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6.1.1

Proof.

(a).

For any v1, v2 ∈ Sλ, we have A(v1 + v2) = Av1 +Av2 = λv1 + λv2 = λ(v1 + v2), thus v1 + v2 ∈ Sλ.

(b).

Since for any v ∈ Sλ, A(αv) = αAv = λ(αv), thus αv ∈ Sλ.

6.2.2

Proof.

(a).

Similar with the proof of 6.1.1.

(b).

Frist, show AjS ⊂ A(Aj−1S). Pick a y ∈ AjS, it implies ∃x ∈ S such that y = Ajx. Then, y = A(Aj−1)x ∈

A(Aj−1S).

Second, show AjS ⊃ A(Aj−1S). Pick a y ∈ A(Aj−1S), one has y = A(Aj−1x) = Ajx ∈ AjS.

(c).

Frist, show AS ⊂ span{Ax1, · · · , Axk}. Pick a y ∈ AS, then there is a x =
∑
cjxj ∈ S such that

y = Ax = A
∑
cjxj =

∑
cjAxj ∈ span{Ax1, · · · , Axk}.

Second, show AS ⊃ span{Ax1, · · · , Axk}. Pick a y ∈ span{Ax1, · · · , Axk}, then there is a y =
∑
cjAxj =

A
∑
cjxj ∈ AS.

(d).

Show {Ax1, · · · , Axk} is linear independent set. Consider
∑
cjAxj = 0, take A out of the sum, one has
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A
∑
cjxj = 0, since S ∩N(A) = {0}, we have

∑
cjxj ∈ S ∩N(A) which is zero, and because {x1, · · · , xk} is

linear independent set, thus the coefficients cjs are zeros, hence {Ax1 · · · , Axk} is a linear independent set,

by the result of (c), it is a basis of AS.

8.1.9

Order the unknowns as shown on the top of page 550 uT = [u1,1, · · · , um−1,1, u1,2, · · · , um−1,2, · · · ]. Then

the matrix A is given in equation (8.1.10) which is tri-diag block matrix.

8.1.12

For the 3D problem, the size of matrix is (m− 1)3 × (m− 1)3, with (m− 1)3 unknowns, and the system of

equations are

For i, j, k = 1, · · · ,m− 1,

6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k − ui,j+1,k − ui,j,k−1 − ui,j,k+1 = h2fi,j .
(1)

8.2.12

Proof.

(a).

This is a direct result as looking at equation (8.2.9) in the vector form.

(b).

From result of (a),

xk+1 = D−1(b+ Exk+1 + Fxk)

Dxk+1 = b+ Exk+1 + Fxk

(D − E)xk+1 = b+ Fxk

xk+1 = (D − E)−1(b+ Fxk).

(2)

(c).

Replace M by D − E and rk by b−Axk, we have the formula in (c) is the same as the one in (b).
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8.2.24

Do the same work as 8.2.12.

8.3.12

The definition of R∞ is on page 572. Then,

R∞(GGS) = − loge ρ(GGS) = − loge ρ(GJ)2 = −2 loge ρ(GJ) = 2R∞(GJ). (3)

8.3.14

(a).

Look at the formula in 8.2.12(b), since the flops of matrix-vector multiplication is O(m2), and vector-vector

addition is O(m), thus it is O(m2).

(b).

After j iterations, the error is decreased by a fixed factor ε means ‖ek+j‖/‖ek‖ ≈ ρ(G)j ≤ ε. For GS method,

R∞(G) ≈ π2h2 from tabel 8.5 on page573. Since ε < 1 and h = 1/m, we have

ρ(G)j ≤ ε

−j loge ρ(G) ≤ − loge ε

j(π2/m2) ≤ − loge ε

j ≤ (− loge ε/π
2)m2.

(4)

(c).

The overall flops of GS method is the product of (a) and (b), that is O(m4), which is at the same level of

banded Gaussian elimination.

(d).

Do the exactly same thing in (b), and the result is O(m).

(e).

Since from problem 8.2.24(b), the flops of one iteration of SOR is O(m2), thus overall is O(m3), thus much

less than banded Gaussian elimination.

(f).

Obviously the later is better than SOR.
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8.4.12

From 8.4.10, we have

Axk+1 = Axk + αkAp
k

b−Axk+1 = b−Axk − αkApk

rk+1 = rk − αkApk.

(5)

8.4.21

The Richardson’s method is introduced on page 569, that is

xk+1 = (I − ωA)xk + ωb. (6)

For steepest descent method, since pk = b−Axk, we have

xk+1 = (I − αkA)xk + αkb. (7)

Look at these two methods, the steepest descent method is a Richardson’s method with variable damping

αk. And the Richardson’s method is steepest descent method with an inexact line search (αk = ω).

8.7.4

The Preconditioned CG methos is to slove R−TAR−1(Rx) = R−T b, where RTR = M . then compare the

pseudo code (8.7.3) with (8.7.1).
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