Name and TA Section:

Student Number:

Midterm #2, Math 20D, 2004 Fall Quarter
Place/Time: PCYNH/MULTI 106, 9:00-9:50am, 19 November 2004
Instructions: Please write your name and/or student number on each page of the exam, and then
solve the following four problems. If you need extra space, use the back of each page of the exam
(in this case, clearly indicate which problem you are solving).

Problem 1. (25 points) We are given the following IVP:
v +ty = t, on (0,00),
y(0) = 0.
(a) (20 points) Find the general solution.
SOLUTION: This is a linear first-order inhomogenous ODE of the form: a1 (£)y’ +ao(t)y = g(t), where a1 (t) = 1, ao(t) = ¢,

g(t) = t. We can use either an integrating factor, or find the homogeneous solution and then use variation of parameters. In
either case, we will first write it in the form:
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Integrating factor approach: We first compute the integrating factor

v +p(t)y = f(t), where p(t) =

m(t) = el P®dt _ Jrdt et2/2.

We then have [et2/2y]/ = [my]’ = my’ +mp(t)y = mf(t) = tet2/27 so that et2/2y =et?/2 + C, giving y(t) = 1 + Ccet2/2,

Homogeneous solution plus variation of parameters approach: We first solve the homogeneous problem: y;L +p(t)yn =0,
which is

yn(t) = Cel Pt _ gof —tdt _ oo =t7/2
(As usual, we have yp, (t) = 1/m(t), ignoring the constant.) We then find a particular solution in the form y,(t) = yp (t)w(t).
We know that w(t) always satisfies the ODE:
yhw' = f,

which comes from simply plugging vy, (t) into the ODE y’ + p(t)y = f(¢), and using the fact that y;(¢) is the homogeneous
solution. (Note if we work with a1 (t)y” + ao(t)y = g(t), then the ODE w(t) satisfies is just slightly different: ajy,w’ = g;
2/2 t2/2

2.
we get exactly the same result for w(t).) Now, e~ /2w’ (t) = yn(t)w’(t) = f(t) = t, giving w’ = te' /2, or w(t) = e

2 2 2
Finally then y, = ypw = e~ * /2e* /2 =1, and so y(t) = yu(t) + yp(t) = Ce " /2 + 1.

(b) (5 points) Find the specific solution corresponding to the given initial condition.

SOLUTION: We have that: 0 = y(0) = Ce® +1 = C + 1, so that C = —1, and thus the solution is y(t) = 1 — et/
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Problem 2. (25 points) Let us assume that the dynamics of the bald eagle population around the
world is accurately described by the standard logistic growth with critical threshold model:

@ = (-7) (%),

where r > 0 and 0 < T' < K. Here, y(t) represents the biomass of the eagle population, r represents
the ideal reproduction rate without environmental or other limitations, 7" represents the minimal
population size needed to ensure genetic variability for continued reproduction, and K represents
the maximal population supported by the current habitat (due to food and other limitations).

(a) (5 points) Determine the stationary solutions of the ODE.

SOLUTION: This autonomous ODE has the form: y’ = f(y). We can find stationary solutions of autonomous ODEs by
simply finding y such that f(y) = 0 (since this implies 3’ = 0). Clearly, since f(y) is a degree 3 polynomial in y, it has three
roots, which by inspection are y; =0, yo = T, and y3 = K, with 0 = y1 < y2 < y3 < 40o0.

(b) (5 points) Draw the approximation solution plot and phase diagram in one picture, showing
the asymptotic behavior of solutions that start with any non-negative initial data y(0).

SOLUTION: We just need to show what happens to any solution in the intervals 0 = y; < y2 < y3 < +oo. Besides what
we have already determined about location of the stationary solutions, the only other information we need is given by the
ODE itself: vy’ = f(y). lLe., for any y € (0,+0c0), f(y) tells us when y(t) is increasing or decreasing. For y(t) € (0,7T) or
y(t) € (K, +o0), we find that y’ = f(y) < 0, so that y(t) is descreasing with increasing t. For y(t) € (T, K), we find that
y' = f(y) > 0, so that y(t) is increasing with increasing ¢. This information is shown in the following approximate solution
plot and phase diagram. Solutions that start with various values for the initial condition are shown approximately in dotted
lines; the vertical arrows represent the phase diagram, showing growth and decay of solutions for various ranges of y(t).
y(t)

y1=0 L

(c) (5 points) Infer stability or instability of the stationary solutions by using only the picture
in part (b). (It is hard to check stability directly for this problem due to the complicated
form of f(y) in the ODE, but the picture contains all the information we need.)

SOLUTION: The picture in part (b) clearly shows that the stationary solutions y; = 0 and y3 = K are stable, whereas
the stationary solution y2 = T is not stable. This can be inferred from the arrows representing the phase diagram, or by
the attraction of solutions to the stable stationary solutions y; and ys, and the repulsion of solutions from the unstable
stationary solution ya.

(d) (5 points) Imagine that in year ¢, the population y(¢) drops below T" due to disease. What
can you say about longterm survivability of the bald eagle species? Justify your answer.

SOLUTION: Since y'(t) = f(y) < 0 when 0 < y(t) < T, we know that the poplulation density y(t) will decrease
asymptotically to zero if at any point in time, y(t) drops below T. In other words, the bald eagle would be doomed to
extinction if the population ever drops below T'.

(e) (5 points) Imagine the eagle habitat is reduced so that K is only slightly larger than T, for
example, K = 1.17T. Why is this a very dangerous situation for the bald eagle species?
SOLUTION: Since the stable stationary solution is y(¢t) = K, we know that even if y(0) starts out quite high, eventually

the population will drop down close to y(t) = K. If at any time after that the population drops even slightly (by 10% or
more) due to disease or other factors, the population would never recover, since y(t) would drop below T'.
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Problem 3. (25 points) Consider the following single second order ODE for x(t):

(a)

2+ 22 =0.

(5 points) Derive the following equivalent first-order system of ODEs for x(¢) and y(t):
/
r =Y,
/
Yy = —$2.
SOLUTION: We simply define a new variable y(t) = z’(t), giving the first equation above, and then substitute y(¢) into
the original second order equation for any term involving z’(t) or its derivatives:
(@) +2* =y +2> =0,

which gives then the second equation above.

(10 points) Write down the single ODE for the orbits of the system of ODEs in part (a).

SOLUTION: We know that the equation for the orbits is simply the equation for the curve (x(t), y(t)) that is traced out in
the phase plane by the solution of the system of ODEs. If the original ODE system has the form:

= flay),

y o= g(z,y),

then differential equation for the orbits is obtained as:

dy _dydt % g(z,y)

de — dtdz 22 f(z,y)’
(,

For this particular example, we have g(z,y) = —x2 and f(z,y) = y, so that the orbit ODE is:
dy —z?
de oy

(10 points) Find an integral F'(z,y) = C for the ODE system in part (a) by solving the
orbit ODE.

SOLUTION: We just solve the single ODE for the orbits to produce F(z,y). We will have trouble computing a general
integrating factor m(xz,y) for the orbit ODE, since it will end up involving both variables  and y. However, it turns out to
be separable, and as we learned in Problem 22 in Section 2.2, separation of variables can be viewed as the special case where
you can actually determine m(z,y).

The ODE for the orbits again has the form:

dy —z?

dz Y
Separating, we have:
ydy + z%dz = 0.
We now seek F(z,y) such that:

oF oOF
dF(z,y) = ——dz + ——dy = P(z,y)dr + Q(z,y)dy = 0, (€0)
ox dy
where in this case, P(z,y) = P(z) = 22, and Q(z,y) = Q(y) = y. Being separable, it is always exact since dP/0y = 0 =
0Q/8x. Since P(x,y) = P(z) and Q(z,y) = Q(y), we know any F(z, y) satisfying (1) must satisfy both F(z,y) = [ P(z)dz+
v(y) and F(z,y) = [ Q(y)dy + u(x); one can verify this by computing 0F/8x and 0F/dy. This requires u(z) = [ P(z)dz
and v(y) = [ Q(y)dy, so F(z,y) = [ P(z)dz + [ Q(y)dy. Computing these simple integrals gives F(z,y) = %:1:3 + %yQ,
which gives then finally:

1 1
F(z,y) = §$3+ Eyz =C.
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Problem 4. (25 points) We are given the following ODE system: v’ = Av + f, where
3
2

A= , [ = t ) U(t) = y(t) ) U(O) = (1) y €= 2;
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(a) (10 points

SOLUTION: We look for the fundamental solutions vy (t) = ety va(t) = e"2%by, where (rk,br), k = 1,2 are the two
eigenpairs of A. We first determine the eigenvalues of A by solving the quadratic equation obtained as det(A — sI) =
5% — tr(A)s 4+ det(A) = 0, which in this case is

~—

Find the fundamental solution matrix X (¢) and homogeneous solution vy, = Xec.

2 —3s4+2=(s—1)(s—2)=0.

The roots are then s; = 1 and s3 = 2. We now find the eigenvectors.

= (3 (1) =om= (1)
(

which gives 3h + k = 2h and h + 3k = 2k, either of which give h = —k. Thus, b;
1
1

3/2 1/2 h
[o=2]oam= (32 52 ) (&) =ere=2(
et ( jl ), and vy (t) = e"2%hy = €2t ( } ) Defining now the fundamental solution matrix X (t) as

>
1
—1 :
)

which gives 3h + k = 4h and h 4+ 3k = 4k, either of which give h = k. Thus, by =

e NRa

) . This gives then vy (t) = e™1'h; =

2t

2 =(nw wo)=( L G ).

—e e

we have that v, = X(t)c, with ¢ = ( Z; >

(b) (10 points) Find a particular solution v, = X (t)w(t) using variation of parameters.

SOLUTION: There is no reason to rederive the formula for w(¢) here (unless we cannot remember it, in which case we
would rederive it). We know that doing variation of parameters (plugging v, back into the ODE) will always produce the
following ODE for the unknown w(t):

X(t)w' = f(t), which is : ( _e;t Zzi ) ( Zji )z( Z: )

We must solve for wi (t) and w2 (t). Adding the two equations together gives 2e?'w) = 2e’, or wh = e, so that wa(t) = —e
‘We now plug this into the first equation to get etw; +etet

—t
=e', or w) = 0, giving w1 (t) = C, for any constant C; we will
0

take C' = 0, so that wy(t) = 0. Thus, v,(t) = X(t)w(t), with w(t) = ( et

(c) (5 points) Find the solution v(t) corresponding to the given initial data v(0).

SOLUTION: Just write down the final general solution in the form v(t) = vp (t) + vp(t) = X (t)(c + w(t)) and then use the
initial data v(0) to determine c. I.e., v(0) = X(0)(c + w(0)), which is

0 e e2(0) c1 0 1 1 c1
v(0) = ( 1 ) = < _0 o200 o + Y = -1 1 cx—1 )
which gives ¢1 + (c2 —1) =0 and —¢1 + (c2 —1) =1, 0r ¢1 + c2 =1 and ¢c2 — ¢1 = 2, giving ¢co = 3/2 and ¢; = —1/2. This
gives then finally v(t) = X(¢)(c + w(t)), where ¢ = ( _31//22 ) To verify we have it right, compute v’ (t), and verify that it

is the same as Av(t) + f(t).



