
A Short Course on

Duality, Adjoint Operators, Green’s Functions,

and A Posteriori Error Analysis

Donald J. Estep

August 6, 2004

Department of Mathematics

Colorado State University

Fort Collins, CO 80523

estep@math.colostate.edu

http://www.math.colostate.edu/∼estep

Contents

Acknowledgments iv

Chapter 1. Duality, Adjoint Operators, and Green’s Functions 1
1.1. Background in some basic linear algebra 1
1.2. Linear functionals and dual spaces 4
1.3. Hilbert spaces and duality 7
1.4. Adjoint operators - definition 9
1.5. Adjoint operators - motivation 12
1.6. Adjoint operators - computation 15
1.7. Green’s functions 21

Chapter 2. A Posteriori Error Analysis and Adaptive Error Control 26
2.1. A generalization of the Green’s function 26
2.2. Discretization by the finite element method 28
2.3. An a posteriori analysis for an algebraic equation 29
2.4. An a posteriori analysis for a finite element method 30
2.5. Adaptive error control 33
2.6. Further analysis on the a posteriori error estimate 35

Chapter 3. The Effective Domain of Influence and Solution Decomposition 39
3.1. A concrete example: Poisson’s equation in a disk 40
3.2. A decomposition of the solution 42
3.3. Efficient computation of multiple quantities of interest 44
3.4. Identifying significant correlations 46
3.5. Examples 49

Chapter 4. Nonlinear Problems 64
4.1. An a posteriori analysis for a nonlinear algebraic equation 64
4.2. Defining the adjoint to a nonlinear operator 65
4.3. A posteriori error analysis for a space-time finite element method 67
4.4. The bistable problem 71

Bibliography 76

ii

Abstract

Continuous optimization, data assimilation, determining model sensitivity, un-
certainty quantification, and a posteriori estimation of computational error are fun-
damentally important problems in mathematical modeling of the physical world.
There has been some substantial progress on solving these problems in recent years,
and some of these solution techniques are entering mainstream computational sci-
ence. A powerful framework for tackling all of these problems rests on the notion of
duality and an adjoint operator. In the first part of this short course, we will discuss
duality, adjoint operators, and Green′s functions; covering both the theoretical un-
derpinnings and practical examples. We will motivate these ideas by explaining the
fundamental role of the adjoint operator in the solution of linear problems, working
both on the level of linear algebra and differential equations. This will lead in a
natural way to the definition of the Green′s function.

In the second part of the course, we will describe how a generalization of the
idea of a Green′s function is connected to a powerful technique for a posteriori error
analysis of finite element methods. This technique is widely employed to obtain
accurate and reliable error estimates in “quantities of interest”. We will also discuss
the use of these estimates for adaptive error control.

Finally, in the third part of the course, we will describe some applications of
these analytic techniques. In the first, we will use the properties of Green′s functions
to improve the efficiency of the solution process for an elliptic problem when the
goal is to compute multiple quantities of interest and/or to compute quantities
of interest that involve globally-supported information such as average values and
norms. In the latter case, we introduce a solution decomposition in which we solve
a set of problems involving localized information, and then recover the desired
information by combining the local solutions. By treating each computation of a
quantity of interest independently, the maximum number of elements required to
achieve the desired accuracy can be decreased significantly. Time permitting, we
will also discuss applications to a posteriori estimation of the effects of operator
splitting in a multi-physics problem, estimation of the effect of random variation in
parameters in a deterministic model (without using Monte-Carlo), and extensions
to nonlinear problems.

The research activities of D. Estep are partially supported by the Department of En-
ergy through grant 90143, the National Aeronautics and Space Administration through grant
NNG04GH63G, the National Science Foundation through grants DMS-0107832, DGE-0221595003,
and MSPA-CSE-0434354, the Sandia Corporation through contract number PO299784, and the
United States Department of Agriculture through contract 58-5402-3-306.

iii

Acknowledgments

The material in this course is collaborative work with a number of people.
These include
Sean Eastman, Colorado State University
Michael Holst, University of California at San Diego
Claes Johnson, Chalmers University of Technology
Mats Larson, Umea University
Duane Mikulencak, Georgia Institute of Technology
David Neckels, Colorado State University
Tim Wildey, Colorado State University
Roy Williams, California Institute of Technology

iv

CHAPTER 1

Duality, Adjoint Operators, and Green’s Functions

Green’s functions are a classic technique for the analysis of differential equa-
tions. The definition of the Green’s function appears simple at first glance. For
example, if u solves {

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a domain in Rd with boundary ∂Ω, the Green’s function φ satisfies
{
−∆φ(y;x) = δy(x), x ∈ Ω,

φ(y; x) = 0, x ∈ ∂Ω,

where δy is the delta function at a point y ∈ Ω. This gives the

u(y) =
∫

Ω

δy(x)u(x) dx =
∫

Ω

−∆φ(y; x)u(x) dx

=
∫

Ω

φ(y;x) · −∆u(x) dx =
∫

Ω

φ(y; x)f(x) dx.

or the function representation formula

u(y) =
∫

Ω

φ(y; x)f(x) dx.

The simplicity of this argument belies the fact that it depends on some deep math-
ematics involving the concepts of duality and the adjoint of a linear operator. Since
these ideas are crucial to a number of important mathematical constructions, we
will begin by discussing them.

1.1. Background in some basic linear algebra

We present a parallel development of ideas for finite dimensional vector spaces
and infinite dimensional vector spaces of functions. We will not dwell on technical
issues, but we will discuss the important ingredients. So, unfortunately, we have to
begin by listing some definitions and concepts.

We will be working on a vector space X with norm ‖ ‖. We assume the scalars
are real numbers for simplicity. In all cases, the underlying space on which we work
has an important property, which depends on the notion of a Cauchy sequence.

Definition 1.1. A sequence {xn} in X is a Cauchy sequence if we can
make the distance between elements in the sequence arbitrarily small by restricting
the indices to be large. More precisely, for every ε > 0 there is an N such that
‖xn − xm‖ < ε for all n,m > N .

1

2 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Example 1.2. Consider the sequence {1/n}∞n=1 in [0, 1]. This is a Cauchy
sequence since ∣∣∣∣

1
n
− 1

m

∣∣∣∣ =
∣∣∣∣
m− n

mn

∣∣∣∣ ≤ 2
max{m,n}

mn
=

2
min{m,n}

can be made arbitrarily small by taking m and n large. It converges to 0, which is
in [0, 1].

The notion of a Cauchy sequence is fundamentally important for computational
science because it gives a computable way to check a kind of convergent behavior
when the limit of a sequence is unknown, which is most of the time. Comparing
the distance between two elements in a sequence does not require the limit. This
is essentially the motivation for checking how a numerical solution of a differential
equation is doing by comparing results on two different discretizations for example.
It is not hard to show that a sequence that converges to a limit is a Cauchy sequence.
But, the reverse direction, i.e., Cauchy implies convergent, does not automatically
hold.

Example 1.3. Consider the sequence {1/n}∞n=1 in (0, 1). While the sequence
is a Cauchy sequence, it does not converge to a limit in (0, 1), because the limit 0
is not in (0, 1).

Spaces in which Cauchy sequences converge are greatly preferred.

Definition 1.4. A Banach space is a vector space with a norm such that
every Cauchy sequence converges to a limit in the space. We also say the space is
complete.

Example 1.5. The familiar vector space Rn with the norms defined for x =
(x1, · · · , xn)>,

‖x‖1 = |x1|+ · · ·+ |xn|
‖x‖2 =

(|x1|2 + · · ·+ |xn|2
)1/2

‖x‖∞ = max |xi|.
are all Banach spaces. We use ‖ ‖ = ‖ ‖2 unless noted otherwise.

There are also Banach spaces of functions.

Definition 1.6. For an interval [a, b], the space of continuous functions is
denoted C([a, b]), where we take the maximum norm ‖f‖ = max

a≤x≤b
|f(x)|. We can

extend this in a natural way to smoother functions. For example, C1([a, b]) denotes
the space of functions that have continuous first derivatives on [a, b], where we use
the norm ‖f‖ = max

a≤x≤b
|f(x)|+ max

a≤x≤b
|f ′(x)|.

Definition 1.7. For a domain Ω in Rn and 1 ≤ p ≤ ∞, Lp is the vector
space of functions Lp(Ω) = {f : f is measurable on Ω and ‖f‖p < ∞}, where for
1 ≤ p < ∞,

‖f‖p =
(∫

Ω

‖f‖p dx

)1/p

and ‖f‖∞ = ess supΩ‖f‖.

L2 is particularly important.
A key result is

1.1. BACKGROUND IN SOME BASIC LINEAR ALGEBRA 3

Theorem 1.8. The Lp spaces and C([a, b]) are Banach spaces.

Example 1.9. The sequence of functions {xn}∞n=0 is a Cauchy sequence in
C([0, 1/2]). Assuming without loss of generality that n ≥ m, we have for 0 ≤ x ≤
1/2 and any ε > 0,

|xn − xm| = |xn−m − 1| × |x|m ≤ 1× 1
2m

< ε

for all m,n ≥ N provided N > − log(ε)/ log(2). The sequence converges to the
zero function.

Example 1.10. The sequence of functions {xn}∞n=0 is not a Cauchy sequence in
C([0, 1]). Assuming that n ≥ m, we can write f(x) = |xn−xm| = xm−xn and use
Calculus to determine that the maximum value of f(x) occurs at x̄ = (m/n)1/(n−m).
Using L’Hopital’s rule, is easy to show that x̄ → 1 as n → ∞ for fixed m (this is
also apparent from a graph). The maximum value of f is therefore

f(x̄) =
(
1− m

n

) (m

n

) m
n−m

,

and both factors tend to 1 as n →∞ for fixed m.

Example 1.11. It is a good exercise to show that {xn}∞n=0 is a Cauchy sequence
in L1([0, 1]) (this follows because integration of xn produces a 1/(n + 1)).

The concepts of duality and adjoint operators are intimately tied to linear
operators, or maps, on normed vector spaces. We consider maps between two
vector spaces X and Y with norms ‖ ‖X and ‖ ‖Y respectively.

Definition 1.12. A map or operator L from X to Y is a rule or association
that assigns to each x in X a unique element y in Y . A map L : X → Y is linear
if L(αx1 + βx2) = αL(x1) + βL(x2) for all numbers α, β and x1, x2 in X.

Example 1.13. Every linear map from Rm to Rn is obtained by multiplying
vectors in Rm by a n×m matrix, i.e., they have the form Ax, where A is a n×m
matrix. Differentiation is a linear map from C1([a, b]) to C([a, b]). Integration is a
linear map from C([a, b]) into R.

The maps we consider also have to behave continuously,

Definition 1.14. A map L : X → Y is continuous if for every sequence {xn}
in X that converges to a limit x in X, i.e., xn → x, we have L(xn) → L(x).

Example 1.15. Linear maps from Rm to Rn are continuous.

The property given in Def. 1.14 explains why we want continuity, but it is not
very easy to check in practice. Luckily, there is an equivalent property for linear
maps.

Definition 1.16. A linear map L : X → Y is bounded if there is a constant
C > 0 such that ‖Lx‖Y ≤ C‖x‖X for all x in X.

Example 1.17. Consider integration as a map from C([a, b]) into R. Let f ∈
C([a, b]). Then,∣∣∣∣∣

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)| dx ≤ (b− a) max
a≤x≤b

|f(x)| = (b− a)‖f‖.

We conclude that integration is a bounded map with constant C = b− a.

4 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Example 1.18. We can define another integration operator from C([a, b]) to
C1([a, b]) as I(f)(x) =

∫ x

a
f(s) dx for f ∈ C([a, b]) and a ≤ x ≤ b. It is a good

exercise to show that I is bounded with constant C = b− a + 1.

The equivalence is

Theorem 1.19. A linear map between normed vector spaces is continuous if
and only if it is bounded.

By the way, this theorem just says that a linear map is continuous if and only if it
is Lipschitz continuous.

It is easy (if tedious) to verify that the set of all linear transformations between
two vector spaces X and Y is itself a vector space. We care about the continuous
maps.

Definition 1.20. If X and Y are normed vector spaces, we use L(X, Y) to
denote the vector space of all bounded linear maps from X to Y . L(X, Y) is a
normed vector space under the operator norm

(1.1) ‖L‖ = sup
‖x‖X=1

‖Lx‖Y = sup
x6=0

‖Lx‖Y

‖x‖X
.

The operator norm measures the “size” of a linear transformation by the maximum
degree by which it can “stretch or shrink” any unit vector. These norms for linear
maps from Rn to Rn are likely the most familiar examples.

Example 1.21. If the linear transformation L is given by the n× n matrix A,
then

‖L‖1 = ‖A‖1 = max
1≤j≤n

n∑

i=1

|aij |

‖L‖2 = ‖A‖2 =
√

σ(AT A)

‖L‖∞ = ‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij |

where σ(A>A) is the spectral radius of A>A.

Importantly,

Theorem 1.22. If X and Y are normed vector spaces and Y is complete, then
L(X, Y) is complete.

One way we might generate a sequence of linear operators that converge to a
limit is to construct a numerical discretization of some continuous operator, which
will then be the limit of the numerical approximations for a sequence of discretiza-
tion parameters.

1.2. Linear functionals and dual spaces

The concept of duality starts with linear functionals. A linear functional is just
a special kind of linear map.

Definition 1.23. A linear functional on a vector space X is a linear map
from X to R.

1.2. LINEAR FUNCTIONALS AND DUAL SPACES 5

Example 1.24. Let v in Rn be fixed. The map F (x) = v ·x = (x, v) is a linear
functional on Rn.

Example 1.25. Consider C([a, b]). Both I(f) =
∫ b

a
f(x) dx and F (f) = f(y)

for a ≤ y ≤ b are linear functionals.

It is useful to think of a linear functional as providing a “low dimensional
snapshot” of a vector.

Example 1.26. In Example 1.24, consider v = ei, the ith standard basis func-
tion. Then F (x) = xi where x = (x1, · · · , xn). As another example, we can take
v = (1, 1, · · · , 1)/n and compute the average of the components of a given input
vector.

Example 1.27. Recall that we let δy denote the delta function at a point y
in a region Ω. This gives a linear functional on sufficiently smooth, real valued
functions via

F (u) = u(y) =
∫

Ω

δy(x)u(x) dx.

Another linear functional is the average value of an integrable function,

F (u) =
1

vol. of Ω

∫

Ω

u(x) dx.

We can view the formulas defining the Fourier coefficients of a function as a set of
linear functionals.

Note, there are some important nonlinear functionals, such as
norms.

We are interested in the continuous linear functionals. In this case, we define,

Definition 1.28. If X is a normed vector space, the space L(X,R) of bounded
linear functionals on X is called the dual space of or on or to X, and is denoted
by X∗. The dual space is a normed vector space under the dual norm defined for
y ∈ X∗ as

‖y‖X∗ = sup
x∈X

‖x‖X=1

|y(x)| = sup
x∈X
x6=0

|y(x)|
‖x‖ .

Example 1.29. Consider X = Rn with dot product (,) and norm ‖ ‖ = ‖ ‖2.
In Ex. 1.24, we saw that every vector v in Rn is associated with a linear functional
Fv(·) = (·, v). This functional is clear bounded since |(x, v)| ≤ ‖v‖ ‖x‖ (The “C” in
the definition is ‖v‖). A classic result in linear algebra is that all linear functionals
on Rn have this form, i.e., we can make the identification (Rn)∗ ' Rn.

Example 1.30. For C([a, b]), consider I(f) =
∫ b

a
f(x) dx. It is easy to compute

‖I‖C([a,b])∗ = sup
f∈C([a,b])
max |f |=1

∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣

by looking at a picture, see Fig. 1.1. The maximum value for I(f) is clearly given
by f = 1 or f = −1, since if |f | ≤ 1 then

∫ |f | dx ≤ ∫
1 dx, and we get ‖I‖C([a,b])∗ =

b− a.

6 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

1

-1

a
b

possible functions

Figure 1.1. Computing the dual norm of the integration functional.

Example 1.31. Recall Hölder’s inequality for f ∈ Lp(Ω) and g ∈ Lq(Ω) with
1
p

+
1
q

= 1 for 1 ≤ p, q ≤ ∞ is

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

This implies that each g in Lq(Ω) is associated with a bounded linear functional on

Lp(Ω) when
1
p

+
1
q

= 1 and 1 ≤ p, q ≤ ∞ by

F (f) =
∫

Ω

g(x)f(x) dx.

An important, and difficult, result is that we can “identify” (Lp)∗ with Lq when
1 < p, q < ∞, The cases p = 1, q = ∞ and p = ∞, q = 1 are trickier. The case L2

is special in that we can identify (L2)∗ with L2.

Keeping in mind the interpretation of a linear functional as a sample of a vec-
tor, the dual space is the collection of “reasonable” possible samples. An important
characteristic of a dual space is how much we can reveal about a vector by consid-
ering samples in the dual space.

Example 1.32. By considering the set of n functionals corresponding to taking
the inner product with {e1, · · · , en}, we can “reconstruct” any given vector in Rn

by looking at the functional values.

The question of whether or not we can “recover” a vector u completely by computing
sufficiently many linear functionals depends heavily on properties of the underlying
spaces. In practice, we will often be content with one or just a few “snapshots”.

In the same vein, we might wonder about the number of bounded linear func-
tionals that exist on an arbitrary normed vector space. The celebrated Hahn-
Banach theorem essentially says there is a great abundance of them. To understand
this result, we consider the construction of bounded linear functionals on a Banach
space X. Let x0 6= 0 be a fixed element of X. The set X0 = {αx0 : α ∈ R} forms
a vector subspace of X. The linear functional F (αx0) = α is defined on X0 and is
bounded since |F (αx0)| = |α| = ‖αx0‖/‖x‖. So, we have found a bounded linear
functional on a subspace of X. A natural question is whether or not we can extend
this to be defined on all of X. This entails defining what “extending” a functional
means, and determining if the norm of the functional increases when it is extended.

1.3. HILBERT SPACES AND DUALITY 7

We also have to consider the possibility that we might have to consider an infi-
nite number of subspaces in order to cover all of X. The Hahn-Banach theorem
addresses these points.

Theorem 1.33. Hahn-Banach Let X be a Banach space and X0 a subspace
of X. Suppose that F0(x) is a bounded linear functional defined on X0. There
is a linear functional F defined on X such that F (x) = F0(x) for x in X0 and
‖F‖ = ‖F0‖.
We will not discuss the Hahn-Banach theorem in detail, but it is one of the planks
in the foundation of this subject.

The dual space is of great value in analysis (with connections to the notions of
distributions and weak convergence), but we will not dwell on its uses. One reason
that the concept is useful is that the dual space can be better behaved than the
original normed vector space. For example,

Theorem 1.34. If X is a normed vector space over R, then X∗ is a Banach
space (whether or not X is a Banach space).

There is a useful notation for the value of a functional.

Definition 1.35. If x is in X and y is in X∗, we denote the value

y(x) =< x, y > .

This is called the bracket notation.

We finish by noting that norms on X and its dual X∗ are closely related. Recall
that if y ∈ X∗, then

‖y‖X∗ = sup
x∈X

‖x‖X=1

|y(x)| = sup
x∈X
x6=0

|y(x)|
‖x‖ .

This leads to

Definition 1.36. The generalized Cauchy inequality is

|< x, y >| ≤ ‖x‖X ‖y‖X∗ , x ∈ X, y ∈ X∗.

Combining this with the idea of sampling and the Hahn-Banach theorem yields
a “weak” representation of the norm on X.

Theorem 1.37. If X is a Banach space, then

‖x‖X = sup
y∈X∗
y 6=0

|y(x)|
‖y‖X∗

= sup
y∈X∗

‖y‖X∗=1

|y(x)|

for all x in X.

1.3. Hilbert spaces and duality

In Ex. 1.29, we saw that Rn with the standard Euclidean norm ‖ ‖ = ‖ ‖2 can
be identified with its dual space. Likewise, Ex. 1.31 says that L2 can be identified
with its dual space. Both of these spaces are Hilbert spaces.

Recall that one way to get a normed vector space is to place an inner product
(i.e., dot product) on the space.

8 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Theorem 1.38. If X has an inner product (x, y), then it is a normed vector
space with norm ‖x‖ = (x, x)1/2 for x in X.

Definition 1.39. A vector space with an inner product that is a Banach space
with respect to the associated norm is called a Hilbert space.

Example 1.40. Rn with ‖ ‖ = ‖ ‖2 and L2 are both Hilbert spaces.

Remarkably, Ex. 1.29 generalizes to infinite dimensions. If X is a Hilbert
space with inner product (x, y), then each y ∈ X determines a linear functional
Fy(x) =< x, y >= (x, y) for x in X. This functional is bounded by Cauchy’s
inequality, which says that |(x, y)| ≤ ‖x‖ ‖y‖. The Riesz Representation theorem
says this is the only kind of linear functional on a Hilbert space.

Theorem 1.41. Riesz Representation For every bounded linear functional
F on a Hilbert space X, there is a unique element y in X such that

F (x) = (x, y) for all x ∈ X, and ‖y‖X∗ = sup
x∈X
x6=0

|F (x)|
‖x‖ .

This means that a Hilbert space is isometric to its dual space.

Definition 1.42. Two normed vector spaces X and Y are isometric if there
is a linear 1-1 and onto map L : X → Y such that ‖L(x)‖Y = ‖x‖X for all x in X.

Abusing notation, it is common to replace the bracket notation and the gen-
eralized Cauchy inequality by the inner product and the “real” Cauchy inequality
without comment.

The Sobolev spaces are Hilbert spaces based on L2 that are particularly im-
portant for the study of differential equations. The rigorous definition requires the
theory of distributions, which we avoid here.

Example 1.43. For k = 1, 2, 3, · · · , we define Hk(Ω) to be the distribution
functions in L2(Ω) whose partial derivatives of order k and less are also distribu-
tions in L2(Ω). We use the index notation. For α = (α1, · · · , αn) with integer
coefficients, we define

|α| = α1 + · · ·+ αn

D =
(

∂

∂x1
, · · · ,

∂

∂xn

)
,

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n

Then, Hk(Ω) = {u,Dαu ∈ L2(Ω), |α| ≤ k}. The inner products and norms are

(u, v)k =
∑

|α|≤k

(Dαu,Dαv), ‖u‖k = (u, u)1/2
k .

It turns out that we can extend this definition to fractional indices by a process
called interpolation. Perhaps the easiest way to think about this is via Fourier
analysis. The Fourier transform of a function in Hk has a specific decay rate
depending on k as the Fourier variable tends to infinity. The formulation of this
decay rate extends from integer values of k.

The Riesz Representation theorem 1.41 says that every linear functional on
Hk has the form (u, v)k for some fixed v in Hk. But, defining the dual space to

1.4. ADJOINT OPERATORS - DEFINITION 9

Hk runs into subtle difficulties due to a collision with the requirements for using
distribution theory. In particular, for technical reasons having to do with the fact
that there are nonzero linear functionals that vanish on all test functions, we define
the dual spaces to a subspace

Hk
0 (Ω) =

{
u ∈ Hk(Ω) : u =

∂u

∂n
= · · · = ∂k−1u

∂nk−1
= 0 on ∂Ω

}
,

where ∂/∂n denotes the normal derivative on the boundary ∂Ω. We let H−k(Ω) is
the set of all linear functionals on Hk

0 (Ω). We will not say more about the reasons
for this definition, but it is good to be aware of it.

1.4. Adjoint operators - definition

We now explain how a linear transformation between two normed vector spaces
X and Y is naturally associated with another linear transformation between Y ∗ and
X∗. This is the infamous adjoint operator.

It is not difficult to define the adjoint in the context of linear transformations
on finite dimensional vectors spaces, where we have access to matrices (the adjoint
of a matrix is the transpose). But, we want to give a definition that is independent
of dimension.

Suppose L ∈ L(X, Y) is a bounded linear transformation. For each y∗ ∈ Y ∗,

y∗ ◦ L(x) = y∗(L(x)) =< Lx, y∗ >

assigns a number to each x ∈ X, hence defines a functional F (x). F (x) is clearly
linear. It is also bounded since

|F (x)| = |y∗(L(x))| ≤ ‖y∗‖Y ∗‖L(x)‖Y ≤ ‖y∗‖Y ∗‖L‖ ‖x‖X ,

where C = ‖y∗‖Y ∗‖L‖ in the definition of boundedness. By the definition of the
dual space, there is an x∗ ∈ X∗ such that y∗(L(x)) = x∗(x) for all x ∈ X. x∗ is
unique. Thus, to each y∗ ∈ Y ∗, we have assigned a unique x∗ ∈ X∗ and thus have
defined a linear transformation L∗ : Y ∗ → X∗.

We can write these relations as

y∗(L(x)) = L∗y∗(x)

or using the bracket notation,

(1.2) < L(x), y∗ >=< x,L∗(y∗) > x ∈ X, y∗ ∈ Y ∗.

Definition 1.44. Equation (1.2) is called the bilinear identity and it serves
to define the adjoint operator L∗ : Y ∗ → X∗ associated to a bounded linear
transformation L : X → Y . It is also called the dual operator.

Note that we have defined the adjoint transformation via sampling by elements in
the dual space.

In the next example, we explain the relation between the adjoint operator and
the transpose of a matrix.

Example 1.45. Let X = Rm and Y = Rn, where we take the standard inner
product and norm. By the Riesz Representation theorem, the bilinear identity for
L ∈ L(Rm,Rn) reads

(Lx, y) = (x, L∗y), x ∈ Rm, y ∈ Rn.

10 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

We know that L is represented by a unique n × m matrix A so that if y = L(x)
then y = Ax where

A =




a11 · · · a1m

...
...

an1 · · · anm


 , y =




y1

...
yn


 , x =




x1

...
xm




and

yi =
m∑

j=1

aijxj , 1 ≤ i ≤ n.

For a linear functional y∗ = (y∗1 , · · · , y∗n)> ∈ Y ∗, we have

L∗y∗(x) = y∗(L(x)) =


(y∗1 , · · · , y∗n),




∑m
j=1 a1jxj

...∑m
j=1 anjxj







=
m∑

j=1

y∗1a1jxj + · · ·
m∑

j=1

y∗nanjxj

=
m∑

j=1

(n∑

i=1

y∗i aij

)
xj

Therefore, L∗(y∗) is given by the inner product with ỹ = (ỹ1, · · · , ỹm)> where

ỹj =
n∑

i=1

y∗i aij .

This implies the matrix A∗ of L∗ is

A∗ =




a∗11 · · · a∗1n
...

...
a∗m1 · · · a∗mn


 =




a11 a21 · · · an1

...
...

a1m a2m · · · anm


 = A>.

We can write the bilinear identity as

y>Ax = x>A>y

using the fact that (x, y) = (y, x).

The following theorem is crucial.

Theorem 1.46. L∗ ∈ L(Y ∗, X∗) and ‖L∗‖ = ‖L‖.
Proof. The linearity is easy. We have already shown that

|L∗y∗(x)| ≤ ‖y∗‖Y ∗‖L‖‖x‖X .

Therefore,

‖L∗y∗‖X∗ = sup
x 6=0

|L∗y∗(x)|
‖x‖ ≤ ‖y∗‖Y ∗‖L‖,

which implies that L∗ ∈ L(Y ∗, X∗) and ‖L∗‖ ≤ ‖L‖. To show the reverse inequality,
we prove that

‖Lx‖Y ≤ ‖L∗‖ ‖x‖X , x ∈ X.

The bilinear identity implies that

|y∗(Lx)| ≤ ‖L∗y∗‖X∗‖x‖X ≤ ‖L∗‖‖y∗‖Y ∗‖x‖X

1.4. ADJOINT OPERATORS - DEFINITION 11

and

sup
y∗ 6=0

|y∗(Lx)|
‖y∗‖Y ∗

≤ ‖L∗‖ ‖x‖X , x ∈ X.

¤

The adjoint operator has some properties that are easily verified.

Theorem 1.47. Let X, Y , and Z be normed linear spaces. Then,

0∗ = 0

(L1 + L2)∗ = L∗1 + L∗2, all L1, L2 ∈ L(X, Y)

(αL)∗ = αL∗, all α ∈ R, L ∈ L(X, Y)

If L2 ∈ L(X, Y) and L1 ∈ L(Y, Z), then L1L2 ∈ L(X, Z), (L1L2)∗ ∈ L(Z∗, X∗),
and

(L1L2)∗ = L∗2L
∗
1.

In a bit, we will discuss the computation of the adjoint when we are considering
differential operators acting on function spaces. But, we first conclude this section
by a discussing a technical issue that is relevant in that case. Namely, when talking
about differential operators on function spaces, we are often dealing with linear
operators that are not defined on the entire space.

Example 1.48. Consider D = d/dx on X = C([0, 1]). This linear map is only
defined on the subspace C1([0, 1]).

This often happens when dealing with differential equations - in fact, it is one of
the “tricks” of modern theory. We extend the definitions to this situation.

Definition 1.49. Let X and Y be normed vector spaces. A map L that
assigns to each x in a subset D(L) of X a unique element y in Y is called a map
or operator with domain D(L). L is linear if (1) D(L) is a vector subspace of
X and (2) L(αx1 + βx2) = αL(x1) + βL(x2) for all α, β ∈ R and x1, x2 ∈ D(L).

We now define the dual of a linear operator by examining its behavior on its
domain. We want

L∗y∗(x) = y∗(Lx) all x ∈ D(L).
We say that y∗ ∈ D(L∗) if there is an x∗ ∈ X∗ such that

x∗(x) = y∗(Lx), all x ∈ D(L).

The existence of x∗ is no longer automatic. When such an x∗ exists, we define
L∗y∗ = x∗. For this to work, x∗ must be unique. In other words, x∗(x) = 0 for all
x ∈ D(L) should imply x∗ = 0. This depends on the “size” of D(L).

Definition 1.50. A subspace A of a normed linear space X is dense if every
point in X is either in A or the limit of a sequence of points in A.

Example 1.51. The rational numbers are dense in the real numbers and the
polynomials are dense in C([a, b]).

The property of being dense gives an important approximation property. For
example, the rational numbers are dense in the real numbers, which means we
can approximate any real number arbitrarily well by a rational number. This is
crucial to computer mathematics of course. The fact that we can approximate

12 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

continuous functions arbitrarily well by polynomials is one reason for the heavy use
of polynomials in numerical analysis. Interestingly, the density of the polynomials
in the space of continuous functions is connected to the famous probability theorem
called the Weak Law of Large Numbers, see [Est02] for further discussion.

The argument presented above works if and only if D(L) is dense in X. We can
define L∗ for any linear operator L : X → Y provided D(L) is dense in X. We define
D(L∗) to be those y∗ ∈ Y ∗ for which there is an x∗ ∈ X∗ with x∗(x) = y∗(Lx) for
all x ∈ X. This x∗ is unique and L∗y∗ = x∗.

The Hahn-Banach theorem implies that if there is a C such that |y∗(Lx)| ≤
C‖x‖ for all x ∈ D(L), then y∗ ∈ D(L∗).

1.5. Adjoint operators - motivation

Having defined the adjoint operator abstractly, it is important to compute
some examples in the infinite dimensional case. First, however, we will give some
motivation for defining the adjoint by discussing a very important result that is
closely related to Green’s functions.

Many problems in applications take the form: Given normed vector spaces X
and Y , an operator L(X,Y), and b ∈ Y , find x ∈ X such that

(1.3) Lx = b.

We explain the role of the adjoint in solving this kind of problems.

Definition 1.52. The set of b for which there is a solution of (1.3) is called
the range, R(L), of L. The set of x for which L(x) = 0 is called the null space,
N (L), of L.

Note that 0 is always in N (L). If it is the only element in N (L), then Lx = b can
have at most one solution. Since L is linear,

Theorem 1.53. N (L) is a subspace of X and R(L) is a subspace of Y .

Now if y ∈ R(L), there is an x with Lx = y. For y∗ ∈ Y ∗,

y∗(Lx) = y∗(y).

By the definition of the adjoint,

L∗y∗(x) = y∗(y).

If y∗ ∈ N (L∗), then y∗(y) = 0. Thus, a necessary condition that y ∈ R(L) is that
y∗(y) = 0 for all y∗ ∈ N (L∗). Is this sufficient? We require just one condition.

Definition 1.54. A subset A of a normed vector space X is closed if every
sequence {xn} in A that has a limit in X has its limit in A.

We have

Theorem 1.55. Let X and Y be normed linear spaces and L ∈ L(X, Y). A
necessary condition that y ∈ R(L) is y∗(y) = 0 for all y∗ ∈ N (L∗). This is a
sufficient condition if R is closed in Y .

Example 1.56. Suppose that L ∈ L(X, Y) is associated with the n×m matrix
A, i.e., L(x) = Ax. The necessary and sufficient condition for the solvability of
Ax = b is that b is orthogonal to all linearly independent solutions of AT y = 0.

1.5. ADJOINT OPERATORS - MOTIVATION 13

Example 1.57. In the case X is a Hilbert space and L ∈ L(X, Y), then nec-
essarily R(L∗) ⊂ N (L)⊥, where S⊥ is the subspace of vectors that are orthogonal
to a subspace S. This follows because

x ∈ N (L) ⇒ Lx = 0

⇒ (y, Lx) = 0 all y ∈ X

⇒ (L∗y, x) = 0 all y ∈ X,

i.e., L∗y ∈ N (L)⊥ for all y ∈ X. The claim follows sinceR(L∗) = {L∗y| all y ∈ X}.
If R(L∗) is “large”, then N (L)⊥ must be “large” and N (L) must be “small”. The
existence of sufficiently many solutions of the homogeneous adjoint equation implies
there is at most one solution of Lx = b for a given b.

Example 1.58. The version of this theorem in the setting of general partial
differential equations is a well-known and important result.

Theorem 1.59. Holmgren Uniqueness The generalized initial value prob-
lem consisting of the equation

L(u) =
∑

|α|≤m

Aα(x)Dαu = f(x), x ∈ Rn,

where {Aα} and f are analytic functions, together with the data

Dβu(x) = gβ(x), |β| ≤ m− 1, x ∈ S

given on an analytic noncharacteristic surface S, has at most one solution in a
neighborhood of S.

Without being specific, a “noncharacteristic” surface is one on which is it is valid
to pose “initial values”. For example, we could not give initial values for the heat
equation on a surface that is parallel to the time axis.

We will discuss the role of the adjoint in the solution of a general n×m system
Ax = b, where A is a n×m matrix, x ∈ Rm, and b ∈ Rn. The reason to dwell on
such problems is that differential operators do not tend to be “square”.

Example 1.60. y′′ = d2y/dx2 requires two boundary conditions to define a
problem for the associated differential equation that has a unique solution. We
may want to study the differential operator without any boundary conditions, or
more or less than two conditions. Divergence,

div u =
∂u1

∂x1
+ · · ·+ ∂un

∂xn
,

associates a scalar with a given vector function, and the associated differential
equation is very “under-determined”. The gradient,

gradu =
(

∂u1

∂x1
, · · · ,

∂un

∂xn

)
,

associates a vector field with a given scalar function, and the associated equations
are very “over-determined”.

So consider the n × m system Ax = b, where A is a n × m matrix, x ∈ Rm,
and b ∈ Rn. We enlarge the system by adding the adjoint m× n system A>y = c,

14 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

where y and c are independent of x and b. The new (n + m)× (n + m) system has
some very favorable properties. In particular, it is symmetric. We write it as

Sz = d,

with

z =
(

y
x

)
, d =

(
b
c

)
, S =

(
0 A

A> 0

)
.

Since S is symmetric, it is diagonalizable with eigenvalues satisfying

Av = λu

A∗u = λv

or

AA>u = λ2u

A>Av = λ2v.

The eigenvalues of S are the singular values of A and last two equations give the
left and right singular vectors of A.

We can use this to determine all kinds of facts about the compatibility and
deficiency of the linear system Ax = b. Theorem 1.55 for Rn falls out right away.
In the over-determined and under-determined cases, it yields a “natural” definition
of a solution or gives conditions for a solution to exist. It also gives a way of
determining the condition of the solution process.

One interesting observation is that there is a reciprocal relationship between the
degree of over/under-determination of the original system and the adjoint system,
i.e., the more over-determined the original system, the more under-determined the
adjoint system, and so forth.

Example 1.61. Consider 2x1 + x2 = 4, where L : R2 → R. L∗ : R → R2 is

given by L∗ =
(

2
1

)
. The extended system is




0 2 1
2 0 0
1 0 0







y1

x1

x2


 =




4
c1

c2


 ,

from which we see that 2c1 = c2 is required in order to have a solution.
On the other hand, if the problem is

2x1 + x2 = 4
x2 = 3,

with L : R2 → R2, then there is a unique solution. The extended system is



0 0 2 1
0 0 0 1
2 0 0 0
1 1 0 0







y1

y2

x1

x2


 =




c1

c2

4
3


 ,

where we can specify any values for c1, c2.

1.6. ADJOINT OPERATORS - COMPUTATION 15

For later reference, this example shows that in the under-determined case, we
can eliminate the deficiency by posing the method of solution

AA>y = b
x = A>y.

or
L(L∗(y)) = b
x = L∗(y).

We have not discussed computing the adjoint to a differential operator yet, but
this approach also works in this case.

Example 1.62. Consider the under-determined problem

div F = ρ.

It turns out that, roughly speaking, the adjoint to div is -grad, though boundary
conditions are required to be precise. If we set F = grad u, where u is subject to
the boundary condition u(“∞′′) = 0, then we obtain the “square”, well-determined
problem

div grad u = ∆u = −ρ,

which has a unique solution because of the boundary condition.

We will discuss this a bit further, but first we consider a particular augmented
system.

Example 1.63. Consider

Ax = b

A>φ = ei

where A is a n× n invertible matrix. There are no constraints on the data for the
adjoint problem, and we have specified the ith standard basis vector of Rn. We see
that

xi = (x, ei) = (x,A>φ) = (Ax, φ) = (b, φ).
y is the discrete Green’s vector associated to Ax = b.

1.6. Adjoint operators - computation

Before turning to the topic of Green’s functions, we will spend a little time
talking about the computation of an adjoint of a given linear differential operator.

Actually, it is difficult to find general discussions of this topic. Most of the
texts and the literature consider problems that are particularly easy in a specific
respect. The computation of the adjoint to a general differential operator is not
easy at all.

We can obtain the form of the adjoint operator - including any boundary terms
- via a tedious formal computation. We take the problem for the linear operator,
including any boundary and/or initial conditions imposed with the operator, and
discretize it using a low order method on a uniform discretization. Extract the
matrix from the resulting discrete system, and compute its transpose, which gives
a new linear operator. Finally, let the discretization parameter tend to its limit and
determine the differential operator that is approached by the transposed matrix.
This is a formal computation because it reveals nothing about the underlying spaces
on which the operators are defined. To make it rigorous, we would have to discuss
what it means for the approximate operators to converge to the true operators,
which involves the spaces on which the operators are defined.

While this is not elegant, it does determine one important fact.

16 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Determination of the adjoint of a differential operator is heavily
influenced by the boundary and/or initial conditions imposed on
the operator, as well as the underlying spaces.

In particular, a differential operator posed with two different sets of data will gen-
erally yield two different adjoints.

Example 1.64. A standard difference approximation of
{
−u′′(x) = f(x), 0 < x < 1,

u(0) = 0, u(1) = 0,

yields the matrix

1
h2




2 −1 0
−1 2 −1

.
−1 2 −1

0 −1 2




,

which is symmetric. Hence, the differential operator is self-adjoint. If we change
the boundary conditions to

{
−u′′(x) = f(x), 0 < x < 1,

u(0) = 0, u′(0) = 0,

we get a triangular matrix after discretization. The adjoint corresponds to a prob-
lem {

−v′′(x) = g(x), 0 < x < 1,

v(1) = 0, v′(1) = 0,

Example 1.65. Some other examples include an initial value problem
{

u′ = f(x), 0 < x < 1,

u(0) = 0
⇒

{
−v′ = g(x), 1 > x > 0,

v(1) = 0,

and an under-determined problem
{
−u′′ = f(x), 0 < x < 1,

no boundary conditions

⇒
{
−v′′ = g(x), 0 < x < 1,

v(0) = v′(0) = v(1) = v′(1) = 0.

In the situation in which we consider functions in a Hilbert space like L2, which
is quite often, there is a more elegant and mathematically fundamental approach
based on the bilinear identity

(1.4) < Lu, v∗ >=< u, L∗v∗ > all u ∈ X, v∗ ∈ Y ∗,

which in this context can be written

(1.5) (Lu, v) = (u, L∗v) all suitable u, v ∈ L2(Ω).

1.6. ADJOINT OPERATORS - COMPUTATION 17

Definition 1.66. We say that we are evaluating the bilinear identity when
we compute

< Lu, v∗ > − < u,L∗v∗ >= (Lu, v)− (u, L∗v)

for some suitable functions u and v.

We start with a couple of observations.

• Since we are considering differential operators, these will not be defined
on all of L2(Ω), but only a subset of sufficiently smooth functions. Like-
wise, the adjoint operator will be defined on a set of sufficiently smooth
functions. To be able to work in spaces that are useful for analysis, we
use a limiting process and distribution theory to extend the definitions to
a larger space of functions, e.g., we work in the Sobolev spaces Hk rather
than the spaces Cp. However, this involves the same kinds of subtle and
technical issues that affected the definition of H−k.

• The L2 inner product involves integration over the domain, and we can
interpret the process producing the bilinear identity as a succession of
integration by parts, and the bilinear identity as a kind of generalized
Green’s identity. However, it is clear that integration by parts will yield
terms that involve the integrals over the boundary of Ω of the functions
involved as well as certain derivatives. The computation of the adjoint
will involve the boundary conditions posed with the differential operator.

Computing the adjoint using the bilinear identity proceeds in two stages. We
first compute a formal adjoint neglecting all boundary terms by assuming that the
functions involved have compact support inside Ω.

Definition 1.67. A function on a domain Ω has compact support in Ω if it
vanishes identically outside a bounded set contained inside Ω.

The procedure for computing the formal adjoint can be described simply: Take the
differential operator applied to a smooth function with compact support, multiply
by a smooth test function with compact support, integrate over the domain, inte-
grate by parts to move all derivatives onto the test function while ignoring boundary
terms. Functions that have compact support are identically zero anywhere near the
boundary and any boundary terms arising from integration by parts will vanish.

Definition 1.68. Let L be a differential operator. The formal adjoint L∗ is
the differential operator that satisfies

(Lu, v) = (u, L∗v)
(∫

Ω

Lu · v dx =
∫

Ω

u · L∗v dx

)

for all sufficiently smooth u and v with compact support in Ω.

Example 1.69. Consider

Lu(x) = − d

dx

(
a(x)

d

dx
u(x)

)
+

d

dx
(b(x)u(x))

18 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

on [0, 1]. Integration by parts neglecting boundary terms gives

−
∫ 1

0

d

dx

(
a(x)

d

dx
u(x)

)
v(x) dx

=
∫ 1

0

a(x)
d

dx
u(x)

d

dx
v(x) dx− a(x)

d

dx
u(x)v(x)

∣∣∣∣
1

0

= −
∫ 1

0

u(x)
d

dx

(
a(x)

d

dx
v(x)

)
dx + u(x)a(x)

d

dx
v(x)

∣∣∣∣
1

0

,

and ∫ 1

0

d

dx
(b(x)u(x))v(x) dx = −

∫ 1

0

u(x)b(x)
d

dx
v(x) dx + b(x)u(x)v(x)

∣∣∣∣
1

0

,

where all of the boundary terms vanish. Therefore,

L∗v = − d

dx

(
a(x)

d

dx
v(x)

)
− b(x)

d

dx
(v(x)).

The basic technique for obtaining the formal adjoint for differential operators
posed in higher space dimensions is the divergence theorem.

Example 1.70. A general linear second order differential operator L in Rn can
be written

L(u) =
n∑

i=1

n∑

j=1

aij
∂2u

∂xi∂xj
+

n∑

i=1

bi
∂u

∂xi
+ cu,

where {aij}, {bi}, and c are functions of x1, x2, · · · , xn. Then,

L∗(u) =
n∑

i=1

n∑

j=1

∂2(aijv)
∂xi∂xj

−
n∑

i=1

∂(biv)
∂xi

+ cv.

It can be verified directly that

vL(u)− uL∗(v) =
n∑

i=1

∂pi

∂xi
,

where

pi =
n∑

j=1

(
aijv

∂u

∂xj
− u

∂(aijv)
∂xj

)
+ biuv.

The expression on the right is a divergence expression and the divergence theorem
yields ∫

Ω

(vL(u)− uL∗(v)) dx =
∫

∂Ω

p · nds = 0,

where p = (p1, · · · , pn) and n is the outward normal in ∂Ω.
To see a typical term,

va11
∂2u

∂x2
1

= va11
∂

∂x1

(
∂u

∂x1

)
=

∂

∂x1

(
va11

∂u

∂x1

)
− ∂(a11v)

∂x1

∂u

∂x1

=
∂

∂x1

(
va11

∂u

∂x1

)
− ∂

∂x1

(
u

∂(a11v)
∂x1

)
+ u

∂2(a11v)
∂x2

1

yielding

va11
∂2u

∂x2
1

− u
∂2(a11v)

∂x2
1

=
∂

∂x1

(
a11v

∂u

∂x1
− u

∂(a11v)
∂x1

)
.

1.6. ADJOINT OPERATORS - COMPUTATION 19

Example 1.71. Let L be a differential operator of order 2p of the form

Lu =
∑

|α|,|β|≤p

(−1)|α|Dα
(
aαβ(x)Dβu

)
,

then
L∗v =

∑

|α|,|β|≤p

(−1)|α|Dα
(
aβα(x)Dβv

)
,

and L is elliptic if and only if L∗ is elliptic. Some special cases.

grad∗ = −div

div∗ = −grad

curl∗ = curl

and if
Lu =

∑

|α|≤p

aα(x)Dαu

then
L∗v =

∑

|α|≤p

(−1)|α|Dα(aα(x)v(x)).

Example 1.72. If
Lu = ρutt −∇ · (a∇u) + bu

then L∗ = L. If
Lu = ut −∇ · (a∇u) + bu

then
L∗v = −vt −∇ · (a∇v) + bv

where time runs “backwards” as in Ex. 1.65.

This procedure also works for systems

Example 1.73. Let

L(~u) = A~ux + B~uy + C~u,

where A,B, and C are n× n matrices, then

L∗(~v) = (−A>~v)x − (B>~v)y + C>v,

so that
~v>L~u− ~u>L∗~v = ∇ · (~v>A~u,~v>B~u).

In the second stage of computing the adjoint, we deal with boundary conditions
by removing the assumption that the functions involved have compact support.
Now the integration by parts that produces the formal adjoint will yield additional
terms involving integrals over the boundary of the functions involved and their
derivatives.

Consider Examples 1.69 and 1.70. We want to determine boundary conditions
such that the bilinear identity (1.5) still holds, e.g., such that any boundary terms
that arise vanish. It turns out that the form of the boundary conditions imposed in
the problem for L are important, but the values given for these conditions are not.
If the boundary conditions are not homogeneous, we make them so for the purpose
of determining the adjoint.

With this assumption, we define.

20 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Definition 1.74. The adjoint boundary conditions posed on the formal
adjoint operator are the minimal conditions required to make the boundary terms
that appear when evaluating the bilinear identity for general smooth functions
vanish.

Some of the boundary terms that appear when evaluating the bilinear identity
will vanish because of the boundary conditions imposed in the original problem.
The point of this assumption is to make the formal adjoint serve as the true adjoint
by pairing it with the correct boundary conditions.

This definition is rather vague, but it can be made completely precise. Issues
that have to be dealt with include

• Placing conditions on the differential operator L so that evaluating the bi-
linear identity for general smooth functions results in expressions involving
only values on the boundary.

• Making precise the meaning of “minimal conditions” needed for the ad-
joint problem, and proving these always exist.

This can be done, but it is complicated to write down. Instead, we settle for some
examples.

Example 1.75. Consider Newton’s equation of motion s′′(x) = f(x) with x =
“time”, normalized with mass 1. First, suppose we assume s(0) = s′(0) = 0, and
0 < x < 1. We have

s′′v − sv′′ =
d

dx
(vs′ − sv′)

and

(1.6)
∫ 1

0

(s′′v − sv′′) dx = (vs′ − sv′)
∣∣1
0
.

Now the boundary conditions imply the contributions at x = 0 vanish, while at
x = 1 we have

v(1)s′(1)− v′(1)s(1).
To insure this vanishes, we must have v(1) = v′(1) = 0. (We cannot specify s(1) or
s′(1) of course.) These are the adjoint boundary conditions.

Suppose instead we wish to impose conditions such that at the mass returns
to the origin with zero speed at x = 1. This gives four boundary conditions s(0) =
s′(0) = s(1) = s′(1) = 0 on the original problem. In this situation, all of the
boundary terms in (1.6) are zero and no boundary conditions will be imposed on
the adjoint.

It is interesting to find a solution of the over-determined problem. Based on
the discussion above, we require the data f to be orthogonal to the solution of the
adjoint problem v′′ = 0, which is v = a + bx. Hence, f must be orthogonal in
L2(0, 1) to 1 and x. Assume for example that f(x) = a + bx + cx2. It is easy to
see that (f, 1) = 0 and (f, x) = 0 forces a = c/6 and b = −c. Choosing c = 1
for example, means that f(x) = 1/6 − x + x2. We solve the forward problem by
integrating twice and using the boundary conditions at x = 0 to get a formula for
the solution, which is easily seen to satisfy the conditions at x = 1 as well.

Example 1.76. Since∫

Ω

(u∆v − v∆u) dx =
∫

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
ds,

1.7. GREEN’S FUNCTIONS 21

the Dirichlet and Neumann boundary value problems for the Laplacian are their
own adjoints.

Example 1.77. Let Ω ⊂ R2 be bounded with a smooth boundary and let s =
arclength along the boundary. Consider

{
−∆u = f, x ∈ Ω,
∂u
∂n + ∂u

∂s = 0, x ∈ ∂Ω.

Since
∫

Ω

(u∆v − v∆u) dx =
∫

∂Ω

(
u

(
∂v

∂n
− ∂v

∂s

)
− v

(
∂u

∂n
+

∂u

∂s

))
ds,

the adjoint problem is {
−∆v = g, x ∈ Ω,
∂v
∂n − ∂v

∂s = 0, x ∈ ∂Ω.

1.7. Green’s functions

We conclude the first chapter by defining Green’s functions. This will be almost
anticlimactic after the long introduction.

For simplicity, we consider a problem of the form

(1.7)

{
Lu = f, x ∈ Ω,

suitable b.c. and i.v., x ∈ ∂Ω,

where L is a linear differential operator, Ω is a space, time, or space-time domain,
and we specify the correct boundary and/or initial conditions so that (1.7) has a
unique solution.

Definition 1.78. The Green’s function for (1.7) satisfies

(1.8)

{
L∗φ(y, x) = δy(x), x ∈ Ω,

adjoint b.c. and i.v., x ∈ ∂Ω,

where L∗ is the formal adjoint of L.

It is useful to think of the discussion in Sec. 1.5 and to realize we are solving the
extended system, 




Lu = f, x ∈ Ω,

suitable b.c. and i.v., x ∈ ∂Ω,

L∗φ(y, x) = δy(x), x ∈ Ω,

adjoint b.c. and i.v., x ∈ ∂Ω.

The reason for this definition is simple. Based on the bilinear identity, we
obtain a representation formula for the value of the solution of the original problem
at a point y ∈ Ω,

(1.9) u(y) = (u, δy) = (y, L∗φ) = (Lu, φ) = (f, φ).

The imposition of the adjoint boundary conditions is key here.

22 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

Example 1.79. For {
−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

φ solves

(1.10)

{
−∆φ(y;x) = δy(x), x ∈ Ω,

φ(y; x) = 0, x ∈ ∂Ω,

and the bilinear identity reads

u(y) =
∫

Ω

f(x)φ(y;x) dx.

We plot the Green’s function in Fig. 1.2.

Figure 1.2. Plot of the Green’s function solving (1.10).

Example 1.80. For



ut −∆u = f, x ∈ Ω, 0 < t ≤ T,

u(t, x) = 0, x∂Ω, 0 < t ≤ T,

u(0, x) = 0, x ∈ Ω,

φ solves 



−φt −∆φ = δ(s,y)(t, x), x ∈ Ω, T > t ≥ 0,

φ(t, x) = 0, x∂Ω, T > t ≥ 0,
φ(T, x) = 0, x ∈ Ω,

1.7. GREEN’S FUNCTIONS 23

and the bilinear identity reads

u(s, y) =
∫ T

0

∫

Ω

f(t, x)φ(s, y; t, x) dxdt.

There are several motivations behind the definition of the Green’s function.
Some obvious ones include

• The Green’s function is defined without reference to the particular data
f that determines a particular solution. The Green’s function depends on
the operator and its properties. Having determined the Green’s function,
we can use the representation to consider the effect of choosing particular
data.

• The Green’s function generally has special properties arising from the
properties of the delta function, such as localized support and symmetry,
and we can often determine a great deal of information about a Green’s
function. In some cases, we can even get a formula.

• The Green’s function gives a “low-dimensional” snapshot of the solution.
We can recover the entire solution using infinitely many Green’s functions.

Example 1.81. The Green’s function for the Dirichlet problem for the Lapla-
cian L = −∆ on the ball Ω of radius r centered at the origin in R3 is

(1.11) φ(y; x) =
1
4π

×
{
|y − x|−1 − r|y|−1

∣∣ r2y
|y|2 − x

∣∣−1
, y 6= 0,

|x|−1 − r−1, y = 0,

where |x| denotes the Euclidean norm of x, while the formula for the disk of radius
r is

(1.12) φ(y;x) =
1
2π

×





ln
(
|y|

∣∣ r2y

|y|2−x
∣∣

r|y−x|

)
, y 6= 0,

ln
(

r
|x|

)
, y = 0.

It is hard to decipher the meaning of these formulas, but we discuss them further
below.

There are some important mathematical issues that have to be settled, such
as the existence, uniqueness, and smoothness of the Green’s function. These are
problem dependent of course, and it requires distribution theory to complete the
theory. As a general rule, everything goes as for the original problem except that
the Green’s function may not be very smooth or may even be undefined at a point.
We mention one important point:

The point of evaluation y must lie inside the domain Ω. The
Green’s function often behaves badly in the limit of y approaching
the boundary.

By the way, the theory also extends to over-determined problems. However, if
the original problem is under-determined, this approach fails.

If Green’s functions are familiar, the focus on the adjoint might be confusing
because many expositions avoid the adjoint. It turns out that when the original
problem has a unique solution and when the original operator is the adjoint to the
adjoint operator, the Green’s function φ for the original problem and the Green’s
function for the adjoint problem φ∗ are related via

φ(y; x) = φ∗(x; y).

24 1. DUALITY, ADJOINT OPERATORS, AND GREEN’S FUNCTIONS

This is known as the reciprocity theorem. This makes it possible to introduce
Green’s functions for some kinds of problems without talking about the adjoint, at
a cost of a great deal of structure and motivation. Note that the question of the
adjoint to the adjoint being the same as the original operator depends on the dual
space of the dual space of the original space being identifiable with the original
space. This question is also very dependent on the special properties of the delta
function. We will not be able to use this approach in the sequel.

So far, we have avoided discussion of nonhomogeneous boundary conditions.
Including nonhomogeneous conditions is really a minor issue that usually “solves
itself” without trouble. We just carry out the analysis using the Green’s function
for the homogeneous problem and some additional integrals involving data and the
Green’s function will appear.

Example 1.82. Suppose the problem is
{
−∆u = f, x ∈ Ω,

u = g, x ∈ ∂Ω.

We define the Green’s function as for the homogeneous problem, i.e.,
{
−∆φ(y;x) = δy(x), x ∈ Ω,

φ(y; x) = 0, x ∈ ∂Ω.

Evaluating the bilinear identity yields
∫

Ω

(u∆φ− φ∆u) dx =
∫

∂Ω

(
u

∂φ

∂n
− φ

∂u

∂n

)
ds =

∫

∂Ω

u
∂φ

∂n
ds.

This yields

u(y) =
∫

Ω

f(x)φ(y; x) dx−
∫

∂Ω

g(s)
∂φ(y; s)

∂n
ds.

The basic idea can also be varied to obtain different representations.

Example 1.83. For {
−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

We can define the Green’s function as the solution of

(1.13)

{
−∆φ(y; x) = 0, x ∈ Ω,

φ(y; x) = δy(x), x ∈ ∂Ω.

Evaluating the bilinear identity yields
∫

Ω

(u∆φ− φ∆u) dx =
∫

∂Ω

(
u

∂φ

∂n
− φ

∂u

∂n

)
ds

= −
∫

∂Ω

φ
∂u

∂n
ds = −

∫

∂Ω

δy
∂u

∂n
ds = −∂u

∂n
(y).

This gives the value of the normal derivative of u at a point y on the boundary,

∂u

∂n
(y) = −

∫

Ω

φ(y;x)f(x) dx.

We plot the Green’s function in Fig. 1.3.

1.7. GREEN’S FUNCTIONS 25

Figure 1.3. Plot of the Green’s function solving (1.13).

The last example demonstrates the fact that the standard Green’s function
defined with a delta function at a point in the interior of Ω often behaves badly
as this point approaches the boundary. That Green’s function yields the value of
the solution at a point, while actually putting the delta function at a point on the
boundary yields the normal derivative of the function. To be fair, we note that
the delta function in the interior and the delta function on the boundary are not
the same “kind” of delta functions because they are defined on sets of different
dimension. We discuss this briefly below.

CHAPTER 2

A Posteriori Error Analysis and Adaptive Error
Control

In this chapter, we explain how the Green’s function can be used as a basis of
a very powerful approach to a posteriori error analysis for finite element methods.
The most well-known version of this approach used for adaptive error control is
called the dual weighted residual method, which has found widespread use in en-
gineering. The basic error estimate is given in terms of residuals of the computed
finite element solution weighted by stability factors determined from the solution
of an adjoint problem.

The use of the adjoint problem to obtain information about stability in a poste-
riori error analysis was introduced in [EJ91]. The goal in that paper was to obtain
reasonably accurate a priori bounds on the adjoint weights, and the paper dealt with
the Poisson equation and the linear heat equation, for which this is possible. The
idea of numerically solving the adjoint problem to compute very accurate a posteri-
ori estimates was introduced experimentally in [DE91] and developed in the context
of nonlinear ordinary differential equations in [Est95] and nonlinear partial differen-
tial equations in [EW96]. Since these early contributions, there has been substan-
tial contributions and applications, see [EEHJ95, ELW00, BR01, GS02, BR03]
for example.

This method is most often described in a framework of optimal control theory in
which the adjoint has a fundamental role. But, the suitability of this interpretation
is very problem dependent, and thinking of this approach from the point of view of
Green’s functions is more generally meaningful.

2.1. A generalization of the Green’s function

Before presenting the a posteriori error analysis, we discuss a generalization of
the notion of the Green’s function. Recall that the idea behind the definition of
the Green’s function is that it yields a representation of the value of the solution
of the differential equation,

u(y) = (u, δy) = (φ(y; x), f(x)).

Recall that the value of a function at a point is a linear functional. When solving
differential equations, there are frequently other quantities of interest besides the
value of a solution at a particular point. It turns out that many such quantities that
can also be expressed as functionals. Furthermore, the Riesz Representation theo-
rem 1.41 suggests that we can represent many linear functionals as inner products
with particular distribution functions, i.e., as (u, ψ), where ψ is some distribution
in a suitable Sobolev space. Some useful choices of ψ include:

26

2.1. A GENERALIZATION OF THE GREEN’S FUNCTION 27

• We use the delta function ψ = δy to get the error at a point y. Similarly,
we can construct ψ = δc to get the average value

∮
c
e(s) ds of the error

over a curve c in Rn, n = 2, 3, and ψ = δs to get the average value of the
error over a plane surface s in R3.

This choice is actually trickier than it might appear. The issue is that
a function that is merely in L2 is only defined “almost everywhere” in
the sense of measure theory, which means it does not make sense to ask
for a value at a particular point. (Recall that a function is in L2 if the
integral of its square is bounded. Changing the values of such a function
at isolated points does not affect the integral, and hence does not affect
whether it is in L2.) So, the function in question needs to have a certain
smoothness, i.e., be in an Hs space for suitable s. The exact requirement
is given by a famous theorem.

Theorem 2.1. Sobolev If s > k + n/2, then there is a constant C
such that for f ∈ Hs(Rn),

max
|α|≤k

sup
x∈Rn

|Dα(x)| ≤ C‖f‖s

This implies that the derivatives of f of order k and less are continuous.

The Sobolev theorem shows that if s > n/2, the evaluation map f →
f(x) is well-defined for f ∈ Hs. More generally, if k ≤ n and s > k/2,
restricting a function in Hs to a submanifold of (co)dimension k is well-
defined. The submanifolds considered here are the curve or the surface
mentioned above, which have lower (co)dimension than the space in which
we pose the differential equation.

• We can obtain errors in derivatives using dipoles in a similar way.
• ψ = χω/|ω| gives the error in the average value over a subset ω ⊂ Ω,

where χω is the characteristic function of ω. The average error has some
interesting properties, such as it is possible for the average error to be
small even when the error is large in norm. In elliptic problems in small
regions, the average error tends to act like the error in the L1 norm.

• In some problems, choosing ψ to be the residual of the finite element
approximation (which we define below) yields the energy norm of the
error of the approximation.

• ψ = χωe/‖e‖ω, where e is the error of the finite element discretization,
gives the L2(ω) norm of the error. In practice, we do not have the er-
ror to use this choice exactly, but good approximations can be obtained
with Richardson extrapolation using finite element solutions with different
accuracy.

Note that only some of these data ψ have spatially local support.
Again, we consider a problem of the form

{
Lu = f, x ∈ Ω,

suitable b.c. and i.v., x ∈ ∂Ω,

where L is a linear differential operator and we specify the correct boundary and/or
initial conditions so that (1.7) has a unique solution.

28 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

Definition 2.2. The generalized Green’s function for (1.7) corresponding
to the quantity of interest represented by (u, ψ) satisfies

(2.1)

{
L∗φ(y, x) = ψ(x), x ∈ Ω,

adjoint b.c. and i.v., x ∈ ∂Ω,

where L∗ is the formal adjoint of L.

As in Ex. 1.83, there are minor variations of this definition in which we pose the
data ψ on the boundary of Ω rather than the interior (i.e., as boundary or initial
data). We also call these functions generalized Green’s functions.

2.2. Discretization by the finite element method

For simplicity, we will concentrate on the general second order linear elliptic
boundary value problem for a scalar unknown,

(2.2)

{
Lu = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where

(2.3) L(D,x)u = −∇ · a(x)∇u + b(x) · ∇u + c(x)u(x),

with u : Rn → R, a is a n×n matrix function of x, b is a n-vector function of x, and
c is a function of x. We assume that Ω ⊂ Rn, n = 2, 3, is a smooth or polygonal
domain; a = (aij), where ai,j are continuous in Ω for 1 ≤ i, j ≤ n and there is a
a0 > 0 such that v>av ≥ a0 for all v ∈ Rn \ {0} and x ∈ Ω; b = (bi) where bi is
continuous in Ω; and finally c and f are continuous in Ω.

We discretize (2.2) by applying a finite element method to the associated vari-
ational formulation:

(2.4) Find u ∈ H1
0 (Ω) such that

A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) for all v ∈ H1
0 (Ω).

To construct a finite element discretization, we form a piecewise polygonal
approximation of ∂Ω whose nodes lie on ∂Ω and which is contained inside Ω. This
forms the boundary of a convex polygonal domain Ωh. We let Th denote a simplex
triangulation of Ωh that is locally quasi-uniform. We let hK denote the length of
the longest edge of K ∈ Th and define the piecewise constant mesh function h by
h(x) = hK for x ∈ K. We also use h to denote maxK hK . See Fig. 2.1. We choose
a finite element solution from the space Vh of functions that are continuous on Ω,
piecewise linear on Ωh with respect to Th, zero on the boundary ∂Ωh, and finally
extended to be zero in the region Ω \ Ωh, see Fig. 2.1. With this construction, we
have Vh ⊂ H1

0 (Ω), and for smooth functions, the error of interpolation into Vh is
O(h2) in ‖ ‖, but not better (see [JLTW87]). The finite element method is:

(2.5) Compute U ∈ Vh such that A(U, v) = (f, v) for all v ∈ Vh.

In these notes, we take for granted the usual a priori convergence results for
finite element methods and concentrate on the a posteriori analysis used to produce
computational error estimates. In particular, by standard results, we know that U
exists and converges to u as h → 0.

2.3. AN A POSTERIORI ANALYSIS FOR AN ALGEBRAIC EQUATION 29

U = 0

Th

K

hK

Figure 2.1. Discretization of a domain Ω with curved boundaries.
We extend the piecewise linear functions defined on the triangula-
tion to be zero in the parts of Ω not covered by the mesh.

2.3. An a posteriori analysis for an algebraic equation

The approach to a posteriori error analysis is relatively simply to explain in the
context of the numerical solution of a system of algebraic equations. The problem
here is to estimate the error of a numerical solution X of a system of algebraic
equations

(2.6) Ax = b

where b, x ∈ Rn and A is a n× n matrix. We assume that a numerical solution X
of (2.6) has been computed in some fashion and we seek to estimate the unknown
error e = x−X.

The residual error of X is defined simply as

R = AX − b

and is generally not zero. The residual error measures how well the approximate
solution satisfies the true equation. The issue is to find a relation between the
computable residual and the unknown error.

Recall that a standard numerical linear algebra result says that
the residual can be small even if the error is large.

This has profound consequences for adaptive error control, see [ELW00] for further
discussion.

There are at least two ways to do this. First, we can use the fact that the
residual error of the true solution is zero to write

Ae = −R.

We can then try to obtain an estimate of the error by solving this equation ap-
proximately in some fashion. This is a classic technique in numerical linear algebra
sometimes called iterative improvement (often after obtaining e this way, it is added
back to the approximation X to improve the accuracy). There are some subtle is-
sues having to do with round-off error that must be resolved to get this to work

30 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

reliably. These are addressed by computing the numerical solution in single pre-
cision and the error in double precision, which is probably why this approach has
lost favor. Moreover, in the context of solving differential equations, obtaining the
entire error is generally a very bad idea if we simply want the error in certain
quantities of interest.

Instead, we obtain an estimate on a quantity of interest represented by a linear
functional of the error. Following the idea of extending the Green’s function in
Sec. 2.1, we introduce the generalized Green’s vector solving the adjoint problem

A>φ = ψ,

where ψ is any unit vector. The Riesz Representation theorem 1.41 says that we
can obtain any linear functional by taking the inner product with a certain vector
ψ in this way. To obtain an estimate on the size of the first component of e, we
would choose ψ = (1 0 0 · · · 0)>, whereas to obtain an estimate on the average of
the components of the error, we would choose ψ = (1 1 · · · 1)>/n. If we could be
so fortunate to choose ψ = e/‖e‖ for example, then we would get an estimate on
‖e‖ (though this is a nonlinear functional).

Extending the argument in Ex. 1.63, we compute

(2.7) |(e, ψ)| = |(e,A>φ)| = |(Ae, φ)| = |(R,φ)|.
This error representation formula leads leads directly to the error bound

(2.8) |(e, ψ)| ≤ ‖φ‖ ‖R‖.
Since the residual R is computable, if we compute a numerical approximation of
the generalized Green’s function ψ or obtain an estimate on the size of φ in some
other way, then we obtain an estimate and a bound on the error in the quantity of
interest.

Definition 2.3. ‖φ‖ is called the stability factor for this problem.

The stability factor is related to the condition number of A. In fact, it follows
that ∣∣∣∣

(
e

‖x ‖ , ψ

)∣∣∣∣ ≤ cond ψ(A)
‖R‖
‖b‖ ,

where
cond ψ(A) = ‖φ‖ ‖A‖ = ‖A−>ψ‖ ‖A‖

is a kind of “weak” condition number of A with respect to the targeted quantity
of interest. If we take the maximum of cond ψ(A) over all possible ψ, we obtain
the standard condition number of A. Hence, the stability factor obtained from the
generalized Green’s function is a measure of the sensitivity of numerical solutions
of the problem to computational errors.

It is important to realize that the error in a quantity of interest
can be small even if some norm of the error is large.

2.4. An a posteriori analysis for a finite element method

The goal of the a posteriori error analysis is to estimate the error in a quantity
of interest computed from the finite element solution U . To do this, we use a gen-
eralized Green’s function φ solving the adjoint problem corresponding to a special
choice of data ψ.

2.4. AN A POSTERIORI ANALYSIS FOR A FINITE ELEMENT METHOD 31

Classical analysis of finite element methods tends to focus on estimating the
error in global norms, such as ‖ ‖L2(Ω), ‖ ‖L∞(Ω), and of course the energy
norm. In practice, however, this may not be meaningful. Often, the practical
goal for solving a differential equation is to compute specific information from the
solution, and in those situations, we should naturally be concerned with the error
in the desired information. This may not have much to do with the error in some
global norm. The implications for adaptive error control are significant.

It may be computationally infeasible as well as very inefficient
to attempt to control the error in a global norm when all that is
desired is accuracy in some quantities of interest.

Therefore, we assume that the information we wish to compute can be repre-
sented as (u, ψ). We compute the generalized Green’s function φ as the solution of
the weak adjoint problem,

(2.9) Find φ ∈ H1
0 (Ω) such that

A∗(v, φ) = (∇v, a∇φ)− (v, div (bφ)) + (v, cφ) = (v, ψ) for all v ∈ H1
0 (Ω),

corresponding to the adjoint problem L∗(D, x)φ = ψ. Extending the analysis be-
hind the Green’s function described in Sec. 1.7,

(e, ψ) = (∇e, a∇φ)− (e,div (bφ)) + (e, cφ)

= (a∇e,∇φ) + (b · ∇e, φ) + (ce, φ)

= (a∇u,∇φ) + (b · ∇u, φ) + (cu, φ)− (a∇U,∇φ)− (b · ∇U, φ)− (cU, φ)

= (f, φ)− (a∇U,∇φ)− (b · ∇U, φ)− (cU, φ).

Letting πhφ denote an approximation of φ in Vh, using Galerkin orthogonality (2.5),
we conclude

Theorem 2.4. The error in the quantity of interest computed from the finite
element solution (2.5) satisfies the error representation,

(2.10) (e, ψ) = (f, φ−πhφ)−(a∇U,∇(φ−πhφ))−(b ·∇U, φ−πhφ)−(cU, φ−πhφ),

where the generalized Green’s function φ satisfies the adjoint problem (2.9) corre-
sponding to data ψ.

The most accurate a posteriori error estimates are obtained by using (2.10)
directly as opposed to making further estimates. To use the estimate, we approx-
imate φ using a finite element method. Since φ − πhφ ∼ ∑

|α|=2 Dαφ where φ is
smooth, we use a higher order finite element than that used to solve the original
boundary value problem. For example, good results are obtained using the space V 2

h

of continuous, piecewise quadratic functions with respect to Th. The approximate
generalized Green’s function is

(2.11) Compute Φ ∈ V 2
h such that

A∗(v, Φ) = (∇v, a∇Φ)− (v, div (bΦ)) + (v, cΦ) = (v, ψ) for all v ∈ V 2
h .

Definition 2.5. The approximate error representation is

(2.12) (e, ψ) ≈ (f, Φ−πhΦ)−(a∇U,∇(Φ−πhΦ))−(b·∇U, Φ−πhΦ)−(cU,Φ−πhΦ).

32 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

Recently, we have been using even higher order, smoother finite element meth-
ods on coarse, uniform meshes. Another important detail is the choice of quadrature
used to evaluate the integrals in the terms in (2.10). We have found that accurate
evaluation of the estimate requires relatively high order quadratures. The reason
appears to be that there is a great deal of cancellation of contributions among these
integrals in general.

We note that there is a wide variation in how (2.10) or results derived from
(2.10) are used to compute error estimates in practice. There has been relatively
little theoretical analysis directed towards understanding the effect of the approxi-
mations required for implementation on the accuracy and reliability of the result.

We present several computational examples below that are performed using
FETkLab [EH02]. This adaptive finite element code, running under MATLAB,
can solve general nonlinear elliptic systems on general domains in two space dimen-
sions. It implements the a posteriori error estimate, allowing up to 16 simultaneous
adjoint data ψi to be specified. In the computations below, we use bisection or red-
green quadrisection to refine elements, where the elements marked for refinement
are refined using quadrisection while the resulting nonconforming border elements
are fixed using bisection. To reduce over-refinement in any one level, only those
elements whose element indicators are larger than the mean plus one standard
deviation of all of the element indicators in that level are refined.

Example 2.6. To illustrate the accuracy that characterizes this approach to
a posteriori error estimation, we consider the elliptic problem on the unit square
Ω = (0, 1)× (0, 1),

(2.13)

{
−∆u = 200 sin(10πx) sin(10πy), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

which has the highly oscillatory solution

u(x, y) = sin(10πx) sin(10πy).

We plot the solution in Fig. 2.2 We estimate the error in the average value by

-1

1

0u

x
y

Figure 2.2. The highly oscillatory solution of (2.13).

choosing ψ ≡ 1. The generalized Green’s function is approximated on the same
mesh using a piecewise quadratic finite element function. To show how the accuracy
in the estimate varies with respect to the resolution in the mesh, we plot the ratios

2.5. ADAPTIVE ERROR CONTROL 33

10
2

10
3

10
4

Number of elements

0.0

0.4

0.8

1.2

e
rr

o
r/

e
s
ti

m
a
te

0.0 0.1 1.0 10.0 100.0

percent error

0

1

2

3

er
ro

r/
es

ti
m

at
e

Figure 2.3. Plots of the error/estimate ratio for numerical so-
lutions of (2.13). In the plot on the left, we show the sequence
of ratios corresponding to regular sequence of uniformly refined
meshes. On the right, we plot the ratio for a “random” collection
of uniform meshes of various resolutions.

error/estimate in Fig. 2.3 for a wide variety of meshes. We see that the estimate is
remarkable accurate even on meshes in which the solution is very poorly resolved.

It is natural to wonder why some of the computations give low or high ratios.
Factors that can affect verification results include effects of superconvergence or
some special cancellation of errors that arises from the choice of quadratures used
to evaluate the error and/or the estimate. For example, the low ratio in the plot
on the left occurs for a computation on a uniform mesh with 10 elements on a side,
while the true solution oscillates with a frequency proportional to 10.

2.5. Adaptive error control

We now discuss briefly the use of a posteriori error estimates for the purpose of
adaptive error control. We start by pointing out that despite the huge amount of
literature on adaptive error control, there is actually very little theory underlying
adaptive error control using accurate estimates. All current adaptive error control
strategies share the same flaw. Nonetheless, adaptive error control proves useful in
practice on many kinds of problems.

A typical goal of adaptive error control is to generate a mesh with a relatively
small number of elements such that for a given tolerance TOL and data ψ,

(2.14) |(e, ψ)| ≤ TOL.

We note that (2.14) cannot be verified in practice because the error is unknown.
We must use an error estimate. For the purpose of implementing (2.12) to obtain
a computational error estimate and for adaptive error control, we rewrite it as a
sum of element contributions,

(2.15) (e, ψ) ≈
∑

K∈Th

∫

K

(
(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)

)
dx.

We use (2.15) to replace (2.14) with the practical goal of satisfying the following
condition.

34 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

Definition 2.7. The mesh acceptance criterion is

(2.16)

∣∣∣∣∣
∑

K∈Th

∫

K

(
(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)

)
dx

∣∣∣∣∣ ≤ TOL.

If the current approximation satisfies (2.16), then the solution is deemed ac-
ceptable and the refinement process is stopped.

The difficulties start when (2.16) is not satisfied. We have to decide how to
“enrich” the discretization, e.g., refine the mesh or increase the order of the element
functions, in order to improve the accuracy. The problem is that generally there is a
great deal of cancellation among the contributions from each element. For example,
consider that large positive contributions from one subregion might cancel the large
negative contributions from another region so that the sum of the contributions from
the two regions together is small.

There is currently no theory or practical method for accommo-
dating cancellation of errors in an adaptive error control in a
way that achieves true optimality of efficiency.

Currently, the standard approach is to formulate the discretization selection
problem as an optimization problem. This requires an estimate consisting of a sum
over elements of positive quantities. We obtain this from (2.15) by inserting norms
in some way, e.g., we use

(2.17) |(e, ψ)| ≤
∑

K∈Th

∫

K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ dx.

Thus, if (2.16) is not satisfied, then the mesh is refined in order to achieve the more
conservative condition,

(2.18)
∑

K∈Th

∫

K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ dx ≤ TOL.

The problem with any claims of “optimal” mesh selection is that generically the
estimate obtained from (2.17) is 1-3 orders of magnitude larger than the estimate
obtained from (2.15).

In any case, we can now use calculus of variations to derive a condition that gives
an optimal mesh. This is called the “Principle of Equidistribution” and it states
that the element contributions on a nearly optimal mesh are roughly equal across
the elements. Depending on the argument, we may use the following conditions to
evaluate each element.

Definition 2.8. Two element acceptance criteria for the element indi-
cators are

(2.19) max
K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ . TOL

|Ω| ,

or

(2.20)
∫

K

∣∣(f − b · ∇U − cU)(Φ− πhΦ)− a∇U · ∇(Φ− πhΦ)
∣∣ dx . TOL

M
,

where M is the number of elements in Th.

Computing a mesh using these criteria is usually performed by a “compute-
estimate-mark-refine” adaptive strategy that begins with a coarse mesh and then
refines those elements on which (2.19) respectively (2.20) fail successively.

2.6. FURTHER ANALYSIS ON THE A POSTERIORI ERROR ESTIMATE 35

0

350 0.08

0

Solution Generalized Green’s Function

-30

-20

-10

0

Mesh Element Contributions

Figure 2.4. Plots for the initial refinement level for the compu-
tation on (2.21). In the upper set, we plot the solution and the
generalized Green’s function. In the lower set, we plot the mesh
and the element contributions (log scale).

Example 2.9. We consider the problem
(2.21)




−∆u =
4800

π

(
1− 400((x− .5)2 + (y − .5)2)

)
e−400((x−.5)2+(y−.5)2), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where the data f is a modified approximation of a delta function for the point
(.5, .5). We control the error in the average value using a tolerance of .05%.

We plot the initial 16 × 16 mesh, solution, generalized Green’s function, and
the element contributions in Fig. 2.4.

The refinement process took 10 iterations using bisection of the elements. We
plot the final mesh, solution, generalized Green’s function, and the element contri-
butions in Fig. 2.5. We plot the error/estimate ratio for the sequence of meshes in
Fig. 2.6.

2.6. Further analysis on the a posteriori error estimate

Most of the literature using this approach to a posteriori error estimation does
not directly use (2.10) as we have described. Instead, the estimate is massaged
analytically. In general, we do not use the estimate that is obtained below in
practice. However, we require it in the sequel for a specific example.

For simplicity, we derive the alternative estimate for the simple problem with
L(u) = −∆u. The general result will be clear. In this case, the error representation

36 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

formula becomes

(2.22) (e, ψ) =
∫

Ω

f(φ− πhφ) dx−
∫

Ω

∇U · ∇(φ− πhφ) dx.

Next, we break up the second integral on the right as
∫

Ω

∇U · ∇(φ− πhφ) dx =
∑

K∈Th

∫

K

∇U · ∇(φ− πhφ) dx.

0

140

0

0.08

Solution Generalized Green’s Function

-30

-20

-10

0

Mesh Element Contributions

Figure 2.5. Plots for the initial refinement level for the compu-
tation on (2.21). In the upper set, we plot the solution and the
generalized Green’s function. In the lower set, we plot the mesh
and the element contributions (log scale).

0 50 100 150 200

percent error

0.90

0.95

1.00

1.05

1.10

er
ro

r/
es

ti
m

at
e

Figure 2.6. The error/estimate ratio for the computations for (2.21).

2.6. FURTHER ANALYSIS ON THE A POSTERIORI ERROR ESTIMATE 37

Using Green’s formula, we have∫

K

∇U · ∇(φ− πhφ) dx = −
∫

K

∆U(φ− πhφ) dx +
∫

∂K

∇U · n∂K(φ− πhφ) ds,

where the last term is a line integral and n∂K denotes the outward normal to ∂K.
Upon summing over all elements K ∈ Th, the boundary integrals give two

contributions from each element edge, computed in opposite directions. Suppose
K1, K2 ∈ Th share a common edge σ1 ⊂ ∂K1 = σ2 ⊂ ∂K2. The contribution from
that edge is∫

σ1

∇U |K1 · nσ1(φ− πhφ) ds +
∫

σ2

∇U |K2 · nσ2(φ− πhφ) ds

=
∫

σ1

∇U |K1 · nσ1(φ− πhφ) ds−
∫

σ1

∇U |K2 · nσ1(φ− πhφ) ds

= −
∫

σ1

[∇U] · nσ1(φ− πhφ) ds,

where [U] = ∇U |K2 −∇U |K1 denotes the “jump” in ∇U across σ1 in the direction
of the normal n∂K1 .

When summing over the elements, we associate half of the common contribu-
tion across a shared edge between two elements with each element. We obtain an
alternate error representation,

(e, ψ) = −
∑

K∈Th

(∫

K

(∆U + f)(φ− πhφ) dx− 1
2

∫

∂K

[∇U] · n∂K(φ− πhφ) ds

)
.

Finally, we define the residual and corresponding adjoint or dual weights,

(2.23) RK =
(‖∆U + f‖K

‖h−1/2[∇U]‖∂K/2

)
, WK =

(‖φ− πhφ‖K

‖h1/2(φ− πhφ)‖∂K

)
.

We obtain an a posteriori error bound similar to the results in [EJ91] and repeated
in many later references,

Theorem 2.10. The error of the finite element approximation is bounded by

|(e, ψ)| ≤
∑

K∈Th

RK · WK .

It is possible to obtain a priori bounds on the residual and dual weights. First,
note that there is a constant C independent of the mesh such that

RK ≤ C|K|1/2,

where |K| denote the area of K ∈ Th. The bound on the first component of RK is
simple, ‖∆U +f‖K = ‖f‖K ≤ maxΩ |f |×|K|1/2. To bound the second component,
consider an integral over the common edge σ between two elements K1 and K2,

‖[∇U]‖σ = ‖∇U |K2 −∇U |K1‖σ ≤ ‖∇U |K2 −∇u|σ‖σ + ‖∇u|σ −∇U |K1‖σ.

By a trace inequality, the standard energy norm convergence result, and a standard
elliptic regularity result, we have

‖∇U |Ki −∇u|σ‖σ ≤ ‖∇U −∇u‖1/2
Ki
‖∇U −∇u‖1/2

1,Ki
≤ C‖hu‖1/2

2,Ki
‖u‖1/2

2,Ki

≤ C‖h1/2f‖Ki ,

38 2. A POSTERIORI ERROR ANALYSIS AND ADAPTIVE ERROR CONTROL

for i = 1, 2. The local quasi-uniformity of the mesh implies 1
2‖h−1/2[∇U]‖∂K ≤

C maxΩ |f | × |K|1/2.
Clearly, the convergence of the Galerkin approximation is strongly influenced

by the dual weights φ − πhφ, i.e. by the approximation properties of Vh and the
smoothness of φ. This reflects the importance of the cancellation of errors inherent
to the Galerkin method.

CHAPTER 3

The Effective Domain of Influence and Solution
Decomposition

A characteristic property of elliptic partial differential equations is a global
domain of influence. That is, a local perturbation of data near one point affects
the solution throughout the domain of the problem. Indeed, in the extreme case
of an analytic harmonic function, prescribing the values of a solution on any small
sub-domain or even on a piece of curve suffices to define its values throughout the
domain. Of course, this property has profound consequences for the numerical
solution of elliptic equations.

Yet when taken out of context, this property can give a misleading impression.
In particular, elliptic problems often have the property that the strength of the
effect of a localized perturbation on a solution decays significantly with the distance
from the support of the perturbation, at least in some directions. It turns out that
this property also has profound consequences for the numerical solution of elliptic
problems, which we explore in this chapter.

One way to see the decay of influence in an elliptic problem is to use the
properties of Green’s functions. We want to analyze the effects of perturbations on
the data. Consider the Green’s function for the Dirichlet problem for the Laplacian
−∆u = f on the ball Ω of radius r centered at the origin in R3 discussed in Ex. 1.81.
If the data f is perturbed by a smooth function δf , the perturbation in the value
of the solution δu(y) is given by

(3.1) δu(y) =
∫

Ω

φ(y; x)δf(x) dx, y ∈ Ω.

We use the formula for the Green’s function (1.11) to conclude that if δf has
compact support supp(δf) ⊂ Ω, then

|y − x| ≤
∣∣∣∣
r2y

|y|2 − x

∣∣∣∣ , x ∈ supp(δf), y ∈ Ω \ supp(δf).

We conclude that

|δu(y)| ≤
max |δf | × volume of supp(δf)× (

1 + r
|y|

)

4π × the distance from y to supp(δf)
,

and the effects of a local perturbation in the data decays with the distance to the
support of the perturbation.

In this chapter, we explore the consequences of the decay of influence for the
numerical solution of elliptic problems. Using the generalized Green’s function, we
define the notion of an effective domain of influence. In order to achieve accuracy in
the desired quantity, a mesh must be sufficiently refined inside the effective domain

39

40 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

of influence, while outside the effective domain, the mesh may be relatively coarse.
This turns out to be useful in terms of computing efficiently.

3.1. A concrete example: Poisson’s equation in a disk

To introduce the ideas in a concrete way and to demonstrate how the decay of
influence can affect the accuracy of a finite element solution, we analyze an example
for which there is a formula for the Green’s function. We let Ω denote the disk of
radius r centered at the origin in R2, and consider the Dirichlet problem for the
Laplacian L = −∆u = f . Suppose that ω is a small region contained in Ω located
well away from ∂Ω and that we wish to estimate the error e = u−U in the energy
norm ‖e‖1,ω in ω. See Fig. 3.1. Recall that we can evaluate the norm weakly via

Ω

ω

Figure 3.1. We wish to estimate the error in the energy norm in
the region ω.

Theorem 1.37 as

(3.2) ‖e‖1,ω = sup
ψ∈H−1(ω)
‖ψ‖−1,ω=1

(e, ψ).

By the Riesz Representation theorem, the supremum is achieved for some ψ ∈
H−1(ω). We extend this ψ to H−1(Ω) by setting it to zero in Ω \ ω. We use this
function to define the generalized Green’s function.

We use the a posteriori bound in Theorem 2.10 and the subsequent analysis on
the factors in the bound. We use the formula for the Green’s function on the disk
given in (1.12) to analyze the behavior of the generalized Green’s function φ. If we
let G(x; y) denote the Green’s function for the Laplacian on Ω, then

φ(x) =
∫

Ω

G(x; y)ψ(y) dy =
∫

ω

G(x; y)ψ(y) dy.

There are two cases to consider. For y ∈ ω, G(x; y) is a smooth function of x
for x ∈ Ω \ ω, and therefore so is φ. We assume that δ > 0 is small enough
that ωδ = {x ∈ Ω : dist (x, ω) ≤ δ} is contained in Ω, but large enough that for
K ⊂ Ω\ωδ, the union N (K) of K and the elements bordering K does not intersect
ω, see Fig. 3.2. For K ⊂ Ω \ ωδ, we let πh be the Lagrange nodal interpolant with
respect to Th, so that

‖φ− πhφ‖K ≤ C
∑

|α|=2

‖h2Dαφ‖K .

3.1. A CONCRETE EXAMPLE: POISSON’S EQUATION IN A DISK 41

∂Ω

∂ω

∂ωδ

Figure 3.2. The choice of ωδ.

On the other hand, φ is not so smooth in ω, and in particular, is only in H1(ω)
in general. We have to use an averaging approximation that allows for an estimate
requiring less smoothness. For K∩ωδ 6= ∅, we let πh be the Scott-Zhang interpolant
([BS94]), for which

‖φ− πhφ‖K ≤ C|hφ|1,N (K),

for a mesh-independent constant C.
The second component of WK is bounded similarly after using a trace theorem,

‖h1/2(φ− πhφ)‖∂K ≤ ‖φ− πhφ‖1/2
N (K)‖h(φ− πhφ)‖1/2

1,N (K),

and the local quasi-uniformity of the mesh. We conclude,

Theorem 3.1. For any δ > 0 small enough that ωδ ⊂ Ω but large enough that
N (K) ∩ ω = ∅ for K ⊂ Ω \ ωδ, there is a constant C such that

(3.3) ‖e‖1,ω ≤
∑

K⊂Ω\ωδ

∑

|α|=2

C‖h2Dαφ‖K |K|1/2 +
∑

K∩ωδ 6=∅
C|hφ|1,N (K)|K|1/2.

To understand the implications of (3.3) for mesh selection in an adaptive set-
ting, we further estimate the quantities on the right in (3.3). To handle the first
sum, we estimate the derivatives using the Green’s function as

‖Dα
x φ‖2K =

∫

K

(∫

ω

Dα
x G(x, y)ψ(y) dy

)2

dx ≤
∫

K

‖Dα
x G(x, ·)‖21,ω‖ψ‖2−1,ω dx

=
∑

|β|=1

∫

K

∫

ω

|Dα
x Dβ

y G(x, y)|2 dydx +
∫

K

∫

ω

|Dα
x G(x, y)|2 dydx.

The formula (1.12), there is a constant C such that

|Dα
x Dβ

y G(x, y)| ≤ C

|x− y|2 , x 6= y ∈ Ω, |α| = 2, |β| ≤ 1.

We conclude there is a constant C independent of the mesh such that for K ⊂ Ω\ωδ,

‖φ− πhφ‖K ≤ Ch2
K

dist (K, ω)2
|K|1/2.

To handle the second sum on the right of (3.3), we use the basic stability
estimate,

‖φ‖1,Ω ≤ ‖ψ‖−1,Ω = ‖ψ‖−1,ω = 1.

42 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

If we assume a uniform (small) size hK = h for elements such that K ∩ ωδ 6= ∅, we
obtain

∑

K∩ωδ 6=∅
ChK |φ|1,N (K) ≤ Ch‖φ‖1,Ω = Ch =

C

|ωδ|
∑

K∩ωδ 6=∅
h|K|.

We conclude

Theorem 3.2. For any δ > 0 small enough that ωδ ⊂ Ω but large enough that
N (K) ∩ ω = ∅ for K ⊂ Ω \ ωδ, there is a constant C such that

(3.4) ‖e‖1,ω ≤
∑

K⊂Ω\ωδ

Ch2
K

dist (K, ω)2
|K|+

∑

K∩ωδ 6=∅
Ch|K|.

Applying the “Principle of Equidistribution”, we take the element contributions
to the error to be approximately equal in order to obtain a nearly optimal mesh.
In (3.4), the element indicators are Ch2

K/dist (K, ω)2 respectively Ch, and in an
optimal mesh,

h2
K

dist (K, ω)2
≈ h or hK ≈ h1/2 × dist (K, ω), K ⊂ Ω \ ωδ.

The decay of influence inherent to the Laplacian on the disk means that away
from the region ω where we estimate the norm, we can choose elements asymptoti-
cally larger than the element size used in ωδ. Moreover, the elements can increase in
size as the distance to ωδ increases. In this problem, ωδ is an the effective domain
of influence for the error in the energy norm in ω. We extend this definition in
general.

Definition 3.3. An effective domain of influence corresponding to the
data ψ is the region ωψ in which the corresponding elements must be significantly
smaller in size than the elements used in the complement Ω \ωψ in order to satisfy
(2.16). Equivalently, if Th comprises uniformly sized elements, then the effective do-
main of influence comprises those elements on which the element indicators (2.19),
alternatively (2.20), are substantially larger than those in the complement.

3.2. A decomposition of the solution

It is often the case that the goal of solving a differential equation is to compute
several pieces of information. For example, we might wish to compute values of the
solution at a number of points and internal boundaries. In this section, we explain
how the problem of computing multiple quantities of interest also arises naturally
when the data ψ for the adjoint problem does not have spatially localized support,
such as the case when the quantity of interest is an average or norm over the domain
Ω for example.

The motivation is that we cannot expect a significant localization effect from
the decay of influence when the support of the data for the adjoint problem is not
spatially localized. Recall from Sec. 3.1 that the decay of influence was determined
by the adjoint weighting factor φ − πhφ. If the data ψ has the property that the
corresponding adjoint weight φ − πhφ has a more-or-less uniform size throughout
Ω, then the degree of non-uniformity in an adapted mesh depends largely on the
spatial variation of the residual.

However, we can use a partition of unity to “localize” a problem in which
supp (ψ) does not have local support.

3.2. A DECOMPOSITION OF THE SOLUTION 43

Definition 3.4. Suppose that {Ωi}N
i=1 is a finite open cover of Ω. A Lipschitz

partition of unity subordinate to {Ωi} is a collection of functions {pi}N
i=1 with

the properties

supp (pi) ⊂ Ωi, 1 ≤ i ≤ N,

N∑

i=1

pi(x) = 1, x ∈ Ω,(3.5)

pi is continuous on Ω and differentiable on Ωi, 1 ≤ i ≤ N,(3.6)

‖pi‖L∞(Ω) ≤ C and ‖∇pi‖L∞(Ωi) ≤ C/diam (Ωi), 1 ≤ i ≤ N,(3.7)

where C is a constant and diam (Ωi) is the diameter of Ωi.

Several partitions of unity satisfying (3.5)-(3.7) exist, see e.g. [GS00].
We use a partition of unity {pi} to write ψ ≡ ∑N

i=1 ψpi. This suggests:

Definition 3.5. The quantities {(U,ψpi)} corresponding to the data {ψi =
ψpi} are called the localized information corresponding to the partition of unity.

We now consider the problem of estimating the error in the localized informa-
tion for 1 ≤ i ≤ N . Correspondingly, we obtain a finite element solution via:

(3.8) Compute Ûi ∈ V̂i such that A(Ûi, v) = (f, v) for all v ∈ V̂i,

where V̂i is a space of continuous, piecewise linear functions on a locally quasi-
uniform simplex triangulation Ti of Ω obtained by (presumably local) refinement of
an initial coarse triangulation T0 of Ω. We emphasize that the space {V̂i} is globally
defined and the “localized” problem (3.8) is solved over the entire domain, though
we hope that (3.8) will require a locally refined mesh because the corresponding
data has localized support.

We can obtain a partition of unity approximation in the sense of Babuška and
Melenk [BM97] by defining the truly local approximations Ui = χiÛi, 1 ≤ i ≤ N ,
where χi is the characteristic function of Ωi. The local approximation Ui is in the
local finite element space Vi = χiV̂i.

Definition 3.6. The partition of unity approximation is defined by Up =∑N
i=1 Uipi, which is in the partition of unity finite element space

Vp =
N∑

i=1

Vipi =

{
N∑

i=1

vipi : vi ∈ Vi

}
.

The basic convergence results for this method are proved in [Hol01] and [Hol02]
using ideas of Babuška and Melenk [BM97] and Xu and Zhou [XZ00]. The upshot
is that the partition of unity approximation recovers the full convergence properties
of an approximation of the original solution. Note that

Up =
N∑

i=1

Uipi =
N∑

i=1

χiÛipi ≡
N∑

i=1

Ûipi.

In words, the values of Ui or Ûi outside of Ωi are immaterial in forming the global
partition of unity approximation.

To estimate the error in the localized information corresponding to ψi, we use
the generalized Green’s function satisfying the adjoint problem:

(3.9) Find φi ∈ H1
0 (Ω) such that A∗(v, φi) = (v, ψi) for all v ∈ H1

0 (Ω).

44 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

We expand the global error in the partition of unity approximation as

(u− Up, ψ) =
N∑

i=1

(
(u− Ui)pi, ψ

)
.

We estimate each summand on the right as
(
(u− Ui)pi, ψ

)
= (u− Ûi, ψi) = A∗(u− Ûi, φi)

= (f, φi)− (a∇Ûi,∇φi)− (b · ∇Ûi, φi)− (cÛi, φi).

Letting πiφi denote an approximation of φi in V̂i, using Galerkin orthogonality, we
conclude

Theorem 3.7. The error of the partition of unity finite element solution Up

satisfies the error representation,

(3.10)

(u− Up, ψ) =
N∑

i=1

(
(f, φi − πiφi)− (a∇Ûi,∇(φi − πiφi))− (b · ∇Ûi, φi − πiφi)

− (cÛi, φi − πiφi)
)
,

where φi is the solution of the adjoint problem (3.9) and Ûi solves the finite element
problem (3.8) corresponding to the localized data ψi.

In practice, we compute approximate generalized Green’s functions via;
(3.11)

Compute Φi ∈ V 2
i such that A∗(v, Φi) = (v, ψi) for all v ∈ V 2

i , 1 ≤ i ≤ N,

where V 2
i is the space of continuous, piecewise quadratic functions with respect to

Ti. The corresponding approximate error representation for each computation is

(3.12)
(u− Ûi, ψi) ≈ (f, Φi − πiΦi)− (a∇Ûi,∇(Φi − πiΦi))− (b · ∇Ûi,Φi − πiΦi)

− (cÛi, Φi − πiΦi).

Note that the proof of Theorem 3.7 also implies that if the localized error
satisfies

(3.13)
∣∣(u− Ûi, ψi

)∣∣ ≤ TOL
N

, 1 ≤ i ≤ N,

then |(u − Up, ψ)| ≤ TOL. This justifies treating the N “localized” problems
independently in terms of mesh refinement. Note however that (3.13) is based on
the pessimistic assumption that there is no cancellation of errors when combining
the “localized” solutions to get the full solution. Using TOL/N for the tolerance for
the “localized” solutions turns out to be much too pessimistic in practice. Finding
more reasonable tolerances is an interesting problem.

3.3. Efficient computation of multiple quantities of interest

In this section, we develop an algorithm for computing multiple quantities
of interest efficiently using knowledge of the effective domains of influence of the
corresponding Green’s functions. We assume that the information is specified as
{(U,ψi)}N

i=1 for a set of N functions {ψi}N
i=1. These data might arise as particular

3.3. EFFICIENT COMPUTATION OF MULTIPLE QUANTITIES OF INTEREST 45

goals or via localization through a partition of unity. We assume that the goal is
to compute the information associated to ψi so that the error is smaller than a
tolerance TOLi for 1 ≤ i ≤ N .

At least two approaches for this problem come to mind:
Approach 1: A Global Computation

Find one triangulation such that the corresponding finite element so-
lution satisfies |(e, ψi)| ≤ TOLi, for 1 ≤ i ≤ N .
Approach 2: A Decomposed Computation

Find N independent triangulations and finite element solutions Ui so
that the errors satisfy |(ei, ψi)| ≤ TOLi, for 1 ≤ i ≤ N .

Note that the Global Computation can be implemented with a straightforward
modification of the standard adaptive strategy in which the N corresponding mesh
acceptance criteria are checked on each element and if any of the N criteria fail,
the element is marked for refinement.

Generally, if the correlation, i.e., overlap, between the effective domains of in-
fluence associated to the N data {ψi} is relatively small and the effective domains
of influence are relatively small subsets of Ω, then each individual solution in the
Decomposed Computation will require significantly fewer elements than the solu-
tion in the Global Computation to achieve the desired accuracy. This can yield
significant computational advantage in terms of lowering the maximum memory
requirement to solve the problem. We provide some examples showing the possible
gain in Sec. 3.5.

Decreasing the maximum memory required to solve a problem can be signifi-
cant in at least two situations. First, if the individual solutions in the Decomposed
Computation are computed in parallel, then the time needed for the Decomposed
Computation is determined roughly by the time it takes to solve for the solution
requiring the largest number of elements. If the individual solutions in the Decom-
posed Computation require significantly fewer elements than the Global Compu-
tation, we can expect to see significant speedup. Second, if we are solving in an
environment with limited memory capabilities, then decomposing a Global Com-
putation requiring a large number of elements into a set of significantly smaller
computations can greatly increase the accuracy of the solution that can be com-
puted and/or decrease the time of solution. In this case, the individual solutions
in the Decomposed Computation may be computed serially.

Vice versa, if the effective domains of influence associated to the N data {ψ}
have relatively large intersections, then the individual solutions in the Decomposed
Computation will require roughly the same number of elements as the solution for
the Global Computation. In this case, there is little to be gained in using the
Decomposed Computation. In general, we can expect that some of the N effective
domains of influence associated to data {ψi} in the Decomposed Computation will
correlate significantly and the rest will have low correlation. We can optimize the
use of resources by combining computations for data whose associated domains of
influence have significant correlation and treating the rest independently.

An algorithm for the decomposition of the solution process using effective do-
mains of influence is:

Algorithm 3.8. Determining the Solution Decomposition
(1) Discretize Ω by an initial coarse triangulation T0 and compute an initial

finite element solution U0.

46 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

(2) Estimate the error in each quantity (U0, ψi) by solving the N approximate
adjoint problems (3.11) and then using (3.12).

(3) Using the element indicators associated to (3.12) to identify the effec-
tive domains of influence for the data {ψi} in terms of the mesh T0 and
significant correlations between the effective domains of influence.

(4) Decide on the number of approximate solutions to be computed and the
subset of information to be computed from each solution.

(5) Compute the approximate solutions independently using adaptive error
control aimed at computing the specified quantity or quantities of interest
accurately.

We address the key step 3. in the practical implementation of this algorithm
in Sec. 3.4.

3.4. Identifying significant correlations

The key issue in implementing Algorithm 3.8 is identifying the effective domains
of influence for the various generalized Green’s functions and recognizing significant
correlation, or overlap, between different effective domains of influence in Step 3.
In this section, we present a method to do this.

Recall that the mesh refinement decisions are based on the sizes of the element
indicators on element K,

(3.14) Ei|K = max
K

∣∣(f − b · ∇Ûi − cÛi)(Φi − πiΦi)− a∇Ûi · ∇(Φi − πiΦi)
∣∣

or

(3.15) Ei|K =
∫

K

∣∣(f − b · ∇Ûi − cÛi)(Φi − πiΦi)− a∇Ûi · ∇(Φi − πiΦi)
∣∣ dx,

associated to the estimate (3.12).

Definition 3.9. We let Ei(x) denote the piecewise constant element error
indicator function associated to data ψi with Ei(x) ≡ Ei|K for K ∈ T0.

Identifying the effective domain of influence associated to a data means finding
a set of elements on which the element error indicators are significantly larger than
on the complement, if such a dichotomy exists. Identifying significant correlation
between the effective domains of influence of two data entails showing that the
effective domains of influence have a significant number of elements in common.

To do this, we borrow techniques from pattern matching in signal processing.
Of particular importance is the (cross-)correlation of two functions f ∈ Lp(Ω)
and g ∈ Lq(Ω), defined as:

(f ◦ g)(y) =
∫

Ω

f(x)g(y + x) dx,

which is an L1(Ω) function. In template matching algorithms used in image and
signal processing, the correlations between an input signal and a library of signals
are computed and the closest match from the library is the signal containing the
“largest” correlation function in some measure. Since each correlation function is
itself a real-valued function of n variables, determining the goodness of a match re-
quires computing some real-valued correlation indicator c(f, g) of the correlation
function (f ◦ g), which is typically an Lp-norm.

3.4. IDENTIFYING SIGNIFICANT CORRELATIONS 47

For the problem of recognizing correlation between effective domains of influ-
ence, we treat the element error indicator functions {Ei} as signal functions. In
this case, if one signal matches the other signal only after a translation or rotation,
we do not consider the functions to be well correlated since this coincides with two
primarily disjoint effective domains of influence. Without translation or rotation,
correlation of Ei and Ej reduces to the L2-inner-product:

(Ei ◦ Ej)(0) =
∫

Ω

Ei(x)Ej(x) dx = (Ei, Ej)Ω.

The correlation function evaluated at u = 0 is just a real number, so that the
correlation indicator c(Ei, Ej) can be taken as c(Ei, Ej) = |(Ei ◦ Ej)(0)| = (Ei, Ej)Ω.

We mark the effective domain of influence associated to ψi as significantly
correlated to the domain of influence associated to ψj if two conditions hold:

(1) The correlation of Ei and Ej is larger than a fixed fraction of the norm of
Ej , or mathematically,

(3.16) Correlation Ratio 1 =
c(Ei, Ej)
‖Ej‖2 ≥ γ1,

for some fixed 0 ≤ γ1 ≤ 1. This means that the projection of Ei onto Ej

is sufficiently large.

Element

E
le

m
en

t
In

d
ic

at
o

r

Element

E
le

m
en

t
In

d
ic

at
o

r

Element

E
le

m
en

t
In

d
ic

at
o

r

Ei

Ej Ei

Ej Ei

Ej

Figure 3.3. Three examples of significant correlation of Ei with
Ej . Plotted are the element indicator functions Ei(x), Ej(x) versus
the element number.

(2) The component of Ej orthogonal to Ei is smaller than a fixed fraction of
the norm of Ej , or mathematically,

(3.17) Correlation Ratio 2 =

∥∥∥∥Ej − c(Ej , Ei)
‖Ei‖2 Ei

∥∥∥∥
‖Ej‖ ≤ γ2,

for some fixed 0 ≤ γ2 ≤ 1. This corrects for the potential difficulties in
the mesh refinement decision that arise when Ei is much larger than Ej

and the corresponding computations are combined.
We illustrate these definitions with a simple example.

Example 3.10. In Fig. 3.5, we plot a number of artificial element indicator
functions {Ei} versus the element number. Applying conditions 1 and 2 with γ1 = .9
and γ2 = .7 yields the significant correlations:

E1 with E8 E4 with none E7 with none
E2 with E6, E7 E5 with E2, E6 E8 with none
E3 with E1, E8 E6 with none E9 with none

48 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

Element

E
le

m
en

t
In

d
ic

at
o
r

Ej

Ei

Figure 3.4. An example in which condition 2 fails. Plotted are
the element indicator functions Ei(x), Ej(x) versus the element
number.

1 9 18 27 36

Element Number

0

1

2

3
E1

E2

E3

E4

E5

E6

E7

E8

E9

Figure 3.5. Plots of nine element indicator functions Ei versus
the element number.

We investigate the properties of these definitions further in Ex. 3.5.3.

We emphasize that the initial identification of significant corre-
lation between effective domains of influence of various Green’s
functions in a computation is carried out on a coarse initial par-
tition of the domain and hence is relatively inexpensive.

3.5. EXAMPLES 49

3.5. Examples

We now present several computational examples illustrating and testing the
ideas discussed above. In these experiments, we solve various elliptic problems us-
ing adaptive mesh refinement to achieve a specified accuracy in a specified set of
quantities of interest first using a Global Computation and then using a Decom-
posed Computation implemented using Algorithm 3.8. The results suggest that the
individual solutions in the Decomposed Computation require significantly fewer el-
ements to achieve the desired accuracy than the Global Computation in a variety
of situations.

Determining the overall gain in efficiency or capability due to reducing the num-
ber of elements to achieve a desired accuracy is difficult. In general, the principle
factors determining the time it takes for a solution to be computed, including the
solution of the nonlinear system determining the approximation, the marking and
refinement of meshes in each refinement level, and, in a massively parallel setting,
the IO of the data, all scale super-linearly with the number of elements. Moreover,
these factors depend heavily on the algorithm, implementation, and machine. So, as
a relatively universal measure of the gain from using the Decomposed Computation,
we use

Definition 3.11. The Final Element Ratio is the number of elements in the
final mesh refinement level required to achieve the specified accuracy in the spec-
ified quantities of interest in the Global Computation to the maximum number of
elements in the final mesh refinement levels for the individual computations in the
Decomposed Computation.

Generally, we expect the gain in efficiency to scale super-linearly
with the Final Element Ratio.

We compute the Final Element Ratio using solutions that are have roughly
the same accuracy. In some cases, this may mean adjusting the tolerance and/or
the number of elements in the initial mesh in order to achieve the desired accu-
racy. Generally, the actual error of solutions depends smoothly on the number
of elements, but since we do not un-refine elements, the number of elements does
not vary smoothly with the tolerance. So, it is better to compare solutions of
approximately the same accuracy rather than solutions computed with the same
tolerance.

3.5.1. Example 1. In the first example, we test the partition of unity decom-
position of a solution aimed at computing information corresponding to data with
global support. We approximate u satisfying the Poisson problem with smooth
data,

(3.18)

{
− 1

10π2 ∆u(x) = sin(πx) sin(πy), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

on the domain Ω = [0, 8] × [0, 8]. The solution is u(x, y) = 5 sin(πx) sin(πy). We
solve this problem with the goal of controlling the error in the average value of u
by choosing ψ ≡ 1/|Ω| = 1/64.

For the Global Computation, we adapt the mesh so that the error in the average
value of u is smaller than the error tolerance of 5%. We begin with an initial mesh
of 10 × 10 elements. After five refinement levels, we end up with 3505 elements,

50 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

achieving an error of .022. We plot both the initial and final meshes in Fig. 3.6.
We plot the numerical solution on the final mesh in Fig. 3.7.

Initial Mesh Final Mesh

Figure 3.6. Initial and final meshes for Example 1 with data ψ
giving the average error.

Figure 3.7. Numerical solutions on the initial (left) and final
(right) meshes for Example 1 with data ψ giving the average error.

Since we know the true solution, we can compute the actual average error and
so evaluate the accuracy of the estimate. Below, we list the estimates, errors, and
error/estimate ratios:

Level Elements Estimate Error Ratio
1 100 .1567 .1534 .9786
2 211 .1157 .1224 1.058
3 585 .3063 .3078 1.005
4 1309 .1159 .1166 1.006
5 3505 .02163 .02148 .9975

We see the excellent accuracy of the computed error estimate at all levels of mesh
refinement.

For the sake of comparison, we present results for the estimation of the L2(Ω)
norm of the error. This is possible in this example because the error is known.
Hence, we can choose ψ = e/‖e‖Ω to get (e, ψ) = ‖e‖Ω. We start the computation
with the same 10× 10 mesh used above, however we use a tolerance of 1% in order

3.5. EXAMPLES 51

to get five refinement levels with the number of elements in each refinement level
comparable to those used in the computation for the average error. The results are:

Level Elements Estimate Error Ratio
1 100 12.89 19.19 1.488
2 245 13.36 16.21 1.213
3 681 7.120 7.905 1.110
4 1281 4.729 4.830 1.021
5 3267 1.929 2.008 1.041

Again, the results are rather impressive.
In the rest of the examples, we use average error as a globally-defined goal for

estimation. We do this to make it easier to compare results from different examples.
We do not have the true error available in some of the examples, and estimating the
L2 norm of the error raises significant issues regarding approximation of the dual
data. In the tests we conducted on examples in which the error is known, using the
average error and the L2 norm of the error as globally-defined goals produces the
same qualitative results.

The data ψ ≡ 1/64 is a natural candidate for localization using a partition of
unity. We begin with a partition with the four domains shown on the left in Fig. 3.8.
Introducing the corresponding partition of unity yields four data {ψ1, ψ2, ψ3, ψ4}

2 4

31

1

2 3

4

5

6 7

8

13

14 15

16

9

10 11

12

Figure 3.8. Domains for the first (left) and second (right) parti-
tions of unity used in Example 1.

corresponding to the regions indicated in Fig. 3.8.
In the first Decomposed Computation, we compute the four localized approx-

imations {Û1, · · · , Û4} using the same initial mesh as shown in Fig. 3.6. Using
γ1 = .9 and γ2 = .5 in the conditions on the Correlation Ratios (3.16) and (3.17)
indicates that all four localized solutions should be computed independently.

For the first Decomposed Computation, we obtain acceptable results using the
tolerance of 5%. Details of the final computed solutions are listed below:

Data Level Elements Estimate
ψ1 3 618 .01242
ψ2 3 575 −.0009109
ψ3 3 618 .01242
ψ4 3 575 −.0009109

Combining these solutions yields a partition of unity solution Up with accuracy .023.
Using the Decomposed Computation yields a Final Element Ratio of 3505/618 ≈
5.7.

We plot the final meshes for two of the computations in Fig. 3.9. We plot the
generalized Green’s functions for the global average error and the localized solution

52 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

Final Mesh for U1

^
Final Mesh for U2

^

Figure 3.9. Final meshes for Û1 and Û2 for Example 1 with a
partition of unity on four domains.

Figure 3.10. The generalized Green’s functions for the global
average error and the localized solution Û2 corresponding to ψ2

with a partition of unity on four domains.

corresponding to ψ2 in Fig. 3.10. The decay of influence away from the support of
ψ2 is clearly visible in the solution on the right.

Next, we perform a Decomposed Computation using a partition of unity on the
16 equal-sized regions shown on the right in Fig. 3.8. We again use an error tolerance
of 5% and start the localized computations with the same initial 10×10 mesh used
above. Computing the correlation ratios, we find these significant correlations:

E2 with E3 E5 with E8 E10 with E9 E13 with E14

E4 with E3 E7 with E8 E12 with E9 E15 with E14

3.5. EXAMPLES 53

This suggests that we should see less gain on this partition. We report the results
for the accepted approximations:

Data Level Elements Estimate
ψ1 2 187 −.0005256
ψ2 3 560 .002904
ψ3 4 1371 −.006256
ψ4 3 560 .002904
ψ5 3 569 .001520
ψ6 2 212 .002566
ψ7 3 569 .001520
ψ8 4 1285 −.009831

Data Level Elements Estimate
ψ9 4 1371 −.006256
ψ10 3 560 .002904
ψ11 2 187 −.0005256
ψ12 3 560 .002904
ψ13 3 569 .001520
ψ14 4 1285 −.009831
ψ15 3 569 .001520
ψ16 2 212 .002566

In order to obtain an acceptable accuracy in the four sub-domains closest to the
center, we have to use an extra refinement level in the computation of the corre-
sponding local solutions. The error in the average of the resulting partition of unity
solution is .011. If we use the Decomposed Computation, the most intensive indi-
vidual computations are those for ψ3 and ψ9, which yields a Final Element Ratio
of 3505/1371 ≈ 2.6. There is still a significant gain over the Global Computation,
but not as large as for the partition with four sub-domains.

3.5.2. Example 2. In the second experiment, we estimate the error in some
point values and the average value of u solving

(3.19)





−∇ · ((1.1 + sin(πx) sin(πy))∇u(x, y)
)

= −3 cos2(πx) + 4 cos2(πx) cos2(πx)
+2.2 sin(πx) sin(πy) + 2− 3 cos2(πy), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = [0, 2] × [0, 2] and the exact solution is u(x, y) = sin(πx) sin(πy). We
compute the average error corresponding to ψ1 ≡ 1/4 and then four point values
corresponding to ψ2 ≈ δ(.5,.5), ψ3 ≈ δ(.5,1.5), ψ4 ≈ δ(1.5,1.5), and ψ5 ≈ δ(1.5,.5). We
use

δ̂(cx,cy) =
400
π

e−400((x−cx)2+(y−cy)2)

to approximate the delta function δ(cx,cy).
In the Global Computation, we compute a mesh that gives all of the desired

information accurately using a tolerance of 2%. We begin with an 8× 8 mesh. We
list the results below:

ψ1 ψ2 ψ3

Lev. Elt’s
1 64
2 201
3 763
4 2917

Est. Err. Rat.
.035 .035 1.0
.0088 .0089 1.0
.0027 .0027 1.0
.00044 .00044 1.0

Est. Err. Rat.
.090 .29 3.3
.042 .082 1.9
.020 .020 .99
.0050 .00504 1.0

Est. Err. Rat.
.24 .022 .091
.0024 .014 6.0
.0020 .0020 1.0
.0049 .00504 1.0

The error estimates for the point values are not very accurate on the coarser meshes,
but become very accurate on mesh of moderate density and finer. It is simply
an issue of locating a sufficient number of elements near the centers of the delta
functions so that the approximation of the generalized Green’s functions is accurate.

We obtain an acceptably accurate solution after four refinement levels using a
mesh with 2917 elements. We plot both the initial and final meshes in Fig. 3.11.

54 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

Initial Mesh Final Mesh

Figure 3.11. Initial and final meshes for Example 2 with for the
solution computing all five data.

We next perform a Decomposed Computation by solving for approximate solu-
tions {Û1, · · · , Û5} corresponding to each data {ψ1, · · · , ψ5} independently. Check-
ing the Correlation Ratios reveals no significant correlations between the indepen-
dent error indicators. There is no partition of unity involved in this decomposition
and we simply use the same tolerance 2% for each independent computation. How-
ever, to obtain final independent solutions that yield roughly the same accuracy in
the computed quantities as the solution of the Global Computation, we vary the
initial meshes; using 7× 7 for Û1; 9× 9 for Û2 and Û4; and 12× 12 for Û3 and Û5.
The final results for each computation are listed below:

Data Level Elements Estimate
ψ1 3 409 −.0004699
ψ2 4 1037 −.007870
ψ3 2 281 −.005571
ψ4 4 1037 −.007870
ψ5 2 281 −.005571

The Final Element Ratio is 2917/1037 ≈ 2.8. Since the solution corresponding to
the average error is not the dominant cost in the independent computations, we do
not bother to do a partition of unity decomposition on that problem. Finally, we
plot some of the final meshes in Fig. 3.12.

Final Mesh for U1

^
Final Mesh for U2

^
Final Mesh for U3

^

Figure 3.12. Final meshes for {Û1, Û2, Û3} in Example 2. The
mesh for Û4 is symmetric across y = 2 − x with the mesh for Û2

and the mesh for Û5 is symmetric across y = x with the mesh for
Û3.

3.5. EXAMPLES 55

3.5.3. Example 3. In this section, we investigate some properties of the cor-
relation indicators using the problem,

(3.20)

{
−∆u = 16(y − y2 + x− x2) (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = [0, 1]× [0, 1] and the exact solution is u(x, y) = 8x(1− x)y(1− y).
In the two examples considered so far, there has been little or no significant

correlation in the error indicators of different data, and computing the correspond-
ing solutions independently leads to a substantial gain in terms of decreasing the
maximum number of elements required to achieve a desired accuracy in specified
quantities of interest. In the first computation in this example, we consider a prob-
lem in which two data are substantially correlated.

We estimate the error in the average value of u solving (3.20). Since the domain
is relatively small and the solution and the generalized Green’s function are both
very smooth, the gain from decomposing the solution using a partition of unity is
greatly reduced compared the previous examples. Beginning with a 4×4 mesh and
using a tolerance of 1%, we obtain a sufficiently accurate solution using a Global
Computation after five refinements. The final mesh uses 885 elements and produces
an error of .0008699. If we partition the domain using four equal regions as pictured
in Fig. 3.8, we find no substantial correlations between the error indicators {E1, · · · ,
E4}. Computing the four solutions independently in the Decomposed Computation
yields a Final Element Ratio of around 1.5.

If we partition the domain using sixteen equal regions as pictured on the right
in Fig. 3.8, we find a number of substantial correlations. For example, we find that

Correlation Ratio 1 for E1 on E2 = .98, Correlation Ratio 2 for E1 on E2 = .44,
Correlation Ratio 1 for E2 on E1 = .82, Correlation Ratio 2 for E2 on E1 = .44.

Computing Û1 corresponding to the localized data ψ1 using a tolerance of 1%, we
obtain a sufficiently accurate solution after 5 refinements, producing a mesh with
367 elements and yielding an error estimate of −.000047. Repeating the compu-
tation for Û2 also requires five refinements, producing a mesh with 494 elements
and yielding an accuracy of −.000066. On the other hand, combining these two
computations by using data equal to the sum of the two partition functions for
the regions Ω1 and Ω2, results in a problem that requires 5 refinements, producing
a mesh with 496 elements and an accuracy of −.000097. Thus, we gain almost
nothing by computing Û1 and Û2 independently from each other. We plot the final
meshes in Fig. 3.13.

In the second computation in this example, we investigate the effect on the
robustness of the Correlation Indicators from computing the Indicators on coarse
discretizations. We consider the error in the average value and the point values at
(.25, .25) and (.5, .5). We use a partition of unity decomposition for the error in
the average to get data {ψ1, · · · , ψ4}. We let ψ5 ≈ δ(.25,.25) and ψ6 ≈ δ(.5,.5). We
compare the correlation indicators on initial meshes ranging from 16 to 144 or 400
uniformly sized elements by plotting the Correlation Ratios versus the number of
elements. We show a sample of results in Fig. 3.14.

In general, we find that all Correlation Ratios converge to a limit as the number
of elements increases (and we can actually prove this is so). What is more impor-
tant however is the degree of variation on coarse meshes. Generally, the second
Correlation Ratio varies relatively little as the mesh density increases for all data.

56 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

Final Mesh for U1

^
Final Mesh for U2

^
Final Mesh for "U1+U2

"^ ^

Figure 3.13. Final meshes for Û1, Û2, and the “combined” solu-
tion in Example 3.

The first Correlation Ratio between data representing a partition of unity decom-
position also varies relatively little. However, it is not surprising to see that the
first Correlation Ratio varies quite a bit on coarse meshes when one of the data is
an approximate delta function. In terms of determining significant correlation, we
find that the determination that two effective domains of influence are not closely
correlated seems to be relatively robust with respect to the density of the mesh on
which the indicators are computed. The determination that two effective domains
of influence are correlated is less robust. Practically, this means that there is a mild
tendency to combine computations that are more efficiently treated independently
if the correlation indicators are computed on very coarse meshes.

3.5.4. Example 4. We turn to consider some problems for which we can
not expect to obtain precise analytic information about the generalized Green’s
function. In this example, we consider a problem with diffusion that is nearly
singular at one point and that has strong convection. We estimate the error in the
average value of u solving

(3.21)





−∇ · ((.05 + tanh
(
10(x− 5)2 + 10(y − 1)2

))∇u
)

+

(
−100

0

)
· ∇u = 1, (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = [0, 10] × [0, 2]. We plot the diffusion in Fig. 3.15. Because of the sign
of the convection, we expect that perturbations to the solution at a point with
x-coordinate x0 will affect the solution’s values “downstream” for x < x0 most
strongly. The Peclet number for this problem is Pe = 1000.

We begin the computations with an initial mesh of 80 elements. For the Global
Computation, we use an error tolerance of TOL = .04%. We list some details of

3.5. EXAMPLES 57

0 50 100 150

Number of Elements

0.0

0.5

1.0

Corr. Rat. 1: E1 on E2

Corr. Rat. 2: E1 on E2

Corr. Rat. 1: E2 on E1

Corr. Rat. 2: E2 on E1

0 50 100 150

Number of Elements

0.0

0.5

1.0

Corr. Rat. 1: E1 on E3

Corr. Rat. 2: E1 on E3

Corr. Rat. 1: E3 on E1

Corr. Rat. 2: E3 on E1

0 100 200 300 400

Number of Elements

0

5

10

Corr. Rat. 1: E1 on E5

Corr. Rat. 2: E1 on E5

Corr. Rat. 1: E5 on E1

Corr. Rat. 2: E5 on E1

0 100 200 300 400

Number of Elements

0

2

4

Corr. Rat. 1: E1 on E6

Corr. Rat. 2: E1 on E6

Corr. Rat. 1: E6 on E1

Corr. Rat. 2: E6 on E1

0 50 100 150

Number of Elements

0.0

0.6

1.2

Corr. Rat. 1: E5 on E6

Corr. Rat. 2: E5 on E6

Corr. Rat. 1: E6 on E5

Corr. Rat. 2: E6 on E5

0 100 200 300 400

Number of Elements

0

1

2

3
Corr. Rat. 1: E3 on E5

Corr. Rat. 2: E3 on E5

Corr. Rat. 1: E5 on E3

Corr. Rat. 2: E5 on E3

Figure 3.14. Plots of Correlation Ratios for a sample of compu-
tations in Example 3.

the computation below:

Level Elements Estimate
1 80 −.0005919
2 193 −.001595
3 394 −.0009039
4 828 −.0003820
5 1809 −.0001070
6 3849 −.00004073
7 9380 −.00001715
8 23989 −.000007553

58 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

2

1

0

10

x

y
D
if
fu
si
o
n

Figure 3.15. Plot of the diffusion coefficient for Example 4.

We plot the final mesh in Fig. 3.16. The effects of the convection are clear in the

Figure 3.16. Plot of the final mesh for Example 4 with data ψ
giving the average error.

pattern of mesh refinement. For the sake of comparison, we compute a numerical
solution of the same problem except posing a velocity vector of b = (−.01, 0)>,
corresponding to a Peclet number Pe = .1. We plot meshes from the original com-
putation and the altered problem of approximately the same number of elements in
Fig. 3.17. In the altered problem, the mesh refinement is much more heterogeneous.

Next, we consider the partition of unity with 20 subdomains shown in Fig. 3.18.
Computing the Correlation Ratios, we find the significant correlations:

E3 with E4 E6 with E7 E7 with E6 E9 with E8 E10 with E8, E9

E13 with E14 E16 with E17 E17 with E16 E19 with E18 E20 with E18, E19

Note, there are no significant correlations in the cross-wind direction.
We compute the localized solutions {Ûi} in the Decomposed Computation using

two tolerances. The solutions are completely symmetric across y = 1. Details of
the final computed solutions are listed below:

Data TOL Level Elements Estimate
ψ1 .04% 7 7334 −6.927× 10−7

ψ2 .04% 7 8409 −5.986× 10−7

ψ3 .04% 7 7839 −5.189× 10−7

ψ4 .04% 7 7177 −5.306× 10−7

ψ5 .04% 7 7301 −4.008× 10−7

ψ6 .02% 7 6613 −2.471× 10−7

ψ7 .02% 7 4396 −2.938× 10−7

ψ8 .02% 7 4248 −1.656× 10−7

ψ9 .02% 7 3506 −1.221× 10−7

ψ10 .02% 7 1963 −5.550× 10−8

3.5. EXAMPLES 59

Pe=1000

Pe=.1

Figure 3.17. Plots of the mesh in the original problem with Pe =
1000 at refinement level 6 (number of elements = 3849 and the
altered problem with Pe = .1 (number of elements = 4192) for
Example 4 with data ψ giving the average error. We display the
meshes from early refinement levels to make the qualitative features
of the refinement clearer.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Figure 3.18. Domains for the partition of unity used in Example 4.

The estimate on the total average error of Up is 7.24× 10−6 and the Final Element
Ratio is 23909/8409 ≈ 2.9.

We show a sample of the final meshes for the Decomposed Computation in
Fig. 3.19. Note the effect of the convection is clearly visible in the pattern of mesh
refinement. We can also see this in the graphs of the generalized Green’s functions.
We plot a sample in Fig. 3.20. Note the support of the two functions.

We emphasize that effective domains of influence may not be
spatially compactly-shaped, as is generally the case for Poisson’s
equation.

We can see this clearly in the upper plot in Fig. 3.19. The effective domain of
influence for the average value of the solution in the lower left corner of the domain,
close to the outflow boundary at x = 0, contains the immediate neighborhood of
the boundary along y = 0, a swath that cuts up from the center of the outflow
boundary through the center of the domain up to the upper boundary, and most
of the inflow boundary.

60 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

Final Mesh for U1
^

^

Final Mesh for U
5

^

Final Mesh for U
9

^

Figure 3.19. Plots of the final meshes for the localized solutions
Û1, Û5, and Û9 in Example 4.

2

1

0 0
2

4
6

8
100

2

4

6

x 10 -4

y

x
2

1

0 0
2

4
6

8
100

2

4

6

x 10 -4

y

x

Figure 3.20. Plots of the generalized Green’s functions corre-
sponding to ψ11 (left) and ψ19 (right) in Example 4.

Keeping in mind the significant correlations listed above, we combine some
of the localized computations by solving for localized solutions corresponding to
summing the two of the partition of unity data. We list details of the final computed

3.5. EXAMPLES 61

solutions below:
Data TOL Level Elements Estimate

ψ3 + ψ4 .04% 7 8330 −9.8884× 10−7

ψ6 + ψ7 .02% 7 5951 −5.897× 10−7

ψ8 + ψ9 .02% 7 4406 −3.486× 10−7

ψ9 + ψ10 .02% 7 3202 −2.243× 10−7

The solutions for ψ3 + ψ4 and ψ8 + ψ9 use a few more elements than required for
either of the original localized solutions. The solutions for ψ6 + ψ7 and ψ9 + ψ10

use less than the maximum required for the individual localized solutions.

3.5.5. Example 5. In the last example, we consider a problem posed on a
more complicated domain. We estimate the error in the average value of u solving

(3.22)

{
− 1

π2 ∆u = 2 + 4e−5((x−.5)2+(y−2.5)2), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω is the “square annulus” Ω = [0, 3]× [0, 3] \ [1, 2]× [1, 2]. The domain Ω is
shown in Fig. 3.23. Note that we introduce some local variation in the forcing to
make the solution more interesting.

We begin the computations with an initial mesh of 48 elements. For the Global
Computation, we use an error tolerance of TOL = 1%. We list some details of the
computation below:

Level Elements Estimate
1 48 −5.168
2 125 −1.584
3 380 −.6879
4 894 −.3029
5 2075 −.1435

We plot the initial and final meshes in Fig. 3.21. Note the expected refinement

Initial Mesh Final Mesh

Figure 3.21. Plots of the initial (left) and final (right) meshes for
Example 5 with data ψ giving the average error.

required near the interior corners. We plot the final solution and generalized Green’s
function in Fig. 3.22.

Next, we consider the partition of unity with 8 subdomains shown in Fig. 3.23.
Checking the Correlation Ratios reveals no significant correlations. We obtain
acceptable results in the Decomposed Computation using the same tolerance of 1%
as used for the Global Computation. Details of the final computed solutions are

62 3. THE EFFECTIVE DOMAIN OF INFLUENCE AND SOLUTION DECOMPOSITION

1
2

3 0

1

2

3

0

1

2

3

4

5

6

y

x

1
2

3 0

1

2

3

0

0.4

0.8

1.2

1.6

y

x

Figure 3.22. Plots of the final solution (left) and generalized
Green’s function (right) for Example 5 with data ψ giving the
average error.

1 2 3

4

567

8

Figure 3.23. Domains for the partition of unity used in Example 5.

listed below:
Data Level Elements Estimate
ψ1 5 1082 −.01935
ψ2 5 1101 −.01399
ψ3 5 1144 −.01540
ψ4 5 1107 −.01360

Data Level Elements Estimate
ψ5 5 1104 −.01436
ψ6 5 1110 −.01587
ψ7 5 1074 −.02529
ψ8 5 1098 −.01660

Combining these solutions yields a partition of unity solution Up with accuracy
−.1344. Using the Decomposed Computation yields a Final Element Ratio of ≈ 1.8.
We show a sample of the final meshes in Fig. 3.24. The most significant factor
leading to a reduction in the number of elements required to achieve a desired
accuracy is the fact that the localized computations do not refine near corners that
are not in the immediate neighborhood of the support of the data.

We plot a couple of the final generalized Green’s functions in Fig. 3.25.
We also tried a partition of unity on a finer decomposition of Ω obtained by

dividing each sub-domain in the first partition into four equal squares. However,
the Final Element Ratio is only 1.09.

3.5. EXAMPLES 63

Final Mesh for U3

^
Final Mesh for U4

^

Final Mesh for U6

^
Final Mesh for U7

^

Figure 3.24. Plots of the final meshes for the localized solutions
Û3, Û4, Û6, and Û7 in Example 5.

0

1
2

3 0

1

2

3

1

y

x

1
2

3 0

1

2

3

0

0.2

0.6

1

1.4

y

x

Figure 3.25. Plots of the generalized Green’s functions corre-
sponding to ψ6 (left) and ψ7 (right) for the partition of unity de-
composition for Example 5.

CHAPTER 4

Nonlinear Problems

We conclude these notes by talking about the use of adjoint operators and
the generalized Green’s function for nonlinear problems. We have explained the
connection between the solution of a linear problem and the adjoint problem. The
connection for nonlinear problems is not as strong. For example, there are actually
several valid adjoint problems for a given nonlinear problem in general.

4.1. An a posteriori analysis for a nonlinear algebraic equation

The problem is to estimate the error of a numerical solution X of a system of
nonlinear algebraic equations,

(4.1) f(x) = b

where the data b, nonlinearity f , and the solution x all have the same dimension.
We assume that a numerical solution X of (4.1) has been computed in some fashion
and we seek to estimate the unknown error e = x−X.

The residual error is now
R = f(X)− b

which immediately gives

(4.2) f(x)− f(X) = −R.

The error, if indeed it can be obtained from the left-hand side, is related to the
residual through a nonlinear equation.

To obtain a linear equation for the error, we use the mean value theorem for
integrals in the form

f(x)− f(X) =
∫ 1

0

f ′(sx + (1− s)X) (x−X) ds

where f ′ is the Jacobian matrix of f . Applying this to the last relation, we get

Ãe = −R

with

Ã =
∫ 1

0

f ′(sx + (1− s)X) ds,

which is the linear problem obtained by linearizing f around an average of x and
−X. We now follow the variational analysis in Ex. 1.63 to obtain

|(e, ψ)| = |(e, Ã>φ)| = |(Ãe, φ)| = |(R,φ)|.
In this approach, we have used linearization via Taylor’s theorem to produce

a linear problem that in turn is used to define an adjoint problem. Unfortunately,
the linearization requires knowledge of the computed numerical solution and the

64

4.2. DEFINING THE ADJOINT TO A NONLINEAR OPERATOR 65

true unknown solution in order to determine the correct generalized Green’s vector.
This is generally true.

In practice, for example, we can try to replace x by X in the definition of Ã,

Ã → A =
∫ 1

0

f ′(sX + (1− s)X) ds = f ′(X),

to obtain a computable adjoint problem. Of course, this raises the issue of the effect
of this substitution on the accuracy and reliability of the resulting a posteriori error
estimate. This is an open research question.

4.2. Defining the adjoint to a nonlinear operator

We describe a general framework for defining the adjoint to an nonlinear oper-
ator. The main point is to explain that there are several valid ways to do this.

We assume that the Banach spaces X and Y are actually Sobolev spaces, as
defined in Sec. 1.3, and use the notation (,) for the L2 inner product, and so
forth. Without explaining all of the details, we need this kind of structure in order
to justify everything mathematically. In particular, we employ “smoothness” of
the nonlinear operator and we have to make sense of that, which depends on the
spaces.

We actually define the adjoint for a specific kind of nonlinear operator. The
motivation is the nonlinear equation (4.2) relating the error of a numerical solution
to its residual. In general, assume that f is a nonlinear map from X into Y , where
we assume that the domain D(f) is a convex set.

Definition 4.1. A subset A of a vector space is convex if for any a, b ∈ A, the
set of points on the “line segment” joining a and b, i.e., {sa + (1− s)b| 0 ≤ s ≤ 1}
is contained in A.

This is a standard requirement when dealing with nonlinear operators, as it
allows the use of some form of the Mean Value Theorem among other things. Note
that we do not assume that D(f) is a vector subspace. We choose u and U inside
D(f) and define the new nonlinear operator

(4.3) F (e) = f(u + e)− f(u),

where e = U − u. The domain of F is

D(F) = {v ∈ X| v + u ∈ D(f)}.
We assume that D(F) is independent of e and dense in X. Note that 0 ∈ D(F)
and F (0) = 0. We also assume that D(F) is a vector subspace of X. It is clear
that there is a lot of mathematical work to do when verifying these assumptions!

We define an adjoint to an operator F of the form (4.3). There are two reasons
to do this.

• As we saw in Sec. 4.1, this is the kind of nonlinearity that arises when
estimating the error of a numerical solution of a nonlinear problem. In
general, studying the effects of perturbations in a nonlinear problem, e.g.,
model uncertainty, yields the same kind of nonlinearity.

• Nonlinear problems typically do not enjoy the global solvability that char-
acterizes linear problems. Instead, there is only a local solvability in the
sense that we can expect there to be solutions only nearby a fixed given
solution.

66 4. NONLINEAR PROBLEMS

We base the first definition of the adjoint on the bilinear identity.

Definition 4.2. An operator A∗(e) with domain D(A∗) ⊂ Y ∗ and range in
X∗ is an adjoint operator corresponding to F if

(F (v), w) = (v, A∗(v)w) for all v ∈ D(F), w ∈ D(A∗).

Note that we say is an adjoint operator associated with F , not the adjoint
operator to F . Several operators may satisfy this definition.

Example 4.3. Suppose that F can be represented as F (e) = A(e)e, where
A(e) is a linear operator with D(F) ⊂ D(A). For a fixed e ∈ D(F), we can define
the adjoint of A satisfying (A(e)w, v) = (w, A∗(e)v) for all w ∈ D(A), v ∈ D(A∗)
as usual. Substituting w = e shows this defines an adjoint of F as well. If there are
several such linear operators A, then there will be several different possible adjoints.

Example 4.4. Consider (t, x) ∈ Ω = (0, 1)× (0, 1), with X = X∗ = Y = Y ∗ =
L2 be the space of periodic functions in t and x, with period equal to 1. Consider
a periodic problem of the form

F (e) =
∂e

∂t
+ e

∂e

∂x
+ ae = f

where a > 0 is a constant and the domain of F is the set of continuously differen-
tiable functions. We can write F (e) = Ai(e)e where

A1(e)v =
∂v

∂t
+ e

∂v

∂x
+ av

A2(e)v =
∂v

∂t
+

(
a +

∂e

∂x

)
v

A3(e)v =
∂v

∂t
+

1
2

∂(ev)
∂x

+ av.

Using the usual integration by parts argument, we can verify construct the adjoints

A∗1(e)w = −∂w

∂t
− ∂(ew)

∂x
+ aw

A∗2(e)w = −∂w

∂t
+

(
a +

∂e

∂x

)
w

A∗3(e)w = −∂w

∂t
− e

2
∂w

∂x
+ aw.

We base the second definition of an adjoint on the integral mean value theorem,
as in Sec. 4.1. We assume that the original nonlinearity is Frechet differentiable
(in the finite dimensional case, this means that the Jacobian is defined and is
continuous). The integral mean value theorem states

f(U) = f(u) +
∫ 1

0

f ′(u + se) ds e

where e = U − u and f ′ is the Frechet derivative of f .
We rewrite this as

F (e) = f(U)− f(u) = A(e)e

with

A(e) =
∫ 1

0

f ′(u + se) ds.

4.3. A POSTERIORI ERROR ANALYSIS FOR A SPACE-TIME FINITE ELEMENT METHOD67

Note that we can apply the integral mean value theorem to F and obtain the
formula

A(e) =
∫ 1

0

F ′(se) ds.

Since we have introduced differentiation, we necessarily have to derive some
results about the smoothness of F . It is not difficult, but it does require the
calculus for operators, so we skip that.

Definition 4.5. For a fixed e, the adjoint operator A∗(e), defined in the usual
way for the linear operator A(e), is said to be an adjoint for F .

This is the same adjoint used in Sec.4.1.

Example 4.6. Consider Ex. 4.4. We find that

F ′(e)v =
∂v

∂t
+ e

∂v

∂x
+

(
a +

∂e

∂x

)
v.

After some technical analysis of the domains of the operators involved, we find that

A∗(e)w = −∂w

∂t
− e

2
∂w

∂x
+ aw.

This coincides with the third adjoint computed above.

4.3. A posteriori error analysis for a space-time finite element method

To illustrate how these ideas are used in practice, we consider a concrete
example. We study a system of D reaction-diffusion equations consisting of d,
1 ≤ d ≤ D, parabolic equations and D − d ordinary equations for the RD valued
function u = (ui):

(4.4)





u̇i −∇ · (εi(u, x, t)∇ui) = fi(u, x, t), (x, t) ∈ Ω× R+, 1 ≤ i ≤ D,

ui(x, t) = 0, (x, t) ∈ ∂Ω× R+, 1 ≤ i ≤ d,

u(x, 0) = u0(x), x ∈ Ω,

where Ω is an interval in R1 and a convex polygonal domain in R2 with boundary
∂Ω, u̇i denotes the partial derivative of ui with respect to time, and there is a
constant ε > 0 such that

εi(u, x, t) ≥ ε for 1 ≤ i ≤ d and εi(u, x, t) ≡ 0 for the rest.

We also assume that ε = (εi) and f = (fi) have smooth second derivatives and for
simplicity, we write εi(u, x, t) = εi(u) and f(u, x, t) = f(u). We use up and uo to
denote the parts of u associated to the parabolic and ordinary differential equations
respectively. In other words, up

i = ui for 1 ≤ i ≤ d and up
i = 0 for d < i ≤ D and

uo = u− up.
The presence of ordinary differential equations in the system (4.4) has strong

consequences for the smoothness of solutions. In particular, we can expect parabolic
smoothing to occur only for up, while the smoothness of uo is generally determined
by the smoothness of up and the initial data since f is smooth.

We describe two finite element space-time discretizations of (4.4) called the
continuous and discontinuous Galerkin method. We partition [0,∞) as 0 = t0 <
t1 < t2 < · · · < tn < . . . , denoting each time interval by In = (tn−1, tn] and time
step by kn = tn − tn−1. To each interval In, we associate a triangulation Tn of Ω
arranged so the union of the elements in Tn is Ω while the intersection of any two

68 4. NONLINEAR PROBLEMS

elements is either a common edge, node, or is empty. We assume that the smallest
angle of any triangle in a triangulation is bounded below by a fixed constant, or
equivalently that there is a constant λ0 independent of the triangulation Tn such
that area(K) ≥ λ0 diam(K)2, where diam(K) is the length of the largest side of
K, for any triangle K ∈ Tn.

Note that mesh changes can occur across time nodes. To measure the size of
the elements of Tn, we use a piecewise constant function hn, the so-called mesh
function, defined so hn|K = diam(K) for K ∈ Tn, We also use hn,min = min hn(·)
and hn,max = max hn(·) and denote the global mesh function by h, where h|In = hn.
Similarly, we use k to denote the piecewise constant function that is kn on In. When
the time level is clear in the context, we abuse notation by dropping the subscript
n.

The approximations are polynomials in time and piecewise polynomials in space
on each space-time “slab” Sn = Ω × In. In space, we let Vn ⊂ (H1

0 (Ω))d ×
(H1(Ω))D−d denote the space of piecewise linear continuous vector-valued func-
tions v(x) ∈ RD defined on Tn, where the first d components of v are zero on ∂Ω.
Then on each slab, we define

W q
n =

{
w(x, t) : w(x, t) =

q∑

j=0

tjvj(x), vj ∈ Vn, (x, t) ∈ Sn

}
.

Finally, we let W q denote the space of functions defined on the space-time domain
Ω × R+ such that v|Sn ∈ W q

n for n ≥ 1. Note that functions in W q are generally
discontinuous across the discrete time levels and we denote the jump across tn by
[w]n = w+

n −w−n where w±n = lims→tn
± w(s). To define the methods, we use the L2

projection operator Pn onto Vn, i.e. Pn : L2(Ω) → Vn is defined by (Pnv, w) = (v, w)
for all w ∈ Vn, where (·, ·) denotes the L2(Ω) inner product. We use ‖ ‖ for the
L2 norm. The global projection operator P is defined by setting P = Pn on Sn.
We also use the L2 projection operator into the piecewise polynomial functions in
time, denoted by πn : L2(In) → Pq(In), where Pq(In) is the space of polynomials
of degree q or less defined on In. The global projection operator π is defined by
setting π = πn on Sn.

Definition 4.7. The continuous Galerkin cG(q) approximation U ∈ W q

satisfies U−
0 = P0u0 and for n ≥ 1, the Galerkin orthogonality relation

(4.5)



∫ tn

tn−1

(
(U̇i, vi) + (εi(U)∇Ui,∇vi)

)
dt =

∫ tn

tn−1

(fi(U), vi) dt

for all v ∈ W q−1
n , 1 ≤ i ≤ D,

U+
n−1 = PnU−

n−1.

Note that U is continuous across time nodes over which there is no mesh change.
In particular, it is usually the case that U−

0 = U+
0 .

Definition 4.8. The discontinuous Galerkin dG(q) approximation U ∈ W q

satisfies U−
0 = P0u0 and for n ≥ 1,

(4.6)
∫ tn

tn−1

(
(U̇i, vi) + (εi(U)∇Ui,∇vi)

)
dt +

(
[Ui]n−1, v

+
i

)
=

∫ tn

tn−1

(fi(U), vi) dt

for all v ∈ W q
n , 1 ≤ i ≤ D.

4.3. A POSTERIORI ERROR ANALYSIS FOR A SPACE-TIME FINITE ELEMENT METHOD69

Note that the true solution satisfies both (4.5) and (4.6).

Example 4.9. To illustrate, we discretize the scalar problem

(4.7)





u̇−∆u = f(u), (x, t) ∈ Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

u(x, 0) = u0(x), x ∈ Ω,

using the dG(0) method. Since U is constant in time on each time interval, we let
~Un denote the Mn vector of nodal values with respect to the nodal basis {ηn,i}Mn

i=1

for Vn on In. We let Bn :
(
Bn

)
ij

=
(
ηn,i, ηn,j

)
for 1 ≤ i, j ≤ Mn and Bn,n−1 :(

Bn,n−1

)
ij

=
(
ηn,i, ηn−1,j

)
for 1 ≤ i ≤ Mn, 1 ≤ j ≤ Mn−1 denote the mass

matrices and An :
(
An

)
ij

=
(∇ηn,i,∇ηn,j

)
denote the stiffness matrix. Then Un

satisfies (
Bn + knAn

)
~Un − ~F (U−

n)kn = Bn,n−1
~Un−1, n ≥ 1,

where (~F (U−
n))i = (f(U−

n), ηn,i).

With appropriate use of quadrature to evaluate the integrals in the variational
formulation, these Galerkin methods yield standard difference schemes.

Example 4.10. In the example above, if Mn is constant and the lumped mass
quadrature is used to evaluate the coefficients of Bn and Bn,n−1 = Bn, then the
resulting set of equations for the dG(0) approximation is the same as the equations
for the nodal values of the backward Euler difference scheme for (4.7).

The dG(0) method is related to the backward Euler method, the cG(1) method is
related to the Crank-Nicolson scheme, and the dG(1) method is related to the third
order sub-diagonal Padé difference scheme.

Under general assumptions, the cG(q) and dG(q) have order of accuracy q + 1
in time and 2 in space at any point. In addition, they enjoy a superconvergence
property in time at time nodes. The dG(q) method will have order of accuracy
2q + 1 in time and the cG(q) method will have order 2q in time at time nodes for
sufficiently smooth solutions. In terms of stability characteristics, the discontinuous
Galerkin method has stability properties that make it well suited for the solution of
dissipative problems. In particular, it is often possible to show that the error of the
dG approximation of a dissipative problem is either bounded or grows only very
slowly with time. Similarly, the continuous Galerkin method is “energy” preserv-
ing which has the consequence that sometimes the error of the cG approximation
accumulates at a slower rate than the error of nonconserving schemes in problems
with a conserved quantity.

We define the coefficients for the adjoint problem by linearizing around an
average of the true and approximate solutions as in the second definition of the
adjoint.

ε̄i = ε̄i(u,U) =
∫ 1

0

εi

(
us + U(1− s)

)
ds,

β̄ij = β̄ij(u,U) =
∫ 1

0

∂εj

∂ui

(
us + U(1− s))∇(uis + Ui(1− s)

)
ds,(4.8)

f̄ij = f̄ij(u, U) =
∫ 1

0

∂fj

∂ui
(us + U(1− s)

)
ds.

70 4. NONLINEAR PROBLEMS

The regularity of u and U typically imply that ε̄ and f̄ are piecewise continuous
with respect to t and continuous, H1 functions in space while β̄ is discontinuous in
time and space.

Written out pointwise for convenience, the adjoint problem to (4.4) for the gen-
eralized Green’s function associated to the data ψ, which determines the quantity
of interest, is
(4.9)



−φ̇i −∇ · (ε̄i∇φi

)
+

∑D
j=1 β̄ji · ∇φj −

∑D
j=1 f̄ijφj = ψi, (x, t) ∈ Ω× (tn, 0],

1 ≤ i ≤ D,

φi (x, t) = 0, (x, t) ∈ ∂Ω× (tn, 0],
1 ≤ i ≤ d,

φ(x, tn) = 0, x ∈ Ω,

Example 4.11. In the case of the scalar problem with constant diffusion, the
adjoint problem is




−φ̇− ε∆φ− f̄φ = ψ, (x, t) ∈ Ω× (tn, 0],
φ(x, t) = 0, (x, t) ∈ ∂Ω× (tn, 0],
φ(x, tn) = 0, x ∈ Ω.

Example 4.12. In the case of one parabolic equation with nonlinear diffusion
coupled to one ordinary differential equation, the dual problem is





−φ̇1 −∇ · ε̄1∇φ1 + β̄11∇φ1 − f̄11φ1 − f̄12φ2 = ψ1, (x, t) ∈ Ω× (tn, 0],
−φ̇2 + β̄12∇φ1 − f̄21φ1 − f̄22φ2 = ψ2, (x, t) ∈ Ω× (tn, 0],
φ1(x, t) = 0, (x, t) ∈ ∂Ω× (tn, 0],
φ(x, tn) = 0, x ∈ Ω.

This choice for the adjoint yields the following error representation formulas.
For the cG method, we have

∫ tn

0

(e, ψ) dt = (e+(0), φ(0))

+
∫ tn

0

(
(U̇ , πPφ− φ) + (ε(U)∇U,∇(πPφ− φ))− (f(U), πPφ− φ)

)
dt.

For the dG method, we get
∫ tn

0

(e, ψ) dt = (e−(0), φ(0)) +
n∑

j=1

(
[U]j−1, (πPφ− φ)+j−1

)

+
∫ tn

0

(
(U̇ , πPφ− φ) + (ε(U)∇U,∇(πPφ− φ))− (f(U), πPφ− φ)

)
dt.

Important mathematical questions regarding these representation formulas in-
clude

• Does the finite element approximation have sufficient smoothness in order
for these formulas to make sense?

• Is the adjoint problem well-posed, and what are the smoothness properties
of the generalized Green’s function?

• What is the effect of linearization error on the accuracy of the formulas?

4.4. THE BISTABLE PROBLEM 71

These issues are complicated in nonlinear problems because the adjoint problem
depends on the approximation, e.g., if the approximation is badly behaved, then
the generalized Green’s function might be badly behaved, and these formulas may
not mean very much. The way this additional complication is addressed is by
restricting the problems so that the true solution and the approximation both
enjoy special stability properties. See [ELW00] for a complete theory for nonlinear
reaction-diffusion problems.

4.4. The bistable problem

We conclude the notes by investigating the behavior of the generalized Green’s
function corresponding to a well-known reaction diffusion problem called variously
the bistable, Chafee-Infante, and Allen-Cahn problem. This has the form (4.4) with
D = 1, ε > 0 constant, β ≡ 0, and f(u) = u− u3.

(4.10)





∂u

∂t
− ε

∂2u

∂x2
= u− u3, 0 < x < 1, 0 < t,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, 0 < t,

u(x, 0) = u0(x), 0 < x < 1.

In one dimension, the bistable equation has been used to model the motion of
domain walls in ferromagnetic materials. It is also used as a prototypical example
of “metastability” in one dimension and “motion by mean curvature” in two di-
mensions. It is one of the simplest problems that produce evolution to equilibrium
in the presence of competing stable steady states. When ε is sufficiently small, the
only stable equilibrium solutions are u ≡ 1 and u ≡ −1 and all solutions, except
unstable equilibrium solutions, converge to one of these two steady-states. How-
ever, this convergence may be extremely slow because solutions can exhibit dynamic
metastability. Generic initial data forms a pattern of transition layers between the
values −1 and 1 during an initial transient, after which the layers coalesce by mov-
ing more or less in a horizontal direction. The time scale for substantial motion
of the layers is exp(Cd/

√
ε) where C is a constant and d is the distance between

neighboring layers. When two layers become sufficiently close, a rapid transient
occurs during which the layers collapse together. The solution then forms a new,
simpler metastable pattern and the process begins anew.

We illustrate with a computation made with ε = .0009 and

u0(x) =





tanh((.2− x)/(2
√

ε)), 0 ≤ x < .28,

tanh((x− .36)/(2
√

ε)), .28 ≤ x < .4865,

tanh((.613− x)/(2
√

ε)), .4865 ≤ x < .7065,

tanh((x− .8)/(2
√

ε)), .7065 ≤ x ≤ 1,

which produces a function that is very close to a metastable state. We display the
evolution of the corresponding numerical solution in Fig. 4.1. The “well” on the left
is slightly thinner and collapses first. Care is needed when computing. For example,
computing without a sufficiently fine time step or space mesh causes “locking” in
which a metastable pattern actually becomes artificially stable.

In this example, we investigate the behavior of the generalized Green’s function
corresponding to determining point values of the solution of the bistable problem
at many points by reporting on the values of the associated stability factors. Recall

72 4. NONLINEAR PROBLEMS

1

-1

0

1 0

167

t
x

U

Figure 4.1. Evolution of a metastable solution starting with two
“wells” and ε = .0009. The left well is thinner and collapses at
t ≈ 41 and the second well collapses at t ≈ 141.

from Sec. 2.3, that we define the stability factors by deriving bounds on the a pos-
teriori error representation formulas. The stability factors are a form of condition
number for the particular solution of the differential equation being studied. They
depend on the particular solution in a nonlinear problem because of the linearization
used to form the adjoint problem.

To be precise, we would have to define appropriate residuals for a finite element
solution of (4.4), and carry out the analysis to obtain a bound. We forgo this and
just state the form of the stability factors appropriate to (4.4).

If the generalized Green’s function is sufficiently smooth, more precisely,

φ ∈ L∞((0, tn); L2(Ω)), Dα
t φ ∈ L1((0, tn); L2(Ω)),

and D2φp ∈ L1((0, tn); L2(Ω)),

where 0 ≤ α ≤ 1 for the cG(1) and dG(0) methods and 0 ≤ α ≤ 2 for the dG(1)
method, then we can take optimal interpolation estimates on the adjoint weights
πPφ− φ that appear in the error representation formulas.

The stability factor associated to the propagation of the initial error is defined:

Si(0, tn) = ‖φ(0)‖.
The stability factor associated with time discretization by means of the cG(q) or
dG(q-1) method is defined by

St
α(0, tn) = Ct

α

∫ tn

0

‖Dα
t φ‖ dt, 0 ≤ α ≤ q,

where Ct
α is the interpolation constant in the L1 error bound for the L2 projection

into the space of scalar polynomials of degree α. In order to define the stability
factors associated to space discretization, we denote the part of φ associated to the
parabolic and ordinary differential equations by φp and φo respectively. Then,

Sp(0, tn) = Cp

∫ tn

0

‖D2φp‖ dt and So(0, tn) =
∫ tn

0

‖φo‖ dt,

where Cp is the standard interpolation constant for the L2 error bound for the L2

projection into the space of continuous piecewise linear functions Vn.

4.4. THE BISTABLE PROBLEM 73

Figure 4.2. Plot of Si(0, tn) and (Ct
1)
−1St

1(0, tn) =
(Cp)−1Sp(0, tn) versus tn for the heat equation.

Stability Factors

10-6

102

0 167
t

time

space

1

-1
0

1 0

167

t
x

U

Figure 4.3. We plot the approximate stability factors versus time
for the trajectory of the bistable problem computed above.

To illustrate, we plot the stability factors for the heat equation on the interval
[0, 1] with Dirichlet boundary conditions for a generic choice of adjoint data in
Fig. 4.2. We see that Si(0, tn) decays exponentially to zero as tn →∞, as expected
for the heat equation. The other stability factors tend exponentially to a constant
value ≈ 1.146, indicating that there is essentially no accumulation of discretization
errors after sufficient time has passed.

In Fig. 4.3, we plot the approximate stability factors for the numerical solution
of the bistable problem plotted in Fig. 4.1. After an initial transient, the stabil-
ity factors approach a value close to 1. Thereafter, they grow super-exponentially
during the metastable periods, yet overall remain moderately sized because they
decrease extremely rapidly to a value close to one during the transient between
metastable periods. This indicates that the trajectory becomes quite stable during
these transients. This behavior appears to be characteristics of metastable solu-
tions. We conclude that it is possible to compute accurate numerical solutions over
long time intervals.

We also illustrate the “linearization effect” that arises because we solve an ap-
proximate adjoint problem obtained by linearization around the computed solution.

74 4. NONLINEAR PROBLEMS

Figure 4.4. A plot of approximate stability factors St
1(t) for the

bistable problem computed using trajectories computed with vary-
ing accuracy in space.

We compute approximations using uniform space meshes with elements M ranging
from M = 21 to M = 351. We maintain the contribution to error due to time
integration to be less than .0001. For M ≤ 50, the numerical solutions are subject
to “locking”, which means that one or more metastable layers become artificially
stable, while the correct behavior is observed for M ≥ 51. When M = 21, the
thinner of the two wells collapses (though at a different time than for larger M)
while the wider well becomes fixed. We plot the approximate stability factors St

1(t)
versus time for a sample of computations in Fig. 4.4. The locking phenomena is
clearly reflected in the values of the stability factor for M = 21, which remains 1
after the first well collapses indicating that the resulting pattern is stable.

Even though the numerical solutions corresponding to M = 32 and M = 64
are nearly identical to the eye, the behavior of the two is radically different. In
Fig. 4.5, we plot numerical solutions for equally spaced meshes with M = 32 and
M = 64 at t ≈ 5.6 and again at t ≈ 389. The two solutions are very close
at early times but because the solution on the coarser mesh becomes locked, the
numerical solutions end up quite different at later times. The bistable problem is
sensitive to linearization in the neighborhood of these two approximate trajectories.
Fortunately, the a posteriori error bound estimates the error to be 2.23, i.e. more
than %200, in the numerical solution with M = 32 elements at the time when the
first well collapses. Note that Fig. 4.4 shows that the problem is not sensitive to
linearization around numerical trajectories that are sufficiently accurate. M = 101,
M = 201 and M = 351 all produce nearly the same behavior and stability factors.

This example is an illustration of the general observation about the nature of
nonlinearity in the context of computing error estimates and determining model sen-
sitivity. In this setting, a highly nonlinear problem is one in which nearby solutions
have wildly different stability properties with respect to data and/or parameters.
It is in this case that linearization can lead to inaccurate results. Unfortunately, it
seems to be difficult to deal with this kind of nonlinear behavior analytically.

4.4. THE BISTABLE PROBLEM 75

Figure 4.5. A plot of numerical solutions computed using equally
spaced meshes with M = 32 and M = 64 at (a) t ≈ 5.6 and (b)
t ≈ 389. .

Bibliography

[BH00] R. Bank and M. Holst, A new paradigm for parallel adaptive mesh refinement, SIAM
J. Sci. Comput. 22 (2000), 1411–1443.

[BM97] I. Babuška and J. Melenk, The partition of unity finite element method, Internat. J.
Numer. Methods Engrg. 40 (1997), 727–758.

[BR01] R. Becker and R. Rannacher, An optimal control approach to a posteriori error esti-
mation in finite element methods, Acta Numerica (2001), 1–102.

[BR03] W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equa-
tions, Birkhauser, Boston, 2003.

[BS94] S. Brenner and L. R. Scott, The mathematical theory of finite element methods,
Springer-Verlag, New York, 1994.

[DE91] L. Dieci and D. Estep, Some stability aspects of schemes for the adaptive integration
of stiff initial value problems, SIAM J. Sci. Stat. Comput. 12 (1991), 1284–1303.

[Duf01] D. Duffy, Green’s functions with applications, Chapman and Hall/CRC, New York,
2001.

[EEHJ95] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Introduction to adaptive methods
for differential equations, Acta Numerica (1995), 105–158.

[EEHJ96] , Computational differential equations, Cambridge University Press, New York,
1996.

[EH02] D. Estep and M. Holst, FETkLab: Finite Element Toolkit for MATLAB, 2002, can be
obtained from http://www.fetk.org.

[EHM02] D. Estep, M. Holst, and D. Mikulencak, Accounting for stability: a posteriori error
estimates based on residuals and variational analysis, Comm. Num. Meth. Engin. 18
(2002), 15–30.

[EJ91] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems
I: A linear model problem, SIAM J. Numer. Anal. 28 (1991), 43–77.

[ELW00] Donald J. Estep, Mats G. Larson, and Roy D. Williams, Estimating the error of
numerical solutions of systems of reaction-diffusion equations, Memoirs A.M.S. 146
(2000), 1–109.

[Est94] D. Estep, An analysis of numerical approximations of metastable solutions of the
bistable equation, Nonlinearity 7 (1994), 1445–1462.

[Est95] , A posteriori error bounds and global error control for approximations of or-
dinary differential equations, SIAM J. Numer. Anal. 32 (1995), 1–48.

[Est02] , Practical analysis in one variable, Springer-Verlag, New York, 2002.
[EW96] D. Estep and R. Williams, Accurate parallel integration of large sparse systems of

differential equations, Math. Models Meth. Appl. Sci. 6 (1996), 535–568.
[FH89] G. Fusco and J. Hale, Slow-motion manifolds, dormant instability, and singular per-

turbations, J. Dynam. Differ. Equa. 1 (1989), 75–94.
[Fol84] G. Folland, Real analysis, John Wiley and Sons, New York, 1984.
[Fol95] , Introduction to partial differential equations, Princeton University Press,

Princeton, New Jersey, 1995.
[GS00] M. Griebel and M. Schweitzer, A particle-partition of unity method for the solution of

elliptic, parabolic, hyperbolic pdes, SIAM J. Sci. Comput. 22 (2000), 853–890.
[GS02] M. Giles and E. Süli, Adjoint methods for pdes: a posteriori error analysis and post-

processing by duality, Acta Numerica (2002), 145–236.
[Hal87] P. Halmos, Finite-dimensional vector spaces, Springer-Verlag, New York, 1987.
[Hol01] M. Holst, Adaptive numerical treatment of elliptic systems on manifolds, Adv. Com-

put. Math. 15 (2001), no. 1–4, 139–191.

76

BIBLIOGRAPHY 77

[Hol02] , Applications of domain decomposition and partition of unity methods in
physics and geometry (plenary paper), Fourteenth International Conference on Do-
main Decomposition Methods, January 2002, Mexico City, Mexico, 2002.

[JLTW87] C. Johnson, S. Larsson, V. Thomée, and L. Wahlbin, Error estimates for spatially
discrete approximations of semilinear parabolic equations with nonsmooth initial data,
Math. Comput. 49 (1987), 331–357.

[KA64] L. Kantorovich and G. Akilov, Functional analysis in normed spaces, Macmillan Com-
pany, New York, 1964.

[Lan96] C. Lanczos, Linear differential operators, SIAM, Philadelphia, 1996.
[LM72] J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications,

vol. 1, Springer-Verlag, New York, 1972.
[MAS96] G. Marchuk, V. Agoshkov, and V. Shutyaev, Adjoint equations and perturbation algo-

rithms in nonlinear problems, CRC Press, New York, 1996.
[RR93] M. Renardy and R. Rogers, An introduction to partial differential equations, Springer-

Verlag, New York, 1993.
[Sch01] M. Schechter, Principles of functional analysis, American Mathematical Society, Prov-

idence, Rhode Island, 2001.
[Smo01] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York,

2001.
[XZ00] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid

discretizations, Math. Comput. 69 (2000), 881–909.
[Zau98] E. Zauderer, Partial differential equations of applied mathematics, John Wiley and

Sons, New York, 1998.

