MATH 210C: Mathematical Physics

Instructor: Michael Holst

Spring Quarter 2016

Homework Assignment #2

Due Date: NONE (just some suggested problems to look at to complement the lectures)

Exercise 2.1. (A Bit of Sets and Topology)

- 1. Define the open and closed balls in \mathbb{R}^n .
- 2. Give the definition of a topology that can be placed on a set M.
- 3. Give the definition of a topological space M.
- 4. What is the separation property that a Hausdorff topological space has.
- 5. Give the definition of a metric on a set.
- 6. Give the definition of a metric space.
- 7. Argue that a metric space is always a topological space.
- 8. Argue that a normed space is always a metric space.
- 9. Argue that an inner-product space is always a normed space.

Exercise 2.2. (*Maps on Toplogical Spaces*) Let $F: M \to N$ be a map between two topological spaces M and N. Give definitions of the following properties of F:

- 1. injection (1-1)
- 2. surjection (onto)
- 3. bijection

Why does a map being bijective imply it has an inverse?

Exercise 2.3. (*Maps on Toplogical Spaces*) Let $F: M \to N$ be a map between two topological spaces M and N. Give definitions of the following properties of F:

- 1. isomorphism
- 2. homeomorphism
- 3. differential homeomorphism
- 4. diffeomorphsm

Exercise 2.4. (General Manifolds)

- 1. Explain what is meant by providing a set of charts ("patches" together with corresponding "local coordinate systems") for a set.
- 2. Give the definition of a differentiable n-manifold.
- 3. Give the definition of a C^{∞} *n*-manifold.
- 4. Give the definition of an analytic *n*-manifold.

Exercise 2.5. (Vectors, Tangent spaces, Covectors, Cotangent spaces)

- 1. Define a (tangent) vector to a submanifold of \mathbb{R}^n , and to a general *n*-manifold M^n .
- 2. Define a (cotangent) covector to a submanifold of \mathbb{R}^n , and to a general *n*-manifold M^n .
- 3. Define the tangent space to an *n*-manifold M^n at the point *p*.
- 4. Define the cotangent space to an *n*-manifold M^n at the point *p*.

Exercise 2.6. (Implicitly Defined Submanifolds of \mathbb{R}^n) Investigate the implicitly defined submanifold:

 $M=\{ \; x\in \mathbb{R}^3 \; | \; x_1^2+x_2^2-\!\! x_3^2=c \; \},$

in three distinct cases: c > 0, c < 0, c = 0. Are and/all of the three submanifolds? Do answers change if the origin is excluded? Draw all three level sets (loci) in one picture.

Exercise 2.7. (Submanifolds of \mathbb{R}^n) Let M^n be a differentiable *n*-manifold, and let (U, x_U) be a chart (a patch U with a corresonding local coordinate system $x_U = (x_U^1, \ldots, x_U^n)$. Let us try to define a type of "global norm" on vector fields \bar{x} over M^n as:

$$\|\bar{x}\|^2 = \sum_{j=1}^n |x_u^i|^2.$$

Is this a "norm" in the sense that we have discussed? What is wrong?

Exercise 2.8. (Submanifolds of \mathbb{R}^n and M^n) Let M^n be a differentiable submanifold of \mathbb{R}^N that does not contain the origin. Consider now $f: M^n \to \mathbb{R}$ defined to be the function that assigns to each point of M^n the square of its distance from the origin. Using local coordinates (u^1, \ldots, u^n) , show that a point $p \in M^n$ is a critical point for this distance function if and only of the position vector to this point is normal to the submanifold M^n .

Exercise 2.9. (Vector fields and Flows in \mathbb{R}^n and M^n) Consider the vector field on \mathbb{R} defined as $v(x) = x^2(d/dx)$. I.e., v(x) moves x^2 distance in the coordinate direction d/dx. Find the flow $\phi_t(p)$ corresponding to this vector field by solving the differential equation

$$\frac{dx}{dt} = x^2, \qquad , x(0) = p.$$

Now define the open interval containing p as $U_p = (1/2, 3/2)$. Find the largest ϵ so that $\phi: U_p \times (-\epsilon, \epsilon) \to \mathbb{R}$ is well-defined. I.e., find the largest t for which the integral curve $\phi_t(p)$ is well-defined for all $p \in U_p$.

Exercise 2.10. (*Covectors in* \mathbb{R}^n and M^n) If v is a vector and α is a covector, compute (directly in coordinates) that

$$\sum_{i=1}^{n} a_i^V v_V^i = \sum_{i=1}^{n} a_i^U v_U^i.$$

I.e., you have shown that this quantity is invariant under coordinate transformation.

Exercise 2.11. (*Tensors and Metrics in* \mathbb{R}^n and M^n) Let x, y, z be the standard orthogonal cartesian coordinates in \mathbb{R}^3 , the basis vectors for which we denote as ∂_x , ∂_y , and ∂_z . Let $u^1 = r$, $u^2 = \theta$, $u^3 = \phi$ be spherical coordinates, with corresponding basis vectors ∂_r , ∂_{θ} , and ∂_{ϕ} . Recall that the relationship between (x, y, z) and (r, θ, ϕ) is:

$$\begin{aligned} x &= r \, \sin \theta \, \cos \phi, \\ y &= r \, \sin \theta \, \sin \phi, \\ z &= r \, \cos \theta. \end{aligned}$$

1. Use the chain rule to compute the metric tensor components for spherical coordinates:

$$g_{r\theta} = g_{12} = \langle \partial_r, \partial_\theta \rangle, \dots$$

- 2. Confirm that the basis functions ∂_r , ∂_{θ} , and ∂_{ϕ} are mutually orthogonal just as as ∂_x , ∂_y , and ∂_z are mutually orthogonal, BUT they are NOT unit length.
- 3. Compute the coefficients of the gradient with respect to spherical coordinates:

$$\nabla f = (\nabla f)^r \partial_r + (\nabla f)^\theta \partial_\theta + (\nabla f)^\phi \partial_\phi.$$

4. Finally, coefficients of the Laplacean with respect to spherical coordinates: (This one is actually not that easy.)

$$\nabla^2 f = \nabla \cdot (\nabla f)$$

Exercise 2.12. (2-Tensors and Metrics in \mathbb{R}^n and M^n) Repeat Problem 2.11 but for cylindrical coordinates in \mathbb{R}^3 .

Exercise 2.13. (2-Tensors and Metrics in \mathbb{R}^n and M^n) Repeat Problem 2.11 but for polar coordinates in \mathbb{R}^2 .

Exercise 2.14. (Tangent and Cotangent Spaces and Bundles) Let $F: M^n \to W^r$ and $G: W^r \to V^s$ be smooth maps, where M^n, W^r, V^s are differentiable manifolds. Let (x, y, z) be local coordinates near $p \in M^n$, $F(p) \in W^r$, and $G(F(p)) \in V^s$, respectively, and consider the composite map $G \circ F: M^n \to V^s$.

1. Using bases $\partial_x, \partial_y, \partial_z$, show that the differentials obey:

$$(G \circ F)_* = G_* \circ F_*.$$

2. Using bases dx, dy, dz, show that the differentials obey:

$$(G \circ F)^* = G^* \circ F^*.$$

Exercise 2.15. (*General Tensors and Exterior Forms*) Let $A: E \to E$ be a linear transformation on a vector space E.

- 1. Show that the trace $tr(A) = \sum_{i=1}^{n} A_i^i$ is a true scalar (independent of coordinate transformation) by using the basic transformation properties of mixed tensors. Here A_j^i are the mixed components of A with respect to both the vector space E and the dual space E^* .
- 2. What about the similar quantity computed with respect to only one of the bases, e.g., $\sum_{i=1}^{n} A_{ii}$? Is this a scalar?

Exercise 2.16. (*General Tensors and Exterior Forms*) Let $\bar{v} = v^i \partial_i$ (summation convention) be a (contravariant) vector field on a differentiable manifold M^n .

1. Show that $v_j = g_{ji}v^i$ are the components of a corresponding covector representation of \bar{v} , by showing that the required transformation properties hold. You will need to use the chain rule:

$$\frac{\partial}{\partial y^i} \left(\frac{\partial y^j}{\partial x^k} \right) = \sum_{r=1}^n \left(\frac{\partial^2 y^j}{\partial x^r \partial x^k} \right) \left(\frac{\partial x^r}{\partial y^i} \right).$$

- 2. Does $\partial_j v^i$ produce a tensor?
- 3. Does $(\partial_i v^j \partial_j v^i)$ produce a tensor?