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We have
NINE, = (ML, — i¥1, (WL, + iNT,)
= M2+ M2 +i[ M,, NI,]1= M~ N>~ )L, (7.10.37)

If the operator M_M+ acts on |A, My, it follows by using (7.10.31) that
(M?= N2~ BNL)|A, My = M_NLA, o =0, (7.10.38)
Therefore, by (7.10.26) and (7.10.27),
(A = M = M ) |A, My =0
or
A=mi M. (7.10.39)
Similarly,
M. NM_=NM>*—M>+ &M, (7.10.40)
If this operator acts on |, m,;.), and (7.10.34) is used, we obtain
A = M+ My = 0. (7.10.41)
If we equate the two results for A from (7.10.39) and (7.10.41), it turns oﬁ\
that
(Mimax + MMy = My —1) = 0 (7.10.42)
Thus
Miax = = Mpni- (7.10.43)

Therefore the admissible values of m lie symmetrically about the origin.
Since the extreme values differ by an integer, it follows that

Mipax — Plin = 21, (7.10.44)
where
1=0,%,1,3,.... (7.10.45)
These results combined with (7.10.43) show that
~l=m=] (21+1 values). (7.10.46)
Finally, it follows from (7.10.39) and (7.10.44) that
A=1(I+1), I=0,%13, ..., (7.10.47)

This is a definite proof for integer and half-integer eigenvalues for the
angular momentum. Particles with integral spin are called the Bosons, those
with half-integral spins are known as Fermions.
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The two different kinds of angular momentum operators can be combined
to define the total angular momentum

J=L+M™ (7.10.48)
with the components fx = Ex + ]\Adx, fy = Ey + My, fz = Ez + MZ.

A

It follows from the properties of I, and M that J satisfies the usual
commutation relations

., J,1= ik, (7.10.49a)
[J,, L.1=inf,, (7.10.49b)
[J., J.1=in], (7.10.49c¢)

and hence -
[, 31=1], #1=11, 1 =0, (7.10.50abc)

where
P=r+r+. (7.10.51)
It can readily be shown that

L my= 11+ )81, m), (7.10.52)
T|L my=tm|l, m). (7.10.53)

This means that the eigenvalues of J? and J, are I(I+1)%* and #m, respec-
tively, where [m|=<1I and the quantum numbers may be either integers or
half-integers.

Finally, it follows that

A A A

[ L1=2M[ L, L)+ oM L, £]=4[F,, L],  (7.10.54)
[ M,]=~-#[L,, L] (7.10.55)

7.11. Exercises

(1) (a) Use the Lagrangian, L=3m(%*+ 3>+ 2%) = k(x> +y°+ 2°) for the
three dimensional isotropic harmonic oscillator, and Lagrange’s equations

of motion to show that the total energy is constant where k is the force

constant.
(b) Show that the Lagrangian for the oscillator in spherical polar coordin-
ates (r, 6, ) is
L=T—-V=ImQG>+r6>+rsin’ & é?) —3kr,
where k = 47 mw".
Hence write down the Lagrange equations of motion.
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(2) Consider a single particle of mass m moving in a plane under a
conservative force with potential V(r), where r is distance from the origin
of coordinates. With r and 6 as generalized coordinates describing the
motion of the particle, show that the corresponding momenta are

oL . OL_
. == M, =—==mr"0, 4
Pr="as Pe=56 |

where L= T~ V=3im(#*+r*6*) — V(r). Hence show that 1

2
. v oV
Po_, V(r), mr*6 = constant, m (i — rf?) = — o
r

2

Dr
H="—4+
2m 2mr®

Give an interpretation of each of the above results.

(3) If Ais a complex dynamical function of ¢ and p, A* is its\complex
conjugate, and if the Poisson bracket {A, A*}=1i compute {A;-AA*},
{A, A*A}, {A*, AA*} and {A* A*A}.

(4) Find the Hamiltonian and Hamilton’s equations of motion for

(i) The simple harmonic oscillator, T =3mx* and V =3kx” and
(ii) The planetary motions, T=3m(#*+r*6°), and V=mu(1/2a—1/r).
In this case, derive the differential equations for the central orbit.

(5) Establish the following results for the Poisson brackets:

(i) {A,B}=—{B, A},

(i) {(A+B), C}={A, C}+{B, C},
(iii) {AB, C}={A, C}B+ A{B, C}, X
(iv) {A, a}=0, ‘
(v) {A{B, C}}+{B,{C, A}}+{C,{A, B}} =0 (Jacobi’s Identity),

where A, B, C are canonical functions and « is a scalar.

(6) Show that

(i) [4, B]=-[B A,

(i) [A+B, C1=[A, C1+[B, (1,

(iii) [A, B+ C1=[A, B]+[A, €],

(iv) [AB, C1=[A, C1B+A[B, (], J
v) [A, BC1=[A, BIC +B[A, &,

J
i
{

(vii) [A%, Bl=A[A, B]+[A, BA,
(viii) [A, «]1=0, « is a scalar.
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(7) For the three dimensional position and momentum operators of a
particle, prove that
L7, ;1= iks,

ijs

where the suffixes i, j take the values 1, 2, 3 for the x, ¥, z components of
f and p, respectively.

(8) By direct evaluation for canonically conjugate variables g and p, show
that

(i) [p? q°1=2H"—4ihpg,
(ii) [p, ¢°1=—2ihg,
(iif) [£2 §2]=24° - 4i%p,,
(iv) [ py, £2] = —2ih%.

(9) If A and B are any two operators which both commute with their
commutator [ A, B] prove that

[A, B"]=nB"'[A, B],

[A", B]=nA""'[A, B].

(10) Establish the following commutator relations:

(L2 LA=[1%L,]1=[F*[,]=0.

(11) Show that

(12) Prove that

=D+ +2L- M= +NP+20 M+ L +1 L,
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(13) Show that the probability for a position measurement on the state
W(x, t) to yield a value somewhere between x, and x, is

T dx = J ’ [W(x, ) dx.

X1

P(xlsx25t):J

Xt

Using the Schrédinger equations, derive the result

d
Ep(x1:x2a t):‘l(xla t)—J(x2a t):

where

5= {xpw \Ir‘?—?].

X 0x

(14) Use the inner product

(@¢FJ$WM

and the property (¢, ¢) > (0, 0) as |x| > o, to show that the position operator
X =x, the _momentum operator p=—ih a/ax and the energy operator A=
p2m+ V(x) are Hermitian operators.

(15) Establish the following commutation relations for the orbital angular
momentum operators:

[L,,%]=0,
[L., 7]=ikZ,
[L., £]=—ih3,
[L.,p.]=0,
[L.,5,]=ihp,,
[L.,p.]=—ihp,.

(16) Prove the Heisenberg uncertainty relation for the harmonic oscillator

1
Ax Ap=—h
xAp=7

(17) 1f A and B are constants of motion, show that the commutator i[ A, B]
is also a constant of motion.
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(18) Show that, for the linear harmonic oscillator,
[A,A]l=(-ho)A,  [H A*]=(ho)A*,
where

A=d4/vVho and A*=4*/Viw.

(18) For the three dimensional anisotropic Planck’s oscillator, the Hamil-
tonian is given by

1 1
H=2—p,+2mw x2, r=1,2,3,

so that total Hamiltonian H = H,+ H,+ H; and the total energy E =
E,+E,+ E;, where E,|, E,, E; are energies of each of the independent
degrees of freedom. Show that
E =(n+3) ho+ (ny+3) hoo+ (n;+ 1) hws.
In the case of an isotropic oscillator, w; = w,= w; = w, derive the result

EN:(N+§)h(,0) N:n1+n2+n320,1,2,3,...

(20) Prove the compatibility theorem which states that any one of the
following conditions implies the other two:

(i) A and B are compatible,
(ii) A and B possess a common eigenbasis,
(iii) A and B commute,

where A and B are two observables with corresponding operators A and B.

(21) If the eigenvectors {¢:,(x)} form an orthonormal basis in a Hilbert
space, show that any state vector ¢/(x) satisfies the result

W)= [, 9

(22) 1f A’=A—(A)y and B'= B—(B), prove the following results:
(i) A’ and B are Hermman operators,
(ii) [A’ B] [A, B]
(iii) (A'y, A'y)=(AA)

Use these results to establish the generalized uncertainty relation.

(23) Using (A)=["_ W*(x)[ A¥(x)] dx prove that the expectation values
of position and momentum in the state ¥(x, t) are

x

<;e>=f x[®(x, 1) dx, (ﬁ)=~ihj \If*-;;\lf(x,t)dx.
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Also show that
2

dx.

o0

= wteeoras gh=n|

Bl

]
—Y(x, ¢
Y

(24) Apply the basic commutation relations [X:, p;1= ihd; and rules of
commutator algebra to show that

an m GR L A PO 1 VA
[%P., H]:;piﬂ[px, V1l 5, H]=’—n-p§+y[py, V1,
an A B o A
[2p., H]=’—n-p§+2[pz, V]

Hence combine them to obtain the Heisenberg equation of motion for the
operator r-p
2

d
d—t<r-p>=<";>—<r-VV>.

Hence or otherwise prove the Virial Theorem for the stationary states:

AT)=(r-VV). .

(25) Use the results in Exercise (9) for A =% and B = P, to prove that for
any Hamiltonian of the form

A2
H= Ep;_:[ +af",
the following relation holds:
o p2 A .
[%p., H]= iR (—x—an£"> =ih(2T —nV).
m

(26) Use the Hamiltonian operator for the one dimensional simple har-
monic oscillator in the form

and then introduce the non-dimensional variables
A maow 1/2 A 1
X=\—+) £ P=———p
<2h> % (2mhaw) 2P
(a) Show that

(i) ):( and }A’Aare Hermitian operators,
(i) H=ho(P?+X?),
(iii) [X, P]=14i.
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(b) If Q=X +iP and O*=X —iP, show that
QQ*=X*+ P4}, Q*0=X*+P-1,  A=ho(0*0+d),
where the algebra of the operators @ and @* is defined by the commutation
relation

[Q, 0*]=1.

(27) 1f A and B are two vector operators that commute with the Pauli spin
matrices but do not commute between themselves, prove the Dirac identity

(0-A)6-B)=(A-B)+i(AxB) &,

A A

where & =(d,, 6,, 6,).




