AMal04
Homework #5 (Final)
(Spectral Theory, Applications, and General Review)

Handed out: 6 December 1996
Due at noon: 13 December 1996

¢ Problem 1. (Spectral Theory and the Jordan Form) We learned in class that any square
matrix A has a Jordan decomposition of the form

A=M"1JM, or J=MAM™!,
where the matrix J consists of the Jordan blocks J:
J1
T R

Ak
The relationship between the Jordan blocks and the geometric and algebraic multiplicity of
the eigenvalues of A was discussed in class.
1. If the columns of M are denoted {v!,...,v™}, show that

Avt =\ + Vivl_l,

where ) is the eigenvalue in the Jordan block affecting v*, and v; is either 0 or 1.
2. Use this result to construct the Jordan form (find J and M) of

5 4 3
A= -1 0 -3
1 -2 1

Le., first find the eigenvalues of A, and determine their algebraic and geometric multi-
plicities (are they repeated, and how many linearly independent eigenvectors correspond
to each distinct eigenvalues). At this point you can write down J; you will find that
there are two distinct eigenvalues, one of which is repeated to give the third eigenvalue.
The single eigenvalue gives rise to a 1 x 1 block Jj, and the repeated eigenvalue gives
rise to a 2 x 2 block Js.

Now, determine the corresponding eigenvectors; you should find only two linearly inde-
pendent ones. Therefore, for the two distinct eigenvalues A1 and A2, you have determined

1 1 2 2
Av' = A\v, Av* = Agv”,

where we can think of Ay as being the eigenvalue with algebraic multiplicity 2. These
two vectors v! and v? form the first two columns of M. To find the third column, use
the previous result and solve

Av3 = \pv® + 02

for v3. Finally, form M~!, and verify that J = M~1AM.



3. For a typical k x k Jordan block J, with A on its diagonal, define the matrix Ey = J,—AI,
which is the zero matrix except for ones on its first superdiagonal. Show that E,% is the
zero matrix except for ones on its second superdiagonal, that E,:;’ is the zero matrix
except for ones on its third superdiagonal, and so on, so that E,’j = 0.

4. Recall that the characteristic polynomial of A has the form:
P,(A) =det(A—AI) = (A1 = A)™ (A2 = A2 (As — A)™e,

where the n X n matrix A has s distinct eigenvalues. The powers my represent the
algebraic multiplicity of each eigenvalue A;. Consider now P, (J), where J is the Jordan
form of A. Use the previous result about powers of blocks of J to show that P,(J) = 0.

5. Use the previous result to prove the Cayley-Hamilton Theorem: If P,(\) is the charac-
teristic polynomial of the matriz A, then P,(A) = 0.

e Problem 2. (Applications of Matrix Theory and ODEs)
We have discussed in class the solution of homogeneous first-order linear systems of ODEs
du(t)
dt

where A is an n X n matrix, and u(¢) is an n x 1 vector function of time ¢ (each component of
the vector u is a real-valued function of the single variable ¢). The solution to this problem
was seen involve the matrix exponential:

u(t) = etu(0) = Me*M~1u(0),

= Au(t),

where A = MJM ! is the Jordan decomposition. Consider now the inhomogeneous case:

du(t) _
L5 = Aut) + £ (2). (1)

1. Pre-multiply (1) by e~*4 and integrate, justifying the steps, to conclude that

—tA A _ t —TA
e u(t) — % u(0) —/0 e " f(r)dr.

2. Use this result to prove: The solution to the first-order inhomogeneous system of ODEs
du(t)
dt

= Au(t) + f(2), uw(0) =0, AeRY",
s given by
t t
u(t) = eu(0) + / AL (1) dr = M M—'u(0) + / M= M= f(7)dr.
0 0

3. Let M (t) denote the population of Micro$oft software (predator), and let G(t) denote the
population of GNU software (prey). A typical competing population ”predator-prey”
model might take the form (- denotes time derivatives):

M(t) = —0.4M(t) + 0.5G(t) + m(t), M(to) = 100,
G(t) = —kM(t) + 0.2G(t) + g(t), G(to) = 1000.

Here, k is some parameter which represents in this case how defenseless GNU software is
to the predatory tactics of the predator software. The functions m(t) and g(t) represent
the production rates of both types of software by external sources (g(t) might represent
GNU software producers, and m(t) might represent private software companies, for
example). Taking k = 0.1, m(t) = g(¢) = 0.0, solve the (homogeneous) system of ODEs
using what you know now about matrix theory. How do things behave asymptotically?
Now take k = 0.1, m(t) = 1.0, g(¢) = 1000.0, and solve the (now inhomogenous) system.
Again, how do things behave asymptotically?



e Problem 3. (Review question on Gaussian Elimination)

Consider the linear system

2 -1 0 1 1
Ar=| -1 2 -1 o | =] 2 | =b
0 -1 2 3 1

1. Perform Gaussian elimination to produce an upper-triangular matrix U (and a modified
vector b).

2. Perform back-substitution to find the solution z.

3. Form the three Gauss transformations which represent the three elementary row oper-
ations you had to perform to reduce A to U. In other words, start with the identity
matrix I, and perform exactly the same elementary row operation on I that you did
to A to zero out element ao; of A. Call this matrix B;. Similarly, form the Gauss
transformations By and B3 which correspond to zeroing out a3; and ass. Verify that in
fact

BsByB1A=U.

4. Each of these (lower-triangular) Gauss transformations has a particularly simple form;
show that the inverse of these transformations is also particularly simple. Write down
such a Gauss transformation which zeros element a;;,7 > j, of a general n x n matrix
A. Write down the analogous simple inverse matrix. (Note that since you can write the
inverse down, it must exist by construction for any Gauss transformation.)

5. You showed in previous homeworks that the product of lower triangular matrices remains
lower triangular, and the inverse of a lower triangular matrix remains lower triangular.
Conclude (justifying the steps) that the composite matrix B = B3BsB; is lower trian-
gular, that its inverse exists, and is also lower triangular.

6. Form B~!, and by defining I, = B~! construct the decomposition: A = LU.

7. Factor out the diagonal entries of the matrix U to form the decomposition: A = LDU,
where D is a diagonal matrix, L is a lower-triangular matrix with ones on the diagonal,
and U is an upper-triangular matrix with ones on the diagonal.



