
Math 210C: Mathematical Physics

Instructor: Michael Holst

Spring Quarter 2016

Homework Assignment #2

Due Date: NONE (just some suggested problems to look at to complement the lectures)

Exercise 2.1. (A Bit of Sets and Topology)

1. Define the open and closed balls in Rn.

2. Give the definition of a topology that can be placed on a set M .

3. Give the definition of a topological space M .

4. What is the separation property that a Hausdorff topological space has.

5. Give the definition of a metric on a set.

6. Give the definition of a metric space.

7. Argue that a metric space is always a topological space.

8. Argue that a normed space is always a metric space.

9. Argue that an inner-product space is always a normed space.

Exercise 2.2. (Maps on Toplogical Spaces) Let F : M → N be a map between two topological spaces M and N .
Give definitions of the following properties of F :

1. injection (1-1)

2. surjection (onto)

3. bijection

Why does a map being bijective imply it has an inverse?

Exercise 2.3. (Maps on Toplogical Spaces) Let F : M → N be a map between two topological spaces M and N .
Give definitions of the following properties of F :

1. isomorphism

2. homeomorphism

3. differential homeomorphism

4. diffeomorphsm

Exercise 2.4. (General Manifolds)

1. Explain what is meant by providing a set of charts (“patches” together with corresponding “local coordinate
systems”) for a set.

2. Give the definition of a differentiable n-manifold.

3. Give the definition of a C∞ n-manifold.

4. Give the definition of an analytic n-manifold.



Exercise 2.5. (Vectors, Tangent spaces, Covectors, Cotangent spaces)

1. Define a (tangent) vector to a submanifold of Rn, and to a general n-manifold Mn.

2. Define a (cotangent) covector to a submanifold of Rn, and to a general n-manifold Mn.

3. Define the tangent space to an n-manifold Mn at the point p.

4. Define the cotangent space to an n-manifold Mn at the point p.

Exercise 2.6. (Implicitly Defined Submanifolds of Rn) Investigate the implicitly defined submanifold:

M = { x ∈ R3 | x21 + x22−x23 = c },

in three distinct cases: c > 0, c < 0, c = 0. Are and/all of the three submanifolds? Do answers change if the origin
is excluded? Draw all three level sets (loci) in one picture.

Exercise 2.7. (Submanifolds of Rn) Let Mn be a differentiable n-manifold, and let (U, xU ) be a chart (a patch U
with a corresonding local coordinate system xU = (x1U , . . . , x

n
U ). Let us try to define a type of “global norm” on

vector fields x̄ over Mn as:

‖x̄‖2 =

n∑
j=1

|xiu|2.

Is this a “norm” in the sense that we have discussed? What is wrong?

Exercise 2.8. (Submanifolds of Rn and Mn) Let Mn be a differentiable submanifold of RN that does not contain
the origin. Consider now f : Mn → R defined to be the function that assigns to each point of Mn the square of its
distance from the origin. Using local coordinates (u1, . . . , un), show that a point p ∈ Mn is a crticial point for this
distance function if and only of the position vector to this point is normal to the submanifold Mn.

Exercise 2.9. (Vector fields and Flows in Rn and Mn) Consider the vector field on R defined as v(x) = x2(d/dx).
I.e., v(x) moves x2 distance in the coordinate direction d/dx. Find the flow φt(p) corresponding to this vector field
by solving the differential equation

dx

dt
= x2, , x(0) = p.

Now define the open interval containing p as Up = (1/2, 3/2). Find the largest ε so that φ : Up × (−ε, ε) → R is
well-defined. I.e., find the largest t for which the integral curve φt(p) is well-defined for all p ∈ Up.

Exercise 2.10. (Covectors in Rn and Mn) If v is a vector and α is a covector, compute (directly in coordinates)
that

n∑
i=1

aVi v
i
V =

n∑
i=1

aUi v
i
U .

I.e., you have shown that this quantity is invariant under coordinate transformation.
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Exercise 2.11. (Tensors and Metrics in Rn and Mn) Let x, y, z be the standard orthogonal cartesian coordinates
in R3, the basis vectors for which we denote as ∂x, ∂y, and ∂z. Let u1 = r, u2 = θ, u3 = φ be spherical coordinates,
with corresponding basis vectors ∂r, ∂θ, and ∂φ. Recall that the relationship between (x, y, z) and (r, θ, φ) is:

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

1. Use the chain rule to compute the metric tensor components for spherical coordinates:

grθ = g12 = 〈∂r, ∂θ〉, ...

2. Confirm that the basis functions ∂r, ∂θ, and ∂φ are mutually orthogonal just as as ∂x, ∂y, and ∂z are mutually
orthogonal, BUT they are NOT unit length.

3. Compute the coefficients of the gradient with respect to spherical coordinates:

∇f = (∇f)r∂r + (∇f)θ∂θ + (∇f)φ∂φ.

4. Finally, coefficients of the Laplacean with respect to spherical coordinates: (This one is actually not that easy.)

∇2f = ∇ · (∇f).

Exercise 2.12. (2-Tensors and Metrics in Rn and Mn) Repeat Problem 2.11 but for cylindrical coordinates in R3.

Exercise 2.13. (2-Tensors and Metrics in Rn and Mn) Repeat Problem 2.11 but for polar coordinates in R2.

Exercise 2.14. (Tangent and Cotangent Spaces and Bundles) Let F : Mn → W r and G : W r → V s be smooth
maps, where Mn,W r, V s are differentiable manifolds. Let (x, y, z) be local coordinates near p ∈ Mn, F (p) ∈ W r,
and G(F (p)) ∈ V s, respectively, and consider the composite map G ◦ F : Mn → V s.

1. Using bases ∂x, ∂y, ∂z, show that the differentials obey:

(G ◦ F )∗ = G∗ ◦ F∗.

2. Using bases dx, dy, dz, show that the differentials obey:

(G ◦ F )∗ = G∗ ◦ F ∗.

Exercise 2.15. (General Tensors and Exterior Forms) Let A : E → E be a linear transformation on a vector space
E.

1. Show that the trace tr(A) =
∑n
i=1A

i
i is a true scalar (independent of coordinate transformation) by using the

basic transformation properties of mixed tensors. Here Aij are the mixed components of A with respect to both
the vector space E and the dual space E∗.

2. What about the similar quantity computed with respect to only one of the bases, e.g.,
∑n
i=1Aii? Is this a

scalar?

Exercise 2.16. (General Tensors and Exterior Forms) Let v̄ = vi∂i (summation convention) be a (contravariant)
vector field on a differentiable manifold Mn.

1. Show that vj = gjiv
i are the components of a corresponding covector representation of v̄, by showing that the

required transformation properties hold. You will need to use the chain rule:

∂

∂yi

(
∂yj

∂xk

)
=

n∑
r=1

(
∂2yj

∂xr∂xk

)(
∂xr

∂yi

)
.

2. Does ∂jv
i produce a tensor?

3. Does (∂iv
j − ∂jvi) produce a tensor?
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