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x, y € §; we have
[x=y?=(x=y,x~y)

=(xx)= (%)= x)+ (3, )

=1-0-0+1 (by the orthogonality)

=2.
This means that the distance between any two distinct elements of S, is /2.

Now consider the collection of 3v2-neighborhoods about every element

of S,. Clearly, no two of these neighborhoods can have a common point,
Since every dense subset of H must have at least one point in every

neighborhood and H has a countable dense subset, S, has to be countable.
Thus, S is countable, proving the theorem.

Definition 3.12.2 (Hilbert Space Isomorphism). A Hilbert space H, is said
to be isomorphic to a Hilbert space H, if there exists a one-to-one linear
mapping T from H, onto H, such that

(T(x), T(y) =(x,») (3.12.1)
for every x, y € H,. Such a mapping T is called a Hilbert space isomorphism
of H; onto H,.

Note that (3.12.1) implies | T|| = 1, because || T(x)|| = | x| for every x e H,.

Theorem 3.12.3. Let H be a separable Hilbert space.

(a) If H is infinite dimensional, then it is isomorphic to I?;
(b) If H has a dimension N, then it is isomorphic to C~.

Proof. Let {x,} be a complete orthonormal sequence in H. If H is infinite
dimensional, then {x,} is an infinite sequence. Let x be an element of H.
Define T(x)=(a;, a,...), where a,=(x,x,), n=1,2,... By Theorem
3.8.3, T is a one-to-one mapping from H onto I°. It is clearly a linear
mapping. Moreover, for a,, = (x, x,) and B, = (), x,,), x, y € H,ne N, we have

(T(x), Ty))=((e1, 2, ...),(B1, B2, .- ))
=Y aB,= ) (x %) %)

n=1

™8

(x, (o, xn)x,,)=<x, Yo xnxn) =(x,y).

n
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Thus T is an isomorphism from H onto I°.
The proof of (b) is left as an exercise.

Remarks. 1. It is easy to check that isomorphism of Hilbert spaces is an
equivalence relation.

2. Since any infinite dimensional separable Hilbert space is isomorphic
to I2, it follows that any two such spaces are isomorphic. The same is true
for real Hilbert spaces; any real infinite dimensional separable Hilbert space
is isomorphic to the real space I°. In some sense, there is only one real and
one complex infinite dimensional separable Hilbert space.

3.13. Exercises

(1) Show that
(x, ay+Bz) = a(x, y)+ B(x, z) for all a, B€C,
in any inner product space.
(2) Prove that the space €o(R) of all complex valued continuous functions

that vanish outside some finite interval is an inner product space with the
inner product

(f,8)= J’_ f(x)g(x) dx.

(3) Verify that the spaces in Examples 3.3.1-3.3.7 are inner product spaces.

(4) (a) Let E =%'([a, b]) (the space of all continuously differentiable
complex valued functions on [a, b]). For f, g€ E define

b
Go=[ reFm

Is (-, ) an inner product in E?
(b) Let F={fe €'([a, b]): f(a)=0}. Is (-, ") defined in (a) an inner
product in F?

(5) Is the space 44(R) of all continuously differentiable complex valued
continuous functions that vanish outside some finite interval an inner
product space if

©

(L= Jﬁ S(x)g'(x) dx ?

(6) Show that the norm in an inner product space is strictly convex, i.e., if
Ix[[=1»]l=1 and x # y, then |x+y| <2.
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(7) Show that in any inner product space |x —y||+ ||y — z| = |x — z|| if and
only if y=ax+(1—a)z for some a [0, 1].

(8) Let E,,..., E, be inner product spaces. Show that
([x1, s Xl Dves s D = Gen, y) + 0 4 (%0, V)
defines an inner product in E=E,X---xXE,. If E,,..., E, are Hilbert

spaces, show that E is a Hilbert space and its norm is defined by

MDxr, -y =Vl P x|
(9) Show that the polarization identity
(5 9) =L+ = L=y -+ =i~ )
holds in any pre-Hilbert space.
(10} Show that for any x in a Hilbert space ||x|| = supy, |-, |(x, ¥)|.

(11) Prove that any complex Banach space with norm |- || satisfying the
parallelogram law is a Hilbert space with the inner product defined by

1 , . , .
(x5 9) = Lx+ 1P =lx =y [P+ il x+ iy =i x =iy,
and then ||x||*= (x, x).

(12) Is %([a, b]) with the norm ||f| =max, ;) |(x)| an inner product
space?

(13) Showthat L*([a, b]) is the only inner product space among the spaces
L?([a, b]).

(14) Show that for any elements in an inner product space,

lz=x{?+llz=yl"=5 |x-yl*+2| z-

1 x+ y} 2
5 .
The equality is called Apollonius’ identity.

(15) Prove that any finite dimensional inner product space is a Hilbert
space.
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(16) Let F={fe %¢'([a, b]): f(a) =0} and

(£ 8)= Jabf’(X)W dx.
Is E a Hilbert space?

(17) Is the space €5(R) with the inner product

o

(f8)= J f(x)g'(x) dx

~0o

a Hilbert space?

(18) Let E be anincomplete inner product space. Let H be the completion
of E (see Section 1.7). Is it possible to extend the inner product from E
onto H such that H would become a Hilbert space?

(19) Suppose x, - x and y, - y in a Hilbert space, and a, > « in C. Prove
that

(a) X, +tyn>x+y,
(b) a,x, > ax,

(©) (Xn, ¥u) > (%, ¥),
CYREA B E

(20) Suppose x,~"x and y,-"y in a Hilbert space, and @, a in C.
Prove or give a counterexample:

(@) X, +y,>"x+y;

(b) a,x,->"ax;

(©) (%n, yu)~> (x,9);

(d) [l = [1x[l;

(e) If x, =y, for all neN, then x=y.

(21) Show that in a finite dimensional Hilbert space weak convergence
implies strong convergence.

(22) 1t is always possible to find a norm on an inner product space E
which would define the weak convergence in E?

(23) If Z:ll u; = u, show that Z::‘ (ug, x) = (u, x) for any x in an inner
product space.




g
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(24) Let {x,,...,x,} be a finite orthonormal set in a Hilbert space H.
Prove that for any x € H the vector
x= Z (%, %)% "
k=1
is orthogonal to x, for every k=1,..., n.

(25) In the pre-Hilbertspace €([—, 1) show that the following sequences
of functions are orthogonal:

(a) x (t)=sinkt, k=1,2,3,...;
(b) y.(t)=cosnt,n=0,1,2,....

(26) Show that the application of the Gram-Schmidt process to the
sequence of functions

S =LA =LL0=0 . f()=1",...
(as elements of L*([—1,1])) yields the Legendre polynomials.

(27) Show that the application of the Gram-Schmidt process to the
sequence of functions

42 —q2 —2 —42
fo)y=e"2 fi()=te 2 f(1y=1 e L fu()=1"e 2L

(as elements of L*(R)) yields the orthonormal system discussed in Example
3.7.4.

(28) Apply the Gram-Schmidt process to the sequence of functions
LO=LAN=LLNO=1 . (=1 ..

defined on R with the inner product
(f )= J f(0gln) e at
Compare the result with Example 3.7.4.

(29) Apply the Gram-Schmidt process to the sequence of functions
S =LAN=tLO =0 f()=1". ..

defined on [0, 0c0) with the inner product
(£ 8 =J‘ f(Og(t) e " at.
0

The obtained polynomials are called the Laguerre polynomials.
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(30) Let T, be the Chebyshev polynomials of degree n, i.c.,
Ty(x)=1, T,(x)=2"" cos(n arccos x).
Show that the functions
$u(x)=
w2

form an orthonormal system in L*[(~1, 1)] with respect to the inner product

()= | s s ax

T.(x), n=0,12,...,

(31) Prove that for any polynomial
Pr(x)=x"+a, x" '+ +a,
we have

max | pa(x)|= max | T,(x)|,

where T, denotes the Chebyshev polynomial of degree n.

(32) Show that the complex functions

¢n(Z)=\/EZ""1, n=1,2,3,...,
w

form an orthonormal system in the space of continuous complex functions
defined in the unit disc D = {z e C: |z|=< 1} with respect to the inner product

f g)=“f(z)m dz.
D
{33) Prove that the complex functions
1
¢fn(2)=ﬁz”“‘, n=1,23,...,

form an orthonormal system in the space of continuous complex functions
defined on the unit circle C = {z € C: |z| = 1} with respect to the inner product

(fg)= L A0 d.
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{34) With respect to the inner product
(£8)= J f(x)g(x)w(x) dx,
-1

where w(x)=(1—x)*(1+x)? and @, 8> —1, show that the Jacobi poly-

nomials

dnn [(A=x)"(1+x)°(1-x7)"]

L (1-x)"*(1+x)"8 o

(@B)( ) —
PR (x) =

form an orthogonal system.

(35) Show that the Gegenbauer polynomials

__1 n d"
Ch(x)= (n| 2),, (1-x)Vrr o (1= xByr+r-1/2,

where y >4, form an orthonormal system with respect to the inner product
1
(£8)= J f(x)g(x)(1=x*)""2 dx,
-1

Note that Gegenbauer polynomials are a special case of Jacobi polynomials
with a =8 = 'y—%.

(36) Find a, b, c € C which minimize the value of the integral

1
J |x*—a—bx—cx*? dx.
-1

(37) 1f x and x, (k=1,...,n) belong to a real Hilbert space, show that
n 2 n n n
x—z agx =||x||24z a(x, xk)—i-z 2 aa (x;, x,).

k=1 k=1 k=1s=1
Also show that this expression is minimum when Aa = b, where a = (a,),
b =((x, x,)) and the matrix A= (ay,) is defined by a,, = (x;, x,).

(38) If {a,} is an orthonormal sequence in a Hilbert space H and {a,} is
a sequence in /%, show that there exists x € H such that

(x,a)=a, and |[{a,}||=]x],

where |{a,}|| denotes the norm in P

(39) If a, and b, (n=1,2,3,...) are generalized Fourier coefficients of
vectors x and y with respect to a complete orthonormal sequence in a
Hilbert space, show that

oo

(x,y)= Z akb-k-

k=1
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(40) Let {e,} be an orthonormal sequence in a Hilbert space H. Show that
{e,} is complete if and only if (x, y) =2”:1 (x, e,)(», e,) for every x, y e H.

(41) Let {x,} be an orthonormal sequence in a Hilbert space H. Show that
{x,} is complete if and only if cl(span{x,, X,,....})= H. In other words,
{x,} is complete if and only if every element of H can be approximated by
a sequence of finite combinations of x,’s.

{42) Show that the functions

e—x/z

¢u(x) = L.(x), n=0,1,2,...,

n!

where L, is the Laguerre polynomial of degree n, i.e.,

n

Lx)=e2

X"

(x"e7),
form a complete orthonormal system in L*([0, 11).

(43) Let

inx
e

¢n(x)=m,
and let fe L'([~, #]). Define

n=0,x1,£2

sy

Lx)="Y, (f ¢)ns

k==n

for n=0,1,2,.... Show that

o)A+ i) & (k]
n+1 B Z (1 n+1

)(ﬂ 1) i (x).

k=-n
(44) Fill in the details of the proof of Lemma 3.9.1.

(45) Let f be a continuous non-negative function defined on [—#, 7] such
that supp fe[—m+¢g n—¢€], for some 0<e<m, and ffﬂf(x) dx =2
Define

g.(x)=nf(n(x—-m))forn=1,2, - and xe [0, 27].

Let k, be the 27-periodic extension of g, onto the entire line R. Show that
{k,} is a summability kernel.
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(46) Show that the sequence of functions

1 cosx sinx cos2x sin2x

V2a Vo' Va ' Vo Nw

is a complete orthonormal sequence in LY[—m, w]).

(47) Show that the following sequence of functions is a complete orthonor-
mal system in L*([0, #]):

N Ve
=, —COS X, \/—COS2X, 1/—cCo0s 3x,....
\/; w ™ w

{48) Show that the following sequence of functions is a complete orthonor-
mal system in L*([0, #]):

—sinx, 1/—sin2x, 4/ —sin3x,....
™ ™ T

{49) Give an example of a complete orthonormal sequence in L*([a, b])
for arbitrary a <b:

(50) What is the orthogonal complement in L*(R) of the set of all even
functions?

(51) What is the orthogonal complement in L*([—, #]) of the set of all
polynomials of odd degree?

(52) Let 2 be a complete orthonormal system in a Hilbert space H. Show
that if ? =P, U P, and P, " P, =, then Py =cl(span P,).

(53) Let S be a subset of an inner product space. Show that S* = (span S)*.

(54) Let E be the Banach space R” with the norm ||(x, y)|| = max{|x|, [y]}.
Show that E does not have the closest point property.

(55) Find a Banach space E, a closed convex subset S < E, and a point
x £ 8, such that there is no y € E such that ||x —y| =inf,.s||x — z||.

(56) Let S be a closed subspace of a Hilbert space H and let {e;, e,,...}
be a complete orthonormal sequence in S. For an arbitrary xe H there
exists ye S such that |x—y|=inf,.s|x—z|. Define y in terms of
{er, e2,.. .}
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(57) 1f S is a closed subspace of a Hilbert space H, then H =S®S". Is
this true in every inner product space?

(58) Show that the functional in Example 3.11.2 is unbounded.

(B9) The Riesz Representation Theorem says, that for every bounded linear
functional f€ H' on a Hilbert space H, there exists a representer x,€ H
such that f(x) = (x, x;) for all xe H. Let T: H'-> H be the mapping which
assigns x; to f Prove the following properties of 7:

(a) T is onto,

(b) T(f+g)=T(f)+T(g),

(¢) T(af)=aT(f),

(@ [THOI =11,

where f, g€ H' and a € C.

(60) Prove part (b) of Theorem 3.12.3.

(61) Let f be a bounded linear functional on a closed subspace F of a
Hilbert space H. Show that there exists a bounded linear functional g on
H such that ||f|| = ||g|l and f(x) = g(x) whenever x€ F.

(62) Show that the space I* is separable.

(63) Let 2 be an uncountable orthonormal system in an inner product
space E. Show that for every x € E we have (x, ) # 0 for at most countably
many ¢ € 2.




