MATH 20D-A00 Problem Set #4

1.3.1. Find the general solution of the ODE y' = 3t — 4y on the interval (—o00,00). Then
find the particular solution that satisfies the initial condition y(0) = 0.

Rewriting as y' + 4y = 3¢, we multiply by the factor e/ 4% = ¢%t to get e*y’ + de*ty =
3te*. This integrating factor should allow simplification of the left side of the equation,
and indeed it becomes %e‘”y. Integrating both sides with respect to ¢ yields that
e’y = [ 3te'dt. Integration by parts of the right side yields 3te' — et + O, so
y = = — % + Ce™*, which is valid over the entire interval. Plugging in t = 0 and
y =0 yields 0 =0 — 13—6 +C,s0C = % and the solution to the initial value problem is

y=3+(e-1).

1.3.5. Find the general solution of the ODE y' + 2ty = e " on the interval (—00,00). Then
find the particular solution that satisfies the initial condition y(0) = 0.

We multiply by the factor e/ 29 —= ¢* to get that ey’ + 2te”’y = 1. The left side
of this equation simplifies to %e"?y, so integrating both sides with respect to ¢ gives
e’y =t+C,s0y=te’ +Ce ", which is valid over the entire interval. Plugging
int=0and y=0yields 0 = 0+ C, so C' = 0 and the solution to the initial value
problem is y = te *".

1.3.13. A penny is heated to 800°C and is then allowed to cool. The temperature after a
minute is 600°C, and the room temperature is 20°C. When will it be safe to pocket the
coin (the temperature should be less than 50°C)?

By Newton’s law of cooling, the temperature y is governed by the diffferential equation
y' = —k(y — 20) for some constant k. Rearranging this yields ¢y’ + ky = 20k, and
multiplication by the factor e/ ## = e** gives us Lekty = 20ke™, which upon integration
with respect to t gives ey = [20ke*'dt = 20e* + C. Thus y = 20 + Ce ", and it
remains only to determine the values of C' and k to completely determine the behavior of
y. We know that y(0) = 800 and y(1) = 600, so 800 = 20+C and 600 = 20+ Ce *; the

former gives us C' = 780 and the latter £ = — In 382 ~ 0.296. Now to solve the question

780
actually asked, we must find a ¢ such that y(¢) = 50, that is, 50 = 20 + 780e 0-2%6¢,
which when solved gives t = ﬁ In % ~ 11, so after 11 minutes it would be safe to

touch the penny.
1.3.24. Find the periodic solution of each of the following ODEs and show that it is stable.

(¢) v + by = cos(nt).
We multiply by the integrating factor e = e to get e’y +5e’y = e cos(mt).

The left side of this is equal to %e“y, so integrating both sides with respect
to t gives e’y = [e’ cos(rt) = ﬂe—fQS(S cosmt + mwsinnt) + C, as determined

by a computer-algebra system (alternatively, a table of integrals or integration

by parts can be used). Then y = %W + Ce ™, so over the long term

y is approximately equal to %ﬁ;‘“” regardless of starting value, since the

exponential term approaches zero as t grows.

J bdt

(f) ' + py = cos(wt), where p > 0 is a constant. What would happen if p < 07
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We multiply by the integrating factor e/ % = eP! to get ety + pe’ty = et cos(wt).
The left side of this is equal to %e”ty, so integrating both sides with respect
to t gives eP'y = [ et cos(wt) = wf—:ﬂ(p coswt + wsinwt) + C, as determined
by a computer-algebra system (alternatively, a table of integrals or integration
by parts can be used). Then y = %ﬁ;ﬁim + Ce "', so over the long term
y is approximately equal to %w regardless of starting value, since the
exponential term approaches zero as t grows. This would not be the case for p < 0,
however, in which the exponential term is either constant (in the case p = 0) or
grows without bound; In the latter case the periodic solution is unstable, since
solutions tend to vary from it by increasing amounts as ¢ grows, and in the t =0
case there are an infinitude of periodic solutions, which are neither stable nor

unstable.

2.1.5. An object in free fall is subject to gravitational force of mg and frictional force of
—bv. Show that the terminal velocity v satisfies the equation mg — bvs = 0, and

therefore vy, = %2.

The differential equation expressing the velocity of the object is v = mg — bv. The
limiting velocity is a velocity at which v' = 0, since such a condition mandates a stable
value which under normal conditions solution curves will not cross. Thus the terminal
velocity is given by 0 = mg — bvs.

2.1.8. Find a family of solutions for the ODE y' = 3t?y%. Then find the particular solution
that satisfies the initial condition y(0) = —1 and specify its domain.

We rearrage this equation into the separated form % = 3t2dt, which upon evaluation

of the implicit integrals yields ’71 =t3+C,s0y = ﬁ is a solution on either of the

domains (—oo, —v/C) or (—v/C, 00) (since the solution is undefined when ¢34+ C = 0).
Given the initial condition y(0) = —1, we evaluate the general form to obtain —1 = %1
5o that C' = 1, so our equation is y = =5 on either the domain (—oo, —1) or (~1,00).

Since we were given a value of y for t = 0, we must be considering the latter domain.

2.1.12. Find a family of solutions for the ODE dy = (y*> + 1)dt. Then find the particular
solution that satisfies the initial condition y(0) = 1 and specify its domain.

dy

y2+1

of the implicit integrals yields tan~'y = ¢ + C, so y = tan(¢t + C) is a solution on any

domain where y is defined; in particular, the boundaries of the domain are the points

where ¢t + C = 7n + 7. Given the initial condition y(0) = 1, we evaluate the general

form to obtain 1 = tan(0 + C) so that C' = 7, so our equation is y = tan(t 4 %) on
some domain which does not include values ¢ = n + 7. In particular, to include ¢ = 0,
=31 T

which is our initial condition, our maximal domain is (T? Z)'

We rearrage this equation into the separated form = dt, which upon evaluation

2.1.16. If an object is initially moving upward (we consider upward velocity to be negative),
then the force of air resistance will be downward (positive), and the ODE

k
v =g+ —v?
m
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will

apply as long as v < 0, but when v > 0, the sign of the quadratic term should be

changed to minus.

(a)

2.3.18.

Show that the ODE
k
v'=g— —vlv|
m

1s applicable to both upward and downward motion.

We note that v|v| = v? when v > 0 and v|v| = —v? when v < 0 (and all three are
of course identical for v = 0), so this ODE satisfies the description given.

An object is thrown upward with an initial velocity of 100 meters/second (v(0) =
—100) subject to the differential equation

v’ =9.8+49.8 x 10~ %%

Give its velocity as a function of time for the duration of its upward motion.

dv
9.8x10-7)(100% +02

grating both sides and rearranging gives tan~' 7%= = 9.8 x 107*¢ 4+ C'. Plugging

in the values t = 0 and v = —100 yields tan~'(—1) = C, so C = =F, and the
equation becomes

We rearrage this equation into the separated form ( y = dt, so inte-

v = 100 tan (9.8 % 1072 — %) .

Adapt the solution of Example 2.1.4 to obtain the velocity as a function of time
for downward motion.

From the previous part of this exercise, we know that the velocity is zero when
9.8 x 102t — 7 = 0, so we reach zero velocity at time ¢t = 55"~ . Example 2.1.4
gives an equation for an object’s fall from rest starting at time ¢t = 0, so all that
need be done is to “recenter” the equation given so that ¢ = 557 55— corresponds
to t = 0 in the original example:

0.0196(t— 55— %oy) _ 1

e
v =100 0.0196(¢
e

“3aax10-7) + 1'
(a) Show that the solution of the IVP

y' = f(z);y(a) =0,
18

y(x) =b+ /If(u)du.

We rearrage this equation into the separated form dy = f(x)dz, soy = fom f(u)du+
C. Our lower bound here is arbitrary, since any change in it can be incorporated
into our added constant C, so we might as well make y = [ f(u)du+ C. Apply-
ing the initial condition y(a) = b, we find that b = [ f(u)du+ C = C. Thus our
solution is y(z) = b+ [ f(u)du.
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(b) Show that approzimating the solution to the aforementioned IVP by FEuler’s method
amounts to calculating a Riemann sum for the integral in question.
Euler’s method gives us that y(a + kh) ~ y(a + (k — 1)h) + hy'(a + (k — 1)h) =
y (a-i— (k— 1)h) +hf (a—|— (k— l)h). Arguing inductively will show that, if we derive
each y(a + kh) in this manner, then y(a + kh) =~ y(a) + 2221 hf(a+ (n—1)h).
The former addend is simply b, and the latter is clearly the left-hand Riemann
sum with step h of the integral faa+kh f(u)du.

2.3.21. Let y = ¢(t) denote the solution of the IVP,

Yy =t+y;y0)=0.

Since the differential equation is linear, you can solve this IVP and find a formula for
o(t). This problem asks you to calculate ¢(1) and to approzimate ¢(1) by using Euler’s
method. The purpose is to see how fast the approximation improves when the time step
15 reduced.

Use Euler’s method with time steps h = 1, 0.5, 0.25, 0.1, 0.05, 0.02, and 0.01 to
approzimate ¢(1), and let E(h) = |¢(1)—yn| (where Nh = 1) denote the approzimation
error obtained with time step h. Plot a graph of E(h) as a function of h.

The solution of this differential equation follows a familiar pattern: we rearrange the
differential equation as ¢’ — y = ¢ and multiply by the integrating factor e/ ~1d = ¢~
to yield ey’ — e 'y = e~'t. The left side is simply %£e 'y, so integrating both sides
with respect to ¢ results in the equation e 'y = C —te ! —e !, or y = Cet — ¢ — 1.
Plugging in the initial conditions will yield that C = 1, so ¢(¢t) = ¢! — ¢t — 1, and in
particular ¢(1) = e — 2 = 0.71828.

Below a table indicates the steps in estimating y(1) using Euler’s method with step

h = 0.25. Similar procedures are followed for other values of A, and may be de-
termined by hand or (in the case of very small h) with a computer or calculator.

[t [y [y =y+t]Ay=hy(t) |
0 |0 0 0
025 0 0.25 0.0625
0.50 | 0.0625 0.5625 0.140625
0.75 | 0.203124 | 0.953125 0.23828125
1.00 | 0.44140625

The calculation being used to redetermine y at each line is y(z + h) = y(x) + Ay(x).
Applying this for several values of h we get the following estimations of ¢(1):

b [ Nlyw  [E() |
1 110 0.718281
0.50 210.25 0.468282
0.25 4 | 0.441406 | 0.276878
0.1 10 | 0.593742 | 0.124539
0.05 | 20 | 0.653298 | 0.064984
0.02 | 50 | 0.691588 | 0.026693
0.01 | 100 | 0.704814 | 0.013468
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2.3.25. The solution y = e % of the initial value problem
y' = —100y;y(0) = 1

converges to 0 wvery rapidly. This is apparent even if we restrict our attention to
0 <t<1, since e 09 js of the order of magnitude of 10~3.

(a) Use Euler’s method with h = 0.1 to approzimate the solution of the initial value
problem for 0 <t < 1. Does your computed solution appear to converge to 07

Using Euler’s method, the apparent value of y diverges rapidly and alternates
sign; y(0.1) is computed to be —9, (0.2) is computed to be 81, and so forth, until
y(1) is computed to be approximately 3.5 x 10°.

(b) How small should h be to insure that the solution converges to 07

To converge to zero, we want the absolute values of the terms to diminish. Note

that Euler’s method assumes that y(t+h) = y(t) + hy'(t), which in this particular

case is y(t) —100hy(t) = (1—100h)y(t). Thus the absolute value of y is diminishing

if |1 — 100h| < 1, so 1 — 100h must be greater than —1, giving that A must be
1

greater than £5 = 0.02.

2.3.26. One approach that avoids erratic behavior observed in the solution computed in Ei-
ercise 2.3.25 is to use backward differences instead of forward differences with Euler’s
method. Thus we use the difference equation

Vms1 = hf(tms1, Ymar) for m >0,

where Vymi1 = Yms1 — Ym, as a model for the differential equation y' = f(t,y). This
difference scheme is said to be implicit because it defines ym, 1 tmplicitly by means of
the relation

Ym+1 — Ym — hf(tM+17 ym+1) = 0.

Test the backward Euler method by approximating the solution of the initial value prob-
lem in Erercise 2.3.25, again with h = 0.1, for 0 <t < 1.

First we must solve the implicit relation given: y,,41 — ¥ — h(—100%y,,51) = 0, which
will give that (1 + 100h)Yms1 = Ym, SO Yma1 = T5eon» which inductively extends to
tell us that y,, = M#)m so in the case h = 0.1, finding y(1) = y10 gives us a very
small number indeed (approximately 3.9 x 10~'").

2.4.2. Solve the IVP y' — 5y = 25t; y(0) = 10 and find the largest interval on which the
solution is defined.
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By the existence theorem, this differential equation’s solution should be valid over all
values of t. We multiply by the factor e/ ~5% = =5 to get ey’ — 5e Py = 25¢ 't;
the left side simplifies to %e*ty, so integration of both sides with respect to ¢ gives
e Pty = —5te " — ¢ + C' (with the value on the right obtained via integration by
parts). The general solution is thus y = —5¢ — 1 + C'e®, and evaluating at the initial
value y(0) = 10 gives 10 = —1 + C, so C' = 11 and the solution, valid at all values of

t,is y = 9e? — 5t — 1.

2.4.22. Determine which of the following functions satisfy a Lipschitz condition with respect
to y on the domain

D={(ty):—1<t<l,-1<y<l1},
and find a Lipschitz constant for those that do.

(a) f(ty) =t—y”
Note that [(t —y3) — (t — v3)| = ly? — ¥3] = |y1 — y2| - |y1 + ya|, so our Lipschitz
constant (if such exists) would be given by the maximum value of |y; + yo|, which
is 2. Since we have just shown that |f(¢,y2) — f(¢,11)| < 2|y2 — 1|, the Lipschitz
condition is satisfied.

(b) f(t,y) = 4ty.
Note that |4tys — 4ty | = 4]t| - |y — y1], so our Lipschitz constant (if such exists)
would be given by the maximum value of 4|t|, which is 4. Since we have just
shown that |f(¢,y2) — f(t,y1)| < 4|ya — y1|, the Lipschitz condition is satisfied.

(c) f(t.y) =yl
When y; and y9 have the same sign, then Hy1| - |y2H = |y1 — Y2/, and when y;
and yo have opposite signs, ||y;| — |y2H = |y; + ya| < |y1 — yol, so in each case
|f(t,y2) — f(t,y1)| < |ya —y1], so the Lipschitz condition is satisfied with constant

1.

(d) f(ty) = ly].
Note that [1] = 1, and that |1 — €| = 0 for small positive e. Thus, taking y, =1
and y; = 1 — ¢, we find that |f(¢,y2) — f(¢t,y1)| = 1, while |ys — y1| = ¢, so it is
necessary, if the Lipschitz condition is satisfied, that K > % However, since € can
be as smal as we like, tihs would force K to be arbitrarily large, so the Lipschitz
condition is unsatisfied.

(e) f(t,y) = [t].
Since f(t,y) does not depend on y, it follows that f(¢,y2) — f(¢t,y1) = 0, so
|f(t,y2) = f(t,y1)| < 0lys — y1|, satisfying the Lipschitz condition with constant
0.
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