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An operator A is said to have a compact-normal resolvent if there exists
a scalar A such that (A —A) ' is a compact and normal operator. To apply
the above theorem we need to determine whether a given operator A has
a compact-normal resolvent.

We close this section with the following, rather interesting, remark.

Let A be a closed operator in a Hilbert space H. We know that this does
not imply boundedness of A. On the other hand, it is always possible to
redefine the inner product on P(A) such that 9(A) becomes a Hilbert
space and A becomes a bounded operator on Z(A). In fact, for x, y € D(A)
define

(x, ¥)1=(x, y)+(Ax, Ay),
where (-, -) denotes the inner product in H. The proof of completeness of
2(A) with respect to the norm
el = ]I+ [l A%,

and the boundedness of A in this new Hilbert space is left as an exercise.

4.13. Exercises

(1) If A is an operator on H such that Ax L x for every x € H, show that
A=0.

(2) Let A be a bounded operator defined on a proper subspace of a Hilbert
space H.

(a) Define an operator A; on the closure %(A) of the domain of A by

A;x=lim Ax,, where x, € 2(A) and x, > x.

Show that A, is well defined, i.e., A;x does not depend on a particular
choice of the sequence {x,}. Show that A, is a linear and bounded operator
defined on P(A).

(b) Define an operator B on H by

Bx=Ax,, where x, is the projection of x onto %(A).

Show that B is a bounded operator on H.
(c) Show that ||A| =|B].
Since A= B on 9(A), B is an extension of A.

(3) Let ¢ be a symmetric, positive, bilinear functional on a vector space
E. Show that

16 (x, )= (x, x)p (3, ¥).
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(4) Let {e,} be a complete orthonormal sequence in a Hilbert space H and
let {A,} be a sequence of scalars.

(a) Show that there exists a unique operator T on E such that Te, = A,e,.
(b) Show that T is bounded if and only if the sequence {A,} is bounded.
(c) For a bounded sequence {A,}, find the norm of T.

(5) Let A:R*- R*be defined by A[x, y]=[x+ 2y, 3x+2y]. Find the eigen-
values and eigenvectors of A.

(6) Let T:C*>C? be defined by T[x,y]=[x+3y,2x+y]. Show that
T*#T.

(7) Let A :R*> R’ be given by A[x, y, z]1=[3x —z, 2y, —x +3z]. Show that
A is self-adjoint. <

(8) Compute the adjoint of each of the following operators:
(a) A:R*>R’, Alx, y, z]=[~y+z —x+2z x+2y],
(b) B:R*>R%, B[x,y, z1=[x+y—z —x+2y+2z x+2y+3z],
(c) C:P»R)~>PR), C(p(x))=x(d/dx)(p(x))—(d/dx)(xp(x)),

where 2?,(R) is the space of all polynomials on R of degree less than or
equal to 2.

(9) If A is a self-adjoint operator and B is a bounded operator, show that
B*AB is self-adjoint.

(10) Prove that the representation T=A+iB in Theorem 4.4.4 is unique.
(11) 1If A*A+B*B =0, show that A=B=0.

(12) Let A be an operator on H. Show that
(a) A is anti-Hermitian if and only if iA is self-adjoint.
(b) A— A* is anti-Hermitian.
(13) Show that if T is self-adjoint and T #0, then T" #0 for all ne N.

(14) Let A be a self-adjoint operator. Show that

(a) [|Ax+ix||”= | Ax|*+]|x[,
(b) The operator U=(A—i¥)(A+i¥)™" is unitary. (U is called the
Cayley transform of A.)

(15) The limit of a convergent sequence of self-adjoint operators is a
self-adjoint operator.
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(16) If T is a bounded operator on H with one dimensional range, show
that there exist vectors y, ze€ H such that Tx = (x, z)y for all xe H. Hence
show that

(a) T*x=(x,y)z for all xe H,

(b) T*=AT, A is a scalar,

© 171 =lylllzl,

(d) T* =T if and only if y = az for some real scalar a.

(17) Let A be a bounded self-adjoint operator on a Hilbert space H such
that ||A[| <1. Prove that (x, Tx)=(1—| A})|x|* for all xe H.

(18) Show that the product of isometric operators is an isometric operator.

(19) Let {e,} be a complete orthonormal sequence in a Hilbert space H.
Show that an operator A on H is unitary if and only if {Ae,} is a complete
orthonormal sequence in H.

(20) Let {e,}, neZ={...,-2,-1,0,1,2,...}, be a complete orthonormal
system in a Hilbert space H. Show that there exists a unique operator A
on H such that Ae,=e,, for all n€ Z. Operator A is called a two-sided
shift operator. Show that A is isometric and unitary.

(21 ) Show that the product of two unitary operators is a unitary operator.

(22) Let A be an operator on a Hilbert space. Define the exponential
operator by

n=0
Show that e* is a well-defined operator. Prove the following
(a) (e™)"=e" for any neN,
(b) €=,
(c) e” is invertible (even if A is not) and its inverse is e~
(d) e”e® =e**® for any commuting operators A and B,
(e) If A is self-adjoint, then e is unitary.

A

(23) If T is a normal operator on H and A is a scalar, show that
| T*x —Ax| = || Tx — Ax|| for all xe H.

{24) Show that if the kernel K(x, y) satisfies K (x, y) = K(y, x), then for
any real a the operator

b
(Tu)(x) = au(x)+i J K(x, y)u(y) dy

a

on L*([a, b]) is normal.
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(25) Show that for any invertible operator T, the operator T*T is also
invertible.

(26) If T is normal, show that T is invertible if and only if T*T is invertible.
(27) Prove Theorem 4.5.4,

(28) Let T and S be commuting operators. Show that if both T and S are
normal, then S+ T and ST are normal.

(29) If T*T =4, is it true that TT*=4?

(30) Let A, B, C, and D be positive operators on a Hilbert space. Prove
the following

(a) f A=B and C=D, then A+C=B+D.

(b) If A=0 and =0 (@ €R), then aA=0.

(¢) If A=B and B=C, then A=C.

(d) If A=0 and ||A[ <1, then A< 4.

(e) If A=0, then there exists @ >0 (a € R) such that aA< 4.

(31) If A is a positive operator and B is a bounded operator, show that
B*AB is positive.

(32) If A and B are positive operators and A+ B =0, show that A=B=0.

(33) Show that for any self-adjoint operator A there exist positive operators
S and T such that A=S~T and ST =0.

(34) If A is a positive definite operator, then it is invertible and its inverse
is positive definite.

(35) Find operators T: R* R? such that 72= %, Which one is the positive
square root of $?

(36) Find the positive square root of the operator T on L*([a, b]) defined
by (Tf)(t) = g(t)f(t), where g is a positive continuous function on [a, b].

(37) Show that |VA| =V[AJ.

(38) Let A and B be positive operators on a Hilbert space. Show that
A?= B’ implies A= B.

(39) Let A and B be commuting positive operators. Show that vAB=
VAVB.
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(40) If P is self-adjoint and P? is a projection operator, is P a projection
operator?

(41) Let T be a multiplication operator on L*([a, b]). Find necessary and
sufficient conditions for T to be a projection.

(42) Give an example of two non-commuting projection operators.
(43) Show that P is a projection if and only if P = P*P,

(44) Generalize Theorem 4.7.3 to any finite sum of projections.

(45) Show that every projection P is a positive operator and 0< P < 5.
{46) If T is an isometric operator, show that TT* is projection.

(47) Show that for projections P and Q the operator P+ Q—PQ is a
projection if and only if PQ = QP.

(48) Prove Theorem 4.8.2.

{49) Show that the projection onto a closed subspace F of a Hilbert space
H is a compact operator if and only if F is finite dimensional.

{50) Show that the operator T:I*- I defined by T{x,})={2""x,} is
compact.

(51) Show that a self-adjoint operator T is compact if and only if there
exists a sequence of finite dimensional operators strongly convergent to T.

(52) Prove that the collection of all eigenvectors corresponding to one
particular eigenvalue of an operator is a vector space.

(53) Show that the space of all eigenvectors corresponding to one particular
eigenvalue of a compact operator is finite dimensional.

(54) Show that eigenvalues of a symmetric operator are real and eigenvec-
tors corresponding to different eigenvalues are orthogonal.

(55) Show that every non-zero vector is an eigenvector of the operator
A = af corresponding to the eigenvalue a.

Linear Operators on Hilbert Spaces 217
(56) Show that shift operators have no eigenvalues.

(57) Give an example of a self-adjoint operator which has no eigenvalues.
(58) Give an example of a normal operator which has no eigenvalues.

(59) Show that a non-zero vector x is an eigenvalue of an operator A if
and only if |(Ax, x)| = || Ax|| || x].

(60) Show that if the eigenvectors of a self-adjoint operator A form a
complete orthogonal system and all eigenvalues are non-negative (or posi-
tive) then A is positive (or strictly positive).

(61 ) Prove the Spectral Theorem for the finite dimensional case: If T:R" -
RY is a self-adjoint operator, then there exists an orthonormal system of
vectors ¢4, ..., ¢ €R" and scalars Ay, ..., Ay € C such that

Thi =M, k=1,...,N

Hence the matrix corresponding to T relative to the basis {¢,..., dn} is
A 0 L00
0 X ... 0
0 0 ... An

(62) 1f A is an approximate eigenvalue of an operator T, show that [A|=
171

(63) Show that if T has an approximate eigenvalue A such that |A| = || T|,
then sup.=; [(Tx, x)| = || T||.

(64) If A is an approximate eigenvalue of T, show that A + u is an approxi-
mate eigenvalue of T+ u$ and Ap is an approximate eigenvalue of uT.

(65) Show that |A| =1 for every approximate eigenvalue A of an isometric
operator.

(66) Show that every approximate eigenvalue of a self-adjoint operator is
real.

(67) Show that if A is an approximate eigenvalue of a normal operator T,
theri A is an approximate eigenvalue of T*.
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(68) Provide a detailed proof for Corollary 4.11.2.
(69) Prove Theorem 4.11.5.

(70) Find the Fourier transform of

1 if xe[—a,al,

() fe)= {0 otherwise.
_[1-x|/2 if xe[-2,2],

®) Jx)= {0 otherwise.

(71) Use Example 4.11.1(b) and Theorem 4.11.5(c) to show that

g:{e;azxz}: 1 —k2/4a2

V2l ¢

(72) Show that under appropriate conditions

(@) f'(k)=—iF{xf(x)}.
(6) FO(k) = (=i) F{xf(x)}.

{73) Use the Parseval relation to evaluate

(@) fw (Sizx) d,
J * /sin x\°

(b) (7) dx,

© r (S‘%‘) .

(74) Prove that (AB)C = A(BC) holds for unbounded operators.

(75) Prove that

(a) (A+B)C=AC+BC,
(b) AB+ACc A(B+C),

holds for unbounded operators. Give an example of operators A, B, C for
which AB+ AC # A(B+ C).

(76) Show that (A+ B)* > A*+ B*,

(77) Give an example of a closed operator whose domain is not a closed
set.
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{78) Show that A** is symmetric whenever A is symmetric.

{79) If A is an operator on a Hilbert space H and there exists an operator
B on H such that (Ax, y) = (x, By) for all x, y € H, show that A is bounded
and B=A*.

(80) Let A be a closed operator in a Hilbert space H. Prove that D(A) is
a Hilbert space with respect to the inner product defined by
(%, ¥)1 = (x,y)+ (Ax, Ay),

where (-, ) denotes the inner product in H. Prove that A is a bounded
operator on D(A) with the defined inner product.




