
Math 270B: Numerical Approximation and Nonlinear Equations

Instructor: Michael Holst

Winter Quarter 2017

Homework Assignment #2
Comments : This homework covers the material in Chapter 7 of the Quarteroni book. If you would like some

feedback on the problems before the final, please ask to the TA to work the problems with you during his office
hours, and/or ask him to look at your solutions well-before the final.

This homework covers the main material in 270B related to nonlinear equations. Our goal is to study three
related problems in nonlinear equations: (1) solving systems of nonlinear equations, (2) unconstrained optimization
involving nonlinear functionals, and (3) equality-constraint optimization involving nonlinear functionals and equality
constraints. We will use many of the basic ideas about vector spaces and linear operators that we studied in the first
homework, together with our background from 270A.

Exercise 2.1. Let F (x) denote a twice-differentiable function of one variable. Assuming only the mean-value theo-

rem of integral calculus: F (b) = F (a) +
∫ b

a
F ′(t) dt, derive the following variants of the Taylor-series expansion with

integral remainder:

(a) F (x+ h) = F (x) +
∫ x+h

x
F ′(t) dt.

(b) F (x+ h) = F (x) + h
∫ 1

0
F ′(x+ ξh) dξ.

(c) F (x+ h) = F (x) + hF ′(x) + h
∫ 1

0
[F ′(x+ ξh)− F ′(x)] dξ.

(d) F (x + h) = F (x) + hF ′(x) + h2
∫ 1

0
F ′′(x + ξh)(1 − ξ) dξ. Hint: Try expanding F ′(x + h) using a formula like

part (b) and then differentiate with respect to h using the chain rule.

Exercise 2.2. Let F : Rn → Rn be a differentiable function. Using the multi-dimensional verson of the fundamental
theorem of calculus, show (i.e. derive) that the following Taylor expansion holds with the given integral remainder:

F (x+ h) = F (x) + F ′(x)h+

∫ 1

0

{F ′(x+ ξh)− F ′(x)}h dξ.

Note that this is the multi-dimensional analogue of what you showed in Exercise 3(c). While this particular form of
the remainder will be the most useful to us in the case of Rn, derive the multi-dimensional analogues of the other
three forms of the remainder you derived in Exercise 2.1.

Exercise 2.3. Find the gradient vector F (x) = ∇f(x) of the following functions, and then find the Jacobian matrix
of F (x). (The Jacobian matrix of F (x) = ∇f(x) is the same as the Hessian matrix ∇2f(x) of f(x)).

(a) f(x) = 2
(
x2 − x21

)2
+
(
x1 − 3

)2
.

(b) f(x) = (2x1 + x2)2 + 4(x2 − x3)4.

Exercise 2.4. Find f ′(x), ∇f(x) and ∇2f(x) for the following functions of n variables.

(a) f(x) = 1
2x

THx, where H is an n× n constant matrix.

(b) f(x) = bTAx− 1
2x

TATAx, where A is an m× n constant matrix and b is a constant m-vector.

(c) f(x) = ‖x‖ =
(∑n

i=1 x
2
i

)
1/2.

Hint: As in the examples I did in class, some of these derivatives are easier to compute using the Gateaux or
variational derivative calculation, rather than keeping track of all of the indices when computing partial derivatives
explicitly.
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Exercise 2.5. Create a Matlab m-file of the form:

function [F,J] = D(x)
F = [ a ; b ];
J = [ c d ; e f ];

where the expressions for a, b, c, d, e, f are chosen so that the function returns the 2× 1-vector-valued function F (x)
and the 2×2 Jacobian matrix J(x) for the function F (x) from part (a) of Problem 2.3. Use this m-file to compute F
and J at x = (1, 0)T ; and x = (1, 1)T . Capture the output from the computation and turn it in with the homework.

Exercise 2.6. Give (precisely) the following definitions:

1. A direction of decrease for a function f(x) : Rn 7→ R.

2. A descent direction for a function f(x) : Rn 7→ R.

3. Lipschitz continuity of a function F (x) : Rn 7→ Rm.

Exercise 2.7. Prove that a descent direction is always a direction of decrease. Hint: I did this in class; it was based
on Taylor expansion.

Exercise 2.8. Calculate the following derivatives (show your work):

1. The derivative f ′(x), the gradient ∇f(x), and the Hessian matrix ∇2f(x) of the following real-valued function
of three real variables:

f(x) = x31 − 2x22 + x3

2. The jacobian matrix F ′(x) of the following function which maps Rn into Rm:

F (x) = Ax− b, where: A ∈ Rm×n, x ∈ Rn, b ∈ Rm.

Exercise 2.9. Using a one-dimensional Taylor series, derive Newton’s method for solving f(x) = 0, where f : R 7→ R.
Draw a detailed picture for the case of f(x) = x2 − 9, illustrating how the iterates behave, beginning with x0 = 10.
(The picture doesn’t have to be pretty, but it must be logically correct and labeled correctly.) Hint: I did this in
class several times.

Exercise 2.10. Let F (x) : D ⊂ Rn 7→ Rn, and assume that the jacobian F ′(x) : D ⊂ Rn 7→ Rn×n is Lipschitz
continuous with Lipschitz constant γ. Show that the error in the linear model

Lk(x) = F (xk) + F ′(xk)(x− xk)

of F (x) can be bounded as follows:

‖F (x)− Lk(x)‖ ≤ 1

2
γ‖x− xk‖2.

Hint: I did this in class; just use the (multi-dimensional) Taylor formula you derived in Problems 2.1 and 2.2.

Exercise 2.11. Write a Matlab m-file implementing Newton’s method, using the Matlab routines you wrote for
problem 7. Apply Newton’s method to part (a) of Problem 2.3 and collect the iteration information, using first the
initial guess of x = (1, 0)T , and then using the initial guess of x = (1, 1)T .

Exercise 2.12. State and prove a basic convergence theorem for Newton’s method for solving F (x) = 0, where
F :Rn → Rn. (See the notes from class regarding the minimal assumptions you will need to use.) First show
that Newton’s method converges superlinearly without assuming that F ′(x) is Lipschitz, and then use the result in
Exercise 12 to show that Newton’s method converges quadratically when F ′(x) is Lipschitz. Hint: This is the main
Newton’s method theorem I stated and proved in class. If you know this theorem and how the proof works, then you
can easily reconstruct the same argument for convergence of Newton’s method for unconstrained optimization.

Exercise 2.13. Given each of the following cases of a gradient g(x̄) and Hessian H(x̄) defined at a point x̄, discuss
the optimality of x̄. I.e., check the first and second order conditions for optimality. (Do not use Matlab, atleast for
the 2x2 cases; you may need to know how to compute eigenvalues by hand for 2x2 cases in the final exam.)

(i) g(x̄) =

(
1

0

)
, H(x̄) =

(
3 1

1 1

)
. (ii) g(x̄) =

(
0

0

)
, H(x̄) =

(
3 2

2 0

)
.

(iii) g(x̄) =

(
0

0

)
, H(x̄) =

(
4 −1

−1 4

)
. (iv) g(x̄) =

(
0

0

)
, H(x̄) =

(
−2 0

0 −3

)
.

(v) g(x̄) =

 0

0

0

 , H(x̄) =

 3 0 0

0 1 1

0 1 1

 .
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Exercise 2.14. Write a Matlab function with specification [f,g,H] = ex33(x) that computes f(x), g(x) and
H(x) for the function

f(x) = ex3x21 + 2x22 + x23 cosx1

at any point x. Use your function to compute f(x), g(x), and H(x) at x = (0, 0, 0)T and x = (−1, 2, −2)T . In
each case, compute the spectral decomposition of the Hessian matrix and indicate if the necessary and sufficient
conditions for unconstrained local minimization are satisfied.

Exercise 2.15. Let q(x), x ∈ Rn, be the quadratic function q(x) = cTx+ 1
2x

THx, where H is symmetric.

(a) Write down an expression for ∇q(x) in terms of c, H and x.

(b) Given an arbitrary point x0 and a direction p, write down the Taylor-series expansion of q(x0 + p).

(c) For this part, consider q(x) such that H is positive definite. If p is a direction such that ∇q(x0)T p < 0, show
that there exists a positive minimizer α∗ of q(x0 + αp). Derive a closed-form expression for α∗.

Exercise 2.16. Write a Matlab m-file steepest.m that implements the method of steepest descent with a back-
tracking line search. Your function must include the following features.

• Use µ = 1
4 to define the sufficient-decrease criterion in the backtracking algorithm.

• The minimization must be terminated when either ‖g(xk)‖ ≤ 10−5 or 75 iterations are performed. Any Matlab
“while” loop must include a test that will terminate the loop if it is executed more than 20 times.

Use steepest.m to find a minimizer of the function

f(x) = ex3x21 + 2x22 + x23 cosx1,

starting at the point (−1, 1, 1)T (first write a Matlab function as in Exercise 2.3). Next, minimize the function
(again, first write a Matlab function as in Exercise 2.3)

f(x) = x1 + x2 + x3 + x4 + x21 + x22 + 10−1x23 + 10−3x24,

starting at the point (−1, 0, 1, 1)T . Compare the two runs. Can you explain why steepest descent behaves like this?

Exercise 2.17. Modify the Matlab m-file steepest.m from Exercise 2.16 to produce a Matlab m-file newton.m
that implements the Newton’s method for optimization with a backtracking line search. Repeat the two examples
in Exercise 2.5 using the newton.m m-file.

Exercise 2.18. Consider the nonlinearly constrained problem

minimize
x∈R2

3x2 + x21 + x22

subject to x21 + (x2 + 1)2 − 1 = 0.
(2.1)

(a) Show that x(α) = (sinα, cosα − 1)T is a feasible path for the nonlinear constraint x21 + (x2 + 1)2 − 1 = 0 of
problem (2.1). Compute the tangent to the feasible path at x̄ = (0, 0)T .

(b) If f(x) denotes the objective function of problem (2.1), find an expression for f (x(α)) and compute f (x(0)).

(c) Define the Lagrangian function L(x, λ) and constraint Jacobian J(x) for problem (2.1). Derive ∇L(x, λ), the
gradient of the Lagrangian, and ∇2

xxL(x, λ), the Hessian of the Lagrangian with respect to x.

(d) Determine whether or not the point x̄ = (0, 0)T is a constrained minimizer of problem (2.1).

Exercise 2.19. Consider the problem

minimize
x∈R2

x21 + 2x22

subject to x1 + x2 − 1 = 0.

(a) Find a point satisfying the KKT conditions. Verify that it is indeed an optimal point.

(b) Repeat Part (a) with the objective replaced by x31 + x32.

Exercise 2.20. Write a Matlab function that will compute c(x) and J(x) for the constraint function

c(x) = x1 + x2 − x1x2 −
3

2
.

Use your function to find c(x) and J(x) at x = (.1, −.5)T , x = (.5, −1)T and x = (1.18249728, −1.73976692)T .

At each of these points, discuss the optimality of the constrained minimization problem:

minimize
x∈R2

ex1(4x21 + 2x22 + 4x1x2 + 2x2 + 1)

subject to x1 + x2 − x1x2 − 3
2 = 0.


