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General Relativity Theory
Einstein’s theory of gravitation, general relativity theory, is a
geometrical theory in which gravitational effects are described as
geometrical structures on spacetime.
The fundamental “gravitational” field is the spacetime metric ψab, a
symmetric (ψab = ψba) non-degenerate (ψabvb = 0 ⇒ va = 0)
tensor field.

The metric ψab defines an inner product, e.g. ψabvawb, which
determines the physical angles between vectors for example.
The spacetime metric determines the physical lengths of curves
xa(λ) in spacetime, L2 = ±

∫
ψab

dxa

dλ
dxb

dλ dλ.
Coordinates can be chosen at any point in spacetime so that
ds2 = ψabdxadxb = −dt2 + dx2 + dy2 + dz2 at that point.
The tensor ψab is the inverse metric, i.e. ψacψcb = δa

b.
The metric and inverse metric are used to define the dual
transformations between vector and co-vector fields, e.g.
va = ψabvb and wa = ψabwb.
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General Relativity Theory II
The spacetime metric ψab is determined by Einstein’s equation:

Rab − 1
2 Rψab = 8πTab,

where Rab is the Ricci curvature tensor associated with ψab,
R = ψabRab is the scalar curvature, and Tab is the stress-energy
tensor of the matter present in spacetime.

For “vacuum” spacetimes (like binary black hole systems) Tab = 0,
so Einstein’s equations can be reduced to Rab = 0.
For spacetimes containing matter (like neutron-star binary
systems) a suitable matter model must be used, e.g. the perfect
fluid approximation Tab = (ε+ p)uaub + pψab.
The Ricci curvature Rab is determined by derivatives of the metric:

Rab = ∂cΓc
ab − ∂aΓc

bc + Γc
cd Γd

ab − Γc
ad Γd

bc ,
where Γc

ab = 1
2ψ

cd (∂aψdb + ∂bψda − ∂dψab).
Einstein’s equations are second-order pde’s that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.
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General Relativity Theory III

Einstein’s equations are second-order PDEs that (should,
hopefully) determine the spacetime metric, e.g. in vacuum

Rab(∂∂ψ, ∂ψ, ψ) = 0.

What are the properties of these PDEs?
How do we go about solving them?
What are the appropriate boundary and/or initial data needed to
determine a unique solution to these equations?
The important fundamental ideas needed to understand these
questions are:

gauge freedom,
and constrints.

Maxwell’s equations are a simpler system in which these same
fundamental issues play analogous roles.
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Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb = ∇bH.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 5 / 29



Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.
Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb = ∇bH.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 5 / 29



Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.
Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.
This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb = ∇bH.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 5 / 29



Gauge and Hyperbolicity in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional form ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.
Maxwell’s equations can be solved in part by introducing a vector
potential Fab = ∇aAb −∇bAa . This reduces the system to the
single equation: ∇a∇aAb −∇b∇aAa = 0.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb = ∇bH.

This form of the equations can be made manifestly hyperbolic by
choosing the gauge correctly, e.g., let∇aAa = H(x , t ,A), giving:

∇a∇aAb =
(
−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 5 / 29



Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equation can not be solved
without specifying suitable gauge conditions.

The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates be made. Gauge conditions are used to impose the
desired choice.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 6 / 29



Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equation can not be solved
without specifying suitable gauge conditions.
The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates be made. Gauge conditions are used to impose the
desired choice.

One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 6 / 29



Gauge and Hyperbolicity in General Relativity
The spacetime Ricci curvature tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψadψ
bcΓd

bc .

Like Maxwell’s equations, these equation can not be solved
without specifying suitable gauge conditions.
The gauge freedom in general relativity theory is the freedom to
represent the equations using any coordinates xa on spacetime.
Solving the equations requires some specific choice of
coordinates be made. Gauge conditions are used to impose the
desired choice.
One way to impose the needed gauge conditions is to specify Ha,
the source term for a wave equation for each coordinate xa:

Ha = ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Lee Lindblom (Caltech) Einstein’s Equations: PDE Issues UCSD 9/22/11 6 / 29



Gauge Conditions in General Relativity
Specifying coordinates by the generalized harmonic (GH) method
is accomplished by choosing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Recall that the spacetime Ricci tensor is given by

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Qab(ψ, ∂ψ).

The Generalized Harmonic Einstein equation is obtained by
replacing Γa = ψabΓb with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
the scalar wave equation:

0 = ∇a∇aΦ = ψab∂a∂bΦ + F (∂Φ).
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The Constraint Problem

Fixing the gauge in an appropriate way makes the Einstein
equations hyperbolic, so the initial value problem becomes
well-posed mathematically.
In a well-posed representation, the constraints, C = 0, remain
satisfied for all time if they are satisfied initially.

There is no guarantee, however, that constraints that are “small”
initially will remain “small”.
Constraint violating instabilities were one of the major problems
that made progress on solving the binary black hole problem so
slow.
Special representations of the Einstein equations are needed that
control the growth of any constraint violations.
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Constraint Damping in Electromagnetism
Electromagnetism is described by the hyperbolic evolution
equation ∇a∇aAb = ∇bH . Are there any constraints?
Where have the usual ~∇ · ~E = ~∇ · ~B = 0 constraints gone?

Gauge condition becomes a constraint: 0 = C ≡ ∇bAb − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a (∇bAb − H) = ∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes effect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Constraints in the GH Evolution System
The GH evolution system has the form,

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa plays the role of a constraint. Without
constraint damping, these equations are very unstable to
constraint violating instabilities.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by derivatives of the gauge constraint Ca:

Ma ≡
[
Rab − 1

2ψabR
]
tb =

[
∇(aCb) − 1

2ψab∇cCc

]
tb.
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Constraint Damping Generalized Harmonic System

Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c[t(cCa)
]

+ Cc∇(cCa)− 1
2γ0 taCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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Numerical Tests of the GH Evolution System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = 1.

The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Summary of the GH Einstein System

Choose coordinates by fixing a gauge-source function Ha(x , ψ),
e.g. Ha = ψabHb(x), and requiring that

Ha(x , ψ) = ∇c∇cxa = −Γa = − 1
2ψ

adψbc(∂bψdc + ∂cψdb − ∂dψbc).

Gauge condition Ha = −Γa is a constraint: Ca = Ha + Γa = 0.

Principal part of evolution system becomes manifestly hyperbolic:

Rab −∇(a Cb) = − 1
2ψ

cd∂c∂dψab −∇(aHb) + Qab(ψ, ∂ψ).

Add constraint damping terms for stability:

0 = Rab −∇(aCb) + γ0
[
t(aCb) − 1

2ψab tc Cc
]
,

where ta is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.
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Numerical Tests of the GH Evolution System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = 1.

The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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ADM 3+1 Approach to Fixing Coordinates

Coordinates must be chosen to label points in spacetime before
the Einstein equations can be solved. For some purposes it is
convenient to split the spacetime coordinates xa into separate
time and space components: xa = {t , x i}.
Construct spacetime foliation
by spacelike slices.

Choose time function with
t = const. on these slices.

Choose spatial coordinates,
xk , on each slice.

~t = ∂τ
∂t

∂k(t , xk )

(t + δt , xk )

Decompose the 4-metric ψab into its 3+1 parts:

ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The unit vector ta normal to the t =constant slices depends only
on the lapse N and shift N i : ~t = ∂τ = ∂xa

∂τ
∂a = 1

N∂t − Nk

N ∂k .
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ADM Approach to the Einstein Evolution System
Decompose the Einstein equations Rab = 0 using the ADM 3+1
coordinate splitting. The resulting system includes evolution
equations for the spatial metric gij and extrinsic curvature Kij :

∂tgij − Nk∂kgij = −2NKij + gjk∂iNk + gik∂jNk ,

∂tKij − Nk∂kKij = NR(3)
ij + Kjk∂iNk + Kik∂jNk

−∇i∇jN − 2NKikK k
j + NK k

kKij .
The resulting system also includes constraints:

0 = R(3) − KijK ij + (K k
k )2,

0 = ∇kKki −∇iK k
k .

System includes no evolution equations for lapse N or shift N i .
These quanties can be specified freely to fix the gauge.
Resolving the issues of hyperbolicity (i.e. well posedness of the
initial value problem) and constraint stability are much more
complicated in this approach. The most successful version is the
BSSN evolution system used by many (most) codes.
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Dynamical GH Gauge Conditions
The spacetime coordinates xb are fixed in the generalized
harmonic Einstein equations by specifying Hb:

∇a∇axb ≡ Hb.

The generalized harmonic Einstein equations remain hyperbolic
as long as the gauge source functions Hb are taken to be
functions of the coordinates xb and the spacetime metric ψab.

The simplest choice Hb = 0 (harmonic gauge) fails for very
dynamical spacetimes, like binary black hole mergers.
This failure seems to occur because the coordinates themselves
become very dynamical solutions of the wave equation
∇a∇axb = 0 in these situations.
Another simple choice – keeping Hb fixed in the co-moving frame
of the black holes – works well during the long inspiral phase, but
fails when the black holes begin to merge.
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Dynamical GH Gauge Conditions II
Some of the extraneous gauge dynamics could be removed by
adding a damping term to the harmonic gauge condition:

∇a∇axb = Hb = µta∂axb = µtb = −µNψtb.

This works well for the spatial coordinates x i , driving them toward
solutions of the spatial Laplace equation on the timescale 1/µ.

For the time coordinate t , this damped wave condition drives t to a
time independent constant, which is not a good coordinate.

A better choice sets taHa = −µ log
√

g/N2. The gauge condition
in this case becomes

ta∂a log
√

g/N2 = −µ log
√

g/N2 + N−1∂kNk

This coordinate condition keeps g/N2 close to unity, even during
binary black hole mergers (where it became of order 100 using
simpler gauge conditions).
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First Order Generalized Harmonic Evolution System
For some purposes, like constructing appropriate boundary
conditions, it is useful to transform second-order hyperbolic
equations into first-order systems.

GH evolution system can be written as a symmetric-hyperbolic
first-order system (Fischer and Marsden 1972, Alvi 2002):

∂tψab − Nk∂kψab = −N Πab,

∂tΠab − Nk∂k Πab + Ngki∂k Φiab ' 0,
∂tΦiab − Nk∂k Φiab + N∂iΠab ' 0,

where Φkab = ∂kψab.

This system has two immediate problems:
This system has new constraints, Ckab = ∂kψab − Φkab, that tend
to grow exponentially during numerical evolutions.
This system is not linearly degenerate, so it is possible (likely?) that
shocks will develop (e.g. the components that determine shift
evolution have the form ∂tN i − Nk∂kN i ' 0).
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A ‘New’ Generalized Harmonic Evolution System

We can correct these problems by adding additional multiples of
the constraints to the evolution system:

∂tψab − (1 + γ1)Nk∂kψab = −NΠab−γ1Nk Φkab,

∂tΠab − Nk∂k Πab + Ngki∂k Φiab−γ1γ2Nk∂kψab ' −γ1γ2Nk Φkab,

∂tΦiab − Nk∂k Φiab + N∂iΠab−γ2N∂iψab ' −γ2NΦiab.

This ‘new’ generalized-harmonic evolution system has several
nice properties:

This system is linearly degenerate for γ1 = −1 (and so shocks
should not form from smooth initial data).

The Φiab evolution equation can be written in the form,
∂tCiab − Nk∂kCiab ' −γ2NCiab, so the new constraints are
damped when γ2 > 0.

This system is symmetric hyperbolic for all values of γ1 and γ2.
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Constraint Evolution for the New GH System
The evolution of the constraints,
cA = {Ca, Ckab,Fa ≈ tc∂cCa, Cka ≈ ∂kCa, Cklab = ∂[kCl]ab} are
determined by the evolution of the fields uα = {ψab,Πab,Φkab}:

∂tcA + Ak A
B(u)∂kcB = F A

B(u, ∂u) cB.

This constraint evolution system is symmetric hyperbolic with
principal part:

∂tCa ' 0,
∂tFa − Nk∂kFa − Ng ij∂iCja ' 0,
∂tCia − Nk∂kCia − N∂iFa ' 0,
∂tCiab − (1 + γ1)Nk∂kCiab ' 0,

∂tCijab − Nk∂kCijab ' 0.
An analysis of this system shows that all of the constraints are
damped in the WKB limit when γ0 > 0 and γ2 > 0. So, this
system has constraint suppression properties that are similar to
those of the Pretorius (and Gundlach, et al.) system.
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Numerical Tests of the New GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.
These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Boundary Condition Basics
We impose boundary conditions on first-order hyperbolic evolution
systems, ∂tuα + Ak α

β(u)∂kuβ = Fα(u) in the following way
(where in our case uα = {ψab,Πab,Φkab}):

We first find the eigenvectors of the characteristic matrix nkAk α
β

at each boundary point:

eα̂α nkAk α
β = v(α̂)eα̂β,

where nk is the (spacelike) outward directed unit normal; and then
define the characteristic fields:

uα̂ = eα̂αuα.
Finally we impose a boundary condition on each incoming
characteristic field (i.e. every field with v(α̂) < 0), and impose no
condition on any outgoing field (i.e. any field with v(α̂) ≥ 0).

At internal boundaries (i.e. interfaces between computational
subdomains) use outgoing characteristics of one subdomain to fix
data for incoming characteristics of neighboring subdomain.
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where nk is the (spacelike) outward directed unit normal; and then
define the characteristic fields:

uα̂ = eα̂αuα.
Finally we impose a boundary condition on each incoming
characteristic field (i.e. every field with v(α̂) < 0), and impose no
condition on any outgoing field (i.e. any field with v(α̂) ≥ 0).

At internal boundaries (i.e. interfaces between computational
subdomains) use outgoing characteristics of one subdomain to fix
data for incoming characteristics of neighboring subdomain.
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Evolutions of a Perturbed Schwarzschild Black Hole
The simplest boundary conditions that correspond (roughly) to “no
incoming waves” set uα̂ = 0 for each incoming field, or
dtuα̂ ≡ eα̂β∂tuβ = 0 for fields that include static “Coulomb” parts.

A black-hole spacetime is
perturbed by an incoming
gravitational wave that excites
quasi-normal oscillations.

Use boundary conditions that
Freeze the remaining
incoming characteristic fields:
dtuα̂ = 0.

The resulting outgoing waves
interact with the boundary of
the computational domain and
produce constraint violations.

Play Constraint Movie
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Constraint Preserving Boundary Conditions

Construct the characteristic fields, ĉÂ = eÂ
AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
ĉ = {ĉ−, ĉ+}.
The incoming characteristic fields mush vanish on the boundaries,
ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
derivatives). We find that ĉ− for the GH system can be expressed:

ĉ− = d⊥û− + F̂ (u,d‖u).

Set boundary conditions on the fields û− by requiring

d⊥û− = −F̂ (u,d‖u).
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Physical Boundary Conditions
The Weyl curvature tensor Cabcd satisfies a system of evolution
equations from the Bianchi identities: ∇[aCbc]de = 0.
The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:

ŵ±ab = (Pa
cPb

d − 1
2PabPcd )(te ∓ ne)(t f ∓ nf )Ccedf ,

where ta is a unit timelike vector, na a unit spacelike vector
(with tana = 0), and Pab = ψab + tatb − nanb.

The incoming field w−ab can be expressed in terms of the
characteristic fields of the primary evolution system:

ŵ−ab = d⊥û−ab + F̂ab(u,d‖u).

We impose boundary conditions on the physical graviational wave
degrees of freedom then by setting:

d⊥û−ab = −F̂ab(u,d‖u) + ŵ−ab|t=0.
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Imposing Neumann-like Boundary Conditions

Consider Neumann-like boundary conditions of the form

eα̂βnk∂kuβ ≡ d⊥uα̂ = d⊥uα̂|BC.

The characteristic field projections of the evolution equations are:

dtuα̂ ≡ eα̂β∂tuβ = eα̂β
(
−A kβ

γ∂kuγ + F β
)
≡ Dtuα̂.

We impose these Neumann-like boundary conditions by changing
the appropriate components of the evolution equations at the
boundary to:

dtuα̂ = Dtuα̂ + v(α̂)

(
d⊥uα̂ − d⊥uα̂|BC

)
.
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Tests of Constraint Preserving and Physical BC
Evolve the perturbed black-hole spacetime using the resulting
constraint preserving boundary conditions for the generalized
harmonic evolution systems. Play Movies
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Evolutions using these new constraint-preserving boundary
conditions are still stable and convergent.
The Weyl curvature component Ψ4 shows clear quasi-normal
mode oscillations in the outgoing gravitational wave flux when
constraint-preserving boundary conditions are used.
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