MATH 210A: Mathematical Physics

Instructor: Michael Holst

Fall Quarter 2015

Homework Assignment #1 Due (Give to Prof. Holst a couple of week before final if you want feedback)

Exercise 1.1. (Useful Facts to Derive)

• Let p > 1, q > 1, and 1/p + 1/q = 1. Prove that for every $0 \le x \le 1$,

$$x^{1/p} \le \frac{x}{p} + \frac{1}{q}.$$

Hint: This is Exercise 1.9(5) in 1st Ed. (1.7(8) in 3rd Ed.)

• Use the fact above to prove Young's inequality: For $a, b \ge 0, 1 < p, q < \infty, 1/p + 1/q = 1$,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Hint: This is proved in the book.

• Do Exercise 1.9(15) in 1st Ed. (1.7(18) in 3rd Ed.)

Exercise 1.2. (Vector Spaces and Subspaces)

- Do Exercise 1.9(4) in 1st Ed. (1.7(4) in 3rd Ed.)
- Do Exercise 1.9(6) in 1st Ed. (1.7(9) in 3rd Ed.)
- Do Exercise 1.9(7) in 1st Ed. (1.7(10) in 3rd Ed.)
- Do Exercise 1.9(9) in 1st Ed. (1.7(12) in 3rd Ed.)
- Do Exercise 1.9(11) in 1st Ed. (1.7(14) in 3rd Ed.)
- Do Exercise 1.9(13) in 1st Ed. (1.7(16) in 3rd Ed.)
- Do Exercise 1.9(39) in 1st Ed. (1.7(50) in 3rd Ed.)

Exercise 1.3. (Normed Spaces as Metric Spaces)

Let $\|\cdot\|: X \to \mathbb{R}$ be a norm on a vector space X with associated scalar field \mathbb{R} . We know that $\|\cdot\|$ must satisfy the three properties of a norm:

- 1. $||u|| \ge 0$, $\forall u \in X$, ||u|| = 0 iff u = 0.
- 2. $\|\alpha u\| = |\alpha| \|u\|, \quad \forall \alpha \in \mathbb{R}, \quad \forall u \in X.$
- 3. $||u+v|| \le ||u|| + ||v||$, $\forall u, v \in X$.

Use these properties to show the induced metric d(u, v) = ||u - v|| satisfies the three properties of a metric:

- 1. $d(u,v) \ge 0$, $\forall u,v \in X$, d(u,v) = 0 iff u = v.
- 2. $d(u, v) = d(v, u), \forall u, v \in X$.
- 3. $d(u,v) \leq d(u,w) + d(w,v), \quad \forall u,v \in X.$

Hint: This was proved in lecture.

Exercise 1.4. (Inner-Product Spaces as Normed Spaces)

Let $(\cdot, \cdot): X \times X \to \mathbb{R}$ be an inner-product on a vector space X with associated scalar field \mathbb{R} . We know that (\cdot, \cdot) must satisfy the three properties of an inner-product:

- 1. $(u, u) \ge 0$, $\forall u \in X$, (u, u) = 0 iff u = 0.
- 2. $(u, v) = (v, u), \forall u, v \in X$.
- 3. $(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w), \quad \forall \alpha, \beta \in \mathbb{R}, \quad \forall u, v, w \in X.$

Use these three properties to show the induced norm $||u|| = (u, u)^{1/2}$ satisfies the three norm properties.

Hint: Showing the first two properties is very easy, in fact we did it in lecture. To show the last property (triangle inequality), assume the Cauchy-Schwarz inequality holds (or even better, prove it): $|(u,v)| \le ||u|| ||v||$, $\forall u,v \in X$.

Exercise 1.5. (Equivalent Norms)

Let X be a normed space. Recall that two norms $\|\cdot\|_X$ and $\|\cdot\|_Y$ on X are called equivalent if:

$$C_1 ||u||_X \le ||u||_Y \le C_2 ||u||_X, \quad \forall u \in X.$$

In the case of a finite-dimensional space X, we noted that all norms can be shown to be equivalent. Consider now the specific finite-dimensional space $X = \mathbb{R}^n$.

1. Determine constants C_1 and C_2 for the l^p norms for $p=1,2,\infty$. In particular, show the following tight bounds:

$$||u||_{\infty} \le ||u||_2 \le ||u||_1 \le \sqrt{n}||u||_2 \le n||u||_{\infty}, \quad \forall u \in \mathbb{R}^n.$$
 (1.1)

2. Use these inequalities to show that if $A \in \mathbb{R}^{n \times n}$, then the corresponding matrix norms also have equivalence relationships:

$$||A||_1 \le \sqrt{n} ||A||_2 \le n||A||_1, \tag{1.2}$$

$$||A||_{\infty} \le \sqrt{n} ||A||_2 \le n ||A||_{\infty}. \tag{1.3}$$

- 3. Derive the analogous equivanence relationships for the corresonding condition numbers (assume now that A is inverible).
- 4. Show that for any norm $\|\cdot\|$ on \mathbb{R}^n , if $\rho(A)$ is the spectral radius of $A \in \mathbb{R}^{n \times n}$, then

$$\rho(A) \le ||A||.$$

Hint: This is based on Exercise 1.9(25) in 1st Ed. (Does not appear in quite this form in 3rd Ed.)

Exercise 1.6. (Convergent and Cauchy Sequences, Completeness)

- Do Exercise 1.9(23) in 1st Ed. (1.7(28) in 3rd Ed.)
- Do Exercise 1.9(28) in 1st Ed. (1.7(33) in 3rd Ed.)
- Do Exercise 1.9(31) in 1st Ed. (1.7(40) in 3rd Ed.)
- Do Exercise 1.9(32) in 1st Ed. (1.7(41) in 3rd Ed.)
- Do Exercise 1.9(33) in 1st Ed. (1.7(42) in 3rd Ed.)

Exercise 1.7. (Banach Spaces)

- Do Exercise 1.9(34) in 1st Ed. (1.7(43) in 3rd Ed.)
- Do Exercise 1.9(35) in 1st Ed. (1.7(44) in 3rd Ed.)

Exercise 1.8. (Linear Operators on Normed Spaces)

- Do Exercise 1.9(36) in 1st Ed. (1.7(45) in 3rd Ed.)
- Do Exercise 1.9(38) in 1st Ed. (1.7(47) in 3rd Ed.)

Exercise 1.9. (The Banach Fixed-Point Theorem)

- Do Exercise 1.9(40) in 1st Ed. (1.7(52) in 3rd Ed.)
- Do Exercise 1.9(41) in 1st Ed. (1.7(53) in 3rd Ed.)
- Do Exercise 1.9(42) in 1st Ed. (1.7(55) in 3rd Ed.)