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EXERCISES

10.5.1 Use Taylor expansion (Theorem 10.1.2) to give a proof of Theorem 10.5.3.

10.5.2 Give an alternative to Theorem 10.5.3 when F : X ! Y has the additional
structure

F (u) = Au + B(u),

where A has the maximum principle property and B is monotone increasing
(see Section 10.1).

10.5.3 Use the general residual indicator given by Theorem 10.5.4 to derive a residual
indicator for

�r · (✏ru) = f in ⌦, u = 0 on @⌦, ✏ > 0.

10.5.4 Use the general residual indicator given by Theorem 10.5.4 to derive a residual
indicator for

�r · (✏ru) + bu = f in ⌦, ✏ru · n = g on @⌦, ✏, b > 0.

10.6 ITERATIVE METHODS FOR DISCRETIZED LINEAR EQUATIONS

In this section we give a survey of classical and modern techniques for iterative so-
lution of linear systems involving matrices arising from any of the discretization
techniques considered earlier in this chapter. Our focus will be primarily on fast (op-
timal or nearly optimal complexity) linear solvers based on multilevel and domain
decomposition methods. Our goal here is to develop a basic understanding of the
structure of modern optimal and near-optimal complexity methods based on space
and/or frequency decompositions, including domain decomposition and multilevel
methods. To this end, we first review some basic concepts and tools involving self-
adjoint linear operators on a finite-dimensional Hilbert space. The results required
for the analysis of linear methods, as well as conjugate gradient methods, are summa-
rized. We then develop carefully the theory of classical linear methods for operator
equations. The conjugate gradient method is then considered, and the relationship
between the convergence rate of linear methods as preconditioners and the conver-
gence rate of the resulting preconditioned conjugate gradient method is explored in
some detail. We then consider linear two-level and multilevel methods as recursive
algorithms, and examine various forms of the error propagator that have been key
tools for unlocking a complete theoretical understanding of these methods over the
last 20 years.

Since our focus has now turned to linear (and in Section 10.7, nonlinear) algebraic
systems in finite-dimensional spaces, a brief remark about notation is in order. When
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we encountered a sequence in a general Banach space X earlier in the chapter, we
used a fairly standard notation to denote the sequence, {uj}1j=1

, with j the sequence
index. Now that we will be working entirely with sequences in finite-dimensional
spaces, it is standard to use a subscript to refer to a particular component of a vector
in Rn. Moreover, it will be helpful to use a subscript on a matrix or vector to refer
to a particular discrete space when dealing with multiple spaces. Therefore, rather
than keep track of three distinct subscripts when we encounter sequences of vectors
in multiple discrete spaces, we will place the sequence index as a superscript, for
example, {uj}1j=1

. There will be no danger of confusion with the exponentiation
operator, as this convention is only used on vectors in a finite-dimensional vector
space analogous to Rn. When encountering a sequence of real numbers, such as
the coefficients in an expansion of a finite-dimensional basis {uj}n

j=1

, we will con-
tinue to denote the sequence using subscripts for the index, such as {cj}n

j=1

. The
expression for the expansion would then be u =

Pn
j=1

cjuj .

Linear Iterative Methods

When finite element, wavelet, spectral, finite volume, or other standard methods
are used to discretize the second-order linear elliptic partial differential equation
Au = f , a set of linear algebraic equations results, which we denote as

Akuk = fk. (10.6.1)

The subscript k denotes the discretization level, with larger k corresponding to a
more refined mesh, and with an associated mesh parameter hk representing the di-
ameter of the largest element or volume in the mesh ⌦k. For a self-adjoint strongly
elliptic partial differential operator, the matrix Ak produced by finite element and
other discretizations is SPD. In this section we are primarily interested in linear iter-
ations for solving the matrix equation (10.6.1) which have the general form

ui+1

k = (I �BkAk)ui
k + Bkfk, (10.6.2)

where Bk is an SPD matrix approximating A�1

k in some sense. The classical sta-
tionary linear methods fit into this framework, as well as domain decomposition
methods and multigrid methods. We will also make use of nonlinear iterations such
as the conjugate gradient method, but primarily as a way to improve the performance
of an underlying linear iteration.

Linear Operators, Spectral Bounds, and Condition Numbers. We briefly
compile some material on self-adjoint linear operators in finite-dimensional spaces
which will be used throughout the section. (See Chapters 4 and 5 for a more lengthy
and more general exposition.) Let H, H

1

, and H
2

be real finite-dimensional Hilbert
spaces equipped with the inner product (·, ·) inducing the norm k · k = (·, ·)1/2.
Since we are concerned only with finite-dimensional spaces, a Hilbert space H can
be thought of as the Euclidean space Rn; however, the preliminary material below
and the algorithms we develop are phrased in terms of the unspecified space H, so
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that the algorithms may be interpreted directly in terms of finite element spaces as
well.

If the operator A : H
1

! H
2

is linear, we denote this as A 2 L(H
1

,H
2

). The
(Hilbert) adjoint of a linear operator A 2 L(H,H) with respect to (·, ·) is the unique
operator AT satisfying (Au, v) = (u, AT v) , 8u, v 2 H. An operator A is called
self-adjoint or symmetric if A = AT ; a self-adjoint operator A is called positive
definite or simply positive if (Au, u) > 0, 8u 2 H, u 6= 0.

If A is self-adjoint positive definite (SPD) with respect to (·, ·), then the bilinear
form A(u, v) = (Au, v) defines another inner product on H, which we sometimes
denote as (·, ·)A = A(·, ·) to emphasize the fact that it is an inner product rather than
simply a bilinear form. The A-inner product then induces the A-norm in the usual
way: k ·kA = (·, ·)1/2

A . For each inner product the Cauchy-Schwarz inequality holds:

|(u, v)| 6 (u, u)

1/2

(v, v)

1/2, |(u, v)A| 6 (u, u)

1/2

A (v, v)

1/2

A , 8u, v 2 H.

The adjoint of an operator M with respect to (·, ·)A, the A-adjoint, is the unique
operator M⇤ satisfying (Mu, v)A = (u, M⇤v)A, 8u, v 2 H. From this definition it
follows that

M⇤
= A�1MT A. (10.6.3)

An operator M is called A-self-adjoint if M = M⇤, and it is called A-positive if
(Mu, u)A > 0, 8u 2 H, u 6= 0.

If N 2 L(H
1

,H
2

), then the adjoint satisfies NT 2 L(H
2

,H
1

) and relates the
inner products in H

1

and H
2

as follows:

(Nu, v)H
2

= (u, NT v)H
1

, 8u 2 H
1

, 8v 2 H
2

.

Since it is usually clear from the arguments which inner product is involved, we shall
drop the subscripts on inner products (and norms) throughout the section, except
when necessary to avoid confusion.

For the operator M we denote the eigenvalues satisfying Mui = �iui for eigen-
functions ui 6= 0 as �i(M). The spectral theory for self-adjoint linear operators
states that the eigenvalues of the self-adjoint operator M are real and lie in the closed
interval [�

min

(M),�
max

(M)] defined by the Rayleigh quotients:

�
min

(M) = min

u 6=0

(Mu, u)

(u, u)

, �
max

(M) = max

u 6=0

(Mu, u)

(u, u)

.

Similarly, if an operator M is A-self-adjoint, then the eigenvalues are real and lie in
the interval defined by the Rayleigh quotients generated by the A-inner product:

�
min

(M) = min

u 6=0

(Mu, u)A

(u, u)A
, �

max

(M) = max

u 6=0

(Mu, u)A

(u, u)A
.

We denote the set of eigenvalues as the spectrum �(M) and the largest of these in
absolute value as the spectral radius as ⇢(M) = max(|�

min

(M)|, |�
max

(M)|). For
SPD (or A-SPD) operators M , the eigenvalues of M are real and positive, and the
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powers Ms for real s are well-defined through the spectral decomposition; see, for
example, [89]. Finally, recall that a matrix representing the operator M with respect
to any basis for H has the same eigenvalues as the operator M .

Linear operators on finite-dimensional spaces are bounded, and these bounds de-
fine the operator norms induced by the norms k · k and k · kA:

kMk = max

u 6=0

kMuk
kuk , kMkA = max

u 6=0

kMukA

kukA
.

A well-known property is that if M is self-adjoint, then ⇢(M) = kMk. This property
can also be shown to hold for A-self-adjoint operators. The following lemma can be
found in [7] (as Lemma 4.1), although the proof there is for A-normal matrices rather
than A-self-adjoint operators.

Lemma 10.6.1. If A is SPD and M is A-self-adjoint, then kMkA = ⇢(M).

Proof. We simply note that

kMkA = max

u 6=0

kMukA

kukA
= max

u 6=0

(Mu,Mu)

1/2

A

(u, u)

1/2

A

= max

u 6=0

(M⇤Mu, u)

1/2

A

(u, u)

1/2

A

= �1/2

max

(M⇤M),

since M⇤M is always A-self-adjoint. Since by assumption M itself is A-self-adjoint,
we have that M⇤

= M , which yields kMkA = �1/2

max

(M⇤M) = �1/2

max

(M2

) =

(maxi[�
2

i (M)])

1/2

= max[|�
min

(M)|, |�
max

(M)|] = ⇢(M).

Finally, we define the A-condition number of an invertible operator M by extend-
ing the standard notion to the A-inner product:

A(M) = kMkAkM�1kA.

In Lemma 10.6.9 we will show that if M is an A-self-adjoint operator, then in fact
the following simpler expression holds for the generalized condition number:

A(M) =

�
max

(M)

�
min

(M)

.

The Basic Linear Method and Its Error Propagator. Assume that we are
faced with the operator equation Au = f , where A 2 L(H,H) is SPD, and we desire
the unique solution u. Given a preconditioner (an approximate inverse operator)
B ⇡ A�1, consider the equivalent preconditioned system BAu = Bf . The operator
B is chosen so that the simple linear iteration

u1

= u0 �BAu0

+ Bf = (I �BA)u0

+ Bf,

which produces an improved approximation u1 to the true solution u given an initial
approximation u0, has some desired convergence properties. This yields the follow-
ing basic linear iterative method, which we study in the remainder of this section.
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Algorithm 10.6.1 (Basic Linear Method for Solving Au = f ).

Form ui+1 from ui using the affine fixed point iteration:

ui+1 = ui + B(f �Aui) = (I �BA)ui + Bf.

Subtracting the iteration equation from the identity u = u � BAu + Bf yields
the equation for the error ei

= u� ui at each iteration:

ei+1

= (I �BA)ei
= (I �BA)

2ei�1

= · · · = (I �BA)

i+1e0. (10.6.4)

The convergence of Algorithm 10.6.1 is determined completely by the spectral radius
of the error propagation operator E = I �BA.

Theorem 10.6.1. The condition ⇢(I � BA) < 1 is necessary and sufficient for
convergence of Algorithm 10.6.1 for an arbitrary initial approximation u0 2 H.

Proof. See, for example, [115] or [169].

Since |�|kuk = k�uk = kMuk 6 kMk kuk for any norm k · k, it follows that
⇢(M) 6 kMk for all norms k · k. Therefore, kI � BAk < 1 and kI � BAkA < 1

are both sufficient conditions for convergence of Algorithm 10.6.1. In fact, it is the
norm of the error propagation operator which will bound the reduction of the error
at each iteration, which follows from (10.6.4):

kei+1kA 6 kI �BAkAkeikA 6 kI �BAki+1

A ke0kA. (10.6.5)

The spectral radius ⇢(E) of the error propagator E is called the convergence factor
for Algorithm 10.6.1, whereas the norm of the error propagator kEk is referred to as
the contraction number (with respect to the particular choice of norm k · k).

We now establish some simple properties of the error propagation operator of an
abstract linear method. We note that several of these properties are commonly used,
especially in the multigrid literature, although the short proofs of the results seem
difficult to locate. The particular framework we construct here for analyzing linear
methods is based on the work of Xu [178] and the papers referenced therein, on the
text by Varga [169], and on [100].

An alternative sufficient condition for convergence of the basic linear method
is given in the following lemma, which is similar to Stein’s Theorem (see [139]
or [184]).

Lemma 10.6.2. If E⇤ is the A-adjoint of E, and if the operator I � E⇤E is A-
positive, then ⇢(E) 6 kEkA < 1.

Proof. By hypothesis, (A(I � E⇤E)u, u) > 0 8u 2 H. This then implies that
(AE⇤Eu, u) < (Au, u) 8u 2 H, or (AEu, Eu) < (Au, u) 8u 2 H. But this last
inequality implies that

⇢(E) 6 kEkA =

 

max

u 6=0

(AEu, Eu)

(Au, u)

!

1/2

< 1.
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We now state three very simple lemmas that we use repeatedly in the following
sections.

Lemma 10.6.3. If A is SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Simply note that (ABAx, y) = (BAx, Ay) = (Ax,BT Ay) 8x, y 2 H. The
lemma follows since BA = BT A if and only if B = BT .

Lemma 10.6.4. If A is SPD, then I � BA is A-self-adjoint if and only if B is self-
adjoint.

Proof. Begin by noting that (A(I�BA)x, y) = (Ax, y)� (ABAx, y) = (Ax, y)�
(Ax, (BA)

⇤y) = (Ax, (I � (BA)

⇤
)y), 8x, y 2 H. Therefore, E⇤ = I � (BA)

⇤
=

I � BA = E if and only if BA = (BA)

⇤. But by Lemma 10.6.3, this holds if and
only if B is self-adjoint, so the result follows.

Lemma 10.6.5. If A and B are SPD, then BA is A-SPD.

Proof. By Lemma 10.6.3, BA is A-self-adjoint. Since B is SPD, and since Au 6= 0

for u 6= 0, we have (ABAu, u) = (BAu, Au) > 0, 8u 6= 0. Therefore, BA is also
A-positive, and the result follows.

We noted above that the property ⇢(M) = kMk holds in the case that M is self-
adjoint with respect to the inner product inducing the norm k · k. If B is self-adjoint,
the following theorem states that the resulting error propagator E = I�BA has this
property with respect to the A-norm.

Theorem 10.6.2. If A is SPD and B is self-adjoint, then kI�BAkA = ⇢(I�BA).

Proof. By Lemma 10.6.4, I�BA is A-self-adjoint, and by Lemma 10.6.1, the result
follows.

REMARK. Theorem 10.6.2 will be exploited later since ⇢(E) is usually much easier
to compute numerically than kEkA, and since it is the energy norm kEkA of the error
propagator E which is typically bounded in various convergence theories for iterative
processes.

The following simple lemma, similar to Lemma 10.6.2, will be very useful later.

Lemma 10.6.6. If A and B are SPD, and if the operator E = I � BA is A-
nonnegative, then ⇢(E) = kEkA < 1.

Proof. By Lemma 10.6.4, E is A-self-adjoint. By assumption, E is A-nonnegative,
so from the discussion earlier in the section we see that E must have real nonnegative
eigenvalues. By hypothesis, (A(I � BA)u, u) > 0 8u 2 H, which implies that
(ABAu, u) 6 (Au, u) 8u 2 H. By Lemma 10.6.5, BA is A-SPD, and we have that

0 < (ABAu, u) 6 (Au, u) 8u 2 H, u 6= 0,
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which implies that 0 < �i(BA) 6 1 8�i 2 �(BA). Thus, since we also have that
�i(E) = �i(I �BA) = 1� �i(BA) 8i, we have

⇢(E) = max

i
�i(E) = 1�min

i
�i(BA) < 1.

Finally, by Theorem 10.6.2, we have kEkA = ⇢(E) < 1.

The following simple lemma relates the contraction number bound to two simple
inequalities; it is a standard result which follows directly from the spectral theory of
self-adjoint linear operators.

Lemma 10.6.7. If A is SPD and B is self-adjoint, and E = I �BA is such that

�C
1

(Au, u) 6 (AEu, u) 6 C
2

(Au, u), 8u 2 H,

for C
1

> 0 and C
2

> 0, then ⇢(E) = kEkA 6 max{C
1

, C
2

}.

Proof. By Lemma 10.6.4, E = I � BA is A-self-adjoint, and by the spectral the-
ory outlined at the beginning of the earlier section on linear iterative methods, the
inequality above simply bounds the most negative and most positive eigenvalues of
E with �C

1

and C
2

, respectively. The result then follows by Theorem 10.6.2.

Corollary 10.6.1. If A and B are SPD, then Lemma 10.6.7 holds for some C
2

< 1.

Proof. By Lemma 10.6.5, BA is A-SPD, which implies that the eigenvalues of BA
are real and positive by the discussion earlier in the section. By Lemma 10.6.4,
E = I � BA is A-self-adjoint, and therefore has real eigenvalues. The eigenvalues
of E and BA are related by �i(E) = �i(I � BA) = 1 � �i(BA) 8i, and since
�i(BA) > 0 8i, we must have that �i(E) < 1 8i. Since C

2

in Lemma 10.6.7
bounds the largest positive eigenvalue of E, we have that C

2

< 1.

Convergence Properties of the Linear Method. The generalized condition
number A is employed in the following lemma, which states that there is an optimal
relaxation parameter for a basic linear method, and gives the best possible conver-
gence estimate for the method employing the optimal parameter. This lemma has
appeared many times in the literature in one form or another; see [141].

Lemma 10.6.8. If A and B are SPD, then

⇢(I � ↵BA) = kI � ↵BAkA < 1

if and only if ↵ 2 (0, 2/⇢(BA)). Convergence is optimal (the norm is minimized)
when ↵ = 2/[�

min

(BA) + �
max

(BA)], giving

⇢(I � ↵BA) = kI � ↵BAkA = 1� 2

1 + A(BA)

< 1.
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Proof. Note that ⇢(I � ↵BA) = max� |1 � ↵�(BA)|, so that ⇢(I � ↵BA) < 1

if and only if ↵ 2 (0, 2/⇢(BA)), proving the first part of the lemma. We now take
↵ = 2/[�

min

(BA) + �
max

(BA)], which gives

⇢(I � ↵BA) = max

�
|1� ↵�(BA)| = max

�
(1� ↵�(BA))

= max

�

✓

1� 2�(BA)

�
min

(BA) + �
max

(BA)

◆

= 1� 2�
min

(BA)

�
min

(BA) + �
max

(BA)

= 1� 2

1 +

�
max

(BA)

�
min

(BA)

.

Since BA is A-self-adjoint, by Lemma 10.6.9 we have that the condition number
is A(BA) = �

max

(BA)/�
min

(BA), so that if ↵ = 2/[�
min

(BA) + �
max

(BA)],
then

⇢(I � ↵BA) = kI � ↵BAkA = 1� 2

1 + A(BA)

.

To show that this is optimal, we must solve the mini-max problem: min↵[max� |1�
↵�|], where ↵ 2 (0, 2/�

max

). Note that each ↵ defines a polynomial of degree zero
in �, namely Po(�) = ↵. Therefore, we can rephrase the problem as

P opt

1

(�) = min

P
o



max

�
|1� �Po(�)|

�

.

It is well-known that the scaled and shifted Chebyshev polynomials give the solution
to this “mini-max” problem (see Exercise 10.5.2):

P opt

1

(�) = 1� �P opt

o =

T
1

✓

�
max

+ �
min

� 2�

�
max

� �
min

◆

T
1

✓

�
max

+ �
min

�
max

� �
min

◆ .

Since T
1

(x) = x, we have simply that

P opt

1

(�) =

�
max

+ �
min

� 2�

�
max

� �
min

�
max

+ �
min

�
max

� �
min

= 1� �

✓

2

�
min

+ �
max

◆

,

showing that, in fact, ↵
opt

= 2/[�
min

+ �
max

].

Note that if we wish to reduce the initial error ke0kA by the factor ✏, then equa-
tion (10.6.5) implies that this will be guaranteed if

kEki+1

A 6 ✏.
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Taking natural logarithms of both sides and solving for i (where we assume that
✏ < 1), we see that the number of iterations required to reach the desired tolerance,
as a function of the contraction number, is given by

i > | ln ✏|
| ln kEkA|

. (10.6.6)

If the bound on the norm is of the form in Lemma 10.6.8, then to achieve a tolerance
of ✏ after i iterations will require that

i > | ln ✏|
�

�

�

�

ln

✓

1� 2

1 + A(BA)

◆

�

�

�

�

=

| ln ✏|
�

�

�

�

ln

✓

A(BA)� 1

A(BA) + 1

◆

�

�

�

�

. (10.6.7)

Using the approximation

ln

✓

a� 1

a + 1

◆

= ln

✓

1 + (�1/a)

1� (�1/a)

◆

= 2

"

✓

�1

a

◆

+

1

3

✓

�1

a

◆

3

+

1

5

✓

�1

a

◆

5

+ · · ·
#

<
�2

a
, (10.6.8)

we have | ln[(A(BA) � 1)/(A(BA) + 1)]| > 2/A(BA). Thus, we can guaran-
tee (10.6.7) holds by enforcing

i > 1

2

A(BA)| ln ✏|+ 1.

Therefore, the number of iterations required to reach an error on the order of the
tolerance ✏ is then

i = O (A(BA)| ln ✏|) .

If a single iteration of the method costs O(N) arithmetic operations, then the overall
complexity to solve the problem isO(| ln kEkA|�1N | ln ✏|), orO(A(BA)N | ln ✏|).
If the quantity kEkA can be bounded by a constant which is less than 1, where
the constant is independent of N , or alternatively, if A(BA) can be bounded by a
constant which is independent of N , then the complexity is near optimalO(N | ln ✏|).

Note that if E is A-self-adjoint, then we can replace kEkA by ⇢(E) in the dis-
cussion above. Even when this is not the case, ⇢(E) is often used above in place
of kEkA to obtain an estimate, and the quantity R1(E) = � ln ⇢(E) is referred to
as the asymptotic convergence rate (see [169, 184]). In [169], the average rate of
convergence of m iterations is defined as the quantity R(Em

) = � ln(kEmk1/m
),

the meaning of which is intuitively clear from equation (10.6.5). Since we have
that ⇢(E) = limm!1 kEmk1/m for all bounded linear operators E and norms k · k
(see [116]), it then follows that limm!1R(Em

) = R1(E). While R1(E) is con-
sidered the standard measure of convergence of linear iterations (it is called the “con-
vergence rate”; see [184]), this is really an asymptotic measure, and the convergence
behavior for the early iterations may be better monitored by using the norm of the
propagator E directly in (10.6.6); an example is given in [169], for which R1(E)

gives a poor estimate of the number of iterations required.
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The Conjugate Gradient Method

Consider now the linear equation Au = f in the space H. The conjugate gradient
method was developed by Hestenes and Stiefel [92] for linear systems with sym-
metric positive definite operators A. It is common to precondition the linear system
by the SPD preconditioning operator B ⇡ A�1, in which case the generalized or
preconditioned conjugate gradient method results. Our purpose in this section is to
briefly examine the algorithm, its contraction properties, and establish some simple
relationships between the contraction number of a basic linear preconditioner and
that of the resulting preconditioned conjugate gradient algorithm. These relation-
ships are commonly used, but some of the short proofs seem unavailable.

In [8], a general class of conjugate gradient methods obeying three-term recur-
sions is studied, and it is shown that each instance of the class can be characterized
by three operators: an inner product operator X , a preconditioning operator Y , and
the system operator Z. As such, these methods are denoted as CG(X ,Y ,Z). We are
interested in the special case that X = A, Y = B, and Z = A, when both B and
A are SPD. Choosing the Omin [8] algorithm to implement the method CG(A,B,A),
the preconditioned conjugate gradient method results. In order to present the algo-
rithm, which is more complex than the basic linear method (Algorithm 10.6.1), we
will employ some standard notation from the algorithm literature. In particular, we
will denote the start of a complex fixed point-type iteration involving multiple steps
using the standard notion of a “Do”-loop, where the beginning of the loop, as well
as its duration, is denoted with a “Do X” statement, where X represents the condi-
tions for continuing or terminating the loop. The end of the complex iteration will
be denoted simply by “End do.”

Algorithm 10.6.2 (Preconditioned Conjugate Gradient Algorithm).

Let u0 2 H be given.
r0 = f �Au0, s0 = Br0, p0 = s0.
Do i = 0, 1, . . . until convergence:

↵
i

= (ri, si)/(Api, pi)
ui+1 = ui + ↵

i

pi

ri+1 = ri � ↵
i

Api

si+1 = Bri+1

�
i+1 = (ri+1, si+1)/(ri, si)

pi+1 = si+1 + �
i+1pi

End do.

If the dimension of H is n, then the algorithm can be shown to converge in n steps
since the preconditioned operator BA is A-SPD [8]. Note that if B = I , then this
algorithm is exactly the Hestenes and Stiefel algorithm.

Convergence Properties of the Conjugate Gradient Method. Since we
wish to understand a little about the convergence properties of the conjugate gradient
method and how these will be affected by a linear method representing the precondi-
tioner B, we will briefly review a well-known conjugate gradient contraction bound.
To begin, it is not difficult to see that the error at each iteration of Algorithm 10.6.2
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can be written as a polynomial in BA times the initial error:

ei+1

= [I �BApi(BA)]e0,

where pi 2 Pi, the space of polynomials of degree i. At each step the energy norm
of the error kei+1kA = ku� ui+1kA is minimized over the Krylov subspace:

Ki+1

(BA,Br0

) = span{Br0, (BA)Br0, (BA)

2Br0, . . . , (BA)

iBr0}.

Therefore,
kei+1kA = min

p
i

2P
i

k[I �BApi(BA)]e0kA.

Since BA is A-SPD, the eigenvalues �j 2 �(BA) of BA are real and positive, and
the eigenvectors vj of BA are A-orthonormal. By expanding e0

=

Pn
j=1

↵jvj , we
have

k[I �BApi(BA)]e0k2A = (A[I �BApi(BA)]e0, [I �BApi(BA)]e0

)

= (A[I �BApi(BA)]

· (
n
X

j=1

↵jvj), [I �BApi(BA)](

n
X

j=1

↵jvj))

= (

n
X

j=1

[1� �jpi(�j)]↵j�jvj ,
n
X

j=1

[1� �jpi(�j)]↵jvj)

=

n
X

j=1

[1� �jpi(�j)]
2↵2

j�j

6 max

�
j

2�(BA)

[1� �jpi(�j)]
2

n
X

j=1

↵2

j�j

= max

�
j

2�(BA)

[1� �jpi(�j)]
2

n
X

j=1

(A↵jvj ,↵jvj)

= max

�
j

2�(BA)

[1� �jpi(�j)]
2

(A
n
X

j=1

↵jvj ,
n
X

j=1

↵jvj)

= max

�
j

2�(BA)

[1� �jpi(�j)]
2ke0k2A.

Thus, we have that

kei+1kA 6
 

min

p
i

2P
i

"

max

�
j

2�(BA)

|1� �jpi(�j)|
#!

ke0kA.

The scaled and shifted Chebyshev polynomials Ti+1

(�), extended outside the inter-
val [�1, 1] as in Appendix A of [12], yield a solution to this mini-max problem (see
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Exercises 10.5.2 and 10.5.3). Using some simple well-known relationships valid for
Ti+1

(·), the following contraction bound is easily derived:

kei+1kA 6 2

0

B

B

B

B

@

s

�
max

(BA)

�
min

(BA)

� 1

s

�
max

(BA)

�
min

(BA)

+ 1

1

C

C

C

C

A

i+1

ke0kA = 2 �i+1

cg

ke0kA. (10.6.9)

The ratio of the extreme eigenvalues of BA appearing in the bound is often mistak-
enly called the (spectral) condition number (BA); in fact, since BA is not self-
adjoint (it is A-self-adjoint), this ratio is not in general equal to the condition number
(this point is discussed in detail in [7]). However, the ratio does yield a condition
number in a different norm. The following lemma is a special case of a more general
result [7].

Lemma 10.6.9. If A and B are SPD, then

A(BA) = kBAkAk(BA)

�1kA =

�
max

(BA)

�
min

(BA)

. (10.6.10)

Proof. For any A-SPD M , it is easy to show that M�1 is also A-SPD, so from the
material in the earlier section on linear iterative methods we know that both M and
M�1 have real, positive eigenvalues. From Lemma 10.6.1 it then holds that

kM�1kA = ⇢(M�1

) = max

u 6=0

(AM�1u, u)

(Au, u)

= max

u 6=0

(AM�1/2u, M�1/2u)

(AMM�1/2u, M�1/2u)

= max

v 6=0

(Av, v)

(AMv, v)

=

"

min

v 6=0

(AMv, v)

(Av, v)

#�1

= �
min

(M)

�1.

By Lemma 10.6.5, BA is A-SPD, which together with Lemma 10.6.1 implies that
kBAkA = ⇢(BA) = �

max

(BA). We have then k(BA)

�1kA = �
min

(BA)

�1, im-
plying that the A-condition number is given as the ratio of the extreme eigenvalues
of BA as in equation (10.6.10).

More generally, it can be shown that if the operator D is C-normal for some
SPD inner product operator C, then the generalized condition number given by the
expression C(D) = kDkCkD�1kC is equal to the ratio of the extreme eigenvalues
of the operator D. A proof of this fact is given in [7], along with a detailed discussion
of this and other relationships for more general conjugate gradient methods. The
conjugate gradient contraction number �

cg

can now be written as

�
cg

=

p

A(BA)� 1

p

A(BA) + 1

= 1� 2

1 +

p

A(BA)

.

The following lemma is used in the analysis of multigrid and other linear precon-
ditioners (it appears for example in [177]) to bound the condition number of the
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operator BA in terms of the extreme eigenvalues of the linear preconditioner error
propagator E = I � BA. We have given our own short proof of this result for
completeness.

Lemma 10.6.10. If A and B are SPD, and E = I �BA is such that

�C
1

(Au, u) 6 (AEu, u) 6 C
2

(Au, u), 8u 2 H,

for C
1

> 0 and C
2

> 0, then the inequality above must in fact also hold with C
2

< 1,
and it follows that

A(BA) 6 1 + C
1

1� C
2

.

Proof. First, since A and B are SPD, by Corollary 10.6.1 we have that C
2

< 1. Since
(AEu, u) = (A(I �BA)u, u) = (Au, u)� (ABAu, u), 8u 2 H, it is immediately
clear that

�C
1

(Au, u)� (Au, u) 6 �(ABAu, u) 6 C
2

(Au, u)� (Au, u), 8u 2 H.

After multiplying by minus 1, we have

(1� C
2

)(Au, u) 6 (ABAu, u) 6 (1 + C
1

)(Au, u), 8u 2 H.

By Lemma 10.6.5, BA is A-SPD, and it follows from the material in the section on
linear iterative methods that the eigenvalues of BA are real and positive, and lie in the
interval defined by the Rayleigh quotients generated by the A-inner product. From
above, we see that the interval is given by [(1�C

2

), (1+C
1

)], and by Lemma 10.6.9
the result follows.

The next corollary may be found in [177].

Corollary 10.6.2. If A and B are SPD, and BA is such that

C
1

(Au, u) 6 (ABAu, u) 6 C
2

(Au, u), 8u 2 H,

for C
1

> 0 and C
2

> 0, then the above must hold with C
1

> 0, and it follows that

A(BA) 6 C
2

C
1

.

Proof. This follows easily from the argument used in the proof of Lemma 10.6.10.

The following corollary, which relates the contraction property of a linear method
to the condition number of the operator BA, appears without proof in [178].

Corollary 10.6.3. If A and B are SPD, and kI �BAkA 6 � < 1, then

A(BA) 6 1 + �

1� �
. (10.6.11)

Proof. This follows immediately from Lemma 10.6.10 with � = max{C
1

, C
2

}.
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Preconditioners and the Acceleration of Linear Methods. We comment
briefly on an interesting implication of Lemma 10.6.10, which was pointed out
in [177]. It seems that even if a linear method is not convergent, for example if
C

1

> 1 so that ⇢(E) > 1, it may still be a good preconditioner. For example, if A
and B are SPD, then by Corollary 10.6.1 we always have C

2

< 1. If it is the case
that C

2

<< 1, and if C
1

> 1 does not become too large, then A(BA) will be small
and the conjugate gradient method will converge rapidly. A multigrid method (see
below) will often diverge when applied to a problem with discontinuous coefficients
unless special care is taken. Simply using the conjugate gradient method in conjunc-
tion with the multigrid method often yields a convergent (even rapidly convergent)
method without employing any of the special techniques that have been developed
for these problems; Lemma 10.6.10 gives some insight into this behavior.

The following result from [178] connects the contraction number of the linear
method used as the preconditioner to the contraction number of the resulting conju-
gate gradient method, and it shows that the conjugate gradient method always accel-
erates a linear method, justifying the terminology “CG acceleration.”

Theorem 10.6.3. If A and B are SPD, and kI �BAkA 6 � < 1, then �
cg

< �.

Proof. An abbreviated proof appears in [178]; we fill in the details here for com-
pleteness. Assume that the given linear method has contraction number bounded as
kI �BAkA < �. Now, since the function

p

A(BA)� 1

p

A(BA) + 1

is an increasing function of A(BA), we can use the result of Lemma 10.6.10,
namely A(BA) 6 (1 + �)/(1� �), to bound the contraction rate of preconditioned
conjugate gradient method as follows:

�
cg

6
 

p

A(BA)� 1

p

A(BA) + 1

!

6

0

B

B

@

r

1 + �

1� �
� 1

r

1 + �

1� �
+ 1

1

C

C

A

·

0

B

B

@

r

1 + �

1� �
� 1

r

1 + �

1� �
� 1

1

C

C

A

=

1 + �

1� �
� 2

r

1 + �

1� �
+ 1

1 + �

1� �
� 1

=

1�
p

1� �2

�
.

Note that this last term can be rewritten as

�
cg

6 1�
p

1� �2

�
= �

✓

1

�2

[1�
p

1� �2

]

◆

.

Now, since 0 < � < 1, clearly 1 � �2 < 1, so that 1 � �2 > (1 � �2

)

2. Thus,p
1� �2 > 1� �2, or�

p
1� �2 < �2� 1, or finally, 1�

p
1� �2 < �2. Therefore,
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(1/�2

)

⇥

1�
p

1� �2

⇤

< 1, or

�
cg

 �

✓

1

�2

h

1�
p

1� �2

i

◆

< �.

A more direct proof follows by recalling from Lemma 10.6.8 that the best possible
contraction of the linear method, when provided with an optimal parameter, is given
by

�
opt

= 1� 2

1 + A(BA)

,

whereas the conjugate gradient contraction is

�
cg

= 1� 2

1 +

p

A(BA)

.

Assuming that B 6= A�1, then we always have A(BA) > 1, so we must have that
�
cg

< �
opt

6 �.

This result implies that it always pays in terms of an improved contraction number
to use the conjugate gradient method to accelerate a linear method; the question re-
mains, of course, whether the additional computational labor involved will be amor-
tized by the improvement. This is not clear from the analysis above, and is problem
dependent in practice.

Note that if a given linear method requires a parameter ↵ as in Lemma 10.6.8
in order to be competitive, one can simply use the conjugate gradient method as an
accelerator for the method without a parameter, avoiding the possibly costly esti-
mation of a good parameter ↵. Theorem 10.6.3 guarantees that the resulting method
will have superior contraction properties, without requiring the parameter estimation.
This is exactly why additive multigrid and domain decomposition methods (which
we discuss in more detail below) are used almost exclusively as preconditioners for
conjugate gradient methods; in contrast to the multiplicative variants, which can be
used effectively without a parameter, the additive variants always require a good
parameter ↵ to be effective, unless used as preconditioners.

To finish this section, we remark briefly on the complexity of Algorithm 10.6.2.
If a tolerance of ✏ is required, then the computational cost to reduce the energy norm
of the error below the tolerance can be determined from the expression above for �

cg

and from equation (10.6.9). To achieve a tolerance of ✏ after i iterations will require
that

2 �i+1

cg

= 2

 

p

A(BA)� 1

p

A(BA) + 1

!i+1

< ✏.

Dividing by 2 and taking natural logarithms (and assuming that ✏ < 1) yields

i >

�

�

�

ln

✏

2

�

�

�

�

�

�

�

�

ln

 

p

A(BA)� 1

p

A(BA) + 1

!

�

�

�

�

�

. (10.6.12)
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Using (10.6.8) we have | ln[(1/2

A (BA) � 1)/(1/2

A (BA) + 1)]| > 2/1/2

A (BA).
Thus, we can ensure that (10.6.12) holds by enforcing

i > 1

2

1/2

A (BA)

�

�

�

ln

✏

2

�

�

�

+ 1.

Therefore, the number of iterations required to reach an error on the order of the
tolerance ✏ is

i = O
⇣

1/2

A (BA)

�

�

�

ln

✏

2

�

�

�

⌘

.

If the cost of each iteration is O(N), which will hold in the case of the sparse ma-
trices generated by standard discretizations of elliptic partial differential equations,
then the overall complexity to solve the problem is O(1/2

A (BA)N | ln[✏/2]|). If the
preconditioner B is such that 1/2

A (BA) can be bounded independently of the prob-
lem size N , then the complexity becomes (near) optimal order O(N | ln[✏/2]|).

We make some final remarks regarding the idea of spectral equivalence.

Definition 10.6.1. The SPD operators A 2 L(H,H) and M 2 L(H,H) are called
spectrally equivalent if there exist constants C

1

> 0 and C
2

> 0 such that

C
1

(Au, u) 6 (Mu, u) 6 C
2

(Au, u), 8u 2 H.

In other words, A defines an inner product which induces a norm equivalent to
the norm induced by the M -inner product. If a given preconditioner B is spectrally
equivalent to A�1, then the condition number of the preconditioned operator BA is
uniformly bounded.

Lemma 10.6.11. If the SPD operators B and A�1 are spectrally equivalent, then

A(BA) 6 C
2

C
1

.

Proof. By hypothesis, we have C
1

(A�1u, u)  (Bu, u)  C
2

(A�1u, u), 8u 2 H.
But this can be written as

C
1

(A�1/2u, A�1/2u) 6 (A1/2BA1/2A�1/2u, A�1/2u)

6 C
2

(A�1/2u, A�1/2u)

or

C
1

(ũ, ũ) 6 (A1/2BA1/2ũ, ũ) 6 C
2

(ũ, ũ), 8ũ 2 H.

Now, since BA = A�1/2

(A1/2BA1/2

)A1/2, we have that BA is similar to the SPD
operator A1/2BA1/2. Therefore, the inequality above bounds the extreme eigenval-
ues of BA, and as a result the lemma follows by Lemma 10.6.9.
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Moreover, if any of the following (equivalent) norm equivalences hold:

C
1

(Au, u) 6 (ABAu, u) 6 C
2

(Au, u),

C
1

(Bu, u) 6 (BABu, u) 6 C
2

(Bu, u),

C
1

(A�1u, u) 6 (Bu, u) 6 C
2

(A�1u, u),

C
1

(B�1u, u) 6 (Au, u) 6 C
2

(B�1u, u),

C�1

2

(Au, u) 6 (B�1u, u) 6 C�1

1

(Au, u),

C�1

2

(Bu, u) 6 (A�1u, u) 6 C�1

1

(Bu, u),

then by similar arguments one has

A(BA) 6 C
2

C
1

.

Of course, since all norms on finite-dimensional spaces are equivalent (which fol-
lows from the fact that all linear operators on finite-dimensional spaces are bounded),
the idea of spectral equivalence is only important in the case of infinite-dimensional
spaces, or when one considers how the equivalence constants behave as one increases
the sizes of the spaces. This is exactly the issue in multigrid and domain decompo-
sition theory: As one decreases the mesh size (increases the size of the spaces in-
volved), one would like the quantity A(BA) to remain uniformly bounded (in other
words, one would like the equivalence constants to remain constant or grow only
slowly). A discussion of these ideas appears in [141].

Domain Decomposition Methods

Domain decomposition methods were first proposed by H. A. Schwarz as a theoret-
ical tool for studying elliptic problems on complicated domains, constructed as the
union of simple domains. An interesting early reference not often mentioned is [109],
containing both analysis and numerical examples and references to the original work
by Schwarz. Since the development of parallel computers, domain decomposition
methods have become one of the most important practical methods for solving el-
liptic partial differential equations on modern parallel computers. In this section we
briefly describe basic overlapping domain decomposition methods; our discussion
here draws much from [66, 100, 178] and the references cited therein.

Given a domain ⌦ and coarse triangulation by J regions {⌦k} of mesh size Hk,
we refine (several times) to obtain a fine mesh of size hk. The regions defined by
the initial triangulation ⌦k are then extended by �k to form the “overlapping sub-
domains” ⌦

0
k. Let V and V

0

denote the finite element spaces associated with the
hk and Hk triangulation of ⌦, respectively. Examples of overlapping subdomains
constructed in this way over existing coarse simplicial meshes, designed for building
piecewise-linear finite element subdomain spaces Vk = H1

0

(⌦

0
k) \ V , are shown in

Figure 10.10.
To describe overlapping domain decomposition methods, we focus on the follow-

ing variational problem in V:

Find u 2 V such that a(u, v) = f(v), 8v 2 V, (10.6.13)
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Figure 10.10 Unstructured overlapping subdomain collections for two example domains.
The large triangles in the coarse mesh form the nonoverlapping subdomains ⌦

k

, and the
refined regions form the overlapping subdomains ⌦0

k

. The symbols ⇥ denote nodes lying
on the boundary of the global domain ⌦, whereas the symbols � denote nodes lying on the
boundary of a particular subdomain ⌦0

k

.

where the form a(·, ·) is bilinear, symmetric, coercive, and bounded, whereas f(·)
is linear and bounded. An overlapping domain decomposition method involves first
solving (10.6.13) restricted to each overlapping subdomain ⌦

0
k:

Find uk 2 Vk such that a(uk, vk) = f(vk), 8vk 2 Vk, (10.6.14)

and then combining the results to improve an approximation over the entire do-
main ⌦. Since the global problem over ⌦ was not solved, this procedure must be
repeated until it converges to the solution of the global problem (10.6.13). There-
fore, overlapping domain decomposition methods can be viewed as iterative methods
for solving the variational problem (10.6.13), where each iteration involves approx-
imate projections of the error onto subspaces of V associated with the overlapping
subdomains ⌦

0
k, which is accomplished by solving the subspace problem (10.6.14).

It is useful to reformulate problems (10.6.13) and (10.6.14) as operator equations
in the function spaces defined over ⌦ and ⌦

0
k. Let Vk = H1

0

(⌦

0
k)\V , k = 1, . . . , J ;

it is not difficult to show that V = V
1

+ · · ·+VJ , where the coarse space V
0

may also
be included in the sum. Through the Riesz representation theorem and the Bounded
Operator Theorem of Section 4.8, we can associate with the problem above an ab-
stract operator equation Au = f , where A is SPD. We denote as Ak the restriction
of the operator A to the space Vk, corresponding to (any) discretization of the orig-
inal problem restricted to the subdomain ⌦

0
k. Algebraically, it can be shown that

Ak = IT
k AIk, where Ik is the natural inclusion of Vk into V and IT

k is the cor-
responding projection of V onto Vk. The property that Ik is the natural inclusion
and IT

k is the corresponding projection holds for both the finite element space Vk as
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well as the Euclidean space Rn
k . In other words, domain decomposition methods

automatically satisfy the so-called variational condition:

Ak = IT
k AIk (10.6.15)

in the subspaces Vk, k 6= 0, for any discretization. Recall that A-orthogonal pro-
jection from V onto Vk can be written as Pk = Ik(IT

k AIk)

�1IT
k A, which becomes

simply Pk = IkA�1

k IT
k A when Ak satisfies the variational condition (10.6.15). If

Rk ⇡ A�1

k , we can define the approximate A-orthogonal projector from V onto Vk

as Tk = IkRkIT
k A. The case of Rk = A�1

k corresponds to an exact solution of the
subdomain problems, giving Tk = Pk.

A multiplicative Schwarz overlapping domain decomposition method, employing
successive approximate projections onto the subspaces Vk and written in terms of the
operators A and Ak, has the following form.

Algorithm 10.6.3 (Multiplicative Schwarz Method: Implementation Form).

Set ui+1 = MS(ui, f), where ui+1 = MS(ui, f) is defined as:
Do k = 1, . . . , J

r
k

= IT

k

(f �Aui)
e
k

= R
k

r
k

ui+1 = ui + I
k

e
k

ui = ui+1

End do.

Note that the first step through the loop in MS(·, ·) gives

ui+1

= ui
+ I

1

e
1

= ui
+ I

1

R
1

IT
1

(f �Aui
)

= (I � I
1

R
1

IT
1

A)ui
+ I

1

R
1

IT
1

f.

Continuing in this fashion, and by defining Tk = IkRkIT
k A, we see that after the

full loop in MS(·, ·) the solution transforms according to

ui+1

= (I � TJ)(I � TJ�1

) · · · (I � T
1

)ui
+ Bf,

where B is a quite complicated combination of the operators Rk, Ik, IT
k , and A. By

defining Ek = (I � Tk)(I � Tk�1

) · · · (I � T
1

), we see that Ek = (I � Tk)Ek�1

.
Therefore, since Ek�1

= I � Bk�1

A for some (implicitly defined) Bk�1

, we can
identify the operators Bk through the recursion Ek = I � BkA = (I � Tk)Ek�1

,
giving

BkA = I � (I � Tk)Ek�1

= I � (I �Bk�1

A) + Tk(I �Bk�1

A)

= Bk�1

A + Tk � TkBk�1

A = Bk�1

A + IkRkIT
k A� IkRkIT

k ABk�1

A

=

⇥

Bk�1

+ IkRkIT
k � IkRkIT

k ABk�1

⇤

A,

so that Bk = Bk�1

+ IkRkIT
k � IkRkIT

k ABk�1

. But this means that Algorithm
10.6.3 is equivalent to the following.
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Algorithm 10.6.4 (Multiplicative Schwarz Method: Operator Form).

Define:
ui+1 = ui + B(f �Aui) = (I �BA)ui + Bf,

where the error propagator E is defined by:
E = I �BA = (I � T

J

)(I � T
J�1) · · · (I � T1),

T
k

= I
k

R
k

IT

k

A, k = 1, . . . , J.
The implicit operator B ⌘ B

J

obeys the recursion:
B1 = I1R1IT

1 , B
k

= B
k�1 + I

k

R
k

IT

k

� I
k

R
k

IT

k

AB
k�1, k = 2, . . . , J.

An additive Schwarz overlapping domain decomposition method, employing si-
multaneous approximate projections onto the subspaces Vk, has the form:

Algorithm 10.6.5 (Additive Schwarz Method: Implementation Form).

Set ui+1 = AS(ui, f), where ui+1 = AS(ui, f) is defined as:
r = f �Aui

Do k = 1, . . . , J
r
k

= IT

k

r
e
k

= R
k

r
k

ui+1 = ui + I
k

e
k

End do.

Since each loop iteration depends only on the original approximation ui, we see
that the full correction to the solution can be written as the sum

ui+1

= ui
+ B(f �Aui

) = ui
+

J
X

k=1

IkRkIT
k (f �Aui

),

where the preconditioner B has the form B =

PJ
k=1

IkRkIT
k , and the error propa-

gator is E = I �BA. Therefore, Algorithm 10.6.5 is equivalent to the following.

Algorithm 10.6.6 (Additive Schwarz Method: Operator Form).

Define:
ui+1 = ui + B(f �Aui) = (I �BA)ui + Bf,

where the error propagator E is defined by:
E = I �BA = I �P

J

k=1 T
k

,
T

k

= I
k

R
k

IT

k

A, k = 1, . . . , J.
The operator B is defined explicitly as:

B =
P

J

k=1 I
k

R
k

IT

k

.

Therefore, the multiplicative and additive domain decomposition methods fit ex-
actly into the framework of a basic linear method (Algorithm 10.6.1) or can be
viewed as methods for constructing preconditioners B for use with the conjugate
gradient method (Algorithm 10.6.2). If Rk = A�1

k , where Ak satisfies the varia-
tional condition (10.6.15), then each iteration of the algorithms involves removal of
the A-orthogonal projection of the error onto each subspace, either successively (the
multiplicative method) or simultaneously (the additive method). If Rk is an approx-
imation to A�1

k , then each step is an approximate A-orthogonal projection.
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Multilevel Methods

Multilevel (or multigrid) methods are highly efficient numerical techniques for solv-
ing the algebraic equations arising from the discretization of partial differential equa-
tions. These methods were developed in direct response to the deficiencies of the
classical iterations such as the Gauss-Seidel and SOR methods. Some of the early
fundamental papers are [18, 40, 84, 162], as well as [17, 19, 185], and a comprehen-
sive analysis of the many different aspects of these methods is given in [85, 178].
The following derivation of two-level and multilevel methods in a recursive operator
framework is motivated by some work on finite element-based multilevel and do-
main decomposition methods, represented, for example, by [38, 66, 100, 178]. Our
notation follows the currently established convention for these types of methods;
see [100, 178].

Linear Equations in a Nested Sequence of Spaces. In what follows we
are concerned with a nested sequence of spaces H

1

⇢ H
2

⇢ · · · ⇢ HJ ⌘ H, where
HJ corresponds to the finest or largest space and H

1

the coarsest or smallest. Each
space Hk is taken to be a Hilbert space, equipped with an inner product (·, ·)k which
induces the norm k · kk. Regarding notation, if A 2 L(Hk,Hk), then we denote the
operator as Ak. Similarly, if A 2 L(Hk,Hi), then we denote the operator as Ai

k.
Finally, if A 2 L(Hk,Hk) but its operation somehow concerns a specific subspace
Hi ⇢ Hk, then we denote the operator as Ak;i. For quantities involving the finest
space HJ , we will often leave off the subscripts without danger of confusion.

Now, given such a nested sequence of Hilbert spaces, we assume that associated
with each space Hk is an SPD operator Ak, which defines a second inner product
(·, ·)A

k

= (Ak·, ·)k, inducing a second norm k · kA
k

= (·, ·)1/2

A
k

. The spaces Hk are
connected by prolongation operators Ik

k�1

2 L(Hk�1

,Hk) and restriction operators
Ik�1

k 2 L(Hk,Hk�1

), where we assume that the null space of Ik
k�1

contains only
the zero vector, and usually that Ik�1

k = (Ik
k�1

)

T , where the (Hilbert) adjoint is with
respect to the inner products on the sequence of spaces Hk:

(uk, Ik
k�1

vk�1

)k = ((Ik
k�1

)

T uk, vk�1

)k�1

, 8uk 2 Hk, 8vk�1

2 Hk�1

.
(10.6.16)

We are given the operator equation Au = f in the finest space H ⌘ HJ , where
A 2 L(H,H) is SPD, and we are interested in iterative algorithms for determining
the unique solution u which involves solving problems in the coarser spaces Hk

for 1 6 k < J . If the equation in H has arisen from finite element or similar
discretization of an elliptic partial differential equation, then operators Ak (and the
associated coarse problems Akuk = fk) in coarser spaces Hk for k < J may be
defined naturally with the same discretization on a coarser mesh. Alternatively, it
is convenient (for theoretical reasons which we discuss later in the chapter) to take
the so-called variational approach of constructing the coarse operators, where the
operators Ak 2 L(Hk,Hk) satisfy

Ak�1

= Ik�1

k AkIk
k�1

, Ik�1

k = (Ik
k�1

)

T . (10.6.17)
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The first condition in (10.6.17) is sometimes referred to as the Galerkin condition,
whereas the two conditions (10.6.17) together are known as the variational condi-
tions, due to the fact that both conditions are satisfied naturally by variational or
Galerkin (finite element) discretizations on successively refined meshes. Note that if
Ak is SPD, then Ak�1

produced by (10.6.17) will also be SPD.
In the case that Hk = Uk = Rn

k , the prolongation operator Ik
k�1

typically cor-
responds to d-dimensional interpolation of uk�1

to uk = Ik
k�1

uk�1

, where uk�1

and uk are interpreted as grid functions defined over two successively refined (box
or finite element) discretizations ⌦k�1

and ⌦k of the domain ⌦ ⇢ Rd. Since the
coarse grid function space has by definition smaller dimension than the fine space,
Ik
k�1

takes the form of a rectangular matrix with more rows than columns. A posi-
tive scaling constant c 2 R will appear in the second condition in (10.6.17), which
will become Ik�1

k = c(Ik
k�1

)

T , due to taking Ik�1

k to be the adjoint of Ik
k�1

with
respect to the inner product (10.5.53). This results from hk < hk�1

on two suc-
cessive spaces, and the subsequent need to scale the corresponding discrete inner
product to preserve a discrete notion of volume; this scaling allows for comparing
inner products on spaces with different dimensions.

In the case that Hk = Vk, where Vk is a finite element subspace, the prolon-
gation corresponds to the natural inclusion of a coarse space function into the fine
space, and the restriction corresponds to its natural adjoint operator, which is the
L2-projection of a fine space function onto the coarse space. The variational condi-
tions (10.6.17) then hold for the abstract operators Ak on the spaces Vk, with inclu-
sion and L2-projection for the prolongation and restriction (see the proof in [85]).
In addition, the stiffness matrices representing the abstract operators Ak also satisfy
the conditions (10.6.17), where now the prolongation and restriction operators are
as in the case of the space Uk. However, we remark that this is true only with exact
evaluation of the integrals forming the matrix components; the conditions (10.6.17)
are violated if quadrature is used. “Algebraic multigrid” are methods based on en-
forcing (10.6.17) algebraically using a product of sparse matrices; one can develop
a strong two-level theory for this class of methods in the case of M -matrices (see,
for example, [41, 151]), but it is difficult to develop theoretical results for multilevel
versions of these methods.

Many important results have been obtained for multilevel methods in the spaces
Hk = Vk, which rely on certain operator recursions (we point out in particular the
papers [36, 38, 177, 178]). Some of these results [38, 178] are “regularity-free” in
the sense that they do not require the usual regularity or smoothness assumptions on
the solution to the problem, which is important since these are not valid for problems
such as those with discontinuous coefficients. As a result, we will develop multilevel
algorithms in a recursive form in the abstract spaces Hk.

Two-Level Methods. As we noted earlier, the convergence rate of the classical
methods (Gauss-Seidel and similar methods) deteriorate as the mesh size hk ! 0;
we examine the reasons for this behavior for a model problem later in this section.
However, using the same spectral analysis, one can easily see that the components of
the error corresponding to the small eigenvalues of the error propagation operator are
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Error in Physical Space Error in Fourier Space

Initial error                  

After one iteration            

After two iterations           

After five iterations          

Figure 10.11 Error-smoothing effect of Gauss-Seidel iteration. The error in both physical
and Fourier (or frequency) space is shown initially and after one, two, and five iterations.
Low-frequency components of the error appear at the rear of the Fourier plots; high-frequency
components appear at far left, far right, and in the foreground.

actually being decreased quite effectively even as hk ! 0; these are the rapidly vary-
ing or high-frequency components in the error. This effect is illustrated graphically
in Figure 10.11 for Gauss-Seidel iteration applied to the two-dimensional Poisson
equation on the unit square. In the figure, the error in both physical and Fourier (or
frequency) space is shown initially and after one, two, and five iterations. In the
Fourier space plots, the low-frequency components of the error are found in the rear,
whereas the high-frequency components are found to the far left, the far right, and in
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the foreground. The source function for this example was constructed from a random
field (to produce all frequencies in the solution) and the initial guess was taken to be
zero.

The observation that classical linear methods are very efficient at reducing the
high-frequency modes is the motivation for the multilevel method: A classical linear
method can be used to handle the high-frequency components of the error (or to
smooth the error), and the low-frequency components can be eliminated efficiently
on a coarser mesh with fewer unknowns, where the low-frequency modes are well
represented.

For the equation Akuk = fk on level k, the smoothing method takes the form of
Algorithm 10.6.1 for some operator Rk, the smoothing operator, as the approximate
inverse of the operator Ak:

ui+1

k = ui
k + Rk(fk �Akui

k). (10.6.18)

In the case of two spaces Hk and Hk�1

, the error equation ek = A�1

k rk is solved
approximately using the coarse space, with the coarse-level correction operator
Ck = Ik

k�1

A�1

k�1

Ik�1

k representing the exact solution with A�1

k�1

in the coarse-level
subspace Hk�1

. The solution is then adjusted by the correction

ui+1

k = ui
k + Ck(fk �Akui

k). (10.6.19)

There are several ways in which these two procedures can be combined.
By viewing multilevel methods as compositions of the simple linear methods

(10.6.18) and (10.6.19), a simple yet complete framework for understanding these
methods can be constructed. The most important concepts can be discussed with
regard to two-level methods and then generalized to more than two levels using an
implicit recursive definition of an approximate coarse-level inverse operator.

Consider the case of two nested spaces Hk�1

⇢ Hk, and the following two-level
method:

Algorithm 10.6.7 (Nonsymmetric Two-Level Method).

v
k

= ui

k

+ C
k

(f
k

�A
k

ui

k

). [Coarse-level correction]

ui+1
k

= v
k

+ R
k

(f
k

�A
k

v
k

). [Post-smoothing]

The coarse-level correction operator has the form Ck = Ik
k�1

A�1

k�1

Ik�1

k , and
the smoothing operator is one of the classical iterations. This two-level iteration, a
composition of two linear iterations of the form of Algorithm 10.6.1, can itself be
written in the form of Algorithm 10.6.1:

ui+1

k = vk + Rk(fk �Akvk)

= ui
k + Ck(fk �Akui

k) + Rkfk �RkAk(ui
k + Ck(fk �Akui

k))

= (I � CkAk �RkAk + RkAkCkAk)ui
k + (Ck + Rk �RkAkCk)fk

= (I �BkAk)ui
k + Bkfk.
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The two-level operator Bk, the approximate inverse of Ak which is implicitly defined
by the nonsymmetric two-level method, has the form:

Bk = Ck + Rk �RkAkCk. (10.6.20)

The error propagation operator for the two-level method has the usual form Ek =

I �BkAk, which now can be factored due to the form for Bk above:

Ek = I �BkAk = (I �RkAk)(I � CkAk). (10.6.21)

In the case that ⌫ post-smoothing iterations are performed in step (2) instead of a
single post-smoothing iteration, it is not difficult to show that the error propagation
operator takes the altered form

I �BkAk = (I �RkAk)

⌫
(I � CkAk).

Now consider a symmetric form of the above two-level method:

Algorithm 10.6.8 (Symmetric Two-Level Method).

w
k

= ui

k

+ RT

k

(f
k

�A
k

ui

k

). [Pre-smoothing]
v

k

= w
k

+ C
k

(f
k

�A
k

w
k

). [Coarse-level correction]

ui+1
k

= v
k

+ R
k

(f
k

�A
k

v
k

). [Post-smoothing]

As in the nonsymmetric case, it is a simple task to show that this two-level itera-
tion can be written in the form of Algorithm 10.6.1:

ui+1

k = (I �BkAk)ui
k + Bkfk,

where after a simple expansion as for the nonsymmetric method above, the two-level
operator Bk implicitly defined by the symmetric method can be seen to be

Bk = Rk + Ck + RT
k �RkAkCk �RkAkRT

k � CkAkRT
k + RkAkCkAkRT

k .

It is easily verified that the factored form of the resulting error propagator Es
k for the

symmetric algorithm is

Es
k = I �BkAk = (I �RkAk)(I � CkAk)(I �RT

k Ak).

Note that the operator I �BkAk is Ak-self-adjoint, which by Lemma 10.6.4 is true
if and only if Bk is symmetric, implying the symmetry of Bk. The operator Bk con-
structed by the symmetric two-level iteration is always symmetric if the smoothing
operator Rk is symmetric; however, it is also true in the symmetric algorithm above
when general nonsymmetric smoothing operators Rk are used, because we use the
adjoint RT

k of the post-smoothing operator Rk as the pre-smoothing operator. The
symmetry of Bk is important for use as a preconditioner for the conjugate gradient
method, which requires that Bk be symmetric for guarantee of convergence.
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REMARK. Note that this alternating technique for producing symmetric operators
Bk can be extended to multiple nonsymmetric smoothing iterations, as suggested
in [37]. Denote the variable nonsymmetric smoothing operator R(i)

k as

R(j)
k =

⇢

Rk, j odd,
RT

k , j even.

If ⌫ pre-smoothings are performed, alternating between Rk and RT
k , and ⌫ post-

smoothings are performed alternating in the opposite way, then a tedious computa-
tion shows that the error propagator has the factored form

I �BkAk =

0

@

1

Y

j=⌫

(I �R(j)
k Ak)

1

A

(I � CkAk)

0

@

⌫
Y

j=1

(I � (R(j)
k )

T Ak)

1

A ,

where we adopt the convention that the first terms indexed by the products appear on
the left. It is easy to verify that I�BkAk is Ak-self-adjoint, so that Bk is symmetric.

Variational Conditions and A-Orthogonal Projection. Up to this point, we
have specified the approximate inverse corresponding to the coarse-level subspace
correction only as Ck = Ik

k�1

A�1

k�1

Ik�1

k , for some coarse-level operator Ak�1

.
Consider the case that the variational conditions (10.6.17) are satisfied. The error
propagation operator for the coarse-level correction then takes the form

I � CkAk = I � Ik
k�1

A�1

k�1

Ik�1

k Ak = I � Ik
k�1

[(Ik
k�1

)

T AkIk
k�1

]

�1

(Ik
k�1

)

T Ak.

This last expression is simply the Ak-orthogonal projector I � Pk;k�1

onto the
complement of the coarse-level subspace, where the unique orthogonal and Ak-
orthogonal projectors Qk;k�1

and Pk;k�1

projectingHk onto Ik
k�1

Hk�1

can be writ-
ten as

Qk;k�1

= Ik
k�1

[(Ik
k�1

)

T Ik
k�1

]

�1

(Ik
k�1

)

T ,

Pk;k�1

= CkAk = Ik
k�1

[(Ik
k�1

)

T AkIk
k�1

]

�1

(Ik
k�1

)

T Ak.

In other words, if the variational conditions are satisfied, and the coarse-level equa-
tions are solved exactly, then the coarse-level correction projects the error onto the
Ak-orthogonal complement of the coarse-level subspace. It is now not surprising
that successively refined finite element discretizations satisfy the variational condi-
tions naturally, since they are defined in terms of Ak-orthogonal projections.

Note the following interesting relationship between the symmetric and nonsym-
metric two-level methods, which is a consequence of the Ak-orthogonal projection
property.

Lemma 10.6.12. If the variational conditions (10.6.17) hold, then the nonsymmetric
and symmetric propagators Ek and Es

k are related by

kEs
kkA

k

= kEkk2A
k

.
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Proof. Since I�CkAk is a projector, we have (I�CkAk)

2

= I�CkAk. It follows
that

Es
k = (I �RkAk)(I � CkAk)(I �RT

k Ak)

= (I �RkAk)(I � CkAk)(I � CkAk)(I �RT
k Ak) = EkE⇤k ,

where E⇤k is the Ak-adjoint of Ek. Therefore, the convergence of the symmetric
algorithm is related to that of the nonsymmetric algorithm by:

kEs
kkA

k

= kEkE⇤kkA
k

= kEkk2A
k

.

REMARK. The relationship between the symmetric and nonsymmetric error prop-
agation operators in Lemma 10.6.12 was first pointed out by McCormick in [131],
and has been exploited in many papers; see [36, 100, 178]. It allows one to use the
symmetric form of the algorithm as may be necessary for use with conjugate gradient
methods while exploiting the relationship above to work only with the nonsymmetric
error propagator Ek in analysis, which may be easier to analyze.

Multilevel Methods. Consider now the full nested sequence of Hilbert spaces
H

1

⇢ H
2

⇢ · · · ⇢ HJ ⌘ H. The idea of the multilevel method is to begin with
the two-level method, but rather than solve the coarse-level equations exactly, yet
another two-level method is used to solve the coarse-level equations approximately,
beginning with an initial approximation of zero on the coarse-level. The idea is
applied recursively until the cost of solving the coarse system is negligible, or until
the coarsest possible level is reached. Two nested simplicial mesh hierarchies for
building piecewise-linear finite element spaces in the case Hk = Vk are shown in
Figure 10.12.

The following is a recursively defined multilevel algorithm which corresponds to
the form of the algorithm commonly implemented on a computer. For the system
Au = f , the algorithm returns the approximate solution ui+1 after one iteration of
the method applied to the initial approximate ui.

Algorithm 10.6.9 (Nonsymmetric Multilevel Method: Implementation Form).

Set:
ui+1 = ML(J, ui, f)

where ui+1
k

= ML(k, ui

k

, f
k

) is defined recursively as:
If (k = 1) Then:

ui+1
1 = A�1

1 f1. [Direct solve]
Else:

v
k

= ui

k

+ Ik

k�1(ML(k � 1, 0, Ik�1
k

(f
k

�A
k

ui

k

))). [Correction]

ui+1
k

= v
k

+ R
k

(f
k

�A
k

v
k

). [Post-smoothing]
End.

As with the two-level Algorithm 10.6.7, it is a straightforward calculation to write
the multilevel Algorithm 10.6.9 in the standard form of Algorithm 10.6.1, where now
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Figure 10.12 Unstructured three-level mesh hierarchies for two example domains. The
nested refinements are achieved by successive quadra-section (subdivision into four similar
subtriangles). Nested hierarchies of finite element spaces are then built over theses nested
triangulations.

the multilevel operator B ⌘ BJ is defined recursively. To begin, assume that the
approximate inverse of Ak�1

at level k � 1 implicitly defined by Algorithm 10.6.9
has been explicitly identified and denoted as Bk�1

. The coarse-level correction step
of Algorithm 10.6.9 at level k can then be written as

vk = ui
k + Ik

k�1

Bk�1

Ik�1

k (fk �Akui
k).

At level k, Algorithm 10.6.9 can be thought of as the two-level Algorithm 10.6.7,
where the two-level operator Ck = Ik

k�1

A�1

k�1

Ik�1

k has been replaced by the ap-
proximation Ck = Ik

k�1

Bk�1

Ik�1

k . From (10.6.20) we see that the expression for
the multilevel operator Bk at level k in terms of the operator Bk�1

at level k � 1 is
given by

Bk = Ik
k�1

Bk�1

Ik�1

k + Rk �RkAkIk
k�1

Bk�1

Ik�1

k . (10.6.22)

We can now state a second multilevel algorithm, which is mathematically equiv-
alent to Algorithm 10.6.9, but which is formulated explicitly in terms of the recur-
sively defined multilevel operators Bk.

Algorithm 10.6.10 (Nonsymmetric Multilevel Method: Operator Form).

Set: ui+1 = ui + B(f �Aui),
where the operator B ⌘ B

J

is defined recursively:
Let B1 = A�1

1 , and assume that B
k�1 has been defined.

B
k

= Ik

k�1B
k�1Ik�1

k

+ R
k

�R
k

A
k

Ik

k�1B
k�1Ik�1

k

, k = 2, . . . , J.
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REMARK. Recursive definition of multilevel operators Bk apparently first appeared
in [36], although operator recursions for the error propagators Ek = I �BkAk ap-
peared earlier in [125]. Many of the results on finite element-based multilevel meth-
ods depend on the recursive definition of the multilevel operators Bk.

As was noted for the two-level case, the error propagator at level k can be factored
as:

Ek = I �BkAk = (I �RkAk)(I � Ik
k�1

Bk�1

Ik�1

k Ak). (10.6.23)

It can be shown (see [39, 87, 100, 175, 178]) that the multilevel error propagator can
actually be factored into a full product.

Lemma 10.6.13. If variational conditions (10.6.17) hold, the error propagator E of
Algorithm 10.6.10 can be factored:

E = I �BA = (I � TJ)(I � TJ�1

) · · · (I � T
1

), (10.6.24)

where
T

1

= I
1

A�1

1

IT
1

A, Tk = IkRkIT
k A, k = 2, . . . , J,

with
IJ = I, Ik = IJ

J�1

IJ�1

J�2

· · · Ik+2

k+1

Ik+1

k , k = 1, . . . , J � 1.

Moreover, one has the additional variational condition

Ak = IT
k AIk. (10.6.25)

Proof. Let us begin by expanding the second term in (10.6.23) more fully and then
factoring again:

I � Ik
k�1

Bk�1

Ik�1

k Ak = I � Ik
k�1

(Ik�1

k�2

Bk�2

Ik�2

k�1

+ Rk�1

�Rk�1

Ak�1

Ik�1

k�2

Bk�2

Ik�2

k�1

)Ik�1

k Ak

= I � Ik
k�2

Bk�2

Ik�2

k Ak � Ik
k�1

Rk�1

Ik�1

k Ak

+ Ik
k�1

Rk�1

(Ik�1

k AkIk
k�1

)Ik�1

k�2

Bk�2

Ik�2

k Ak

= I � Ik
k�2

Bk�2

Ik�2

k Ak � Ik
k�1

Rk�1

Ik�1

k Ak

+ (Ik
k�1

Rk�1

Ik�1

k Ak)(Ik
k�2

Bk�2

Ik�2

k Ak)

= (I � Ik
k�1

Rk�1

Ik�1

k Ak)(I � Ik
k�2

Bk�2

Ik�2

k Ak),

where we have assumed that the first part of the variational conditions (10.6.17)
holds. In general, we have

I � Ik
k�iBk�iI

k�i
k Ak = (I � Ik

k�iRk�iI
k�i
k Ak)(I � Ik

k�i�1

Bk�i�1

Ik�i�1

k Ak).

Using this result inductively, beginning with k = J , the error propagator E ⌘ EJ

takes the product form:

E = I �BA = (I � TJ)(I � TJ�1

) · · · (I � T
1

).
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The second part of the variational conditions (10.6.17) implies that the Tk are A-self-
adjoint and have the form

T
1

= I
1

A�1

1

IT
1

A, Tk = IkRkIT
k A, k = 2, . . . , J.

That (10.6.25) holds follows from the definitions.

Note that this lemma implies that the multilevel error propagator has precisely the
same form as the multiplicative Schwarz domain decomposition error propagator.
One can also define an additive version via the sum

E = I �BA = T
1

+ T
2

+ · · ·+ TJ , (10.6.26)

where B is now an additive preconditioner, again identical in form to the additive
Schwarz domain decomposition error propagator. Lemma 10.6.13 made it possible
to consider multilevel and domain decomposition methods as particular instances of
a general class of Schwarz methods, which allowed for the development of a very
general convergence theory; see, for example, [66, 87, 93, 178] for more detailed
expositions of this convergence theory framework.

The V-Cycle, the W-Cycle, and Nested Iteration. The methods we have just
described are standard examples of multigrid or multilevel methods [85], where we
have introduced a few restrictions for convenience, such as equal numbers of pre-
and post-smoothings, one coarse space correction per iteration, and pre-smoothing
with the adjoint of the post-smoothing operator. These restrictions are unnecessary in
practice, but are introduced to make the analysis of the methods somewhat simpler,
and to result in a symmetric preconditioner as required for combination with the
conjugate gradient method.

The procedure just outlined involving correcting with the coarse space once each
iteration is referred to as the V-cycle [40]. A similar procedure is the Variable V-cycle,
whereby the number of smoothing iterations in one cycle is increased as coarser
spaces are visited [38]. Another variation is termed the W-cycle, in which two coarse
space corrections are performed per level at each iteration. More generally, the p-
cycle would involve p coarse space corrections per level at each iteration for some
integer p > 1. The full multigrid method [40] or nested iteration technique [85]
begins with the coarse space, prolongates the solution to a finer space, performs a
p-cycle, and repeats the process until a p-cycle is performed on the finest level. The
methods can be depicted as in Figure 10.13.

Complexity of Classical, CG, DD, and Multilevel Methods

We compare the complexity of multilevel methods to some classical linear iterations
for discrete elliptic equations Au = f on the space U (omitting the subscript k here
and below since only one space is involved), where A is an SPD matrix. Our purpose
is to explain briefly the motivation for considering the more complex domain decom-
position and multilevel methods as essential alternatives to the classical methods.
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V-Cycle W-Cycle Nested Iteration

k

k-1

k-2 k-2

k-1

k k

k-2

k-1

Figure 10.13 The V-cycle, the W-cycle, and nested iteration.

Convergence and Complexity of Classical Methods. Since A is SPD, we
may write A = D � L � LT , where D is a diagonal matrix and L a strictly lower-
triangular matrix. The Richardson variation of Algorithm 10.6.1 takes ��1 as the
approximate inverse B ⇡ A�1 of A, where � is a bound on the largest eigenvalue
of A:

ui+1

= (I � ��1A)ui
+ ��1f. (10.6.27)

The Jacobi variation of Algorithm 10.6.1 takes D�1 as the approximate inverse B:

ui+1

= (I �D�1A)ui
+ D�1f. (10.6.28)

In the Gauss-Seidel variant, the approximate inverse is taken to be (D�L)

�1, giving

ui+1

= (I � (D � L)

�1A)ui
+ (D � L)

�1f. (10.6.29)

The SOR variant takes the approximate inverse as !(D � !L)

�1, giving

ui+1

= (I � !(D � !L)

�1A)ui
+ !(D � !L)

�1f. (10.6.30)

When the model problem of the Poisson equation on a uniform mesh is consid-
ered, then the eigenvalues of both A and the error propagation matrix I�BA can be
determined analytically. This allows for an analysis of the convergence rates of the
Richardson, Jacobi, and Gauss-Seidel iterations.

To give an example of the convergence results which are available for these clas-
sical methods, first recall that for the real square matrix A, the splitting A = M �
R is called a regular splitting (see [169]) of A if R > 0, M is nonsingular, and
M�1 > 0. Note that an alternative construction of the Jacobi and Gauss-Seidel
methods is through matrix splittings. For example, given the particular matrix split-
ting A = M �R = D � (L + U), which corresponds to the Jacobi iteration, the
resulting iteration can be written in terms of M and R as follows:

ui+1

= (I �D�1A)ui
+ D�1f = (I �M�1

(M �R))ui
+ M�1f

= M�1Rui
+ M�1f.

Therefore, for a splitting A = M � R, the convergence of the resulting linear
method is governed completely by the spectral radius of the error propagation ma-
trix, ⇢(M�1R). The following standard theorem gives a sufficient condition for
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convergence of the Jacobi and Gauss-Seidel iterations, which can be considered to
be regular splittings of A.

Theorem 10.6.4. If A is an M -matrix, and M is obtained from A by setting off-
diagonal elements of A to zero, then the splitting A = M � R is regular and the
corresponding linear iteration defined by the splitting is convergent: ⇢(M�1R) < 1.

Proof. This follows from Theorem 10.6.1; see also [169].

Given that � is the largest eigenvalue (or an upper bound on the largest eigenvalue)
of A, we remark that Richardson’s method is always trivially convergent since each
eigenvalue �j(E) of E is bounded by 1:

�j(E) = �j(I �BA) = �j(I � ��1A) = 1� ��1�j(A) < 1.

However, the following difficulty makes these classical linear methods impracti-
cal for large problems. Consider the case of the three-dimensional Poisson’s equation
on the unit cube with zero Dirichlet boundary conditions, discretized with the box-
method on a uniform mesh with m meshpoints in each mesh direction (n = m3) and
mesh spacing h = 1/(m + 1). It is well-known that the eigenvalues of the resulting
matrix A can be expressed in closed form

�j = �{p,q,r} = 6� 2 cos p⇡h� 2 cos q⇡h� 2 cos r⇡h, p, q, r = 1, . . . ,m.

Clearly, the largest eigenvalue of A is � = 6(1 � cos m⇡h), and the smallest is
�

1

= 6(1 � cos ⇡h). It is not difficult to show (see [169] or [184] for the two-
dimensional case) that the largest eigenvalue of the Jacobi error propagation matrix
I �D�1A is in this case equal to cos ⇡h. It is also well-known that for consistently
ordered matrices with Property A (see [184]), the spectral radius of the Gauss-Seidel
error propagation matrix is the square of the Jacobi matrix spectral radius; more
generally, the relationship between the Jacobi and Gauss-Seidel spectral radii is given
by the Stein-Rosenberg Theorem (again see [169], or [184]). An expression for the
spectral radius of the SOR error propagation matrix can also be derived; the spectral
radii for the classical methods are then:

• Richardson: ⇢(E) = 1� 6��1

(1� cos ⇡h) ⇡ 1� 3��1⇡2h2

= 1�O(h2

)

• Jacobi: ⇢(E) = cos ⇡h ⇡ 1� 1

2

⇡2h2

= 1�O(h2

)

• Gauss-Seidel: ⇢(E) = cos

2 ⇡h ⇡ 1� ⇡2h2

= 1�O(h2

)

• SOR: ⇢(E) ⇡ 1�O(h)

The same dependence on h is exhibited for one- and two-dimensional problems.
Therein lies the problem: As h ! 0, then for the classical methods, ⇢(E) ! 1, so
that the methods converge more and more slowly as the problem size is increased.

REMARK. An alternative convergence proof for the Jacobi and Gauss-Seidel it-
erations follows simply by noting that the matrix I � E⇤E is A-positive for both
the Jacobi and Gauss-Seidel error propagators E, and by employing Lemma 10.6.2,
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or the related Stein’s Theorem. Stein’s Theorem is the basis for the proof of the
Ostrowski-Reich SOR convergence theorem (see [139]).

In the case of a uniform m ⇥ m ⇥ m mesh and the standard box-method dis-
cretization of Poisson’s equation on the unit cube, the resulting algebraic system is
of dimension N = m3. It is well-known that the computational complexities of
dense, banded, and sparse Gaussian elimination are O(N3

), O(N7/3

), and O(N2

),
respectively, with storage requirements that are also worse than linear (even if the
matrix A itself requires only storage linear in N ). In order to understand how the it-
erative methods we have discussed in this chapter compare to direct methods as well
as to each other in terms of complexity, we must translate their respective known
convergence properties for the model problem into a complexity estimate.

Assume now that the discretization error is O(hs
) for some s > 0, which yields

a practical linear iteration tolerance of ✏ = O(hs
). As remarked earlier, if the

mesh is shape-regular and quasi-uniform, then the mesh size h is related to the
number of discrete unknowns N through the dimension d of the spatial domain as
h = O(N�1/d

). Now, for the model problem, we showed above that the spec-
tral radii of the Richardson, Jacobi, and Gauss-Seidel behave as 1 � O(h2

). Since
� ln(1� ch2

) ⇡ ch2

+O(h4

), we can estimate the number of iterations required to
solve the problem to the level of discretization error from (10.6.6) as follows:

n > | ln ✏|
| ln ⇢(E)| =

| lnhs|
| ln(1� ch2

)| ⇡
|s lnh|

h2

= O
✓

| lnN�1/d|
N�2/d

◆

= O(N2/d
lnN).

Assuming that the cost of each iteration is O(N) due to the sparsity of the matri-
ces produced by standard discretization methods, we have that the total computa-
tional cost to solve the problem using any of the three methods above for d = 3

is O(N5/3

lnN). A similar model problem analysis can be carried out for other
methods.

Convergence and Complexity of Multilevel Methods. Let us now examine
the complexity of multilevel methods. Multilevel methods first appeared in the Rus-
sian literature in [73]. In his 1961 paper Fedorenko, described a two-level method
for solving elliptic equations, and in a second paper from 1964 [74] proved conver-
gence of a multilevel method for Poisson’s equation on the square. Many theoretical
results have been obtained since these first two papers. In short, what can be proven
for multilevel methods under reasonable conditions is that the convergence rate or
contraction number (usually, the energy norm of the error propagator Es) is bounded
by a constant below 1, independent of the mesh size and the number of levels, and
hence the number of unknowns:

kEskA 6 �J < 1. (10.6.31)

In more general situations (such as problems with discontinuous coefficients), analy-
sis yields contraction numbers which decay as the number of levels employed in the
method is increased.
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If a tolerance of ✏ is required, then the computational cost to reduce the energy
norm of the error below the tolerance can be determined from (10.6.6) and (10.6.31):

i > | ln ✏|
| ln �J |

> | ln ✏|
| ln kEskA|

.

The discretization error of O(hs
J) for some s > 0 yields a practical tolerance of

✏ = O(hs
J). As remarked earlier, for a shape-regular and quasi-uniform mesh, the

mesh size hJ is related to the number of discrete unknowns nJ through the dimension
d of the spatial domain as nJ = O(h�d

J ). Assuming that �J < 1 independently of J
and hJ , we have that the maximum number of iterations i required to reach an error
on the order of discretization error is

i > | ln ✏|
| ln �J |

= O(| lnhJ |) = O(| lnn�1/d
J |) = O(lnnJ). (10.6.32)

Consider now that the operation count oJ of a single (p-cycle) iteration of Algo-
rithm 10.6.9 with J levels is given by

oJ = poJ�1

+ CnJ = p(poJ�2

+ CnJ�1

) + CnJ = · · ·

= pJ�1o
1

+ C
J
X

k=2

pJ�knk,

where we assume that the post-smoothing iteration has cost Cnk for some constant
C independent of the level k, and that the cost of a single coarse-level correction is
given by ok�1

. Now, assuming that the cost to solve the coarse problem o
1

can be
ignored, then it is not difficult to show from the expression for oJ above that the com-
putational cost of each multilevel iteration is O(nJ) if (and only if) the dimensions
of the spaces Hk satisfy

nk
1

<
C

1

pk
2

�k
1

nk
2

, 8k
1

, k
2

, k
1

< k
2

6 J,

where C
1

is independent of k. This implies both of the following:

nk <
C

1

p
nk+1

, nk <
C

1

pJ�k
nJ , k = 1, . . . , J � 1.

Consider the case of nonuniform Cartesian meshes which are successively refined,
so that hk

1

= 2

k
2

�k
1hk

2

for k
1

< k
2

, and in particular hk�1

= 2hk. This gives

nk
1

= C
2

h�d
k
1

= C
2

(2

k
2

�k
1hk

2

)

�d
= C

2

2

�d(k
2

�k
1

)

(C
3

n�1/d
k
2

)

�d

=

C
2

C�d
3

(2

d
)

k
2

�k
1

nk
2

.

Therefore, if 2

d(k
2

�k
1

) > pk
2

�k
1 , or if 2

d > p, which is true in two dimensions
(d = 2) for p 6 3, and in three dimensions (d = 3) for p 6 7, then each multilevel
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Table 10.1 Model problem computational complexities of various solvers.

Method 3D 3D

Dense Gaussian elimination O(N3) O(N3)
Banded Gaussian elimination O(N2) O(N2.33)
Sparse Gaussian elimination O(N1.5) O(N2)

Richardson’s method O(N2 ln N) O(N1.67 ln N)
Jacobi iteration O(N2 ln N) O(N1.67 ln N)
Gauss-Seidel iteration O(N2 ln N) O(N1.67 ln N)
SOR O(N1.5 ln N) O(N1.33 ln N)

Conjugate gradient methods (CG) O(N1.5 ln N) O(N1.33 ln N)
Preconditioned CG O(N1.25 ln N) O(N1.17 ln N)
Multilevel methods O(N ln N) O(N ln N)

Nested multilevel methods O(N) O(N)
Domain decomposition methods O(N) O(N)

iteration has complexity O(nJ). In particular, one V-cycle (p = 1) or W-cycle
(p = 2) iteration has complexity O(nJ) for nonuniform Cartesian meshes in two
and three dimensions.

If these conditions on the dimensions of the spaces are satisfied, so that each
multilevel iteration has cost O(nJ), then combining this with equation (10.6.32)
implies that the overall complexity to solve the problem with a multilevel method
is O(nJ lnnJ). By using the nested iteration, it is not difficult to show using an
inductive argument (see [85]) that the multilevel method improves to optimal order
O(nJ) if �J < 1 independent of J and hJ , meaning that the computational cost to
solve a problem with nJ pieces of data is CnJ , for some constant C which does
not depend on nJ . Theoretical multilevel studies first appeared in the late 1970s and
continuing up through the present have focused on extending the proofs of optimality
(or near optimality) to larger classes of problems.

To summarize, the complexities of the methods we have discussed in this chapter
plus a few others are given in Table 10.1. The complexities for the conjugate gra-
dient methods applied to the model problem may be found in [12]. The entry for
domain decomposition methods is based on the assumption that the complexity of
the solver on each subdomain is linear in the number of degrees of freedom in the
subdomain (usually requiring the use of a multilevel method), and on the assumption
that a global coarse space is solved to prevent the decay of the condition number or
contraction constant with the number of subdomains. This table states clearly the
motivation for considering the use of multilevel and domain decomposition methods
for the numerical solution of elliptic partial differential equations.
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EXERCISES

10.6.1 Derivation of the conjugate gradient method.

1. The Cayley-Hamilton Theorem states that a square n⇥ n matrix M sat-
isfies its own characteristic equation:

Pn(M) = 0.

Using this result, prove that if M is also nonsingular, then the matrix
M�1 can be written as a matrix polynomial of degree n� 1 in M , or

M�1

= Qn�1

(M).

2. Given an SPD matrix A, show that it defines a new inner product

(u, v)A = (Au, v) =

n
X

i=1

(Au)ivi, 8u, v 2 Rn,

called the A-inner product; that is, show that (u, v)A is a “true” inner
product, in that it satisfies the inner product axioms.

3. Recall that the transpose MT of an n⇥ n matrix M is defined as

MT
ij = Mji.

We observed in Section 3.4 that an equivalent characterization of the
transpose matrix MT is that it is the unique adjoint operator satisfying

(Mu, v) = (u, MT v), 8u, v 2 Rn,

where (·, ·) is the usual Euclidean inner product,

(u, v) =

n
X

i=1

uivi.

The A-adjoint of a matrix M , denoted M⇤, is defined as the adjoint in
the A-inner product; that his, the unique matrix satisfying

(AMu, v) = (Au, M⇤v), 8u, v 2 Rn.

Show that that an equivalent definition of M⇤ is

M⇤
= A�1MT A.

4. Consider now the matrix equation

Au = f,
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where A is an n ⇥ n SPD matrix, and u and f are n-vectors. It is com-
mon to “precondition” such an equation before attempting a numerical
solution, by multiplying by an approximate inverse operator B ⇡ A�1

and then solving the preconditioned system:

BAu = Bf.

If A and B are both SPD, under what conditions is BA also SPD? Show
that if A and B are both SPD, then BA is A-SPD (symmetric and positive
in the A-inner product).

5. Given an initial guess u0 for the solution of BAu = Bf , we can form
the initial residuals

r0

= f �Au0, s0

= Br0

= Bf �BAu0.

Do a simple manipulation to show that the solution u can be written as

u = u0

+ Qn�1

(BA)s0,

where Q(·) is the matrix polynomial representing (BA)

�1. In other
words, you have established that the solution u lies in a translated Krylov
space:

u 2 u0

+ Kn�1

(BA, s0

),

where

Kn�1

(BA, s0

) = span{s0, BAs0, (BA)

2s0, . . . , (BA)

n�1s0}.

Note that we can view the Krylov spaces as a sequence of expanding
subspaces

K
0

(BA, s0

) ⇢ K
1

(BA, s0

) ⇢ · · · ⇢ Kn�1

(BA, s0

).

6. We will now try to construct an iterative method (the CG method) for
finding u. The algorithm determines the best approximation uk to u in a
subspace Kk(BA, s0

) at each step k of the algorithm, by forming

uk+1

= uk
+ ↵kpk,

where pk is such that pk 2 Kk(BA, s0

) at step k, but pk 62 Kj(BA, s0

)

for j < k. In addition, we want to enforce minimization of the error in
the A-norm,

kek+1kA = ku� uk+1kA,

at step k of the algorithm. The next iteration expands the subspace to
Kk+1

(BA, s0

), finds the best approximation in the expanded space, and
so on, until the exact solution in Kn�1

(BA, s0

) is reached.
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To realize this algorithm, let us consider how to construct the required
vectors pk in an efficient way. Let p0

= s0, and consider the construction
of an A-orthogonal basis for Kn�1

(BA, s0

) using the standard Gram-
Schmidt procedure:

pk+1

= BApk �
k
X

i=0

(BApk, pi
)A

(pi, pi
)A

pi, k = 0, . . . , n� 2.

At each step of the procedure, we will have generated an A-orthogonal
(orthogonal in the A-inner product) basis {p0, . . . , pk} for Kk(BA, s0

).
Now, note that by construction,

(pk, v)A = 0, 8v 2 Kj(BA, s0

), j < k.

Using this fact and the fact you established previously that BA is A-self-
adjoint, show that the Gram-Schmidt procedure has only three nonzero
terms in the sum; namely, for k = 0, . . . , n� 1, it holds that

pk+1

= BApk � (BApk, pk
)A

(pk, pk
)A

pk � (BApk, pk�1

)A

(pk�1, pk�1

)A
pk�1.

Thus, there exists an efficient three-term recursion for generating the A-
orthogonal basis for the solution space. Note that this three-term re-
cursion is possible due to the fact that we are working with orthogonal
(matrix) polynomials!

7. We can nearly write down the CG method now, by attempting to expand
the solution in terms of our cheaply generated A-orthogonal basis. How-
ever, we need to determine how far to move in each “conjugate” direction
pk at step k after we generate pk from the recursion. As remarked earlier,
we would like to enforce minimization of the quantity

kek+1kA = ku� uk+1kA

at step k of the iterative algorithm. It is not difficult to show that this is
equivalent to enforcing

(ek+1, pk
)A = 0.

Let’s assume that we have somehow enforced

(ek, pi
)A = 0, i < k,

at the previous step of the algorithm. We have at our disposal pk 2
Kk(BA, s0

), and let’s take our new approximation at step k + 1 as

uk+1

= uk
+ ↵kpk,
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for some step length ↵k 2 R in the direction pk. Thus, the error in the
new approximation is simply

ek+1

= ek
+ ↵kpk.

Show that in order to enforce (ek+1, pk
)A = 0, we must choose ↵k to be

↵k =

(rk, pk
)

(pk, pk
)A

.

The final algorithm is now as follows.

The Conjugate Gradient Algorithm
Let u0 2 H be given.
r0 = f �Au0, s0 = Br0, p0 = s0.
Do k = 0, 1, . . . until convergence:

↵
k

= (rk, pk)/(pk, pk)
A

uk+1 = uk + ↵
k

pk

rk+1 = rk � ↵
k

Apk

sk+1 = Brk+1

�
k+1 = �(BApk, pk)

A

/(pk, pk)
A

�
k+1 = �(BApk, pk�1)

A

/(pk�1, pk�1)
A

pk+1 = BApk + �
k+1p

k + �
k+1p

k�1

End do.

8. Show that equivalent expressions for some of the parameters in CG are:

(a) ↵k = (rk, sk
)/(pk, pk

)A

(b) �k+1

= (rk+1, sk+1

)/(rk, sk
)

(c) pk+1

= sk+1

+ �k+1

pk

In other words, the CG algorithm you have derived from first princi-
ples in this exercise, using only the idea of orthogonal projection onto
an expanding set of subspaces, is mathematically equivalent to Algo-
rithm 10.6.2.
Remark: The CG algorithm that appears in most textbooks is formulated
to employ these equivalent expressions due to the reduction in computa-
tional work of each iteration.

10.6.2 Properties of the conjugate gradient method.

In this exercise, we will establish some simple properties of the CG method
derived in Exercise 10.6.1. (Although this analysis is standard, you will have
difficulty finding all of the pieces in one text.)

1. It is not difficult to show that the error in the CG algorithm propagates as

ek+1

= [I �BApk(BA)]e0,
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where pk 2 Pk, the space of polynomials of degree k. By construction,
we know that this polynomial is such that

kek+1kA = min

p
k

2P
k

k[I �BApk(BA)]e0kA.

Now, since BA is A-SPD, we know that it has real positive eigenvalues
�j 2 �(BA), and further, that the corresponding eigenvectors vj of BA
are orthonormal. Using the expansion of the initial error

e0

=

n
X

j=1

↵jvj ,

establish the inequality

kek+1kA 6
 

min

p
k

2P
k

"

max

�
j

2�(BA)

|1� �jpk(�j)|
#!

ke0kA.

The polynomial which minimizes the maximum norm above is said to
solve a mini-max problem.

2. It is well-known in approximation theory that the Chebyshev polynomi-
als

Tk(x) = cos(k arccos x)

solve mini-max problems of the type above, in the sense that they devi-
ate least from zero (in the max-norm sense) in the interval [�1, 1], which
can be shown to be due to their unique equi-oscillation property. (These
facts can be found in any introductory numerical analysis text.) If we
extend the Chebyshev polynomials outside the interval [�1, 1] in the nat-
ural way, it can be shown that shifted and scaled forms of the Chebyshev
polynomials solve the mini-max problem above. In particular, the solu-
tion is simply

1� �pk(�) = p̃k+1

(�) =

Tk+1

✓

�
max

+ �
min

� 2�

�
max

� �
min

◆

Tk+1

✓

�
max

+ �
min

�
max

� �
min

◆ .

Use an obvious property of the polynomials Tk+1

(x) to conclude that

kek+1kA 6


Tk+1

✓

�
max

+ �
min

�
max

� �
min

◆��1

ke
0

kA.
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3. Use one of the Chebyshev polynomial results given in Exercise 10.6.3
below to refine this inequality to

kek+1kA 6 2

0

B

B

B

B

@

s

�
max

(BA)

�
min

(BA)

� 1

s

�
max

(BA)

�
min

(BA)

+ 1

1

C

C

C

C

A

k+1

ke0kA.

Now, recall that the A-condition number of the matrix BA is defined just
as the normal condition number, except employing the A-norm:

A(BA) = kBAkAk(BA)

�1kA.

Since the matrix BA is A-self-adjoint, it can be shown that, in fact,

A(BA) = kBAkAk(BA)

�1kA =

�
max

(BA)

�
min

(BA)

,

so that the error reduction inequality above can be written more simply
as

kek+1kA 6 2

 

p

A(BA)� 1

p

A(BA) + 1

!k+1

ke0kA

= 2

 

1� 2

1 +

p

A(BA)

!k+1

ke0kA.

4. Assume that we would like to achieve the following accuracy in our iter-
ation after some number of steps n:

ken+1kA

ke0kA
< ✏.

Using the approximation
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✓

a� 1

a + 1

◆

= ln

✓

1 + (�1/a)

1� (�1/a)

◆
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✓
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◆
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✓

�1

a

◆
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+

1

5

✓

�1

a

◆
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+ · · ·
#
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�2

a
,

show that we can achieve this error tolerance if n satisfies

n = O
⇣

1/2

A (BA)

�

�

�

ln

✏

2

�

�

�

⌘

.
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5. Many types of matrices have O(1) nonzeros per row (for example, fi-
nite element and other discretizations of ordinary and partial differential
equations.) If A is an n ⇥ n matrix, then the cost of one iteration of
CG (Algorithm 10.6.2) will be O(n), as would one iteration of the ba-
sic linear method (Algorithm 10.6.1). What is the overall complexity [in
terms of n and A(BA)] to solve the problem to a given tolerance ✏? If
A(BA) can be bounded by a constant, independent of the problem size
n, what is the complexity? Is this then an optimal method?

10.6.3 Properties of the Chebyshev polynomials.

The Chebyshev polynomials are defined as

tn(x) = cos(n cos

�1 x), n = 0, 1, 2, . . . .

Taking t
0

(x) = 1, t
1

(x) = x, it can be shown that the Chebyshev polynomi-
als are an orthogonal family that can be generated by the standard recursion
(which holds for any orthogonal polynomial family):

tn+1

(x) = 2t
1

(x)tn(x)� tn�1

(x), n = 1, 2, 3, . . . .

Prove the following extremely useful relationships:

tk(x) =

1

2



⇣

x +

p

x2 � 1

⌘k

+

⇣

x�
p

x2 � 1

⌘k
�

, 8x, (10.6.33)

tk

✓

↵ + 1

↵� 1

◆

>
1

2

✓p
↵ + 1p
↵� 1

◆k

, 8↵ > 1. (10.6.34)

These two results are fundamental in the convergence analysis of the conjugate
gradient method in the earlier exercises in the section. [Hint: For the first
result, use the fact that cos k✓ = (eik✓

+ e�ik✓
)/2. The second result will

follow from the first after some algebra.]

10.7 METHODS FOR NONLINEAR EQUATIONS

Building on the material assembled in Section 10.1 on nonlinear equations and cal-
culus in Banach spaces, we now consider some of the classical nonlinear iterations
and nonlinear conjugate gradient methods for solving nonlinear equations in finite-
dimensional Hilbert spaces. Newton-like methods are then reviewed, including in-
exact variations and global convergence modifications. We then discuss damped
inexact Newton multilevel methods, which involve the coupling of damped New-
ton methods with linear multilevel methods for approximate solution of the lin-
earized systems. We then combine the damping (or backtracking) parameter se-
lection and linear iteration tolerance specification to ensure global superlinear con-
vergence. We also describe nonlinear multilevel methods proposed by Hackbusch
and others, which do not involve an outer Newton iteration.
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While we only have space to cover a few of the main ideas, our discussion in this
section follows closely some of the standard references for nonlinear equations in
Rn, such as [78, 140], as well as standard references for generalizations to Banach
spaces, such as [108, 188]. For Newton multilevel-type methods, we also follow
material from the research monographs [63, 85], as well as the articles [21, 22] and
several other references cited in the text.

Standard Methods for Nonlinear Equations in Rn

Let H be a Hilbert space, endowed with an inner product (·, ·) which induces a norm
k · k. Given a map F : H! H such that F (u) = Au + B(u), where B : H! H is
a nonlinear operator and where A : H! H is an invertible linear operator, we are
interested in solutions to the following mathematically equivalent problems: Find
u 2 H such that any of the following hold:

F (u) = 0, (10.7.1)
Au + B(u) = 0, (10.7.2)

u = T (u), (10.7.3)

where
F (u) = Au + B(u), T (u) = �A�1B(u), (10.7.4)

with T : H ! H. These three familiar-looking equations also arose at the end of
Section 10.1 in our discussions of fixed-point theorems and ordered Banach spaces.
In this section, we are interested in iterative algorithms for solving equation (10.7.1)
or (10.7.2) in the setting of a finite-dimensional Hilbert space H. We will focus
entirely on general iterations of the form

ui+1

= T (ui
), (10.7.5)

where T is as in (10.7.4), or more generally is any mapping which is constructed to
have as its fixed point the unique solution u of (10.7.1) and (10.7.2).

The nonlinear extensions of the classical linear methods fit into this framework, as
well as the Newton-like methods. Our interest in improved convergence, efficiency,
and robustness properties will lead us to damped inexact Newton multilevel methods
and nonlinear multilevel methods. We are particularly interested in the nonlinear
equations which arise from discretizations of the types of semilinear elliptic partial
differential equations we considered in detail in Section 10.4, leading to equations
which have the additional structure (10.7.2). It will be useful to consider the follow-
ing variation of (10.7.2), which obviously can be rewritten in the form of (10.7.2) by
suitably redefining the operator B:

Akuk + Bk(uk) = fk. (10.7.6)

These types of equations will arise from a box or finite element discretization of
the types of semilinear elliptic partial differential equations we encountered in Sec-
tion 10.4, as discussed in some detail in Section 10.5. The space of grid functions uk
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with values at the nodes of the mesh will be denoted as Uk, and equation (10.7.6) may
be interpreted as a nonlinear algebraic equation in the space Uk. Equation (10.7.6)
may also be interpreted as an abstract operator equation in the finite element space
Vk, as discussed in detail in Sections 10.5 and 10.6. In either case, the operator Ak

is necessarily symmetric positive definite (SPD) for the problems and discretization
methods we consider, while the form and properties of the nonlinear term Bk(·)
depend on the particular problem.

To discuss algorithms for (10.7.6), and in particular multilevel algorithms, we
will need a nested sequence of finite-dimensional spaces H

1

⇢ H
2

⇢ · · ·HJ ⌘ H,
which are connected by prolongation and restriction operators, as discussed in detail
in Section 10.6. We are given the abstract nonlinear problem in the finest space H:

Find u 2 H such that Au + B(u) = f, (10.7.7)

where A 2 L(H,H) is SPD and B(·) : H ! H is a nonlinearity which yields a
uniquely solvable problem, and we are interested in iterative algorithms for deter-
mining the unique solution u which involves solving problems of the form:

Find uk 2 Hk such that Akuk + Bk(uk) = fk, (10.7.8)

in the coarser spaces Hk for 1 6 k < J . When only the finest space H is em-
ployed, we will omit the subscripts on functions, operators, and spaces to simplify
the notation.

Nonlinear Extensions of Classical Linear Methods. In this section we re-
view nonlinear conjugate gradient methods and Newton-like methods; we also make
a few remarks about extensions of the classical linear methods. We discuss at some
length the one-dimensional line search required in the Fletcher-Reeves nonlinear
conjugate gradient method, which we will use later for computing a global con-
vergence damping parameter in nonlinear multilevel methods.

In Section 4.8 we discussed three distinct notions of convergence in a Banach or
Hilbert space: strong convergence (often called simply convergence), weak conver-
gence, and weak-* convergence. One result we showed was that strong convergence
implies weak convergence (Theorem 4.8.5), although the reverse is generally not
true. However, in the setting of practical algorithms for linear and nonlinear equa-
tions, which take place in finite-dimensional Banach spaces, these three notions of
convergence are all equivalent; therefore, here we are interested simply in strong
convergence of sequences generated by iterative algorithms. Let X be a Banach
space, and for ease of exposition denote the norm on X as k · k = k · kX . Recall
that the sequence {ui} with ui 2 X is said to converge strongly to u 2 X if
limi!1 ku � uik = 0. In Section 4.8 we also defined several distinct notions of
the rate of (strong) convergence of a sequence, such as Q-linear, Q-superlinear, Q-
order(p), and R-order(p). We are interested primarily here in fixed point iterations
of the form (10.7.5), where the nonlinear mapping T (·) is the fixed point mapping.
If T (·) represents some iterative technique for obtaining the solution to a problem,
it is important to understand what are necessary or at least sufficient conditions for
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this iteration to converge to a solution, and what its convergence properties are (such
as rate). Recall that in Chapter 4 and also in Section 10.1 we examined contraction
operators, which are maps T : U ⇢ X ! U ⇢ X having the property

kT (u)� T (v)k 6 ↵ku� vk, 8u, v 2 U, ↵ 2 [0, 1),

for some contraction constant ↵ 2 [0, 1). In Section 4.4 we stated and proved the
Banach Fixed-Point Theorem (or Contraction Mapping Theorem). The version of
the theorem we gave ensured that a fixed point iteration involving a contraction in a
closed subset of a Banach space will converge to a unique fixed point. However, in
the proof given in Chapter 4, two results were established as intermediate steps that
were not stated as separate conclusions of the theorem, but in fact have importance
here; the first is that the convergence rate of the iteration is actually Q-linear, and the
second is that the error at each iteration may be bounded by the contraction constant.
In Section 10.1 we have restated a version of the Banach Fixed-Point Theorem from
Chapter 4, but with these two additional conclusions emphasized.

The classical linear methods discussed in Section 10.6, such as Jacobi and Gauss-
Seidel, can be extended in the obvious way to nonlinear algebraic equations of the
form (10.7.6). In each case, the method can be viewed as a fixed point iteration of
the form (10.7.5). Of course, implementation of these methods, which we refer to
as nonlinear Jacobi and nonlinear Gauss-Seidel methods, now requires the solution
of a sequence of one-dimensional nonlinear problems for each unknown in one step
of the method. A variation that works well, even compared to newer methods, is the
nonlinear SOR method. The convergence properties of these types of methods, as
well as a myriad of variations and related methods, are discussed in detail in [140].
Note, however, that the same difficulty arising in the linear case also arises here: As
the problem size is increased (the mesh size is reduced), these methods converge
more and more slowly. As a result, we consider alternative methods, such as non-
linear conjugate gradient methods, Newton-like methods, and nonlinear multilevel
methods.

Note that since the one-dimensional problems arising in the nonlinear Jacobi and
nonlinear Gauss-Seidel methods are often solved with Newton’s method, the meth-
ods are also referred to as Jacobi-Newton and Gauss-Seidel-Newton methods, mean-
ing that the Jacobi or Gauss-Seidel iteration is the main or outer iteration, whereas
the inner iteration is performed by Newton’s method. Momentarily we will consider
the other situation: The use of Newton’s method as the outer iteration, and a linear
iterative method such as multigrid for solution of the linear Jacobian system at each
outer Newton iteration. We refer to this method as a Newton multilevel method.

Nonlinear Conjugate Gradient Methods. As we have seen in Sections 10.1
and 10.4, the following minimization problem:

Find u 2 H such that J(u) = min

v2H
J(v), where J(u) =

1

2

(Au, u) + G(u)� (f, u)

is equivalent to the associated zero-point problem:

Find u 2 H such that F (u) = Au + B(u)� f = 0,
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where B(u) = G0(u). We assume here that both problems are uniquely solvable. An
effective approach for solving the zero-point problem, by exploiting the connection
with the minimization problem, is the Fletcher-Reeves version [76] of the nonlinear
conjugate gradient method, which takes the form:

Algorithm 10.7.1 (Fletcher-Reeves Nonlinear CG Method).

Let u0 2 H be given.
r0 = f �B(u0)�Au0, p0 = r0.
Do i = 0, 1, . . . until convergence:

↵
i

= (see below)
ui+1 = ui + ↵

i

pi

ri+1 = ri + B(ui)�B(ui+1)� ↵
i

Api

�
i+1 = (ri+1, ri+1)/(ri, ri)

pi+1 = ri+1 + �
i+1pi

End do.

The expression for the residual ri+1 is from

ri+1

= �F (ui+1

) (10.7.9)

= f �B(ui+1

)�Aui+1 (10.7.10)

= (f �B(ui
)�Aui

) + B(ui
)�B(ui+1

) + A(ui � ui+1

) (10.7.11)

= ri
+ B(ui

)�B(ui+1

)� ↵iApi, (10.7.12)

where ui � ui+1

= ↵ipi has been used to obtain the last expresion; this holds by
the definition of ui+1 in the second step of the “Do Loop” in Algorithm 10.7.1. The
directions pi are computed from the previous direction and the new residual, and the
steplength ↵i is chosen to minimize the associated functional J(·) in the direction
pi. In other words, ↵i is chosen to minimize J(ui

+ ↵ipi
), which is equivalent to

solving the one-dimensional zero-point problem:

dJ(ui
+ ↵ipi

)

d↵i
= 0.

Given the form of J(·) above, we have that

J(ui
+ ↵ip

i
) =

1

2

(A(ui
+ ↵ip

i
), ui

+ ↵ip
i
) + G(ui

+ ↵ip
i
)� (f, ui

+ ↵ip
i
).

A simple differentiation with respect to ↵i (and some simplification) gives

dJ(ui
+ ↵ipi

)

d↵i
= ↵i(Api, pi

)� (ri, pi
) + (B(ui

+ ↵ip
i
)�B(ui

), pi
),

where ri
= f � B(ui

) � Aui
= �F (ui

) is the nonlinear residual. The second
derivative with respect to ↵i will be useful also, and is easily seen to be

d2J(ui
+ ↵ipi

)

d↵2

i

= (Api, pi
) + (B0

(ui
+ ↵ip

i
)pi, pi

).



10.7 METHODS FOR NONLINEAR EQUATIONS 815

Now, Newton’s method for solving the zero-point problem for ↵i takes the form

↵m+1

i = ↵m
i � �m,

where

�m
=

dJ(ui
+ ↵m

i pi
)/d↵i

d2J(ui
+ ↵m

i pi
)/d↵2

i

=

↵m
i (Api, pi

)� (ri, pi
) + (B(ui

+ ↵m
i pi

)�B(ui
), pi

)

(Api, pi
) + (B0

(ui
+ ↵m

i pi
)pi, pi

)

.

The quantities (Api, pi
) and (ri, pi

) can be computed once at the start of each line
search for ↵i, each requiring an inner product (Api is available from the CG iter-
ation). Each Newton iteration for the new ↵m+1

i then requires evaluation of the
nonlinear term B(ui

+ ↵m
i pi

) and inner product with pi, as well as evaluation of the
derivative mapping B0

(ui
+ ↵ipi

), application to pi, followed by inner product with
pi.

In the case that B(·) arises from the discretization of a nonlinear partial differen-
tial equation and is of diagonal form, meaning that the j-th component function of
the vector B(·) is a function of only the j-th component of the vector of nodal values
u, or Bj(u) = Bj(uj), then the resulting Jacobian matrix B0

(·) of B(·) is a diag-
onal matrix. This situation occurs with box-method discretizations or mass-lumped
finite element discretizations of semilinear problems. As a result, computing the
term (B0

(ui
+ ↵ipi

)pi, pi
) can be performed with fewer operations than two inner

products.
The total cost for each Newton iteration (beyond the first) is then evaluation of

B(·) and B0
(·), and something less than three inner products. Therefore, the line

search can be performed fairly inexpensively in certain situations. If alternative
methods are used to solve the one-dimensional problem defining ↵i, then evalu-
ation of the Jacobian matrix can be avoided altogether, although as we remarked
earlier, the Jacobian matrix is cheaply computable in the particular applications we
are interested in here.

Note that if the nonlinear term B(·) is absent, then the zero-point problem is linear
and the associated energy functional is quadratic:

F (u) = Au� f = 0, J(u) =

1

2

(Au, u)� (f, u).

In this case, the Fletcher-Reeves CG algorithm reduces to exactly the Hestenes-
Stiefel [92] linear conjugate gradient algorithm (Algorithm 10.6.2 with the precon-
ditioner B = I). The exact solution to the linear problem Au = f , as well as to the
associated minimization problem, can be reached in no more than nk steps (in exact
arithmetic, that is), where nk is the dimension of the space H (see, for example,
[140]). The calculation of the steplength ↵i no longer requires the iterative solution
of a one-dimensional minimization problem with Newton’s method, since

dJ(ui
+ ↵ipi

)

d↵i
= ↵i(Api, pi

)� (ri, pi
) = 0



816 10 APPROXIMATION THEORY AND METHODS

yields an explicit expression for the ↵i which minimizes the functional J in the
direction pi:

↵i =

(ri, pi
)

(Api, pi
)

.

See Exercise 10.6.1 for a guided derivation of the linear conjugate gradient method
from first principles.

Newton’s Method. We now consider one of the most powerful techniques for
solving nonlinear problems: Newton’s method. A classic reference for much of
the following material is [78]. Given the nonlinear map F : D ⇢ H! H for some
finite-dimensional Hilbert space H, where F 2 C2

(H), we can derive Newton’s
method by starting with the generalized Taylor expansion (Theorem 10.1.2):

F (u + h) = F (u) + F 0(u)h +O(khk2). (10.7.13)

One wants to find u 2 D ⇢ H such that F (u) = 0, but have only an initial ap-
proximation u0 ⇡ u. If the Taylor expansion could be used to determine h such that
F (u0

+ h) = 0, then the problem would be solved by taking u = u0

+ h. Although
the Taylor expansion is an infinite series in h, we can solve approximately for h by
truncating the series after the first two terms, leaving

0 = F (u0

+ h) = F (u0

) + F 0(u0

)h. (10.7.14)

Writing this as an iteration leads to

F 0(ui
)hi

= �F (ui
)

ui+1

= ui
+ hi.

In other words, the Newton iteration is simply the fixed point iteration

ui+1

= T (ui
) = ui � F 0(ui

)

�1F (ui
). (10.7.15)

By viewing the Newton iteration as a fixed point iteration, a very general convergence
theorem can be proven in a general Banach space X .

Theorem 10.7.1 (Newton Kantorovich Theorem). Let X be a Banach space, let
D ⇢ X be an open set, and let F 2 C1

(D;X). If there exists u0 2 D and an open
ball B⇢(u0

) ⇢ D of radius ⇢ > 0 about u0 such that

(1) F 0(u0

) is nonsingular, with kF 0(u0

)

�1kL(X,X)

6 �,
(2) ku1 � u0kX = kF 0(u0

)

�1F (u0

)kX 6 ↵,
(3) kF 0(u)� F 0(v)kX 6 �ku� vkX , 8u, v 2 B⇢(u0

),
(4) ↵�� < 1

2

, and ⇢ 6 [1�
p

1� 2↵��]/[��],

then the Newton iterates produced by (10.7.15) converge strongly at a q-linear rate
to a unique u⇤ 2 B⇢(u0

) ⇢ D.

Proof. See, for example [108, 140, 188].
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If one assumes the existence of the solution F (u⇤) = 0, then theorems such as
the following one (see also [111]) give an improved rate of convergence.

Theorem 10.7.2 (Quadratic Convergence of Newton’s Method). Let X be a Banach
space, let D ⇢ X be an open set, and let F 2 C1

(D;X). If there exists u⇤ 2 D and
an open ball B⇢(u⇤) ⇢ D of radius ⇢ > 0 about u⇤ such that

(1) F (u⇤) = 0,
(2) F 0(u⇤) is nonsingular, with kF 0(u⇤)�1kL(X,X)

6 �,
(3) kF 0(u)� F 0(v)kX 6 �ku� vkX , 8u, v 2 B⇢(u⇤),
(4) ⇢�� < 2

3

,

then for any u0 2 B⇢(u⇤) ⇢ D, the Newton iterates produced by (10.7.15) are
well-defined and remain in B⇢(u⇤), and converge strongly at a q-quadratic rate to
u⇤ 2 B⇢(u0

) ⇢ D.

Proof. Since by assumption the ball B⇢(u⇤) is already contained in D, we can take
✓ = ⇢�� < 2/3 in the Inverse Perturbation Lemma (Lemma 10.1.2), to extend the
bound on the inverse of F 0 in assumption (2) to all of B⇢(u⇤):

k[F 0(u)]

�1kL(X,Y )

6 �

1� ⇢��
, 8u 2 B⇢(u

⇤
). (10.7.16)

We now consider the behavior of the error in the Newton iteration:

un+1 � u⇤ = �[F 0(un
)]

�1F (un
)� u⇤

= [F 0(un
)]

�1

[F (u⇤)� F (un
)� F 0(un

)u⇤]

= [F 0(un
)]

�1

[F (un
+ h)� {F (un

) + F 0(un
)(un

+ h)}], (10.7.17)

where we have defined h = u⇤�un and used the fact that F (u⇤) = 0. Taking norms
of both sides of (10.7.17) and employing (10.7.16) and the Linear Approximation
Lemma (Lemma 10.1.1), gives

kun+1 � u⇤kX = k[F 0(un
)]

�1

[F (un
+ h)� {F (un

) + F 0(un
)(un

+ h)}]k
= k[F 0(un

)]

�1kL(X,X)

· k[F (un
+ h)� {F (un

) + F 0(un
)(un

+ h)}]kL(X,X)

6 ��

2(1� ⇢��)

ku⇤ � unk2X .

Since ku⇤ � unkX 6 ⇢ and

0 <
��

2(1� ⇢��)

6 1

⇢

✓

⇢��

2(1� ⇢��)

◆

6 1

⇢

✓

1

2

· 2

3

· 3
◆

6 1

⇢
,

we have kun+1 � u⇤kX 6 ku⇤ � unkX 6 ⇢, giving un+1 2 B⇢(u⇤), which com-
pletes the proof.
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There are several variations of the standard Newton iteration (10.7.15) commonly
used for nonlinear algebraic equations which we mention briefly. A quasi-Newton
method refers to a method which uses an approximation to the true Jacobian ma-
trix for solving the Newton equations. A truncated-Newton method uses the true
Jacobian matrix in the Newton iteration, but solves the Jacobian system only ap-
proximately, using an iterative linear solver in which the iteration is stopped early
or truncated. These types of methods are referred to collectively as Inexact or ap-
proximate Newton methods, where in the most general case an approximate Newton
direction is produced in some unspecified fashion. It can be shown that the conver-
gence behavior of these inexact Newton methods is similar to the standard Newton’s
method, and theorems similar to (10.7.1) can be established (see [108] and the dis-
cussions below).

Global Inexact Newton Iteration

For our purposes here, the inexact Newton approach will be of interest, for the fol-
lowing reasons. First, in the case of semilinear partial differential equations which
consist of a leading linear term plus a nonlinear term which does not depend on
derivatives of the solution, the nonlinear algebraic equations generated often have
the form

F (u) = Au + B(u)� f = 0.

The matrix A is SPD, and the nonlinear term B(·) is often simple, and in fact is often
of diagonal form, meaning that the j-th component of the vector function B(u) is a
function of only the j-th entry of the vector u, or Bj(u) = Bj(uj); this occurs, for
example, in the case of a box-method discretization, or a mass-lumped finite element
discretization of semilinear equations. Further, it is often the case that the derivative
B0

(·) of the nonlinear term B(·), which will be a diagonal matrix due to the fact that
B(·) is of diagonal form, can be computed (and applied to a vector) at low expense.
If this is the case, then the true Jacobian matrix is available at low cost:

F 0(u) = A + B0
(u).

A second reason for our interest in the inexact Newton approach is that the ef-
ficient multilevel methods described in Section 10.6 for the linearized semilinear
equations can be used effectively for the Jacobian systems; this is because the Jaco-
bian F 0(u) is essentially the linearized semilinear operator, where only the diagonal
Helmholtz-like term B0

(·) changes from one Newton iteration to the next.
Regarding the assumptions on the function F (·) and the Jacobian F 0(·) appearing

in Theorem 10.7.1, although they may seem unnatural at first glance, they are essen-
tially the minimal conditions necessary to show that the Newton iteration, viewed
as a fixed point iteration, is a contraction, so that a contraction argument may be
employed (see [108]). Since a contraction argument is used, no assumptions on the
existence or uniqueness of a solution are required. A disadvantage of proving New-
ton convergence through a contraction argument is that only Q-linear convergence is
shown. This can be improved to R-quadratic through the idea of majorization [108].



10.7 METHODS FOR NONLINEAR EQUATIONS 819

If additional assumptions are made, such as the existence of a unique solution, then
Q-quadratic convergence can be shown; see [108, 140].

Global Newton Convergence Through Damping. As noted in the preceding
section, Newton-like methods converge if the initial approximation is “close” to the
solution; different convergence theorems require different notions of closeness. If the
initial approximation is close enough to the solution, then superlinear or Q-order(p)
convergence occurs. However, the fact that these theorems require a good initial
approximation is also indicated in practice: it is well known that Newton’s method
will converge slowly or fail to converge at all if the initial approximation is not good
enough.

On the other hand, methods such as those used for unconstrained minimization
can be considered to be “globally” convergent methods, although their convergence
rates are often extremely poor. One approach to improving the robustness of a New-
ton iteration without losing the favorable convergence properties close to the solution
is to combine the iteration with a global minimization method. In other words, we
can attempt to force global convergence of Newton’s method by requiring that

kF (ui+1

)k < kF (ui
)k,

meaning that we require a decrease in the value of the function at each iteration. But
this is exactly what global minimization methods, such as the nonlinear conjugate
gradient method, attempt to achieve: progress toward the solution at each step.

More formally, we wish to define a minimization problem, such that the solution
of the zero-point problem we are interested in also solves the associated minimization
problem. Let us define the following two problems:

Problem 1: Find u 2 H such that F (u) = 0.
Problem 2: Find u 2 H such that J(u) = min

v2H J(v).

We assume that Problem 2 has been defined so that the unique solution to Problem 1
is also the unique solution to Problem 2; note that in general there may not exist a
natural functional J(·) for a given F (·), although we will see in a moment that it is
always possible to construct an appropriate functional J(·).

A descent direction for the functional J(·) at the point u is any direction v such
that the directional derivative of J(·) at u in the direction v is negative, or J 0(u)(v) =

(J 0(u), v) < 0. If v is a descent direction, then it is not difficult to show that there
exists some � > 0 such that

J(u + �v) < J(u). (10.7.18)

This follows from generalized Taylor expansion (Theorem 10.1.2), since

J(u + �v) = J(u) + �(J 0(u), v) +O(�2

).

If � is sufficiently small and (J 0(u), v) < 0 holds (v is a descent direction), then
clearly J(u + �v) < J(u). In other words, if a descent direction can be found at the
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current solution ui, then an improved solution ui+1 can be found for some steplength
in the descent direction v, that is, by performing a one-dimensional line search for �
until (10.7.18) is satisfied.

Therefore, if we can show that the Newton direction is a descent direction, then
performing a one-dimensional line search in the Newton direction will always guar-
antee progress toward the solution. In the case that we define the functional as

J(u) =

1

2

kF (u)k2 =

1

2

(F (u), F (u)),

we can show that the Newton direction is a descent direction. While the following
result is easy to show for H = Rn, we showed more generally in Lemma 10.1.3 that
it is also true in the general case of an arbitrary Hilbert space when k · k = (·, ·)1/2:

J 0(u) = F 0(u)

T F (u).

Now, the Newton direction at u is simply v = �F 0(u)

�1F (u), so if F (u) 6= 0, then

(J 0(u), v) = �(F 0(u)

T F (u), F 0(u)

�1F (u)) = �(F (u), F (u)) < 0.

Therefore, the Newton direction is always a descent direction for this particular
choice of J(·), and by the introduction of the damping parameter �, the Newton
iteration can be made globally convergent in the sense described above.

Damped Inexact Newton Multilevel Methods. Given the problem of nk non-
linear algebraic equations and nk unknowns

F (u) = Au + B(u)� f = 0,

for which we desire the solution u, the ideal algorithm for this problem is one that (1)
always converges, and (2) has optimal complexity, which in this case means O(nk).

As we have just seen, Newton’s method can be made essentially globally conver-
gent with the introduction of a damping parameter. In addition, close to the root,
Newton’s method has at least superlinear convergence properties. If a method with
linear convergence properties is used to solve the Jacobian systems at each Newton
iteration, and the complexity of the linear solver is the dominant cost of each New-
ton iteration, then the complexity properties of the linear method will determine the
complexity of the resulting Newton iteration asymptotically, as long as the number of
Newton iterations does not grow with the size of the discretization. This last property
can in fact be shown for Newton iterations; see [4].

We have discussed in detail in Section 10.6 the convergence and complexity prop-
erties of multilevel methods; in many situations they can be shown to have optimal
complexity, and in many others this behavior can be demonstrated empirically. With
an efficient inexact solver such as a multilevel method for the early damped iter-
ations, employing a more stringent tolerance for the later iterations as the root is
approached, a very efficient yet robust nonlinear iteration should result. Follow-
ing [21, 22], here we combine the robust damped Newton methods with the fast lin-
ear multilevel solvers developed in Section 10.6 for inexact solution of the Jacobian
systems.
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The conditions for linear solver tolerance to ensure superlinear convergence have
been given in [60, 61]. Guidelines for choosing damping parameters to ensure global
convergence and yet allow for superlinear convergence have been established in [21].
Combination with linear multilevel iterative methods for the semiconductor problem
has been considered in [22], along with questions of complexity. We outline the
basic algorithm below, specializing it to the particular form of a nonlinear problem of
interest. We then give some results on damping and inexactness tolerance selection
strategies.

We restrict our discussion here to the following nonlinear problem, which has
arisen, for example, from the discretization of a nonlinear elliptic problem:

F (u) = Au + B(u)� f = 0.

The derivative has the form

F 0(u) = A + B0
(u).

The damped inexact Newton iteration for this problem takes the form:

Algorithm 10.7.2 (Damped Inexact Newton Method).
ˆ
A + B0(ui)

˜
vi = f �Aui �B(ui). [Inexact solve]

ui+1 = ui + �
i

vi. [Correction]

We can employ the linear multilevel methods of Section 10.6 in step (1) of Al-
gorithm 10.7.2. A convergence analysis of the undamped method is given in [85].
A detailed convergence analysis of the damped method is given in [22]. Below, we
outline what guidelines exist for selection of the damping parameters and the linear
iteration tolerance.

Note that due to the special form of the nonlinear operator, the damping step can
be implemented in a surprisingly efficient manner. During the one-dimensional line
search for the parameter �i, we continually check for satisfaction of the inequality

kF (ui
+ �iv

i
)k < kF (ui

)k.

The term on the right is available from the previous Newton iteration. The term on
the left, although it might appear to involve computing the full nonlinear residual,
in fact can avoid the operator-vector product contributed by the linear term. Simply
note that

F (ui
+ �iv

i
) = A[ui

+ �iv
i
] + B(ui

+ �iv
i
)� f

= [Aui � f ] + �i[Avi
] + B(ui

+ �iv
i
).

The term [Aui� f ] is available from the previous Newton iteration, and [Avi
] needs

to be computed only once at each Newton step. Computing F (ui
+ �ivi

) for each
damping step beyond the first requires only the operation [Aui�f ]+�i[Avi

] for the
new damping parameter �i, and evaluation of the nonlinear term at the new damped
solution, B(ui

+ �ivi
).
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Local and Global Superlinear Convergence. Quasi-Newton methods are
studied in [61], and a “characterization” theorem is established for the sequence
of approximate Jacobian systems. This theorem establishes sufficient conditions on
the sequence {Bi}, where Bi ⇡ F 0, to ensure superlinear convergence of a quasi-
Newton method. An interesting result which they obtained is that the “consistency”
condition is not required, meaning that the sequence {Bi} need not converge to the
true Jacobian F 0(·) at the root of the equation F (u) = 0, and superlinear conver-
gence can still be obtained.

In [61], a characterization theorem shows essentially that the full or true New-
ton step must be approached, asymptotically, in both length and direction, to attain
superlinear convergence in a quasi-Newton iteration.

Inexact Newton methods are studied directly in [60]. Their motivation is the use
of iterative solution methods for approximate solution of the true Jacobian systems.
They establish conditions on the accuracy of the inexact Jacobian solution at each
Newton iteration which will ensure superlinear convergence. The inexact Newton
method is analyzed in the form

F 0(ui
)vi

= �F (ui
) + ri,

krik
kF (ui

)k 6 ⌘i,

ui+1

= ui
+ vi.

In other words, the quantity ri, which is simply the residual of the Jacobian linear
system, indicates the inexactness allowed in the approximate solution of the linear
system, and is exactly what one would monitor in a linear iterative solver. It is
established that if the forcing sequence ⌘i < 1 for all i, then the method above is
locally convergent. Their main result is the following theorem.

Theorem 10.7.3 (Dembo-Eisenstat-Steihaug). Assume that there exists a unique u⇤

such that F (u⇤) = 0, that F (·) is continuously differentiable in a neighborhood of
u⇤, that F 0(u⇤) is nonsingular, and that the inexact Newton iterates {ui} converge
to u⇤. Then:

(1) The convergence rate is superlinear if limi!1 ⌘i = 0.

(2) The convergence rate is Q-order at least 1 + p if F 0(u⇤) is Hölder continuous
with exponent p, and

⌘i = O(kF (ui
)kp

), as i !1.

(3) The convergence rate is R-order at least 1 + p if F 0(u⇤) is Hölder continuous
with exponent p, and if {⌘i}! 0 with R-order at least 1 + p.

Proof. See [60].

As a result of this theorem, they suggest the tolerance rule:

⌘i = min

⇢

1

2

, CkF (ui
)kp

�

, 0 < p 6 1, (10.7.19)
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which guarantees Q-order convergence of at least 1 + p; a similar criterion is

⌘i = min

⇢

1

i
, kF (ui

)kp

�

, 0 < p 6 1. (10.7.20)

Necessary and Sufficient Conditions for Inexact Descent. Note the fol-
lowing subtle point regarding the combination of inexact Newton methods and damp-
ing procedures for obtaining global convergence properties: Only the exact Newton
direction is guaranteed to be a descent direction. Once inexactness is introduced into
the Newton direction, there is no guarantee that damping will achieve global con-
vergence in the sense outlined above. However, the following simple result gives a
necessary and sufficient condition on the tolerance of the Jacobian system solution
for the inexact Newton direction to be a descent direction.

Theorem 10.7.4. The inexact Newton method (Algorithm 10.7.2) for F (u) = 0 will
generate a descent direction v at the point u if and only if the residual of the Jacobian
system r = F 0(u)v + F (u) satisfies

(F (u), r) < (F (u), F (u)).

Proof. (See, for example, [101].) We remarked earlier that an equivalent minimiza-
tion problem (appropriate for Newton’s method) to associate with the zero point
problem F (u) = 0 is given by minu2H J(u), where J(u) = (F (u), F (u))/2. We
also noted that the derivative of J(u) can be written as J 0(u) = F 0(u)

T F (u). Now,
the direction v is a descent direction for J(u) if and only if (J 0(u), v) < 0. The exact
Newton direction is v = �F 0(u)

�1F (u), and as shown earlier is always a descent
direction. Consider now the inexact direction satisfying

F 0(u)v = �F (u) + r or v = F 0(u)

�1

[r � F (u)].

This inexact direction is a descent direction if and only if:

(J 0(u), v) = (F 0(u)

T F (u), F 0(u)

�1

[r � F (u)])

= (F (u), r � F (u))

= (F (u), r)� (F (u), F (u))

< 0,

which is true if and only if the residual of the Jacobian system r satisfies

(F (u), r) < (F (u), F (u)).

This leads to the following very simple sufficient condition for descent.
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Corollary 10.7.1. The inexact Newton method (Algorithm 10.7.2) for F (u) = 0

yields a descent direction v at the point u if the residual of the Jacobian system
r = F 0(u)v + F (u) satisfies

krk < kF (u)k.

Proof. (See, for example, [101].) From the proof of Theorem 10.7.4 we have

(J 0(u), v) = (F (u), r)� (F (u), F (u)) 6 kF (u)kkrk � kF (u)k2,

where we have employed the Cauchy-Schwarz inequality. Therefore, if we have
krk < kF (u)k, then the rightmost term is clearly negative [unless F (u) = 0], so
that v is a descent direction.

Note that most stopping criteria for the Newton iteration involve evaluating F (·)
at the previous Newton iterate ui. The quantity F (ui

) will have been computed
during the computation of the previous Newton iterate ui, and the tolerance for
ui+1 which guarantees descent requires that (F (ui

), r) < (F (ui
), F (ui

)) by Theo-
rem 10.7.4. This involves only the inner product of r and F (ui

), so that enforcing
this tolerance requires only an additional inner product during the Jacobian linear
system solve, which for nk unknowns introduces an additional nk multiplications
and nk additions. In fact, a scheme may be employed in which only a residual toler-
ance requirement for superlinear convergence is checked until an iteration is reached
in which it is satisfied. At this point, the descent direction tolerance requirement can
be checked, and additional iterations will proceed with this descent stopping criterion
until it too is satisfied. If the linear solver reduces the norm of the residual mono-
tonically (such as any of the linear methods of Section 10.6), then the first stopping
criterion need not be checked again.

In other words, this adaptive Jacobian system stopping criterion, enforcing a tol-
erance on the residual for local superlinear convergence and ensuring a descent di-
rection at each Newton iteration, can be implemented at the same computational cost
as a simple check on the norm of the residual of the Jacobian system.

Alternatively, the sufficient condition given in Corollary 10.7.1 may be employed
at no additional cost, since only the norm of the residual needs to be computed, which
is also what is required to ensure superlinear convergence using Theorem 10.7.3.

Global Superlinear Convergence. In [21], an analysis of inexact Newton
methods is performed, where a damping parameter has been introduced. Their goal
was to establish selection strategies for both the linear solve tolerance and the damp-
ing parameters at each Newton iteration, in an attempt to achieve global superlinear
convergence of the damped inexact Newton iteration. It was established, similar to
the result in [61], that the Jacobian system solve tolerance must converge to zero
(exact solve in the limit), and the damping parameters must converge to 1 (the full
Newton step in the limit), for superlinear convergence to be achieved. There are sev-
eral technical assumptions on the function F (·) and the Jacobian F 0(·) in their paper;
we summarize one of their main results in the following theorem, as it applies to the
inexact Newton framework we have constructed in this section.
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Theorem 10.7.5 (Bank and Rose). Suppose that F : D ⇢ H ! H is a homeomor-
phism on H. Assume also that F (·) is differentiable on closed bounded sets D, that
F 0(u) is nonsingular and uniformly Lipschitz continuous on such sets D, and that
the closed level set

So = {u | kF (u)k 6 kF (u0

)k}
is a bounded set. Suppose now that the forcing and damping parameters ⌘i and �i

satisfy
⌘i 6 CkF (xi

)kp, ⌘i 6 ⌘
0

, ⌘
0

2 (0, 1),

�i =

1

1 + KikF (xi
)k , 0 6 Ki 6 K

0

, so that �i 6 1.

Then there exists u⇤ 2 H such that F (u⇤) = 0, and with any u0 2 H, the sequence
generated by the damped inexact Newton method

F 0(ui
)vi

= �F (ui
) + ri,

krik
kF (ui

)k 6 ⌘i, (10.7.21)

ui+1

= ui
+ �iv

i, (10.7.22)

converges to u⇤ 2 S
0

⇢ H. In addition, on the set S
0

, the sequence {ui} converges
to u⇤ at rate Q-order at least 1 + p.

Proof. See [22].

Note that by forcing ⌘i 6 ⌘
0

< 1, it happens that the residual of the Jacobian
system in Theorem 10.7.5 satisfies krik 6 ⌘ikF (ui

)k 6 kF (ui
)k, which by Corol-

lary 10.7.1 always ensures that the inexact Newton direction produced by their algo-
rithm is a descent direction. The sequence {Ki} is then selected so that each param-
eter is larger than a certain quantity [inequality 2.14 in [22]], which is a guarantee
that an appropriate steplength for actual descent is achieved, without line search. We
remark that there is also a weaker convergence result in [22] which essentially states
that the convergence rate of the damped inexact Newton method above is R-linear or
Q-order(1 + p) on certain sets which are slightly more general than the set S

0

. The
parameter selection strategy suggested in [22] based on Theorem 10.7.5 is referred
to as Algorithm Global. The idea of the algorithm is to avoid the typical searching
strategies required for other global methods by employing the sequence Ki above.

Backtracking for Sufficient Descent. One of the standard choices for back-
tracking in Algorithm 10.7.2 to ensure global convergence is to successively reduce
the size of the damping parameter �i at step i of the Newton iteration according to

�i =

1

2

k
, k = 0, 1, 2, . . . ,

where k is incrementally increased from k = 0 (giving the full Newton step with
�i = 1) to a sufficiently large number until descent (10.7.18) occurs. However, con-
sider the following example from [78]. Let F : R ! R be given as F (u) = u, and
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take �i = 1/2

i+1, with u0

= 2. The Newton direction at each step remains constant
at vi

= ui, 8i, which generates the sequence {2, 1, 3/4, 27/32, . . .}, converging to
approximately 0.58, yet the solution to F (u) = 0 in this case is u = 0. The failure
of convergence is due to the damping; it is a result of �i ! 0 while vi ! v 6= 0.

To avoid this problem of stalling during the damping procedure, one can enforce
a stronger sufficient descent condition. By analyzing a linear model of F (see [78]),
one can show if F 2 C1

(H), then for a fixed µ 2 (0, 1), the following condition can
always be satisfied for �i 2 (0, 1] sufficiently small:

kF (ui
+ �iv

i
)k 6 (1� �iµ)kF (ui

)k. (10.7.23)

The result of enforcing this condition is that if �i 6! 0, then descent cannot stall
unless kF (ui

)k ! 0.
We now describe a globally convergent inexact Newton algorithm that is fairly

easy to understand and implement, motivated by the simple necessary and sufficient
descent conditions established in the preceding section, as well as the stronger suffi-
cient descent condition described above.

Algorithm 10.7.3 (Damped Inexact Newton method).

Do:

F 0(ui)vi = �F (ui) + ri, TEST(ri) = TRUE, [Inexact solve]
ui+1 = ui + �

i

vi, [Correction]

where parameters �
i

and TEST(ri) are defined as:
(1) TEST(ri):

If: krik 6 CkF (ui)kp+1, C > 0, p > 0,
And: (F (ui), ri) < (F (ui), F (ui)),
Then: TEST ⌘ TRUE;
Else: TEST ⌘ FALSE.

(2) For fixed µ 2 (0, 1), find �
i

by line search so that:
kF (ui + �

i

vi)k 6 (1� �
i

µ)kF (ui)k.
Always possible if TEST(ri) = TRUE.
Full inexact Newton step � = 1 always tried first.

An alternative TEST(ri) is as follows:
(10) TEST(ri):

If: krik 6 CkF (ui)kp+1, C > 0, p > 0,
And: krik < kF (ui)k,
Then: TEST ⌘ TRUE;
Else: TEST ⌘ FALSE.

In Algorithm 10.7.3, the damping parameters �i selected in (2) ensure the enforce-
ment of the stronger sufficient descent condition described above, to avoid having the
backtracking procedure stall before reaching the solution. The second condition in
(1) is the necessary and sufficient condition for the inexact Newton direction to be
a descent direction, established in Theorem 10.7.4. The second condition in (10) of
Algorithm 10.7.3 is the weaker sufficient condition established in Corollary 10.7.1.
Note that in early iterations when Q-order(1 + p) for p > 0 is not to be expected,
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just satisfying one of the descent conditions is (necessary and) sufficient for progress
toward the solution. The condition ⌘i < 1 in Theorem 10.7.5 implies that the in-
exact Newton directions produced by the algorithm are, by Corollary 10.7.1, de-
scent directions. Algorithm 10.7.3 decouples the descent and superlinear conver-
gence conditions and would allow for the use of only the weakest possible test of
(F (ui

), ri
) < (F (ui

), F (ui
)) far from the solution, ensuring progress toward the

solution with the least amount of work per Newton step.
Note also that the Q-order(1 + p) condition

krik 6 CkF (ui
)kp+1

does not guarantee a descent direction, so that it is indeed important to satisfy the
descent condition separately. The Q-order(1 + p) condition will impose descent if

CkF (ui
)kp+1 < kF (ui

)k,

which does not always hold. If one is close to the solution, so that kF (ui
)k < 1,

and if C 6 1, then the Q-order(1 + p) condition will imply descent. By this last
comment, we see that if kF (ui

)k < 1 and C  1, then the full inexact Newton step
is a descent direction, and since we attempt this step first, we see that the algorithm
reduces to the algorithm studied in [60] near the solution; therefore, Theorem 10.7.3
applies to Algorithm 10.7.3 near the solution without modification.

Nonlinear Multilevel Methods.

Nonlinear multilevel methods were developed originally in [40, 83]. These methods
attempt to avoid Newton linearization by accelerating nonlinear relaxation methods
with multiple coarse problems. We are again concerned with the problem

F (u) = Au + B(u)� f = 0.

Let us introduce the notation M(·) = A+B(·), which yields the equivalent problem:

M(u) = f.

While there is no direct analogue of the linear error equation in the case of a nonlinear
operator M(·), a modified equation for ei can be used. Given an approximation ui

to the true solution u at iteration i, the equations

ri
= f �M(ui

), M(u) = M(ui
+ ei

) = f,

where ri and ei are the residual and error, give rise to the expressions

ui
= M�1

(f � ri
), ei

= M�1

(f)� ui,

which together give an expression for the error:

ei
= (ui

+ ei
)� ui

= M�1

(f)�M�1

(f � ri
).

This expression can be used to develop two- and multiple-level methods as in the
linear case.
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Nonlinear Two-Level Methods. Consider now the case of two nested finite-
dimensional spaces Hk�1

⇢ Hk, where Hk is the fine space and Hk�1

is a lower-
dimensional coarse space, connected by a prolongation operator Ik

k�1

: Hk�1

! Hk

and a restriction operator Ik�1

k : Hk ! Hk�1

. These spaces may, for example, cor-
respond to either the finite element spaces Vk or the grid function spaces Uk arising
from the discretization of a nonlinear elliptic problem on two successively refined
meshes, as discussed above.

Assuming that the error can be smoothed efficiently as in the linear case, then the
error equation can be solved in the coarser space. If the solution is transferred to
the coarse space as ui

k�1

= Ik�1

k ui
k, then the coarse space source function can be

formed as fk�1

= Mk�1

(ui
k�1

). Transferring the residual rk to the coarse space as
ri
k�1

= Ik�1

k ri
k, the error equation can then be solved in the coarse space as

ei
k�1

= Ik�1

k ui
k �M�1

k�1

(Mk�1

(Ik�1

k ui
k)� Ik�1

k ri
k).

The solution is corrected as

ui+1

k = ui
k + Ik

k�1

ei
k�1

= ui
k + Ik

k�1

[Ik�1

k ui
k �M�1

k�1

(Mk�1

(Ik�1

k ui
k)� Ik�1

k [fk �Mk(ui
k)])]

= Kk(ui
k, fk).

Therefore, the nonlinear coarse space correction can be viewed as a fixed point iter-
ation.

The algorithm implementing the nonlinear error equation is known as the full
approximation scheme [40] or the nonlinear multigrid method [85]. The two-level
version of this iteration can be formulated as:

Algorithm 10.7.4 (Nonlinear Two-Level Method).

v
k

= K
k

(ui

k

, f
k

). [Correction]

ui+1
k

= S
k

(v
k

, f
k

). [Post-smoothing]

Algorithm 10.7.4 will require a nonlinear relaxation operator Sk(·) in step (2), and
restriction and prolongation operators as in the linear case, as well as the solution of
the nonlinear coarse space equations, to apply the mapping Kk(·) in step (1).

Nonlinear Multilevel Methods. We consider now a nested sequence of finite-
dimensional spaces H

1

⇢ H
2

⇢ · · · ⇢ HJ ⌘ H, where HJ is the finest space and
H

1

the coarsest space, each space being connected to the others via prolongation and
restriction operators, as discussed above.

The multi-level version of Algorithm 10.7.4 would employ another two-level
method to solve the coarse space problem in step (1), and can be described recur-
sively as follows:
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Algorithm 10.7.5 (Nonlinear Multilevel Method).

Do:

ui+1 = NML(J, ui, f).

where uNEW
k

= NML(k, uOLD
k

, f
k

) is defined recursively:

If (k = 1) Then:
uNEW1 = M�1

1 (f1). [Direct solve]
Else:

r
k�1 = Ik�1

k

(f
k

�M
k

(uOLD
k

)), [Restrict residual]

u
k�1 = Ik�1

k

uOLD
k

[Restrict solution]
f

k�1 = M
k�1(u

k�1)� r
k�1 [Coarse source]

w
k�1 = u

k�1 �NML(k � 1, u
k�1, f

k�1) [Coarse solution]
w

k

= Ik

k�1w
k�1 [Coarse correction]

� = (see below) [Damping parameter]
v

k

= uOLD
k

+ �w
k

[Correction]

uNEW
k

= S
k

(v
k

, f
k

). [Post-smoothing]
End.

The practical aspects of this algorithm and variations are discussed in [40]. A
convergence theory has been discussed in [85] and in the sequence of papers [88,
146].

Damping Parameter. Note that we have introduced a damping parameter � in
the coarse space correction step of Algorithm 10.7.5, analogous to the damped in-
exact Newton multilevel method discussed earlier. In fact, without this damping
parameter, the algorithm fails for difficult problems such as those with exponential
or rapid nonlinearities (this is also true for the Newton iteration without damping).

To explain how the damping parameter is chosen, we refer back to the earlier
discussion of nonlinear conjugate gradient methods. We begin with the following
energy functional:

Jk(uk) =

1

2

(Akuk, uk)k + Bk(uk)� (fk, uk)k.

As we have seen, the resulting minimization problem:

Find uk 2 Hk such that Jk(uk) = min

v
k

2H
k

Jk(vk)

is equivalent to the associated zero-point problem:

Find uk 2 Hk such that Fk(uk) = Akuk + Bk(uk)� fk = 0,

where Bk(uk) = G0k(uk). In other words, Fk(·) is a gradient mapping of the as-
sociated energy functional Jk(·), where we assume that both problems above are
uniquely solvable.

In [88] it is shown [with suitable conditions on the nonlinear term Bk(·) and
satisfaction of a nonlinear form of the variational conditions] that the prolongated
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coarse space correction wk = Ik
k�1

wk�1

is a descent direction for the functional
Jk(·). Therefore, there exists some � > 0 such that

Jk(uk + �wk) < Jk(uk).

Minimization of Jk(·) along the descent direction wk is equivalent to solving the
following one-dimensional problem:

dJ(uk + �wk)

d�
= 0.

As in the discussion of the nonlinear conjugate gradient method, the one-dimensional
problem can be solved with Newton’s method:

�m+1

= �m� �m
(Akwk, wk)k � (rk, wk)k + (Bk(uk + �mwk)�Bk(uk), wk)k

(Akwk, wk)k + (B0
k(uk + �mwk)wk, wk)k

.

Now, recall that the “direction” from the coarse space correction has the form
wk = Ik

k�1

wk�1

. Defining the quantities

A
1

= �m
(AkIk

k�1

wk�1

, Ik
k�1

wk�1

)k,

A
2

= (rk, Ik
k�1

wk�1

)k,

A
3

= (Bk(uk + �mIk
k�1

wk�1

)�Bk(uk), Ik
k�1

wk�1

)k,

the Newton correction for � then takes the form

A
1

�A
2

+ A
3

(AkIk
k�1

wk�1

, Ik
k�1

wk�1

)k + (B0
k(uk + �mIk

k�1

wk�1

)Ik
k�1

wk�1

, Ik
k�1

wk�1

)k
.

If the linear variational conditions are satisfied:

Ak�1

= Ik�1

k AkIk
k�1

, Ik�1

k = (Ik
k�1

)

T , (10.7.24)

and we define the quantities

B
1

= �m
(Ak�1

wk�1

, wk�1

)k�1

,

B
2

= (rk�1

, wk�1

)k�1

,

B
3

= (Ik�1

k (Bk(uk + �mIk
k�1

wk�1

)�Bk(uk)), wk�1

)k�1

,

then this expression becomes

B
1

�B
2

+ B
3

(Ak�1

wk�1

, wk�1

)k�1

+ (Ik�1

k B0
k(uk + �mIk

k�1

wk�1

)Ik
k�1

wk�1

, wk�1

)k�1

.

It can be shown [88] that as in the linear case, a conforming finite element dis-
cretization of the nonlinear elliptic problem we are considering, on two successively
refined meshes, satisfies the following so-called nonlinear variational conditions:

Ak�1

+Bk�1

(·) = Ik�1

k AkIk
k�1

+Ik�1

k Bk(Ik
k�1

·), Ik�1

k = (Ik
k�1

)

T . (10.7.25)
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As in the linear case, these conditions are usually required [88] to show theoreti-
cal convergence results about nonlinear multilevel methods. Unfortunately, unlike
the linear case, there does not appear to be a way to enforce these conditions alge-
braically [at least for the strictly nonlinear term Bk(·)] in an efficient way. Therefore,
if we employ discretization methods other than finite element methods, or cannot ap-
proximate the integrals accurately (such as if discontinuities occur within elements
on coarser levels) for assembling the discrete nonlinear system, then the variational
conditions will be violated. With the algebraic approach, we will have to be sat-
isfied with violation of the nonlinear variational conditions, at least for the strictly
nonlinear term Bk(·), in the case of the nonlinear multilevel method.

In [88] an expression is given for � in an attempt to avoid solving the one-
dimensional minimization problem. Certain norm estimates are required in their
expression for �, which depends on the particular nonlinearity; therefore, the full
line search approach may be more robust, although more costly. There is an interest-
ing result regarding the damping parameter in the linear case, first noticed in [88]. If
the nonlinear term B(·) is absent, the zero-point problem is linear and the associated
energy functional is quadratic:

Fk(uk) = Akuk � fk = 0, Jk(uk) =

1

2

(Akuk, uk)k � (fk, uk)k.

As in the conjugate gradient algorithm, the calculation of the steplength � no longer
requires the iterative solution of a one-dimensional minimization problem with New-
ton’s method, since

dJ(uk + �wk)

d�
= �(Akwk, wk)k � (rk, wk)k = 0

yields an explicit expression for � which minimizes the functional Jk(·) in the direc-
tion wk:

� =

(rk, wk)k

(Akwk, wk)k
.

Since wk = Ik
k�1

wk�1

, we have that

� =

(rk, wk)k

(Akwk, wk)k

=

(rk, Ik
k�1

wk�1

)k

(AkIk
k�1

wk�1

, Ik
k�1

wk�1

)k

=

((Ik
k�1

)

T rk, wk�1

)k�1

((Ik
k�1

)

T AkIk
k�1

wk�1

, wk�1

)k�1

.

Therefore, if the variational conditions (10.7.24) are satisfied, the damping parameter
can be computed cheaply with only coarse space quantities:

� =

(Ik�1

k rk, wk�1

)k�1

(Ik�1

k AkIk
k�1

wk�1

, wk�1

)k�1

=

(rk�1

, wk�1

)k�1

(Ak�1

wk�1

, wk�1

)k�1

.
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Note that in the two-level case, wk�1

= A�1

k�1

rk�1

, so that � = 1 always holds.
Otherwise, numerical experiments show that � > 1, and it is argued [88] that this
is always the case. Adding the parameter � to the linear multilevel algorithms of
Section 10.6 guarantees that the associated functional Jk(·) is minimized along the
direction defined by the coarse space correction. A simple numerical example in [88]
illustrates that, in fact, the convergence rate of the linear algorithm can be improved
to a surprising degree by employing the damping parameter.

Stopping Criteria for Nonlinear Iterations.

As in a linear iteration, there are several quantities which can be monitored during a
nonlinear iteration to determine whether a sufficiently accurate approximation ui+1

to the true solution u⇤ has been obtained. Possible choices, with respect to any norm
k · k, include:

(1) Nonlinear residual: kF (ui+1)k 6 FTOL
(2) Relative residual: kF (ui+1)k/kF (u0)k 6 RFTOL
(3) Iterate change: kui+1 � uik 6 UTOL
(4) Relative change: kui+1 � uik/kui+1k 6 RUTOL
(5) Contraction estimate: kui+1 � uik/kui � ui�1k 6 CTOL.

We also mention a sixth option, which attempts to obtain an error estimate from
the Contraction Mapping Theorem (Theorem 10.1.14) by estimating the contraction
constant ↵ of the nonlinear fixed point mapping T (·) associated with the iteration.
The constant is estimated as follows:

↵ =

kui+1 � uik
kui � ui�1k =

kT (ui
)� T (ui�1

)k
kui � ui�1k ,

and the Contraction Mapping Theorem gives the error estimate-based criterion:

(6) Error estimate: ku⇤ � ui+1k 6 ↵

1� ↵
kui+1 � uik 6 ETOL.

There are certain difficulties with employing any of these conditions alone. For
example, if the iteration has temporarily stalled, then criteria (3) and (4) would pre-
maturely halt the iteration. On the other hand, if the scaling of the function F (·) is
such that kF (·)k is always very small, then criterion (1) could halt the iteration early.
Criterion (2) attempts to alleviate this problem in much the same way as a relative
stopping criterion in the linear case. However, if the initial approximation u0 is such
that kF (u0

)k is extremely large, then (3) could falsely indicate that a good approxi-
mation has been reached. Criterion (5) cannot be used to halt the iteration alone, as
it gives no information about the quality of the approximation; it would be useful in
a Newton iteration to detect when the region of fast convergence has been entered.

Criterion (6) may be the most reliable stand-alone criterion, although it depends
on the accuracy of the contraction number estimate. If the contraction number is
constant (linear convergence) over many iterations or goes to zero monotonically
(superlinear convergence), then this should be reliable; otherwise, the contraction
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estimate may have no bearing on the true contraction constant for the mapping T (·),
and the error estimate may be poor.

Several dual criteria have been proposed in the literature. For example, the com-
bination of (4) and (5) was suggested in [20], since (4) attempts to detect if con-
vergence has been reached, whereas (5) attempts to ensure that (4) has not been
satisfied simply due to stalling of the iteration. In [62], the combination of (4) and
(1) is suggested, where (1) attempts to prevent halting on (4) due to stalling. The idea
of scaling the components of ui+1 in (1) and F (ui+1

) in (2) is also recommended
in [62], along with use of the maximum norm k · k1. In [78], other combinations
are suggested [with an optimization orientation, some combinations involving the
associated functional J(·)].

EXERCISES

10.7.1 Let X and Y be Banach spaces and let F 2 C2

(X, Y ). Use only the mean
value theorem (Theorem 10.1.3) to derive the following Taylor-series expan-
sion with integral remainder:

F (u + h) = F (u) + F 0(u)h +

Z

1

0

(1� t)F 00(u + th)(h, h) dt.

[Hint: Expand F 0(u+h) using one of the formulas from Theorem 10.1.3, and
then differentiate with respect to h using the chain rule.]

10.7.2 Find J 0(u) (a row vector function), rJ(u) (a column vector function), and
r2J(u) (the symmetric Hessian matrix of J) for the following functions of n
variables.

(1) J(u) = (1/2)uT Au� uT f , where A 2 Rn⇥n.
(2) J(u) = (1/2)uT Au� uT f , where A 2 Rn⇥n, and also A = AT .
(3) J(u) = (1/2)uT AT Au� uT Af , where A 2 Rm⇥n, and f 2 Rm.
(4) J(u) = kukl2 =

�

Pn
i=1

u2

i

�

1/2.

[Hint: Do not use the information that you are working with the particu-
lar normed space Rn; just think of Rn as an arbitrary Hilbert space H , and
compute the derivatives using the convenient expression for the G-variation
in (10.1.5).]

10.7.3 In [78], the sufficient descent condition (10.7.23) is derived by requiring the re-
duction in kF (u)kX be no worse than µ times the reduction in the linear model
of F given by Taylor expansion F (ui

+ h) = F (ui
) + F 0(ui

)h +O(khk2X).
Setting w = ui

+ h, we can write the expansion as a linear model Li
(w) plus

a remainder:
F (w) = Li

(w) +O(khk2X),

where Li
(w) = F (ui

) + F 0(ui
)(w � ui

). Prove that condition (10.7.23) is
equivalent to

kF (ui
)kX � kF (ui

+ �ivi
)kX

kLi
(ui

)kX � kLi
(ui

+ �ivi
)kX

> µ.
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10.7.4 Prove that Newton’s method converges Q-linearly by using the Banach Fixed-
Point Theorem. If you assume the existence of a solution, then you need to
simply give conditions on F and F 0 which guarantee that the fixed point op-
erator defined by the Newton iteration is a contraction on a sufficiently small
ball around the solution. Can you construct a proof using the Banach Fixed-
Point Theorem that also gives existence of the solution, without assuming it a
priori? Can you recover something faster than Q-linear convergence?

10.7.5 For Fun: Construct a Newton iteration for computing the reciprocal of a posi-
tive real number without performing division. (This has been a standard algo-
rithm for doing division in computer arithmetic units, together with a lookup
table of good initial approximations.)
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14. I. Babuška, The finite element method for elliptic equations with discontinuous coeffi-
cients, Computing, 5(3):207–213, 1970.
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boundary conditions, 197–198, 203
boundary value problem, 197
formal, 104, 167–170
Green’s function, 199
matrix, 207
operator, 316–320
unbalanced problem, 205, 207

Admissible pair, 317
Algebraic independence, 229, 268
Alternative theorems:

boundary value problems, 211
Euclidean space, 207, 322–325
integral equations, 210, 338, 360

Approximation theory, 637–843
Arondszajn, N., 400
Arrhenius law, 7, 12
Arzela-Ascoli theorem, 559, 693
Autonomous, 252, 624

Ball, 2

Banach fixed-point theorem, 245, 551, 557,
658

Banach lattice, 696
dominated convergence property, 696

Banach lemma, 348
Banach space, 181, 183, 236

approximation theory, 669–690
Banach fixed-point theorem, 245, 551,

557, 658
Banach lemma, 348
Banach-Schauder theorem, 293, 347
Banach-Steinhaus theorem, 293, 348
best approximation, 669–674
Bounded inverse theorem, 347
calculus in, 643–651
chain rule, 646
Closed graph theorem, 347
closed subspace, 295, 651–652
compact embedding, 698
composition map, 646
continuous embedding, 696, 697
convex, 652–661
coupled Schauder theorem, 732
density, 696
differentiation in, 644–646
double dual, 294
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dual space, 292, 294, 641
Eberlein-Shmulian theorem, 297
finite-dimensional subspace, 295
Galerkin methods, 685–690
Global inverse function theorem, 661
gradient, 650
Hahn-Banach theorem, 293
Implicit function theorem, 661
integration in, 643–644
Inverse perturbation lemma, 648
isometric, 294
Leray-Schauder fixed-point theorem, 660
Linear approximation lemma, 647
linear functionals on, 292
local best approximation, 669
Local inverse function theorem, 661
maximum principles, 665–668
Mean value theorem, 647
monotone increasing maps, 665–668
monotone operator, 666
multilinear maps, 646
near-best approximation, 674–690
nonlinear analysis tools, 640–669
Open mapping theorem, 293, 347
Operator perturbation lemma, 348
ordered spaces, 663–665
Petrov-Galerkin methods, 674–685
Principle of uniform boundedness, 293,

296, 348
real, 292
reflexive, 294, 652–661, 695
Schauder fixed-point theorem, 558, 659
second dual, 294
separable, 295
strong convergence, 295
subsolution, 666
supersolution, 666
Taylor’s theorem, 646–649
Three principles of linear analysis, 293,

347
topological fixed-point theorems, 658–

662
uniformly convex, 695
weak convergence, 295
weak-⇤ convergence, 295
weakly sequentially compact, 296

Banach-Schauder theorem, 293, 347
Banach-Steinhaus theorem, 293, 348
Band-limited functions, 147, 352, 385
Base problem, 562, 587
Basis, 230

dual, 291
orthonormal, 277, 279
reciprocal, 291

Schauder, 276
Bazley, N. W., 400
Beam, 29, 71, 78, 90, 542
Besov spaces, 700, 703–704
Bessel equation, 202, 420, 433, 441–442, 455

modified, 83, 452
Bessel functions, 420, 433, 442, 452
Bessel’s inequality, 130, 280
Best approximation

Banach space, 669–674
Hilbert space, 669–674

Bifurcation, see Branching
Biharmonic operator, 548
Bilinear form, 273, 517–519

associated quadratic form, 273, 517–
519

coercive, 518
nonnegative, 273, 518
positive, 273, 518
strongly positive, 519
symmetric, 518

Blow-up, 604, 617–618, 622
Bochner integral, 644
Bochner spaces, 644
Bolzano-Weierstrass theorem, 296, 336
Boundary, 2
Boundary conditions:

adjoint, 197–198, 203
essential, 33, 526
limit circle case, 438
natural, 33, 526
periodic, 421, 492
unilateral, 542
unmixed, 194, 198, 410

Boundary functionals, 191, 203
Boundary value problems:

equations of order p, 202
regular, 410
second order equations, 191
singular, 410, 425

Bounded inverse theorem, 347
Bounded operator theorem, 551
Branch, Branch-point, 564, 577
Branching, 570, 576–584, 592, 630

from infinity, 621
Brouwer fixed-point theorem, 248, 557, 659
Buckling, 565
Budyko, M. I., 14

Calculus of variations, see Variational meth-
ods

Capacity, 541
Cauchy data, Cauchy problem, 461, 467
Cauchy sequence, see Fundamental sequence
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Cea’s lemma, 686
Cesaro sums, 136, 144
Characteristics, 179, 462
Chebyshev inequalities, 402
Chernoff, P., 134
Circle, 2
Clarkson inequalities, 654, 695
Climate models, 14, 622
Closed and bounded, 181
Closed convex hull, 653
Closed graph theorem, 347
Closed set, 2, 241
Closed:

algebraically, 182, 292
topologically, 292, 293
under weak convergence, 652

Closure, 2, 181, 241
Coarea formula, 539
Codimension, 312
Compact embedding, 698
Compact operators, 336, 358
Compact set, 181, 241
Compact support, 182
Comparison theorem for diffusion, 485, 613
Compatibility, see Solvability conditions
Complete space, 292
Completely continuous, see Compact opera-

tors, Compact set
Completeness relation, 139, 414, 444, 453–

456
Cone, 663
Conjunct, 167
Connected, 2
Conservation law, 2, 15
Consistency, see Solvability conditions
Constitutive relations, 25–26, 566
Continuous dependence on data, 65, 74

diffusion, 486
wave equation, 475

Continuous embedding, 696, 697
Contraction, 245, 246, 557

weak, 246
Contraction mapping theorem, see Banach

fixed-point theorem
Convergence:

L1, 41
L2 (or mean square), 41
Cauchy criterion for, 36
distributional, 110
metric spaces, 235
pointwise, 37, 132
Q-linear, 295
Q-order(p), 295
Q-superlinear, 295

R-order(p), 295
sequence of reals, 37
space of test functions, 95, 155, 182
strong, 295
uniform, 38
weak, 295, 339
weak-⇤, 295

Convex hull, 653
Convex set, 267, 544, 652
Convolution, 145, 163, 695

Darcy’s law, 11
Data, 51
Dead core, 612, 615
Deficiency, 327
Delta sequence, 113–117
Dense set, 241
Density, 696
Dependence and independence, 186, 229
Dieudonné, J., 573
Diffusion, 9, 79, 169, 466
Dipole, 99–100, 118, 480, 497
Dipole layer, see Double layer
Dirac delta function, 19, 62
Directional derivative, 645
Dirichlet function, 43
Dirichlet integral, 550
Dirichlet kernel, 116, 123, 133, 141
Dirichlet principle, 489–490
Dirichlet problem, 491
Discrete elliptic operators, 765–768

condition number, 767
inverse inequality, 767

Discretization methods, 736–769
Disk, 2
Distributions, 91–181

action of, 96
complex-valued, 137
convergence of, 110
coordinate transformation of, 124
derivative, 183
differential equations in, 164–181
differentiation of, 101, 107, 182
dipole, 99, 102
Dirac, 98
direct product of, 124
equality of, 97, 164
parametric differentiation of, 117
regular, 97
singular, 97
slow growth, 155, 161
translation of, 98
vanishing of, 164

Domain, 2, 54, 181, 691–693
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bounded Lipschitz, 691
cone condition, 691
function or operator, 224, 299
Lipschitz condition, 691
segment condition, 691
strong local Lipschitz condition, 691
uniform Cm-regularity condition, 691
uniform cone condition, 691
weak cone condition, 691

Domain of dependence, 475
Domain perturbation, 592
Double dual, 294
Double layer, 119, 497, 500
Dual space, 182, 292, 294, 641
Duhamel’s formula, 449, 478

Eberlein-Shmulian theorem, 297
Eigenfunctions, 68

basis of, 333
compact, self-adjoint operator, 374

Eigenvalues, 68, 327, 333
compact operators, 360
estimation of, 395–408
geometric multiplicity of, 327
Laplacian, 353, 504
variational principles for, 370–373, 395–

400, 505–506
see also Point spectrum,

Eigenvectors, 327
Einstein constraint equations, 726–735

a priori estimates, 730
conformal method, 728
coupled constraints, 732
coupled Schauder theorem, 732
existence and uniqueness, 732
Galerkin method, 734
global subsolution, 731
global supersolution, 730
Hamiltonian constraint, 732
Laplace-Beltrami operator, 729
momentum constraint, 732
near-best approximation, 734

Elements of finite energy, 521
Elliptic equations, 184, 466, 489–511, 710–

736
a priori estimates, 713, 719, 730
Einstein constraint equations, 726–735
existence and uniqueness, 715, 723, 732
Galerkin method, 715, 725, 734
general linear equations, 711–716
near-best approximation, 715, 725, 734
Poisson-Boltzmann equation, 716–726
regularization, 718

Energy functionals, 654–658

bounded below, 655
coercivity, 655
convexity, 655
limit inferior (lim inf), 655
limit superior (lim sup), 655
lower semicontinuous, 655
objective functional, 655
properness, 655
quasiconvexity, 655
strict convexity, 655
upper semicontinuous, 655
variational methods, 654–658
weakly lower semicontinuous, 655

Energy inner product, 517–519
Energy norm, 517–519
Equality almost everywhere, 97
Error function, 449, 488
Essential supremem (ess sup), 644
Essential supremum (ess sup), 694
Essentially bounded, 694
Euclidean space, 264
Euler-Bernoulli law, 29, 566
Euler-Lagrange equations, 518, 658
Expansion theorem, 373
Exterior sphere condition, 491, 529
Extinction, 605, 620

Fatou’s lemma, 47
Féjer kernel, 115, 144
Fick’s law, 10
Field, 182

scalar, 292
Finite element method, 400, 535, 736–755

P -unisolvent, 739
a posteriori error estimates, 749–755
a priori error estimates, 742–745
adaptive methods, 745–746
affine equivalent family, 740
basis functions, 737, 739
bisection, 746
box method, 756
Clément interpolant, 752
conforming, 737
degrees of freedom, 740
FETK, 746
interpolation, 742–745
Lagrange property, 740
linearization theorem, 749
longest edge bisection, 746
marked edge bisection, 746
master element, 740
non-conforming, 737
nonlinear elliptic systems, 746–749
octasection, 746
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PLTMG, 746
quadrasection, 746
quasi-uniformity, 737
reference basis, 740
reference element, 740
regularity condition, 737
shape regularity, 737
simplex meshes, 737
simplex subdivision, 746
SZ-interpolant, 752
test space, 736
trial space, 736

Finite part of divergent integrals, 105
Finite volume methods, 755–765

M -matrix, 762
diagonally dominant, 761
discrete maximum principle, 765
error analysis, 764–765
general formulation, 756–757
irreducible, 761
lexigraphical ordering, 759
natural ordering, 759
nonuniform cartesian meshes, 757–761
properties of algebraic equations, 761–

764
Stieltjes matrix, 762
strictly diagonally dominant, 762

Fisher’s equation, 18, 621, 631
Fixed point theorems, 245, 557–561, 575

Banach, 245, 557, 658
Brouwer, 557, 659
coupled Schauder, 732
Leray-Schauder, 660
method of sub- and supersolutions, 668
order-preserving, 575, 666
Schauder, 558, 659

Forced problem, 577, 617
Fourier coefficients, 129, 278
Fourier integral theorem, 146
Fourier series, 127–145, 279

L2 convergence of, 129
convergence of, 133
convolution, 145
Dirichlet conditions for, 130
distributions, 137
full-range, 285
general, 279
half-range, 285

Fourier sine transform, 445
Fourier transform, 140, 145–163, 368, 453

discrete, 140
fast, 140
space of tempered distributions, 700

Fourier’s law, 5–6

Fourier-Bessel series, 442
Fox, D. W., 400
Fréchet derivative, 573, 625, 645
Fredholm alternative, see Alternative theorems
Fredholm integral equations, 249–251, 359

potential theory, 501
Free boundary, 16
Friedrichs’ inequality, 528
Fubini’s theorem, 47
Functionals, 92, 226, 288

bounded, 288
continuous, 182, 289
critical point, of, 574
linear, 182, 288
norm of, 288, 292
quadratic, 518
stationary, 518
sublinear, 293

Functions of slow growth, 153
Fundamental sequence, 38, 236
Fundamental solution, 175

causal, 78, 176–178, 474
pole of, 175
see also Green’s function,

Gagliardo-Nirenberg-Moser estimates, 708
Galerkin equation, 398, 531
Galerkin methods, 685–690

error estimates, 686, 688
Gårding inequality, 686
linear equations, 686
nonlinear equations, 688

Gâteaux derivative, 645
Gâteaux variation, 645
Gelfand triple, 686
Generalized functions, see Distributions
Gibbs phenomenon, 136
Global inverse function theorem, 661
Gradient operator, 575
Gradient product formula, 708
Gram-Schmidt process, 268
Green’s formula, 166–170
Green’s function, 52, 193

adjoint, 199
beam, 78
Bessel’s equation, 420, 441, 450, 452
bilinear series, 69, 413, 507
causal, 77, 475, 478
diffusion, 79–80, 481–483
direct, 199
first-order BVP, 426
limit circle case, 438
limit point case, 434
modified, 216–220, 512
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negative Laplacian, 81, 446
periodic problem, 424
relation to eigenfunctions, 413, 447
semi-infinite strip, 446
symmetry of, 52, 199
unit disk, 493
variation of, 593
wave equation, 475
see also Fundamental solution,

Green’s matrix, 210

Hadamard’s method of descent, 489
Hahn-Banach theorem, 293
Halmos, P., 326
Hankel transform, 451
Harmonic functions, 491

maximum principle for, 72, 495
mean value theorem for, 495

Heat conduction, 3, 478
see also Diffusion,

Heaviside function, 55, 72, 98, 101, 159
Heine-Borel theorem, 296
Heisenberg’s uncertainty principle, 148
Hermite equation, 434, 444
Hermite polynomials, 286, 444
Hilbert space, 181, 183, 263

approximation theory, 669–690
best approximation, 669–674
Bounded operator theorem, 551
Galerkin methods, 686, 688
Gelfand triple, 686
Lax-Milgram theorem, 551–553
Lions-Stampacchia theorem, 553
Projection theorem, 266, 280, 293, 670
quadratic functionals, 649–651
Riesz representation theorem, 288, 290,

293, 552
separable, 275

Hilbert-Schmidt kernels, see Kernel
Hölder coefficient, 693
Hölder inequality, 244, 694
Hölder spaces, 691–693
Hopf bifurcation, 630
Hyperbolic equations, 466, 472–478

Images, 79, 481–482
Implicit function theorem, 261
Impulse response, 190
Impulse-momentum law, 19
Indicator function, 98, 103
Initial value problem, 76, 189, 199, 252, 259
Injective, 294
Inner product, 206, 262
Inner product space, 262

Integral balance, 1, 7, 30
Integral equations, 69, 210, 249–251, 351–408

Abel, 352, 354, 394
capacity, 542
Dirichlet problem, 501–504
eigenvalue problem for, 361
Fredholm, 249–251, 359–370
inhomogeneous, 362, 379–395
Volterra, 251, 387

Integral operator, 250, 304, 355
Hammerstein, 572, 595
Hilbert-Schmidt, 356

Integration by parts, 182
Integrodifferential equations, 406–408, 549
Interface condition, 84, 88
Irrotational vector, 274
Isoperimetric inequality, 539, 550
Isospectral, 511
Iterative methods for linear equations, 769–

810
A-condition number, 772
A-orthogonal projection, 794
acceleration, 782
additive Schwarz, 788
basic linear method, 772
coarse-level correction operator, 792
complexity, 798–803
condition number, 772
conjugate gradient (CG) methods, 778–

785
convergence and complexity, 799
convergence and complexity of multi-

level methods, 801
convergence properties of the basic lin-

ear method, 775
convergence properties of the conjugate

gradient method, 778
domain decomposition methods, 785–

788
generalized condition number, 772
Hestenes-Stiefel algorithm, 778
linear methods, 770–777
linear operators, 770
multilevel methods, 789–798
multiplicative Schwarz, 787
nested iteration, 798
nested spaces, 789
non-overlapping domain decomposition,

785
norm equivalence, 785
overlapping domain decomposition, 785
preconditioned conjugate gradient method,

778
preconditioned operator, 778
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preconditioned system, 772
preconditioner, 772
smoothing operator, 792
spectral bounds, 771
spectral equivalence, 784
two-level methods, 790
V-cycle, 798
variational conditions, 787, 794
W-cycle, 798

Iterative methods for nonlinear equations, 810–
834

approximate-Newton, 818
Bank-Rose theorem, 824
classical methods, 812–813
conjugate gradient (CG) methods, 813–

816
damped multilevel methods, 829–832
damped Newton, 819–820
Dembo-Eisenstat-Steihaug theorem, 822
descent conditions, 823–824
Fletcher-Reeves CG method, 814
Global inexact Newton iteration, 818–

827
global superlinear convergence, 824–

825
inexact-Newton, 818
majorization, 819
multilevel methods, 828–829
Newton backtracking, 825–827
Newton Kantorovich theorem, 816
Newton quadratic convergence theorem,

817
Newton’s method, 816–818
Newton-multilevel, 820–821
nonlinear multilevel methods, 827–832
quasi-Newton, 818
stopping criteria, 832–833
superlinear convergence, 822–823
truncated-Newton, 818
two-level methods, 828

Jacobian matrix, 646
Jensen’s inequality, 617, 632
Jordan-von Neumann theorem, 273

Kernel, 250, 304, 355
bilinear expansion of, 376–377
difference, 369, 384
Hilbert-Schmidt, 304, 356
Holmgren, 306, 357
iterated, 359
Poisson, 116, 123, 385
resolvent, 382
separable, 356

Kohn-Kato method, 404
Korteweg-De Vries, 221

Ladyzhenskaya-Babuška-Brezzi theorem, 678
Lagrange identity, 166–170
Landau, H. J., 387
Laplace transform, 163, 488
Laplace’s equation, 174, 456, 466, 489

see also Harmonic functions,
Laplacian, 53, 106, 168
Lax, P.D., 2, 46
Lax-Milgram theorem, 551–553

application, 553
semilinear extension, 553

Least-squares, 214, 219, 383, 547
Lebesgue

almost everywhere (a.e.), 47
Dominated convergence theorem, 45,

46, 121
integral, 41
integral in Rn, 46–47
measure, 46
measure zero, 183
multidimensional, 47

Lebesgue spaces, 693–696
Clarkson inequalities, 695
conjugate exponent condition, 694

Legendre equation, 434
Legendre polynomials, 271, 284
Leray-Schauder fixed-point theorem, 660
Level line coordinates, 539
Lewis number, 14
Liapunov-Schmidt method, 596
Limit circle, 432, 437
Limit inferior (lim-inf), 46
Limit point, 432–434
Linear dependence, see Dependence and in-

dependence
Linear independence, see Algebraic indepen-

dence; Dependence and indepen-
dence

Linear manifold, 230, 264–266
Linear space, 182, 227–233, 292

axioms, 292
basis for, 230
complex, 228
dimension of, 229
normed, 235, 292
real, 228

Linearization, 567, 572, 625
Lions-Stampacchia theorem, 553
Lipschitz condition, 249, 251, 253, 258, 259
Lipschitz continuous, 246
Local best approximation, 669
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Local inverse function theorem, 661
Locally convex space, 653
Locally integrable, 96, 111
Locally integrable function, 183
Locally uniformly convex, 654
Logistic Model, 18
Lumped parameter, 603

Mapping, see Transformations
Matrix, 206, 301

M -matrix, 762
adjoint, 207
diagonally dominant, 258, 761
irreducible, 761
Stieltjes matrix, 762
strictly diagonally dominant, 762

Maximum principle, 72, 495
diffusion, 484
harmonic functions, 72, 495
in ordered Banach spaces, 665–668

Mazur’s lemma, 652
Mazur’s theorem, 653
Mean value property, 495
Measurable, 43
Measure, 43
Measure theory, 46
Mellin transform, 456, 512
Mercer’s theorem, 377
Method of continuity, 563, 589
Metric, 234

equivalent, 243
natural, 235

Metric spaces, 234
complete, 236
completion of, 240, 242

Milman-Pettis theorem, 654
Minimum potential energy, 32, 34, 516
Minimum principle, see Maximum principle
Minkowski inequality, 244, 694
Monotone convergence theorem, 46
Monotone iteration, 575, 586, 599–603
Multi-index, 94, 182, 691

denoting partial differentiation, 691
exponentiation, 691
magnitude, 691
order relation, 691

Multiplicity, 327

Near-best approximation
Banach space, 674–690
Galerkin methods, 685–690
Hilbert space, 686, 688
Petrov-Galerkin methods, 674–685

Neumann problem, 493, 512

Neumann series, 251, 379
Newton’s law of cooling, 8, 36
Newton’s method, 560
Norm, 40, 71

L2, 239–240
L

p

, 238–239
axioms, 292
energy, 517–519
Euclidean, 238
Sup (or uniform), 238–239

Normalization of eigenfunctions, 415, 429
Normed spaces, 183, 235
Null sequence, 95, 155, 161
Null space, 208, 300

One-sided functions, 152
One-to-one, 225, 294, 311
Onto, 224, 294
Open mapping theorem, 293, 347
Open set, 2, 241
Operator

image compact (i-compact), 666
Operator perturbation lemma, 348
Operators, 225–227, 299

A-SPD, 771
A-self-adjoint, 771
Ck-diffeomorphism, 642
adjoint, 316–320, 771
bounded, 300
bounded away from zero, 311
bounded below or above, 342
closable, 308
closed, 307–310
closed range, 322
closure of, 308, 314
coercive, 342
compact, 336, 345, 356, 642
compact embedding, 698
completely continuous, 642
continuous, 300, 642
continuous embedding, 697
contraction, 642
diffeomorphism, 642
differentiation, 305, 314
domain of, 299
embedding, 697
extension, 307, 698
extremal properties of, 339–346
Fréchet derivative of, 573, 645
Gâteaux derivative of, 645
general extensions, 698
gradient, 575
Hilbert adjoint, 771
Hölder-continuous, 642
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homeomorphism, 642
homomorphism, 642
indefinite, 375
injective, 294, 642
inverse, 311
isomorphism, 642
linearization of, 572
Lipschitz-continuous, 642
nonnegative, 342, 375
norm of, 292, 300, 641
null space of, 300
numerical range of, 340
one-to-one, 294, 642
onto, 294, 642
order-preserving, 575
positive, 342, 375, 503, 771
range of, 300
regular, 312
self-adjoint, 317, 358, 771
shift, 306, 316, 331
state of, 311–315
Stein extension theorem, 699
strongly monotone, 275
strongly positive, 342, 345–347
surjective, 294, 642
symmetric, 317, 358, 771
symmetric positive (SPD), 771
unbounded, 300
uniformly continuous, 642
zero extensions, 698
see also Spectrum, Transformations,

Order:
cone, 663
cone interval lemma, 709
generating cone, 664
interval, 575
normal cone, 664
solid cone, 664
span of cone, 664
total cone, 664

Ordered Banach space (OBS), 663
Orthogonal, 207, 264

weight, 284, 412
Orthogonal complement, 207, 265
Orthogonality condition, see Solvability con-

ditions
Orthonormal basis, 268, 280–288
Orthonormal set, 127, 264

maximal, 280

Parabolic boundary, 483
Parabolic equations, 466, 478–486
Parallelogram law, 264, 273
Parseval’s formula, 147, 352, 366

Parseval’s identity, 130, 135, 281
Partial differential equations:

Cauchy problem, 460, 467
classification, 459–472
elliptic, 466, 489–514, 710–736
hyperbolic, 466, 472–478
parabolic, 466, 478–486
semilinear, 463, 465, 710–736

Payne-Rayner inequality, 550
Perron-Frobenius theorem, 558
Perturbation methods, 564, 584–594
Petrov-Galerkin methods, 674–685

error estimates, 677, 679
linear equations, 677
nonlinear equations, 679

Plancherel’s theorem, 701
Poincaré inequality, 705
Poincaré maximin theorem, 399
Poincaré-Keller method, 598
Poisson equation, 489, 493, 537, 611
Poisson kernel, 116, 123, 493
Poisson summation formula, 139
Poisson-Boltzmann equation, 716–726

a priori estimates, 719
existence and uniqueness, 723
Galerkin method, 725
near-best approximation, 725
regularization, 718

Polar identity, 274
Pole, 98, 175
Pollak, H. O., 387
Pólya’s isoperimetric inequality, 539
Porous medium, 11
Potential theory, see Laplace’s equation
Principal part of operator, 460
Principal value of square root, 70, 417
Principle of linearized stability, 625
Principle of uniform boundedness, 293, 296,

348
Principle of virtual work, 2, 34, 518
Projection, 264–266
Projection theorem, 266, 280, 293, 670
Propagator, 624, 632
Pseudofunction, 105, 109
Pseudoinverse, 214, 220, 325–326, 383, 588,

590

Rabinowitz, P., 579
Range, 224
Rayleigh quotient, 340, 395
Rayleigh-Ritz, see Ritz-Rayleigh
Reaction-diffusion, 12, 603–620
Reciprocity principle, 200
Reciprocity relation, 519
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Reflexive, 695
Regularization of integral equations, 388
Regularization of integrals, see Finite Part
Relatively compact set, 242
Relatively sequentially compact, 653
Rellich-Kondrachov theorem, 704
Resolvent set, 326
Resonance index, 382
Riemann integral, 41
Riemann-Lebesgue lemma, 130
Riesz representation theorem, 288, 290, 293,

552
Riesz-Fischer theorem, 277
Ritz-Rayleigh approximation, 397, 531
Rods, 22, 84, 565

Sampling formula, 148
Schauder fixed-point theorem, 558, 623, 659
Schrödinger equation, 87
Schwartz distributions, 700
Schwartz, L., 92
Schwarz inequality, 244, 262–263, 271, 274,

519
Schwarz iteration, 402, 406
Schwarz theory of distributions, 181
Schwinger-Levine principle, 530, 538
Second dual, 294
Self-adjoint, 198, 317, 358

boundary value problem, 203
formally, 104, 167, 169

Sellers, W. D., 14
Sequentially compact, 653
Sifting property, 62
Similarity solution, 488–489
Simple layer, 100, 497, 499
Sinc function, 121, 147, 352
Singular point, 185, 459
Singular value decomposition, 378–379
Slepian, D., 387
Sobolev embedding theorem, 704
Sobolev spaces, 181–184, 272, 491, 525, 529,

691–710
Bessel potential spaces, 701
DeVore diagram, 706
embedding operators, 697
embedding theorems, 704–710
extension operators, 698
fractional order, 699–703
fractional spaces, 702
Gagliardo-Nirenberg-Moser estimates, 708
gradient product formula, 708
integer order, 696–699
manifolds, 705
Order cone interval lemma, 709

ordered spaces, 709
Poincaré inequality, 705
positive and negative parts of functions,

707
Rellich-Kondrachov theorem, 704
Stampacchia theorem, 707
Trace theorem, 705

Solenoidal vector, 274
Solutions:

classical, 55, 170–171, 185, 529
distributional, 171
lower, 561, 609, 612, 616
maximal, 576
upper, 561, 610, 612, 616
weak, 170–175, 518

Solvability conditions, 207, 211, 213, 321–
326, 382, 394

Space of Schwarz distributions, 182
Space of test functions, 182
Span:

algebraic, 230, 275
closed, 275

Spanning set, 275, 276
Specific heat, 5
Spectrum, 326

approximate, 327
compact, self-adjoint operator, 370–379
compression, 327
continuous, 327, 444
point, 327

Speed method, 592
Sphere, 2
Stability, 570, 623–631
Stampacchia theorem, 707
Stefan-Boltzmann law, 255
Stenger, F., 121, 148
Step response, 190
Stone-Weierstrass theorem, 693
Stress tensor, 21
Strictly convex set, 652
Strictly convex space, 653
Strings, 22
Strong L2 derivative, 525
Successive approximations, 245
Superposition principle, 51, 63, 192, 201
Support, 95, 182
Surface layers, 496–500
Surjective, 294
Symmetrization, 550
Symmetry:

bounded operator, 358
kernel, 317
matrix, 207
operator in Hilbert space, 317
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Tempered distributions, 700
Test functions:

compact support, 92, 95
rapid decay, 155, 161

Thermal conductivity, 5
Thermal diffusivity, 6
Theta function, 481
Three principles of linear analysis, 293, 347
Tomography, 354
Topological dual space, 641
Topology, 182
Torsional rigidity, 537, 538, 550
Trace inequality, 377
Trace theorem, 705
Transformations, 223–227

continuous, 245
linear, 227, 299
see also Operators,

Transposed matrix, see Adjoint, matrix
Transversal, 179, 468
Traveling wave, 443, 450, 472
Triangle inequality, 235
Triebel-Lizorkin spaces, 700, 703–704
Tychonov, A. N., 391

Unforced, 577
Uniformly convex, 654, 695
Unilateral constraints, 542, 547
Uniqueness, 64, 246, 486, 487

Variational equation, 2, 518, 519, 529
see also Weak form,

Variational inequality, 544, 553
Variational methods, 654–658

see also Energy functionals,
Variational principles, 2, 32

complementary, 536
eigenvalues, 339–346, 370–374, 395–

400, 505–506
inhomogeneous problems, 346, 514–546
Schwinger-Levine, 530

Vector space, see Linear space
Volterra integral equation, 251–252, 387, 393

Wave equation, 170, 173, 179, 466, 472–478
Weak derivative, 181–184
Weak form, 2, 32, 490, 518, 546

see also Variational equation,
Weakly closed, 652
Weakly sequentially compact, 296
Weakly sequentially continuous, 660
Weber transform, 455
Weierstrass approximation theorem, 122, 241,

282, 287
Weinstein, A., 400

Well-posed, 66, 472, 641
Weyl’s theorem, 432
Weyl-Courant minimax theorem, 396, 416,

429
Whittaker’s cardinal function, 147
Wronskian, 186, 411

Young’s modulus, 29

Bs

p,q

(⌦), 700, 703
C(⌦), 692
C0(⌦), 3, 692
Ck(⌦), 3
Ck(⌦), 3
Cm(⌦), 692
Cm

0 (⌦), 692
Cm

B

(⌦), 692
Cm

B

(⌦), 692
C10 (⌦), 182
Cm,�(⌦), 704
F s

p,q

(⌦), 700, 703
H1(⌦), 184
Hm(⌦), 183
Hs(⌦), 702, 704
Hs,p(⌦), 702, 704
L(X, Y ), 641
L1

loc

(⌦), 183, 696
L2(⌦), 183
Lp(⌦), 3, 183, 295, 694
W m,2(⌦), 183
W m,p(⌦), 183, 295, 696
W m,p

0 (⌦), 697
W s,p(⌦), 703, 704
�, 3
⌦, 3
C, 3, 292, 640
K, 292, 640
N, 640
N+, 640
N0, 640
R, 3, 292, 640
R3, 3
Rn, 3
Z, 640
D0(⌦), 182, 700
D(⌦), 182, 696, 700
L(X, Y ), 641
M(⌦), 183, 694
S0(⌦), 700
S(⌦), 700
⌦, 3


