
Math 270C: Numerical Ordinary Differential Equations

Instructor: Michael Holst

Spring Quarter 2017

PRACTICE/SAMPLE FINAL EXAM

Name

#1 10
#2 10
#3 10
#4 10
#5 10
#6 10
#7 10
#8 10
#9 10
#10 10
Total 100

Instructions:

• No calculators allowed (or needed).

• No crib sheets or notes allowed.
• You must show your work.

• Put your name on the line above and staple this sheet to the pages containing your exam solutions.

Questions:

1. (Gaussian Quadrature: 10 points.) Let Pk(x), k = 0, 1, . . . be an orthgonal family of polynomials, and
let x0, x1, . . . , xk be the k + 1 distinct zeros of Pk+1(x).

(a) Prove mutual orthogonality of the Lagrange polynomials:

Lk,i(x) =

k∏
j=0,j 6=i

(x− xj)
(xi − xj)

, i = 0, . . . , k.

(b) Show positivity of the Gauss weights: Ai =
∫ b

a
Lk,i(x)w(x)dx.

(c) Determine a quadrature rule, exact for polynomials of degree n ≤ 2, of the form:∫ 1

−1
f(x)dx ≈ A0f(−1

2
) +A1f(0) +A2f(

1

2
).

2. (Best Approximation: 10 points) Consider the problem of best Lp-approximation of a (continuous)
function u(x) over the interval [0, 1] from a subspace V ⊂ Lp([0, 1]): Find u∗ ∈ V such that

‖u− u∗‖Lp = inf
v∈V
‖u− v‖Lp ,

where

‖u‖Lp =

(∫ 1

0

|u|p dx
)1/p

, 1 ≤ p <∞, ‖u‖L∞ = sup
x∈[0,1]

|u(x)|.

We wish to find the best Lp-approximation of the specific function u(x) = x4.

(a) Determine the best L2-approximation in the subspace of linear functions; i.e., V = span{1, x},
and justify the technique you use.

(b) Why (specifically) does this problem become much more difficult if we consider the case p 6= 2?

(c) Consider now replacing L2 with H1, which is the Hilbert space equipped with the following
inner-product:

(u, v)H1 =

∫ 1

0

(
du

dx

dv

dx
+ uv

)
dx,

which then induces the norm:
‖u‖H1 = (u, u)

1/2
H1 .

Determine the best H1-approximation in the subspace of linear functions; i.e., V = span{1, x},
and again justify the technique you use.
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3. (IVP in ODE: 10 points.) Consider the following initial value problem (IVP):

y′ = f(t, y), a ≤ t ≤ b, y(a) = α.

Let f(t, y) = t3y − 2, a = 0, b = 1, α = 1.

(a) Write down the definition of a well-posed problem.

(b) Rigorously prove that this problem is well-posed for this choice of f(t, y), a, b, and α.

4. (IVP on ODE: 10 points.) Consider the following class of one-step methods (θ ∈ [0, 1]) for the IVP in
Problem 3:

w0 = α

wi+1 = wi + h[θf(ti, wi) + (1− θ)f(ti+1, wi+1)]

(a) Determine truncation error for this class of methods.

(b) For θ = 1, is the method consistent and stable? What is the region of stability?

(c) For θ = 0, is the method consistent and stable? What is the region of stability?

Hint: We really only answer this for the model problem: y′ = λy, λ < 0, y(0) = α.

(c) What ranges of θ make the method of Problem 4 stable, unstable, and/or conditionally stable?

5. (IVP in ODE: 10 points.) Recall that one of several Runge-Kutta methods of order two for the IVP
in Problem 3 above was the Midpoint Method:

w0 = α

wi+1 = wi + hf

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
.

(a) Apply this RK-2 method to the specific IVP in Problem 3 above to produce a numerical approx-
imation to the solution. Use h = 0.5 in your application of the method, and just do the first step
to give you an approximation at t = 0.5.

(b) Write down the definition of local truncation error for a general one-step method such as this one.

(c) Show explicitly that the local truncation error of the RK-2 method in Problem 5 is O(h2).

Hint: Use a 2D Taylor expansion of a1f(t+α1, y+ β1) to match the leading terms in the order-2

Taylor method, where T (2)(t, y) = f(t, y) + h
2
∂f
∂t (t, y) + h

2
∂f
∂y (t, y) · f(t, y).

6. (Systems of ODE: 10 points.) Consider the following fourth-order IVP:

y′′′′ = 4y′′′ − y′′ − 2y′ + 3y, y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1.

(a) Transform the ODE into an equivalent 4-component first-order ODE.

(b) To produce a completely specified 4-component first-order IVP in ODE, specify the initial condi-
tions for each component of the system.

7. (Systems of ODE: 10 points.) Prove that the IVP in Problem 6 is well-posed.

Hint: Show that the vector-valued function F that you had to construct to build the first-order system
is Lipschitz with respect to the Euclidean 2-norm of a vector.
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8. (BVP in ODE: 10 points.) Consider the following two-point boundary-value problem (BVP),

−(aux)x + b = f, c ≤ x ≤ d, u(c) = α, u(d) = β,

where a, b, f : [c, d]→ R, with f ∈ L2(c, d), and

0 ≤ b(x) ≤ b1 <∞, 0 < a0 ≤ a(x) ≤ a1 <∞, ∀x ∈ [c, d].

(a) Assuming the simple case a(x) = 1, b(x) = 0, c = 0, d = 1, use the finite difference mesh

c = x0 < x1 < · · · < xN < xN+1 = d, xi = xi−1 + h = c+ ih, h =
(d− c)
N + 1

,

to show that the centered-difference finite difference approximation wi ≈ u(xi), with O(h2) accu-
racy, satisfies the following matrix equation:

AU = F,

where

A =


2 −1 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 −1 2

 , U =


w1

w2

...
wN

 , F =


h2f(x1)− α
h2f(x2)
...
h2f(xN )− β

 .

In other words, you must derive the matrix system above by applying the finite different method
to the BVP. To receive full credit, you must show all steps, including the step which incorporates
the boundary conditions into the matrix system. (You do not have to solve this linear system.)

(b) Repeat part (a), but allow for variable mesh spacing:

c = x0 < x1 < · · · < xN < xN+1 = d, xi = xi−1 + hi, hi > 0,

showing how the entries of A and F now must in corporate the spacings hi. (Again, you do not
have to solve this linear system.)

9. (BVP in ODE: 10 points.) Consider the BVP in ODE from Problem 8.

(a) Showing each step, derive the following weak formulation the BVP:

Find u ∈ H1
0 (c, d) such that A(u, v) = F (v), ∀v ∈ H1

0 (c, d),

where

A(u, v) =

∫ d

c

auxvx + buv dx, F (v) =

∫ d

c

fvdx−A(ū, v), ū(c) = α, ū(d) = β.

(b) Prove that the weak formulation of the problem in part (a) is well-posed.

(c) Use the same uniform partitioning of the interval [c, d] from from part (a) of Problem 8 to build a
piecewise linear basis for a subspace S ⊂ H1

0 (c, d). Now use this basis with Galerkin’s method and
the weak formulation from part (a) of this problem to produce a linear system for the coefficients
of a Galerkin approximation in this basis. (As in Problem 8, you do not have to solve this linear
system.)

10. (BVP in ODE: 10 points.) State and prove “Cea’s Lemma” to give an a priori error estimate for your
Galerkin approximation in Problem 9.
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* (Best Approximation: CHALLENGING/EXTRA CREDIT)

In this problem, we will prove existence and uniqueness of best approximation, in the case of a Hilbert
space H and a closed convex subset M ⊂ H. Prove the following:

Theorem. Let M be a closed convex subset of a Hilbert space H. Then for every x ∈ H, ∃! y ∈ M
such that

‖x− y‖H = inf
w∈M

‖x− w‖H ≡ dist(x,M) ≡ d.

Part 1 of Proof. Given an argument justifying the assumption that there exists a sequence {yn},
yn ∈M , such that

lim
n 7→∞

‖x− yn‖H = inf
w∈M

‖x− w‖H .

Hint for Part 1: Use the definition of the inf.

Part 2 of Proof. Argue that:

‖x− 1

2
(ym + yn)‖H ≥ d = inf

w∈M
‖x− w‖H , ∀m,n ∈ N.

Hint for Part 2: Use convexity of M .

Part 3 of Proof. Show that:

‖ym − yn‖2H = 2‖x− ym‖2H + 2‖x− yn‖2H − 4‖x− 1

2
(ym + yn)‖2H .

Hint for Part 3: Use the Parallelogram Law (with the right choice of arguments). This is where having
a Hilbert space leads to an easier proof than having only a Banach space.

Part 4 of Proof. Prove that the minimizing sequence {yn} is in fact Cauchy, that it converges to a
y ∈M , and that:

‖x− y‖H = d.

Note that this y ∈ M is the best approximation that we were looking for, but we don’t know if it is
unique.

Hint for Part 4: Use Parts 1, 2, 3, and a property of the norm to show the Cauchy property for {yn}.
Then use what you know about H and M to establish the existence of the limit point y ∈ M , and
finally, use the continuity of the norm (proof given in class) to establish the inequality above.

Part 5 of Proof. Prove that this best approximation y ∈M is in fact unique.

Hint for Part 5: Use the standard technique of assuming there are two best approximations y and ȳ,
and then show they must be the same. The key trick in showing this is to consider 1

2 (y+ ȳ) ∈M , and
then use the Parallelogram Law again, along with some properties of the norm.

* (Piecewise Polynomial Approximation: CHALLENGING/EXTRA CREDIT)

Let u(x) be analytic on [a, b], and consider a subdivision of the interval as a = x0 < x1 < . . . <
xn−1 < xn = b using n + 1 nodal points. We will not assume uniformity, so that the points may
be placed as desired in the interval (but they must remain distinct). Define h = maxihi, where
hi = xi − xi−1, i = 1, . . . , n+ 1.

(a) Precisely define the n+ 1 continuous piecewise linear Lagrange functions φi(x) as follows. There
are n+ 1 “hat” functions satisfying the Lagrange property at the n+ 1 nodal points:

φi(xj) = δij , i = 0, . . . , n.

After you have defined (given explicit formulae) the hat functions, sketch a picture of a few
neighboring functions.

(b) Let uI denote the continuous piecewise linear polynomial interpolant of u(x) on [a, b], defined using
the basis above. Prove the following fundamental L2-error estimate for the continous piecewise
linear interpolant:

‖u− uI‖L2 ≤ Ch2‖u‖H2 , where ‖u‖Hk =

(∫ b

a

k∑
i=0

∣∣∣∣diudxi
∣∣∣∣2 dx

)1/2

.

(c) Prove the following fundamental H1-error estimate:

‖u− uI‖H1 ≤ Ch‖u‖H2 .

(d) Prove the following L∞ error estimate:

‖u− uI‖L∞ ≤ Ch2‖u‖H2 .


