matrices. A
number of powerful algorithms have been developed over the last several decades for finding all
(or a desired subset) of the eigenpairs (or more generally, the singular values and vectors) of
general matrices.

However, many applications are blessed with symmetric matrices, which are square matrices
that are equal to their own transpose:

A = AT .

When this property holds, the eigenvalue problem becomes much simpler, due to two facts:

1) λi ∈ R, i = 1, . . . n.

2) xi ⊥ xj , i 6= j.

The first fact one says that all of the eigenvalues of A are real, and the second fact says that the
corresponding eigenvectors are all orthogonal. Since we have n orthogonal eigenvectors, they
must span all of Rn. In this case, if we form a square matrix V with columns made from the n
eigenvectors of A, we can write the eigenvector-eigenvalue equations all at once as the following
matrix system:

AV = V Λ, V =


...

...
...

x1 x2 . . . xn
...

...
...

 , Λ =


λ1

λ2
. . .

λn

 .
Since V has n linearly independent columns (orthogonal vectors are obviously linearly indepen-
dent), it is invertible, and by multiplying on either the left or right of the equation above we
obtain two useful facts:

V −1AV = Λ, A = V ΛV −1. (1.6)

The first equation in (1.6) states that A can be diagonalized by a similarity transformation
involving V and V −1. Since similarity transformations preserve eigenvalues, the diagonal matrix
Λ must have the eigenvalues of A on its diagonal. The second equation in (1.6) states that A
can be factored into three matrices, one of which holds the eigenvectors as columns, and the
middle matrix contains all of the eigenvalues of A on its diagonal. This is referred to as the
spectral decomposition of A.

ccom.ucsd.edu/~mholst/teaching/ 10

ccom.ucsd.edu/~mholst/teaching/

Computing Eigenvalues. Over the last several decades, a number of computationally
efficient algorithms have been developed for both the general eigenvalue problem, and also the
special case of symmetric matrices. Many of these algorithms are built into MATLAB. For
small matrices (meaning 2× 2 or 3× 3), it is convenient to compute eigenvalues by hand using
the characteristic polynomial. We obtain this polynomial by rewriting the eigenvalue equation
slightly, and using the fact that the determinant of a singular matrix is zero:

Ax = λx, x 6= 0, ⇐⇒ [A− λI]x = 0, x 6= 0, ⇐⇒ det(A− λI) = 0.

The equation on the left is the original eigenvalue-eigenvector equation. The equation in the
middle is the same equation written with terms rearranged to emphasize the fact that an
eigenvalue is basically a shift that you can make to a matrix that turns the result into a singular
matrix; this must be the case, since the solution to the resulting system is nonzero, but the right
hand side is zero. (Only singular matrices can give nonzero solutions to problems with zero right
hand sides; this is one way to characterize a singular matrix.) Finally, the third equation on the
right is just the restatement of what we recalled earlier, namely that singular matrices have zero
determinant.

This third equation involves a degree n polynomial, known as the characteristic polynomial of
[A− λI], the roots of which are the eigenvalues of A. Let us look at a simple example:

A =

[
2 −1
−1 2

]
, det[A− λI] = det

[
2− λ −1
−1 2− λ

]
= (2− λ)(2− λ)− 1 = λ2 − 4λ+ 3.

This polynomial has two roots, which are the two eigenvalues of A. We can either use the
quadratic formula to find the roots, or we can actually factor this simple case by inspection:

det[A− λI] = λ2 − 4λ+ 3 = (λ− 1)(λ− 3).

Therefore, the eigenvalues of this symmetric 2× 2 matrix A are λ1 = 1 and λ2 = 3. We knew
they had to be real numbers since A is symmetric, but we could not easily know their actual
values without the characteristic equation (the equation we solve involving the characteristic
polynomial).

1.1.5 Condition Number of a Matrix

When solving matrix equations Ax = b using computer algorithms, we are immediately faced
with the following question: If the problem data (the entries A and/or b) contain errors, either
due to data acquisition or simply computer roundoff, what impact does this have on the solution
x that the algorithm produces? Let us examine this question a bit, since the answer is relevant
to all of the algorithms will develop for both optimization and differential equation models in
finance.

To begin, let us assume we are faced with solving the system Ax = b, where A is a nonsingular
n× n matrix. Let’s imagine we have made an error in the right-hand side vector b, and have
instead b+ δb. The solution to the matrix system Ax = b will then also contain an error, which
we will call δx. The system we are solving can be viewed as having the form:

A(x+ δx) = b+ δb.

Let’s isolate δx on one side of the equation, so we can get a handle on what it depends on, and
how large it could be. To do so, let’s first left-multiply both sides by A−1, which gives:

x+ δx = A−1(b+ δb) = A−1b+A−1δb = x+A−1δb.

ccom.ucsd.edu/~mholst/teaching/ 11

ccom.ucsd.edu/~mholst/teaching/

Subtracting x from both sides gives then:

δx = A−1δb.

To get a bound on the size of δx, we can take norms (any p-norm, for example):

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖, (1.7)

where we have made use of (1.4). This tells us that we can bound the size of the error δx due to
δb by this inequality. Since x itself may have very small or very large norm, this inequality is
not so useful as it stands. A better measure of the impact would be a bound on the relative
error, which is ‖δx‖/‖x‖. We can get such a bound if we can get a lower bound on ‖x‖ in terms
of the data. We can do this by starting with Ax = b and take norms of both sides as follows:

b = Ax =⇒ ‖b‖ = ‖Ax‖ =⇒ ‖b‖ ≤ ‖A‖‖x‖ =⇒ ‖x‖ ≥ ‖A‖−1‖b‖. (1.8)

If we combine (1.7) and (1.8), then we have what we were after:

‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

, (1.9)

where we have introduced the following symbol in the expression above:

κ(A) = ‖A‖‖A−1‖. (1.10)

The quantity κ(A) as defined in (1.10) is called the condition number of A. Note that if we use
a different matrix norm, then we will get a different condition number; for this reason, you will
often see the particular norm used indicated as a subscript in the notation for κ(A), for example
κp(A) for any p-norm. The standard convention is to by default use the 2-norm when discussing
condition numbers, i.e. κ2(A). As we have seen above, condition numbers tell us how sensitive a
particular matrix system Ax = b is to errors in the right-hand-side b. A similar analysis can be
done for errors in the entries matrix A itself; one finds again that the condition number is the
quantity that appears in relative error bounds. In addition, condition numbers will naturally
arise as determining factors in the number of iterations required by computer algorithms to solve
matrix systems as well as optimization problems.

1.2 Calculus

We now review some familiar material from a standard first-year undergraduate course on
Calculus of functions of one and several variables. We will need to understand basic notation
and concepts from both calculus and linear algebra to understand how to formulate finance
problems as optimization problems, and then to go on to use computational algorithms to solve
these problems. Having covered basic notation and some simple ideas from linear algebra in the
previous section will make our discussion below a bit easier.

1.2.1 Univariate Functions

The calculus (of functions of a single real variable) is the study of the properties of functions
f(x) that take as input a number x ∈ R, and return as output a number f(x) ∈ R. We write
this as f : R → R; these are also called univariate functions, and x is called the independent
variable. Some examples of such real-valued functions of a single real variable include:

f(x) = x2 + 3x, f(x) = 7, f(x) = sin(x).

ccom.ucsd.edu/~mholst/teaching/ 12

ccom.ucsd.edu/~mholst/teaching/

The first two examples are polynomials (the second of which is the simplest type of polynomial,
namely a constant), and the third is a trigonometric function. In the first year of calculus we
learn about differentiating and integrating these types of functions, and then applying this
technology to solving various problems arising in science and engineering.

Differentiation. Recall that the derivative of a function f : R → R is defined formally as
follows:

f ′(x) =
df(x)

dx
= lim

h→0

f(x+ h)− f(x)

h
,

where we use f ′ as a shorthand notation for df/dx when it is convenient and does not lead to
ambiguity. However, we quickly learn in first-year calculus that there are various formulas we
can use to compute a derivative of common functions such as polynomials and trigonometric
functions, rather than working directly with the definition involving the “limit” above. The first
such formula we typically learn to use is the following one for differentiating individual terms in
a polynomial (referred to as a monomial):

d

dx
xn = nxn−1.

Finally, we learn how to compute derivatives of more complex functions using techniques such
as the product rule and the chain rule:

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x), g(f(x))′ =
dg

df

df

dx
.

Here is an example using both the product and chain rules:

(3(x+ 2)2x3)′ = 3((x+ 2)2)′x3 + 3(x+ 2)2(x3)′ = 6(x+ 2)x3 + 9(x+ 2)2x2.

A typical example of applying the derivative to solve a problem is: Given the function p(t) = 3t2

representing the position of a particle on a line at time t, compute it’s velocity v(t) along the
line, which is defined as the instantaneous rate of change of p(t) with respect to time t. To solve
this problem, we differentiate p(t) = 3t2 to obtain:

v(t) = p′(t) =
dp(t)

dt
= 6t.

Higher-order derivatives of a function f : R→ R are defined recursively: f ′′(x) = (f ′(x))′, and so
forth. It is clearly a cumbersome notation to use prime symbols for, say, the “11-th” derivative
of f(x), so it is common to use the notation f (k)(x) to represent the k-th derivative of f(x).

As important class of functions are the continuous functions. Although one can give a
mathematically precise definition of a continuous function as one for which a small amount in
its argument produces only a small change in its value, intuitively we can think of continuous
functions as functions for which there are no gaps or jumps in their graphs. If f is a continuous
function on all of R, we use the notation f ∈ C0(R). If f is continuous on the subset [a, b] ⊂ R,
then we would write f ∈ C0([a, b]). If it is important to draw a distinction between the domain
and range of the function, such as when f : [a, b]→ R, then we would denote a continuous function
as f ∈ C0([a, b],R). Another important, related class of functions are those whose derivatives
of order k are also continuous functions; we would denote such a function as f ∈ Ck(R), or
f ∈ Ck([a, b]), or simply f ∈ Ck if the domain of the function is clear from the context. If we
can differentiate f endlessly and end up with a continuous function, we denote this as f ∈ C∞.
The simplest example would be the case of a function f which is continuously differentiable (it
has one continuous derivative), which we would denote as f ∈ C1.

ccom.ucsd.edu/~mholst/teaching/ 13

ccom.ucsd.edu/~mholst/teaching/

Integration. Recall that the integral of a function f : R→ R can also be defined formally
(as the limit of what are called Riemann sums). Again, we quickly learn a number of useful
formulas that allow us to compute definite (integrals with limits of integration) and indefinite
(integrals without limits) of commonly occurring functions such as polynomials and trigonometric
functions. For example, in the case of monomials we have:∫

xn dx =
xn+1

n+ 1
+ C,

∫ b

a
xn dx =

xn+1

n+ 1

∣∣∣∣b
a

=
bn+1

n+ 1
− an+1

n+ 1
.

The front and back cover of a standard calculus book is typically filled with formulas for
integrating more complex, but quite special functions. Unfortunately, in the case of integration,
we do not have access to similar general techniques like the chain rule, and we instead often
have to resort to approximating integrals numerically (a process referred to as quadrature). The
integral has many applications, including its use as the anti-derivative, the area under a curve,
and so forth. A typical application of the integral to solve a problem is: Find the area under the
curve f(x) = x2 in the interval [0, 1]. To solve this problem, we integrate f(x) = x2 over the
interval [0, 1]: ∫ 1

0
x2 dx =

1

2
x

∣∣∣∣1
0

=
1

2
.

1.2.2 Multivariate Functions

The calculus of (vector-valued) functions of a several variables is the natural extension of the
single-variable calculus to the study of the properties of functions F (x) that take as input a
vector x ∈ Rn, and return as output a vector F (x) ∈ Rn. We write this as F : Rn → Rm. This
includes of course the case that m = n = 1, which is then just the calculus of functions of a single
real variable as discussed above. The next simplest case is m = 1, n ≥ 1, which are real-valued
functions of n variables, f : Rn → R; we denote again simply as f(x), but now we have x ∈ Rn.
The general case of F : Rn → Rm are m-vector-valued functions of n variables, and we can think
of F as a column vector consisting of m real-valued component functions:

F (x) =


F1(x)
F2(x)

...
Fm(x)

 , where x =


x1
x2
...
xn

 .
Here is a specific example: Define F : R2 → R3 as

F (x) =

 x21 − 2x2
2x32 − x1
x1 + x22

 , in which case F (x)T =
[
x21 − 2x2, 2x32 − x1, x1 + x22

]
.

Differentiation. In the case of multivariate functions, we can consider differentiation with
respect to any one of the independent variables by holding all of the other variables as fixed; we
refer to this process as partial differentiation. For example, of F : Rn → Rm, then the partial
derivative of one of the component functions Fi(x) of F (x) with respect to a particular xj is
written as ∂Fi(x)/∂xj . The collection of all of the partial derivatives of F (x) with respect to all
of the independent variables xk can be arranged into an m× n matrix referred to the Jacobian

ccom.ucsd.edu/~mholst/teaching/ 14

ccom.ucsd.edu/~mholst/teaching/

matrix of F (x):

F ′(x) =



∂F1(x)
∂x1

∂F1(x)
∂x2

. . . ∂F1(x)
∂xn

∂F2(x)
∂x1

∂F2(x)
∂x2

. . . ∂F2(x)
∂xn

...
...

. . .
...

∂Fm(x)
∂x1

∂Fm(x)
∂x2

. . . ∂Fm(x)
∂xn

 ,

Here is an example: We again consider our example from above with F : R2 → R3, so that
x = [x1, x2]

T , and

F (x) =

 F1(x)
F2(x)
F3(x)

 =

 x21 − 2x2
2x32 − x1
x1 + x22

 , F ′(x) =


∂F1(x)
∂x1

∂F1(x)
∂x2

∂F2(x)
∂x1

∂F2(x)
∂x2

∂F3(x)
∂x1

∂F3(x)
∂x2

 =

 2x1 −2
−1 6x2
1 2x2

 .
The Jacobian matrix F ′(x) above is an example of an m × n (rows by columns) matrix of
functions; if we “fix” the independent variable x, then this becomes a matrix of real numbers,
which is the familiar object from linear algebra. Similarly, F (x) is an n-vector of functions,
and if we “fix” the independent variable x, then this becomes an n-vector of real numbers. For
example, if we fix x = [x1, x2]

T = [0, 1]T , then F (x) above becomes the following m× 1 = 3× 1
column vector of real numbers, and F ′(x) becomes an m× n = 3× 2 matrix of real numbers:

F (x) =

 −2
2
1

 , F ′(x) =

 0 −2
−1 6
1 2

 .
A special case that has its own terminology is the case of m = 1 and n ≥ 1; i.e., f : Rn → R.
In this case, the Jacobian matrix reduces to a single row (the first row in the Jacobian matrix
above), and we continue to use the notation f ′(x) to denote this row vector. However, the column
vector obtained by taking its transpose has an important role itself, including in optimization,
and it is given the special notation ∇f(x) and referred to as the gradient vector :

f ′(x) =
[

∂f(x)
∂x1

, ∂f(x)
∂x2

, . . . , ∂f(x)
∂xn

]
, ∇f(x) = f ′(x)T =



∂f(x)
∂x1

∂f(x)
∂x2

...

∂f(x)
∂xn

 .

The case of f : Rn → R arises as the general type of objective function that we will run into
when we look at optimization problems below. In this case, the second derivative of f will also
play a major role. Just as there are n possible first partial derivatives of f , there are n2 possible
second derivatives of f . If we arrange them in the natural way as the components of an n× n
matrix, we obtain the Hessian matrix of f(x) at x:

f ′′(x) =



∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n


.

ccom.ucsd.edu/~mholst/teaching/ 15

ccom.ucsd.edu/~mholst/teaching/

Note that if f ∈ C2, meaning that f has two derivatives which are continuous functions, then
the order of differentiation does not matter, and all entries paired across the diagonal of the
Hessian are the same:

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi
, i = 1, . . . , n, j = 1, . . . , n.

This means as long as f ∈ C2, the Hessian will be a symmetric matrix : f ′′(x) = f ′′(x)T , where
the superscript “T” denotes matrix transpose.

Here is an example: Define f : R4 → R as follows, and we then compute f ′, ∇f , and f ′′(x):

f(x) = x31 − x2x23 + x4, f ′(x) =
[

3x21, −x23, −2x2x3, 1
]
, ∇f(x) =


3x21
−x23
−2x2x3

1

 ,

f ′′(x) =


6x1 0 0 0
0 0 −2x3 0
0 −2x3 −2x2 0
0 0 0 0

 .
Integration. For the case of a vector-valued function of a single real variable, F : R→ Rm,

we can define integration component-wise:

∫ b

a
F (t) dt =



∫ b
a F1(t) dt∫ b
a F2(t) dt

...∫ b
a Fm(t) dt

 .

This is the main type of integration problem we will run into other than the case of m = n = 1.

1.2.3 Taylor Series and Remainder

One of the key tools we learn to use in the first year of Calculus is the idea of Taylor series or
Taylor expansion of a function f ∈ C∞(R) about the point x ∈ R:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)h2

2!
+ · · ·+ f (n)(x)hn

n!
+ · · · . (1.11)

What is remarkable about this series is that it says that if we know only information about the
function f at the point x, but the information we know includes all possible derivatives of f at
that point, then in fact we also know what value f takes at a nearby point x+ h.

Notationally, it is common to write these types of expansions using what is known as “big-O”
notation. The idea is to make the observation that all of the terms in the series have h raised
to a power that matches the position of the term in the series; i.e., the first term has h0, the
second has h1, the third has h2, and so forth. We typically use the series when h is small (we
will see why below when we examine the Taylor Remainder). If we are thinking of h as small
(less than one, typically much smaller), then clearly h2 will be even smaller, and so forth for
higher powers. What this means is that for h sufficiently small, the terms with lower powers will
dominate in magnitude all of the terms appearing later in the series with higher powers. The

ccom.ucsd.edu/~mholst/teaching/ 16

ccom.ucsd.edu/~mholst/teaching/

“big-O” notation allows us to reflect this with a single term; using this notation for the Taylor
expansion, and choosing (arbitrarily) to keep explicitly only the first two terms, the series would
read:

f(x+ h) = f(x) + f ′(x)h+O(h2).

This tells us that we are looking at a series involving f , and the remaining terms each have
powers of h2 or higher multiplying each term.

For fixed x ∈ R, the sum of terms on the right in the Taylor series (1.11) is an example of a
countably infinite series of real numbers, or simply infinite series, meaning that it is a sum of an
infinite number of terms (each of which evaluates to a real number), each of which can be put in
one-to-one correspondence (or labeled) with the integers. Such series then have the form:

S =
∞∑
i=1

ai. (1.12)

One of the main topics in Calculus is to study properties of infinite series, and in particular, to
know when they sum to a finite quantity (i.e, when S is finite). Such series are called summable
or convergent, and in Calculus we develop various tests (such as the ratio test, the root test, and
so forth) that we apply to a typical term in the sum to guarantee that the series is convergent.

In the case of this very specific series above, namely the Taylor series (1.11), if we freeze the
point x at which we are evaluating the series, then it becomes precisely a series of the form (1.12).
If f ∈ C∞, then clearly each term in the series is well-defined. However, since there are infinitely
many terms, the series may in fact not be convergent (sum to a finite real number). However, if
the series is convergent for this fixed x, then we say f is analytic at x. If the series is convergent
for any x ∈ [a, b], then we say f is analytic on [a, b], and if it is convergent for any x ∈ R, then
we say f is analytic on R, or simply that f is analytic.

One of the most important theorems concerning Taylor series is known as the Taylor Remainder
Theorem. This theorem says that we can actually capture all of the infinite number of remaining
terms in the series with a single term as follows:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)h2

2!
+ · · ·+ f (n)(x)hn

n!
+Rn,

where the Taylor Remainder Rn has the expression:

Rn =
f (n+1)(ξ(x))hn+1

(n+ 1)!
.

This remainder term looks like the next term in the series, except that it is evaluated at a
special point ξ(x) between x and x+ h. It is generally difficult to determine what ξ(x) is, but
the theorem establishes that such a point always exists. Note that we can choose to truncate
a Taylor expansion at any order k, and then use Rk to represent the remaining terms. For
example, below we will use the following 3-term expansion in order to derive Newton’s method
for solving nonlinear equations:

f(x+ h) = f(x) + f ′(x)h+
f ′′(ξ(x))h2

2!
. (1.13)

Note that the size of the Remainder term gives us a very useful piece of information: it tells
us what error we would be making if we choose to ignore that remaining terms and use only
the finite number of terms appearing before the remainder as a way of approximating f(x+ h).
This type of approximation of f , and characterizing the error made via the Taylor remainder,

ccom.ucsd.edu/~mholst/teaching/ 17

ccom.ucsd.edu/~mholst/teaching/

forms the foundation for much of numerical analysis and computational science. We will come
back to this topic at some length when we study numerical methods for Black-Scholes models
later in the course.

Let us consider now the more general case of multivariate functions of the form F : Rn → Rm.
Is it possible to Taylor expand this type of function? The answer is yes, and this idea forms
the basis for nearly all of the most effective techniques and algorithms for solving nonlinear
equations and optimization problems arising in finance, science, engineering, and other areas.
Let us begin by again assuming that F is sufficient smooth so that we can at least write down all
of the terms in the series; it will be sufficient for us to assume that all of the partial derivatives
of F of all orders exist, similar to the one-dimensional case. The series then takes the form:

F (x+ h) = F (x) + F ′(x)h+O(‖h‖2).

This looks very much like (1.13), but now each term in the series is an m-vector. The quantity
F ′(x) appearing in the second term is the m× n Jacobian matrix of F at x, and it multiplies
the n-vector h to produce the m-vector F ′(x)h which then is added to the m-vector F (x). The
remainder term is written using “Big-O” notation to avoid writing down the second derivative of
F ; this is an m×n×n collection of all second partial derivatives which can not be written naturally
in matrix form. Nevertheless, the remaining terms in the series mimic the one-dimensional case,
and each term has increasing “powers” of h. (To explicitly write the terms, we would need to
introduce the concept of tensors, or multilinear forms.) The series converges under appropriate
assumptions as in the one-dimensional case, and we can use the Taylor Remainder to characterize
the error of truncating the series, just as in the one-dimensional case.

We focused earlier on the special case where m = 1, due to the fact that functions of the form
f : Rn → R play a central role in optimization. In this case, we can write one additional term in
the Taylor expansion without resorting to using tensor notation:

f(x+ h) = f(x) + f ′(x)h+ hT f ′′(x)h+O(‖h‖3).

Now the series is again simply a sum of real numbers, but the terms are themselves formed from
products of vectors and matrices. The second term is formed from the inner-product of the row
n-vector f ′(x) with the n-vector h, giving a real number that is added to the first term (the real
number f(x)). To this is added the third term, which is formed by multiplying the n×n Hessian
matrix against the n-vector h, giving an n-vector, and then taking the inner-product of this
n-vector with the row n-vector hT , yielding finally a real number. The remainder term would
involve the third derivative of f , which involves n× n× n partial derivatives, again requiring
tensor notation to explicitly write. It would be reduced to a real number by multiplication
against h three times (arranged appropriately), and so forth for higher-order terms in the series.
We will use this expansion later to develop methods for Quadratic Programming and methods
for more general nonlinear optimization problems.

1.2.4 Newton’s Method

To solve both optimization problems and PDE problems in finance, we are going to need to be
able to solve nonlinear equations of the form:

Find x ∈ Rn such that F (x) = 0,

where F : Rn → Rn. Let us assume we have some initial guess at the solution, call it x0 ∈ Rn.
Unless we are very lucky, the only thing we know for sure is that F (x0) 6= 0. However, in the

ccom.ucsd.edu/~mholst/teaching/ 18

ccom.ucsd.edu/~mholst/teaching/

previous section we found that we have access to Taylor expansion; let us Taylor expand F
about the point x0:

F (x0 + h) = F (x0) + F ′(x0)h+O(‖h‖2).

Ideally, if we could determine h such that x = x0 + h, giving us F (x) = F (x0 + h) = 0, then our
problem would be solved. I.e., we just need to set the series above to zero and solve for h:

0 = F (x0 + h) = F (x0) + F ′(x0)h+O(‖h‖2).

However, this is an infinite series in h, and looks harder to solve that our original problem. What
if we truncate the series at the first non-trivial appearance of h in the series, and try to use this
as an approximation to finding h? This would give us:

0 = F (x0) + F ′(x0)h.

Let us rearrange this a bit:
F ′(x0)h = −F (x0).

This is a well-defined square matrix system; the known information is the right hand side n-vector
of real numbers (which we get by evaluating F at x0), and the n × n matrix on the left that
comes to us by evaluating the Jacobian matrix F ′(x0) at the point x0. We would just need to
solve this matrix system for the n-vector h. We then compute the corrected solution:

x1 = x0 + h.

Since we truncated the series, we generally will not recover the correct h that will give us x1 = x,
where x solves F (x) = 0. However, we are presumably better off than we were with x0. This
turns out to be the case; in fact, this technique, discovered nearly at the birth of Calculus
and known as Newton’s method, is so effective that to this day it forms the basis of the best
algorithms for solving nonlinear equations of this type, and also optimization problems (which
lead to nonlinear equations).

If we formulate Newton’s method as a complete algorithm for solving a given nonlinear equation
F (x) = 0, where F : Rn → Rn, it becomes Algorithm 1. The algorithm is not bullet-proof; for

Algorithm 1 Newton’s Method

• Pick an initial guess x0 ∈ Rn.

• For k = 0, 1, 2, 3, . . . do:

1) F ′(xk)h = −F (xk). (Solve for h)

2) xk+1 = xk + h. (Update x)

• End For

example, if F ′(xk) becomes singular as a matrix for some xk that appears in the iteration, then
we cannot complete the first step to solve for h. Even if we can complete that step, the overall
algorithm may not converge at all; Newton’s method has very nice local convergence properties
(converges when x0 is close to x), but its global convergence properties (when x0 is arbitrarily
far from x) are not great. However, for a broad class of problems one can show that F ′(xk) will
always be invertible. Moreover, one can use techniques known as damping and backtracking to
improve the global convergence properties of Newton’s method.

ccom.ucsd.edu/~mholst/teaching/ 19

ccom.ucsd.edu/~mholst/teaching/

As a final remark, note that in the one-dimensional case, where f : R→ R, Algorithm 1 can
be written a bit more more simply; this is due to the fact that F ′(x) is no longer a matrix, but
simply the real number f ′(x). Solving for h is then just division by f ′(x), as long as f ′(x) 6= 0.
In other words, Step 2) in Algorithm 1 becomes simply:

h = − f(xk)

f ′(xk)
.

1.2.5 Convergence Rates of Sequences in Rn

One of the central problems we run into when building computational algorithms in finance and
other application areas concerns the behavior of sequences that our algorithms will generate; we
view these sequences as having the form:

{xk}∞k=1, xk ∈ Rn.

An algorithm we design (such as Newton’s method that we derived above) is designed to generate
a (countably) infinite sequence of vectors xk ∈ Rn, and we need to make sure that we design the
algorithm so that this sequence converges to the solution of whatever problem we are trying
to solve. What our algorithm does is generate an infinite sequence {xk}∞k=1, and our hope is
that it converges to x (which we denote: limk→∞ x

k = x), such that F (x) = 0. In a practical
setting, one hopes to stop the algorithm very early in order to make the algorithm useful; this
will be possible only if the algorithm converges rapidly. The fact that Newton’s method has
this property is why it forms the basis of many (most) modern algorithms for solving nonlinear
equations, including those that arise as part of solving optimization problems.

Therefore, a practical concern for us when building algorithms is not only that they converge
(produce convergent sequences), but that the convergence rate is reasonably fast. Otherwise, the
algorithm may not be efficient enough to be useful. The rate of convergence of such sequences
can be characterized by the following inequality:

‖x− xk+1‖ ≤ Ck‖x− xk‖p.

If p = 1 and 0 ≤ Ck < 1, we say that the convergence rate is linear. If p = 2 and 0 ≤ Ck < 1,
we say that the convergence rate is quadratic. If p = 1 and limk→∞Ck = 0, we say that the
convergence rate is super-linear. One can define other similar types of convergence rates, but
these three are the most important rates that arise in standard algorithms for nonlinear equations
and optimization problems.

1.3 Differential Equations

We now discuss a small amount of additional material from a typical second- or third-year
undergraduate course on ordinary and partial differential equations (ODE and PDE). We will
need at least some basic familiarity with terminology and notation for ODE and PDE to
understand how to use certain computational techniques in finance, such as numerical methods
for Black-Scholes models. (We do not assume that the reader has had any previous exposure to
either ODEs or PDEs.)

1.3.1 Ordinary Differential Equations

Mathematical modeling in finance, as in areas of science and engineering, often involves the use
of ordinary and/or partial differential equations. An ordinary differential equation (ODE) is

ccom.ucsd.edu/~mholst/teaching/ 20

ccom.ucsd.edu/~mholst/teaching/

an equation that involves an unknown function, in which derivatives of the unknown function
appear. The goal is to “solve” the ODE to determine the unknown function. Here are some
examples of ODEs for determining an unknown function y : R→ R:

y′ = 2x2 + yx+ 4, (1.14)

y′′ = 5y′ + 2y − 2, (1.15)

y′ = y3 − 3y2. (1.16)

The first equation (1.14) is an example of a first-order linear ODE; the unknown appears linearly
throughout the equation, and the highest-order derivative that appears is the first derivative.
The second equation (1.15) is an example of a second-order linear ODE; the unknown again
appears linearly throughout the equation, and the highest-order derivative that appears is the
second derivative. The third equation (1.16) is an example of a first-order nonlinear ODE; the
unknown now appears nonlinearly in the equation, and the highest-order derivative that appears
is the first derivative. The first equation is an example of a non-autonomous ODE, because
the independent variable x appears explicitly in the ODE. On the other hand, the second and
third equations are examples of autonomous ODEs, because the independent variable x does
not appear explicitly in either equation.

When attempting to solve an ODE, one finds that the ODE itself is in fact insufficient
information for determining the solution; one needs additional side conditions to make the ODE
a well-posed problem (we discuss the requirements of a well-posed mathematical problem later
in this section). The appropriate side conditions depend on what the ODE is modeling; for
example, if the independent variable is time, and the ODE is first-order, then the appropriate
side condition is an initial condition for y, namely its value at the initial time t = 0:

y′ = f(t, y), t ∈ (0, T], (1.17)

y(0) = y0. (1.18)

The two equations (1.17) and (1.18) together are referred to as an initial value problem in
ordinary differential equations, or IVP in ODE for short. If the independent variable is space,
which typically goes along with a second-order ODE, then the appropriate side condition is
called a boundary condition, and together with the ODE this defines a boundary value problem
in ordinary differential equations, or BVP in ODE for short:

y′′ = f(x, y, y′), x ∈ (a, b), (1.19)

y(a) = ya, (1.20)

y(b) = yb. (1.21)

The first equation (1.19) is the ODE, and the remaining two equations (1.20) and (1.21) are the
boundary conditions. The IVP and BVP problems are “complete” problem specifications, in
that they have the potential to be well-posed mathematical problems, which we define below.

1.3.2 Partial Differential Equations

In our discussion of calculus, we first considered real-value functions of a single real variable,
f : R→ R, and then considered functions of several variables, F : Rn → Rm. ODEs are equations
for the first type of function, whereas PDEs are equations for the second type of function. Here,
we will be mainly interested in PDE problems involving functions of the form f : Rn → R, in
other words, real-value functions of several independent variables. These are the same types
of functions we will also run into as objective functions in optimization. PDE problems that

ccom.ucsd.edu/~mholst/teaching/ 21

ccom.ucsd.edu/~mholst/teaching/

arise in mathematical modeling can be generally thought of as being one of three types: elliptic,
parabolic, and hyperbolic. The terminology (elliptic, parabolic, hyperbolic) comes from a
technical condition that is used to separate PDEs into these three types; the condition is related
to how we classify conic sections in Calculus. There are two main motivations for making the
distinction between the three types:

1) Each type represents a mathematical model of three very different physical phenomena:
equilibrium, diffusion, and wave propagation.

2) Each type needs a different set of side conditions in order to “complete” each problem;
this is critical so that we can produce a well-posed mathematical problem.

We briefly describe these three types of PDE below.
Elliptic Equations. Elliptic equations represent models of stationary (time-independent)

phenomena, such as electrostatics, elastostatics, and so forth. The BVP in ODE we discussed
above is the simplest case, and can be viewed as a one-dimensional elliptic equation. The simplest
and most common elliptic equation is known as the Poisson Equation:

−∆u = f, x ∈ Ω ⊂ Rd, (1.22)

u = 0, x on ∂Ω. (1.23)

Here, Ω ⊂ Rd, known as the spatial domain, is the set over which the independent variable
x ∈ Rd is allowed to range. (For example, Ω might be the sphere of radius one centered at
the origin, known as the unit sphere, or it might be a cube.) The set ∂Ω is the boundary of
Ω (e.g. the surface of the unit sphere, or the boundary of a cube). The unknown function
u is a real-value function of the d variables x = [x1, . . . , xd]

T , so can be viewed as a function
of the form u : Ω ⊂ Rd → R. The function f appearing on the right in (1.22) is a forcing
function, and is a function of the same form as u, so that f : Ω ⊂ Rd → R. The forcing function
represents the particular mathematical model, and drives the behavior of the solution u. The
first equation (1.22) is the PDE, and the second equation (1.23) is the boundary condition. The
final symbol appearing in (1.22) that we need to define is the Laplacean operator ∆; it is just the
multi-dimensional analogue of the second derivative appearing in our BVP in ODE (1.19) above:

∆u =
d∑

i=1

∂2u

∂x2i
. (1.24)

If there is only one independent variable, so that Ω = (a, b) ⊂ R, then the Laplacean is reduced
to simply the second derivative in that one variable:

∆u =
d2u

dx2
= u′′, (1.25)

and the Poisson equation (1.22)–(1.23) reduces to the following BVP in ODE:

u′′ = f(x), x ∈ (a, b), (1.26)

u(a) = ya, (1.27)

u(b) = yb. (1.28)

Parabolic Equations. Parabolic equations represent models of diffusion (time-dependent)
phenomena such as heat flow in a body. Parabolic and elliptic equations are very closely related;
one can view an elliptic equation is the “limit” of an associated parabolic equation where the

ccom.ucsd.edu/~mholst/teaching/ 22

ccom.ucsd.edu/~mholst/teaching/

solution has reached equilibrium, and is no longer changing. The simplest and most common
parabolic equation is known as the Heat Equation:

ut −∆u = f, (t, x) ∈ (0, T)× Ω, (1.29)

u(t, x) = 0, x on ∂Ω, (1.30)

u(0, x) = u0(x), x ∈ Ω. (1.31)

As in the elliptic case, the spatial domain is Ω ⊂ Rd, but now we also have a time domain, which
is (0, T) ⊂ R. The unknown function u is still a real-value function, but it is now a function of
both the d spatial variables x = [x1, . . . , xd]T and the single time variable t:

u : [0, T]× Ω→ R.

The first equation (1.29) is the PDE, the second equation (1.30) is a boundary condition analogous
to what we had for the elliptic equation and our BVP in ODE, and the third equation (1.31) is
an initial condition analogous to what we had for our IVP in ODE. In this sense, the parabolic
equation combines the IVP and BVP problems we encountered for ODEs into a single problem.

Of the three types of equations, parabolic equations arguably play the most important role in
finance; this is due to the fact that Black-Scholes models for standard options lead to parabolic
equations.

Hyperbolic Equations. While parabolic equations will be our main focus later in the course
due to the importance of Black-Scholes models, toward the end of the course we will examine
Black-Scholes models for exotic options. This will give rise to more complex partial differential
equations, including both hyperbolic equations and also potentially nonlinear equations. While
elliptic and parabolic equations are closely connected as described above, hyperbolic equations,
which model wave propagation phenomena such as electromagnetic radiation and gas dynamics,
are fundamentally different from both elliptic and parabolic equations. They also need side
conditions (again, a combination of both initial and boundary conditions) to “complete” the
problem specification. The simplest and most common hyperbolic equation is known as the
Wave Equation:

utt −∆u = f, (t, x) ∈ (0, T)× Ω, (1.32)

u(t, x) = ud(t, x), x on ∂Ω, (1.33)

u(0, x) = u0(x), x ∈ Ω. (1.34)

ut(0, x) = u1(x), x ∈ Ω. (1.35)

One now needs two initial conditions (due to the appearance of two time derivatives in the
PDE), and the boundary condition must satisfy certain compatibility conditions that do not
appear in the parabolic case. We will discuss hyperbolic equations in a bit more detail when we
discuss Black-Scholes models for exotic options.

1.3.3 Well-Posed Mathematical Problems and Their Solution

In our discussions of matrix equations and differential equations (both ODE and PDE), our
interest was in “solving” the equations. What does that actually mean, and when is this actually
possible? We certainly do not want to try to solve a problem that is not solvable, so we would
prefer to know this fact before we expend the effort to try to do so. What if a problem has more
than one solution? Is one of the solutions the “good” one and the other one the “bad” one? If
we manage to find one of the solutions, how do we know which solution we have: the good one
or the bad one?

ccom.ucsd.edu/~mholst/teaching/ 23

ccom.ucsd.edu/~mholst/teaching/

Another troubling possibility is that any solution we come up with might be highly sensitive
to error in the data, so that we never actually get the solution at all, at least in the sense of
an exact solution. Even worse, using the solution in any “predictive” way, such as predicting
whether a bridge will be able to sustain a certain weight, becomes potentially dangerous. The
use of computers as part of the solution process makes this scenario unavoidable; computers do
not actually work with sets like R and Rn, but rather only with the subsets of these sets that are
representable as floating point numbers of the particular precision that the computer hardware
supports. This means there is always error in the problem data, even if it is very small.

How do we manage these various difficulties?
To begin, let us characterize the type of mathematical problem that we would ideally like to

be faced with, which we is referred to as a Well-Posed (Mathematical) Problem. A Well-Posed
Problem has the following three features:

1) Existence: The problem has a solution.

2) Uniqueness: The solution is unique.

3) Continuous Dependence: The solution depends continuously on the problem data.

The first property is that the solution exists; the second property is that there is only one such
solution. The third property says that if the data has error, then the solution should depend in
a continuous way on that error.

As an example, let us consider the case of a matrix system Ax = b, where A ∈ Rn×n is
nonsingular. Since A is nonsingular, we know that the linear system Ax = b has a unique
solution x = A−1b, so that both the first and the second properties hold. That the third condition
holds will follow from the simple inequality that we derived earlier when we discussed condition
numbers:

‖x‖ = ‖A−1b‖ ≤ ‖A−1‖‖b‖. (1.36)

The argument that x is a continuous function of b is as follows. Let ε > 0 be given. Choose
δ = ε/‖A−1‖. Let x = A−1b and x̃ = A−1b̃. If ‖b− b̃‖ < δ, then

‖x− x̃‖ = ‖A−1b−A−1b̃‖ = ‖A−1(b− b̃)‖ ≤ ‖A−1‖‖b− b̃‖ < δ‖A−1‖ = ε.

In other words, a sufficiently small change in b will produce a small change in x.
Note that the third condition, namely continuous dependence of the solution on the problem

data, allows for very complex solutions. For example, in the case of matrix equations, we derived
the following inequality earlier involving the condition number:

‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

. (1.37)

Even if A is nonsingular, the condition number κ(A) = ‖A‖‖A−1‖ can be quite large. In this case,
even though we showed above that the inequality (1.36) implies that x depends continuously on
b, it still allows the relative change in x to be potentially quite large even for small change in
b. For this reason, matrices A with large condition numbers are called ill-conditioned matrices,
and the corresponding linear systems involving such A are called ill-conditioned systems. They
are inherently sensitive to error in the data vector b (as well as in the entries of A itself), and
it is generally very difficult to produce accurate solutions to ill-conditioned problems. This
phenomena of extreme sensitivity to changes in the problem data can potentially occur in every
type of mathematical model, and it represents a fundamental limit to how useful the model can be
in predicting the behavior of the system it is modeling. The subject of chaotic dynamical systems,
for example, concerns well-posed ODE (and PDE) systems which are nevertheless highly sensitive

ccom.ucsd.edu/~mholst/teaching/ 24

ccom.ucsd.edu/~mholst/teaching/

to errors in the side conditions such as initial data. Unfortunately, our best mathematical models
of local and regional weather behavior can be shown to be chaotic dynamical systems of PDE,
which is why atmospheric scientists are unable to predict the weather for any duration beyond
the span of hours or a few days.

We make a few final comments about the nature of the solution to a problem. Sometimes it is
sufficient to simply know that a problem as at least one solution, even if we do not have a way
of actually writing that solution down as some mathematical expression (called “closed form”).
In some cases, we would also want to know whether or not the solution is unique, again even if
we cannot write the solution down. In different areas of mathematics, research mathematicians
focus on problems of this type, and prove theorems about existence of solutions, and possibly
theorems about uniqueness of solutions (or lack thereof), and then they move on to the next
problem, leaving it to others to actually produce the solution if it is needed.

Unfortunately, for most of the problems arising in mathematical modeling, we can rarely write
down the solution in closed form, even if it is a well-posed problem so that we know that a
unique solution exists. This is true for nearly every nonlinear equation one encounters in ODE
and PDE models, as well as in any type of non-trivial optimization problem. How does we
proceed? Well, knowing that we have a well-posed problem to begin with is actually the best
place to begin: If the problem is not known to be well-posed, then we had better check with a
mathematician who works on such problems to confirm that it is. (If we can not establish that
it is well-posed, we need to look for a better mathematical model!)

Once we have a well-posed mathematical model, the most effective approach in using the
model that has been developed over the last half-century has been to design approximation
methods and numerical algorithms, and along the way develop corresponding approximation
theory and algorithm convergence theory, so that we know exactly what kind of errors we make
in solving an approximate version of the problem, and so that we also know for what situations
and how rapidly our algorithms will produce this approximation. This is essentially the content
of much of this course on computational finance.

References

[1] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and Boundary Value
Problems. John Wiley & Sons, Inc., New York, NY, fourth edition, 1977.

[2] I. Stakgold and M. Holst. Green’s Functions and Boundary Value Problems. John Wiley &
Sons, Inc., New York, NY, third edition, 2011.

[3] J. Stewart. Calculus. Cengage Learning, La Jolla, 7th edition, 2012.

[4] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich, San Diego, CA,
3rd edition, 1988.

ccom.ucsd.edu/~mholst/teaching/ 25

ccom.ucsd.edu/~mholst/teaching/

	Review of Some Undergraduate Mathematics Tools
	Linear Algebra
	Vectors, Matrices, Addition and Multiplication Operations
	Vector Spaces, norms, inner-products
	Matrix Equations
	Eigenvalue Problems
	Condition Number of a Matrix

	Calculus
	Univariate Functions
	Multivariate Functions
	Taylor Series and Remainder
	Newton's Method
	Convergence Rates of Sequences in Rn

	Differential Equations
	Ordinary Differential Equations
	Partial Differential Equations
	Well-Posed Mathematical Problems and Their Solution

	References

