HW5 Solution of Math170A

Shi(Fox) Cheng

Mar 12nd, 2012

6.1.1

Proof.

(a).

For any $v_1, v_2 \in S_{\lambda}$, we have $A(v_1 + v_2) = Av_1 + Av_2 = \lambda v_1 + \lambda v_2 = \lambda (v_1 + v_2)$, thus $v_1 + v_2 \in S_{\lambda}$.

(b).

Since for any $v \in S_{\lambda}$, $A(\alpha v) = \alpha A v = \lambda(\alpha v)$, thus $\alpha v \in S_{\lambda}$.

6.2.2

Proof.

(a).

Similar with the proof of 6.1.1.

(b).

Frist, show $A^j S \subset A(A^{j-1}S)$. Pick a $y \in A^j S$, it implies $\exists x \in S$ such that $y = A^j x$. Then, $y = A(A^{j-1})x \in A(A^{j-1}S)$.

Second, show $A^j S \supset A(A^{j-1}S)$. Pick a $y \in A(A^{j-1}S)$, one has $y = A(A^{j-1}x) = A^j x \in A^j S$.

(c).

Frist, show $AS \subset span\{Ax_1, \dots, Ax_k\}$. Pick a $y \in AS$, then there is a $x = \sum c_j x_j \in S$ such that $y = Ax = A \sum c_j x_j \in c_j Ax_j \in span\{Ax_1, \dots, Ax_k\}$.

Second, show $AS \supset span\{Ax_1, \dots, Ax_k\}$. Pick a $y \in span\{Ax_1, \dots, Ax_k\}$, then there is a $y = \sum c_j Ax_j = A \sum c_j x_j \in AS$.

(d).

Show $\{Ax_1, \dots, Ax_k\}$ is linear independent set. Consider $\sum c_j Ax_j = 0$, take A out of the sum, one has

 $A \sum c_j x_j = 0$, since $S \cap N(A) = \{0\}$, we have $\sum c_j x_j \in S \cap N(A)$ which is zero, and because $\{x_1, \dots, x_k\}$ is linear independent set, thus the coefficients c_j s are zeros, hence $\{Ax_1 \dots, Ax_k\}$ is a linear independent set, by the result of (c), it is a basis of AS.

8.1.9

Order the unknowns as shown on the top of page 550 $u^T = [u_{1,1}, \cdots, u_{m-1,1}, u_{1,2}, \cdots, u_{m-1,2}, \cdots]$. Then the matrix A is given in equation (8.1.10) which is tri-diag block matrix.

8.1.12

For the 3D problem, the size of matrix is $(m-1)^3 \times (m-1)^3$, with $(m-1)^3$ unknowns, and the system of equations are

For
$$i, j, k = 1, \cdots, m - 1$$
,
 $6u_{i,j,k} - u_{i-1,j,k} - u_{i+1,j,k} - u_{i,j-1,k} - u_{i,j+1,k} - u_{i,j,k-1} - u_{i,j,k+1} = h^2 f_{i,j}$.
(1)

8.2.12

Proof.

(a).

This is a direct result as looking at equation (8.2.9) in the vector form.

(b).

From result of (a),

$$x^{k+1} = D^{-1}(b + Ex^{k+1} + Fx^{k})$$

$$Dx^{k+1} = b + Ex^{k+1} + Fx^{k}$$

$$(D - E)x^{k+1} = b + Fx^{k}$$

$$x^{k+1} = (D - E)^{-1}(b + Fx^{k}).$$
(2)

(c).

Replace M by D - E and r^k by $b - Ax^k$, we have the formula in (c) is the same as the one in (b).

8.2.24

Do the same work as 8.2.12.

8.3.12

The definition of R_{∞} is on page 572. Then,

$$R_{\infty}(G_{GS}) = -\log_{e} \rho(G_{GS}) = -\log_{e} \rho(G_{J})^{2} = -2\log_{e} \rho(G_{J}) = 2R_{\infty}(G_{J}).$$
(3)

8.3.14

(a).

Look at the formula in 8.2.12(b), since the flops of matrix-vector multiplication is $O(m^2)$, and vector-vector addition is O(m), thus it is $O(m^2)$.

(b).

After j iterations, the error is decreased by a fixed factor ε means $||e^{k+j}||/||e^k|| \approx \rho(G)^j \leq \varepsilon$. For GS method, $R_{\infty}(G) \approx \pi^2 h^2$ from tabel 8.5 on page573. Since $\varepsilon < 1$ and h = 1/m, we have

$$\rho(G)^{j} \leq \varepsilon$$

$$-j \log_{e} \rho(G) \leq -\log_{e} \varepsilon$$

$$j(\pi^{2}/m^{2}) \leq -\log_{e} \varepsilon$$

$$j \leq (-\log_{e} \varepsilon/\pi^{2})m^{2}.$$
(4)

(c).

The overall flops of GS method is the product of (a) and (b), that is $O(m^4)$, which is at the same level of banded Gaussian elimination.

(d).

Do the exactly same thing in (b), and the result is O(m).

(e).

Since from problem 8.2.24(b), the flops of one iteration of SOR is $O(m^2)$, thus overall is $O(m^3)$, thus much less than banded Gaussian elimination.

(f).

Obviously the later is better than SOR.

8.4.12

From 8.4.10, we have

$$Ax^{k+1} = Ax^{k} + \alpha_{k}Ap^{k}$$

$$b - Ax^{k+1} = b - Ax^{k} - \alpha_{k}Ap^{k}$$

$$r^{k+1} = r^{k} - \alpha_{k}Ap^{k}.$$
(5)

8.4.21

The Richardson's method is introduced on page 569, that is

$$x^{k+1} = (I - \omega A)x^k + \omega b. \tag{6}$$

For steepest descent method, since $p^k = b - Ax^k$, we have

$$x^{k+1} = (I - \alpha_k A)x^k + \alpha_k b. \tag{7}$$

Look at these two methods, the steepest descent method is a Richardson's method with variable damping α_k . And the Richardson's method is steepest descent method with an inexact line search ($\alpha_k = \omega$).

8.7.4

The Preconditioned CG methos is to slove $R^{-T}AR^{-1}(Rx) = R^{-T}b$, where $R^{T}R = M$. then compare the pseudo code (8.7.3) with (8.7.1).