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A Multiphysics Model of a Thermal Actuator

Example A thermal actuator is a MEMS scale electric switch
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A Model for a Thermal Actuator

Electrostatic current equation (J = −σ∇V )

∇ · (σ(T )V ) = 0

Steady-state energy equation

∇ · (κ(T )∇T ) = σ(∇V · ∇V )

Steady-state displacement (linear elasticity)

∇̂ ·
(

λ tr(E)I + 2µE − β(T − Tref )I
)

= 0

E =
(

∇̂d+ ∇̂d⊤
)

/2

Multiple physical components, multiple scales =⇒ complicated
analytic and computational issues
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Application Goals for Multiphysics Models

Typical applications of multiphysics models include

• Analyze the effects of uncertainties and variation in the
physical properties of the model on its output

• Compute optimal parameter values with respect to
producing a desired observation or consequence

• Determine allowable uncertainties for input parameters and
data that yield acceptable uncertainty in output

• Predict the behavior of the system by matching model
results to experimental observations

Applications requiring results for a range of data and parameter
values raise a critical need for quantification and control of
uncertainty
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Computational Goals for Multiphysics Models

Application of multiphysics models invoke two computational
goals

• Compute specific information from multiscale, multiphysics
problems accurately and efficiently

• Accurately quantify the error and uncertainty in any
computed information

The context is important:

It is often difficult or impossible to obtain uniformly
accurate solutions of multiscale, multiphysics problems
throughout space and time
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Fundamental Tools

We employ two fundamental mathematical tools

• Duality and adjoint operators
• Variational analysis

These tools have a long history of application in analysis of
model sensitivity and optimization

More recently, they have been applied to a posteriori error
estimation for differential equations

Currently, they are being applied to the analysis and application
of multiphysics problems
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Outline of this course

The plan is roughly

1. Overview of duality and adjoints for linear operators

2. Uses of duality and adjoint operators

3. Adjoints for nonlinear operators

4. Application to computational science and engineering
• Estimating the error of numerical solutions of differential

equations
• Adaptive mesh refinement
• Investigations into stability properties of solutions
• Kernel density estimation
• Estimating the effects of operator decomposition
• Adaptive error control for parameter optimization
• Domain decomposition
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Functionals and Dual Spaces
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What Information is to be Computed?

The starting point is the computation of particular information
obtained from a solution of a multiscale, multiphysics problem

Considering a particular quantity of interest is important
because obtaining solutions that are accurate everywhere is
often impossible

The application should begin by answering

What do we want to compute from the model?

We use functionals and dual spaces to answer this
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Definition of Linear Functionals

Let X be a vector space with norm ‖ ‖

A bounded linear functional ℓ is a continuous linear map from X
to the reals R, ℓ ∈ L(X,R)

Example For v in R
n fixed, the map

ℓ(x) = v · x = (x, v)

is a linear functional on R
n

Example For a continuous function f on [a, b],

ℓ(f) =

∫ b

a

f(x) dx and ℓ(f) = f(y) for a ≤ y ≤ b

are linear functionals
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Sampling a Vector

A linear functional is a one dimensional “sample” of a vector

Example The linear functional on R
n given by the inner product

with the basis vector ei gives the ith component of a vector

Example Statistical moments like the expected value E(X) of a
random variable X are linear functionals

Example The Fourier coefficients of a continuous function f on
[0, 2π],

cj =

∫ 2π

0
f(x) e−ijx dx

are functionals of f
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Sampling a Vector

Using linear functionals of a solution means settling for a set of
samples rather than the entire solution

Presumably, it is easier to compute accurate samples than
solutions that are accurate everywhere

In many situations, we settle for an “incomplete” set of samples

Example We are often happy with a small set of moments of a
random variable

Example In practical applications of Fourier series, we truncate
the infinite series to a finite number of terms,

∞
∑

j=−∞

cje
ijx →

J
∑

j=−J

cje
ijx
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Linear functionals and dual spaces

We are interested in the set of reasonable samples

Definition
If X is a normed vector space, the vector space L(X,R) of
continuous linear functionals on X is called the dual space of X,
and is denoted by X∗

The dual space is a normed vector space under the dual norm
defined for y ∈ X∗ as

‖y‖X∗ = sup
x∈X

‖x‖X=1

|y(x)| = sup
x∈X
x6=0

|y(x)|

‖x‖

size of a “sample” = largest value of the sample on vectors of length 1
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Linear functionals and dual spaces

Example Consider X = R
n. Every vector v in R

n is associated
with a linear functional Fv(·) = (·, v). This functional is clear
bounded since |(x, v)| ≤ ‖v‖ ‖x‖ = C‖x‖

A classic result in linear algebra is that all linear functionals on
R
n have this form, i.e., we can make the identification

(Rn)∗ ≃ R
n

Donald Estep, Colorado State University – p. 18/196



Linear functionals and dual spaces

Example For C([a, b]), consider I(f) =
∫ b

a
f(x) dx. It is easy to

compute

‖I‖C([a,b])∗ = sup
f∈C([a,b])
max |f |=1

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

by looking at a picture.
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Linear functionals and dual spaces

1

-1

a
b

possible functions

Computing the dual norm of the integration functional

The maximum value for I(f) is clearly given by f = 1 or f = −1,
and ‖I‖C([a,b])∗ = b− a
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Linear functionals and dual spaces

Recall Hölder’s inequality: if f ∈ Lp(Ω) and g ∈ Lq(Ω) with
p−1 + q−1 = 1 for 1 ≤ p, q ≤ ∞, then

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω)

Example Each g in Lq(Ω) is associated with a bounded linear
functional on Lp(Ω) when p−1 + q−1 = 1 and 1 ≤ p, q ≤ ∞ by

F (f) =

∫

Ω
g(x)f(x) dx

We can “identify” (Lp)∗ with Lq when 1 < p, q <∞

The cases p = 1, q = ∞ and p = ∞, q = 1 are trickier
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Duality for Hilbert Spaces

Hilbert spaces are Banach spaces with an inner product ( , )

Example R
n and L2 are Hilbert spaces

If X is a Hilbert space, then ψ ∈ X determines a bounded linear
functional via the inner product

ℓψ(x) = (x, ψ), x ∈ X

The Riesz Representation theorem says this is the only kind of
linear functional on a Hilbert space

We can identify the dual space of a Hilbert space with itself

Linear functionals are commonly represented as inner products
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Riesz Representors

Some useful choices of Riesz representors ψ for functions f in a
Hilbert space include:

• ψ = χω/|ω| gives the error in the average value of f over a
subset ω ⊂ Ω, where χω is the characteristic function of ω

• ψ = δc gives the average value
∮

c
f(s) ds of f on a curve c in

R
n, n = 2, 3, and ψ = δs gives the average value of f over a

plane surface s in R
3 (δ denotes the corresponding delta

function)
• We can obtain average values of derivatives using dipoles

similarly

• ψ = f/‖f‖ gives the L2 norm of f

Only some of these ψ have spatially local support
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The Bracket Notation

We “borrow” the Hilbert space notation for the general case:

Definition
If x is in X and y is in X∗, we denote the value

y(x) = 〈x, y〉

This is called the bracket notation

The generalized Cauchy inequality is

|〈x, y〉| ≤ ‖x‖X ‖y‖X∗ , x ∈ X, y ∈ X∗
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Adjoint Operators
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Motivation for the Adjoint Operator

Let X, Y be normed vector spaces

Assume that L ∈ L(X,Y ) is a continuous linear map

The goal is to compute a sample or functional value of the output

ℓ
(

L(x)
)

, some x ∈ X

Some important questions:
• Can we find a way to compute the sample value efficiently?
• What is the error in the sample value if approximations are

involved?
• Given a sample value, what can we say about x?
• Given a collection of sample values, what can we say about
L?
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Definition of the Adjoint Operator

Let X, Y be normed vector spaces with dual spaces X∗, Y ∗

Assume that L ∈ L(X,Y ) is a continuous linear map

For each y∗ ∈ Y ∗ there is an x∗ ∈ X∗ defined by

x∗(x) = y∗
(

L(x)
)

sample of x in X= sample of image L(x) of x in Y

The adjoint map L∗ : Y ∗ → X∗ satisfies the bilinear identity

〈L(x), y∗〉 = 〈x,L∗(y∗)〉, x ∈ X, y∗ ∈ Y ∗
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Adjoint of a Matrix

Example Let X = R
m and Y = R

n with the standard inner
product and norm

L ∈ L(Rm,Rn) is associated with a n×m matrix A:

A =







a11 · · · a1m

...
...

an1 · · · anm






, y =







y1

...
yn






, x =







x1

...
xm







and

yi =
m
∑

j=1

aijxj , 1 ≤ i ≤ n
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Adjoint of a Matrix

The bilinear identity reads

(Lx, y) = (x,L∗y), x ∈ R
m, y ∈ R

n.

For a linear functional y∗ = (y∗1 , · · · , y
∗
n)

⊤ ∈ Y ∗

L∗y∗(x) = y∗(L(x)) =









(y∗1 , · · · , y
∗
n),









∑m
j=1 a1jxj

...
∑m

j=1 anjxj

















=
m
∑

j=1

y∗1a1jxj + · · ·
m
∑

j=1

y∗nanjxj

=
m
∑

j=1

(

n
∑

i=1

y∗i aij
)

xj
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Adjoint of a Matrix

L∗(y∗) is given by the inner product with ỹ = (ỹ1, · · · , ỹm)⊤

where

ỹj =

n
∑

i=1

y∗i aij .

The matrix A∗ of L∗ is

A∗ =







a∗11 · · · a∗1n
...

...
a∗m1 · · · a∗mn






=







a11 a21 · · · an1

...
...

a1m a2m · · · anm






= A⊤.
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Properties of Adjoint Operators

Theorem
Let X, Y , and Z be normed linear spaces. For L1, L2 ∈ L(X,Y ):

L∗
1 ∈ L(Y ∗,X∗)

‖L∗
1‖ = ‖L1‖

0∗ = 0

(L1 + L2)
∗ = L∗

1 + L∗
2

(αL1)
∗ = αL∗

1, all α ∈ R

If L2 ∈ L(X,Y ) and L1 ∈ L(Y,Z), then (L1L2)
∗ ∈ L(Z∗,X∗) and

(L1L2)
∗ = L∗

2L
∗
1.
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Adjoints for Differential Operators

Computing adjoints for differential operators is more complicated

We need to make assumptions on the spaces, e.g., the domain
of the operator and the corresponding dual space have to be
sufficiently “big”

The Hahn-Banach theorem is often involved

We consider differential operators on Sobolev spaces using the
L2 inner product and ignore analytic technicalities
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Adjoints for Differential Operators

The adjoint of the differential operator L

(Lu, v) → (u,L∗v)

is obtained by a succession of integration by parts

Boundary terms involving functions and derivatives arise from
each integration by parts

We use a two step process

1. We first compute the formal adjoint by assuming that all
functions have compact support and ignoring boundary
terms

2. We then compute the adjoint boundary and data conditions
to make the bilinear identity hold
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Formal Adjoints

Example Consider

Lu(x) = −
d

dx

(

a(x)
d

dx
u(x)

)

+
d

dx
(b(x)u(x))

on [0, 1]. Integration by parts neglecting boundary terms gives

−

∫ 1

0

d

dx

(

a(x)
d

dx
u(x)

)

v(x) dx

=

∫ 1

0
a(x)

d

dx
u(x)

d

dx
v(x) dx− a(x)

d

dx
u(x)v(x)

∣

∣

∣

∣

1

0

= −

∫ 1

0
u(x)

d

dx

(

a(x)
d

dx
v(x)

)

dx+ u(x)a(x)
d

dx
v(x)

∣

∣

∣

∣

1

0
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Formal Adjoints

∫ 1

0

d

dx
(b(x)u(x))v(x) dx = −

∫ 1

0
u(x)b(x)

d

dx
v(x) dx+b(x)u(x)v(x)

∣

∣

∣

∣

1

0

,

All of the boundary terms vanish

Therefore,

Lu(x) = −
d

dx

(

a(x)
d

dx
u(x)

)

+
d

dx
(b(x)u(x))

=⇒ L∗v = −
d

dx

(

a(x)
d

dx
v(x)

)

− b(x)
d

dx
(v(x))
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Formal Adjoints

In higher space dimensions, we use the divergence theorem

Example A general linear second order differential operator L
in R

n can be written

L(u) =

n
∑

i=1

n
∑

j=1

aij
∂2u

∂xi∂xj
+

n
∑

i=1

bi
∂u

∂xi
+ cu,

where {aij}, {bi}, and c are functions of x1, x2, · · · , xn. Then,

L∗(u) =

n
∑

i=1

n
∑

j=1

∂2(aijv)

∂xi∂xj
−

n
∑

i=1

∂(biv)

∂xi
+ cv
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Adjoint Boundary Conditions

In the second stage, we deal with the boundary terms that arise
during integration by parts

Definition
The adjoint boundary conditions are the minimal conditions
required in order that the bilinear identity hold true

The form of the boundary conditions imposed on the differential
operator is important, but not the values

We assume homogeneous boundary values for the differential
operator when determining the adjoint conditions
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Adjoint Boundary Conditions

Example Consider Newton’s equation of motion s′′(x) = f(x)
with x = “time”, normalized with mass 1

If s(0) = s′(0) = 0 and 0 < x < 1,

∫ 1

0
(s′′v − sv′′) dx = (vs′ − sv′)

∣

∣

1

0

The boundary conditions imply the contributions at x = 0 vanish,
while at x = 1 we have

v(1)s′(1) − v′(1)s(1)

The adjoint boundary conditions are v(1) = v′(1) = 0
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Adjoint Boundary Conditions

Example Since

∫

Ω
(u∆v − v∆u) dx =

∫

∂Ω

(

u
∂v

∂n
− v

∂u

∂n

)

ds,

the Dirichlet and Neumann boundary value problems for the
Laplacian are their own adjoints
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Adjoint Boundary Conditions

Example Let Ω ⊂ R
2 be bounded with a smooth boundary and

let s = arclength along the boundary

Consider
{

−∆u = f, x ∈ Ω,
∂u
∂n

+ ∂u
∂s

= 0, x ∈ ∂Ω

Since
∫

Ω
(u∆v − v∆u) dx =

∫

∂Ω

(

u

(

∂v

∂n
−
∂v

∂s

)

− v

(

∂u

∂n
+
∂u

∂s

))

ds,

the adjoint problem is

{

−∆v = g, x ∈ Ω,
∂v
∂n

− ∂v
∂s

= 0, x ∈ ∂Ω.
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Adjoint for an Evolution Operator

For an initial value problem, we have d
dt

and an initial condition

Now
∫ T

0

du

dt
v dt = u(t)v(t)

∣

∣

T

0
−

∫ T

0
u
dv

dt
dt

The boundary term at 0 vanishes because u(0) = 0

The adjoint is a final-value problem with “initial” condition
v(T ) = 0

The adjoint problem has −dv
dt

and time “runs backwards”
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Adjoint for an Evolution Operator

Example











Lu = du
dt

− ∆u = f, x ∈ Ω, 0 < t ≤ T,

u = 0, x ∈ ∂Ω, 0 < t ≤ T,

u = u0, x ∈ Ω, t = 0

=⇒











L∗v = −dv
dt

− ∆v = ψ, x ∈ Ω, T > t ≥ 0,

v = 0, x ∈ ∂Ω, T > t ≥ 0,

v = 0, x ∈ Ω, t = T
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The Usefulness of Duality and Adjoints
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The Dual Space is Nice

The dual space can be better behaved than the original normed
vector space

Theorem
If X is a normed vector space over R, then X∗ is a Banach
space (whether or not X is a Banach space)

Donald Estep, Colorado State University – p. 44/196



Condition of an Operator

There is an intimate connection between the adjoint problem
and the stability properties of the original problem

Theorem
The singular values of a matrix L are the square roots of the
eigenvalues of the square, symmetric transformations L

∗
L or

LL
∗

This connects the condition number of a matrix L to L
∗
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Solving Linear Problems

Given normed vector spaces X and Y , an operator L(X,Y ),
and b ∈ Y , find x ∈ X such that

Lx = b

Theorem
A necessary condition that b is in the range of L is y∗(b) = 0 for
all y∗ in the null space of L∗

This is a sufficient condition if the range of L is closed in Y

Example If A is an n×m matrix, a necessary and sufficient
condition for the solvability of Ax = b is b is orthogonal to all
linearly independent solutions of A⊤y = 0
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Solving Linear Problems

Example When X is a Hilbert space and L ∈ L(X,Y ), then
necessarily the range of L∗ is a subset of the orthogonal
complement of the null space of L

If the range of L∗ is “large”, then the orthogonal complement of
the null space of L must be “large” and the null space of L must
be “small”

The existence of sufficiently many solutions of the
homogeneous adjoint equation L∗φ = 0 implies there is at most
one solution of Lu = b for a given b
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The Augmented System

Consider the potentially nonsquare system Ax = b, where A is a
n×m matrix, x ∈ R

m, and b ∈ R
n

The augmented system is obtained by adding a problem for the
adjoint, e.g. an m× n system A⊤y = c, where y and c are
nominally independent of x and b

The new problem is an (n+m) × (n+m) symmetric problem

(

0 A

A⊤ 0

)(

y

x

)

=

(

b

c

)
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The Augmented System

Consequences:
• The theorem on the adjoint condition for solvability falls out

right away
• This yields a “natural” definition of a solution in the

over-determined case
• This gives conditions for a solution to exist in the

under-determined case

The more over-determined the original system, the more
under-determined the adjoint system, and so forth
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The Augmented System

Example Consider 2x1 + x2 = 4, where L : R
2 → R.

L∗ : R → R
2 is given by L∗ =

(

2

1

)

The extended system is







0 2 1

2 0 0

1 0 0













y1

x1

x2






=







4

c1

c2






,

so 2c1 = c2 is required in order to have a solution
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The Augmented System

Example If the problem is

2x1 + x2 = 4

x2 = 3,

with L : R
2 → R

2, then there is a unique solution

The extended system is











0 0 2 1

0 0 0 1

2 0 0 0

1 1 0 0





















y1

y2

x1

x2











=











c1

c2

4

3











,

where we can specify any values for c1, c2
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The Augmented System

In the under-determined case, we can eliminate the deficiency
by posing the method of solution

AA⊤y = b

x = A⊤y
or

L(L∗(y)) = b

x = L∗(y)
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The Augmented System

This works for differential operators

Example Consider the under-determined problem

divF = ρ

The adjoint to div is -grad modulo boundary conditions

If F = grad u, where u is subject to the boundary condition
u(“∞”) = 0, then we obtain the “square”, well-determined
problem

div grad u = ∆u = −ρ,

which has a unique solution because of the boundary condition
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Greens Functions

Suppose we wish to compute a functional ℓ(x) of the solution
x ∈ R

n of a n× n system

Lx = b

For a linear functional ℓ(·) = (·, ψ), we define the adjoint problem

L
∗φ = ψ

Variational analysis yields the representation formula

ℓ(x) = (x, ψ) = (x,L∗φ) = (Lx, φ) = (b, φ)

We can compute many solutions by computing one adjoint
solution and taking inner products
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Greens Functions

This is the method of Green’s functions in differential equations

Example For
{

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω

the Green’s function solves

−∆φ = δx (delta function at x)

This yields
u(x) = (u, δx) = (f, φ)

The generalized Green’s function solves the adjoint problem
with general functional data, rather than just δx

The imposition of the adjoint boundary conditions is crucial

Donald Estep, Colorado State University – p. 55/196



Nonlinear Operators
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Nonlinear Operators

There is no “natural” adjoint for a general nonlinear operator

We assume that the Banach spaces X and Y are Sobolev
spaces and use ( , ) for the L2 inner product, and so forth

We define the adjoint for a specific kind of nonlinear operator

We assume f is a nonlinear map from X into Y , where the
domain of f is a convex set
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A Perturbation Operator

We choose u in the domain of f and define

F (e) = f(u+ e) − f(u),

where we think of e as representing an “error”, i.e., e = U − u

The domain of F is

{v ∈ X| v + u ∈ domain of f}

We assume that the domain of F is independent of e and dense
in X

Note that 0 is in the domain of F and F (0) = 0
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A Perturbation Operator

Two reasons to work with functions of this form:
• This is the kind of nonlinearity that arises when estimating

the error of a numerical solution or studying the effects of
perturbations

• Nonlinear problems typically do not enjoy the global
solvability that characterizes linear problems, only a local
solvability
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Definition 1

The first definition is based on the bilinear identity

Definition
An operator A∗(e) is an adjoint operator corresponding to F if

(F (e), w) = (e,A∗(e)w) for all e ∈ domain of F, w ∈ domain of A∗

This is an adjoint operator associated with F , not the adjoint
operator to F
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Definition 1

Example Suppose that F can be represented as F (e) = A(e)e,
where A(e) is a linear operator with the domain of F contained
in the domain of A

For a fixed e in the domain of F , define the adjoint of A satisfying

(A(e)w, v) = (w,A∗(e)v)

for all w ∈ domain of A, v ∈ domain of A∗

Substituting w = e shows this defines an adjoint of F as well

If there are several such linear operators A, then there will be
several different possible adjoints.
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An Adjoint for a Nonlinear Differential Equation

Example Let (t, x) ∈ Ω = (0, 1) × (0, 1), with
X = X∗ = Y = Y ∗ = L2 denoting the space of periodic
functions in t and x, with period equal to 1

Consider a periodic problem

F (e) =
∂e

∂t
+ e

∂e

∂x
+ ae = f

where a > 0 is a constant and the domain of F is the set of
continuously differentiable functions.
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An Adjoint for a Nonlinear Differential Equation

We can write F (e) = Ai(e)e where

A1(e)v =
∂v

∂t
+ e

∂v

∂x
+ av =⇒ A∗

1(e)w = −
∂w

∂t
−
∂(ew)

∂x
+ aw

A2(e)v =
∂v

∂t
+

(

a+
∂e

∂x

)

v =⇒ A∗
2(e)w = −

∂w

∂t
+

(

a+
∂e

∂x

)

w

A3(e)v =
∂v

∂t
+

1

2

∂(ev)

∂x
+ av =⇒ A∗

3(e)w = −
∂w

∂t
−
e

2

∂w

∂x
+ aw
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Definition 2

If the nonlinearity is Frechet differentiable, we base the second
definition of an adjoint on the integral mean value theorem

The integral mean value theorem states

f(U) = f(u) +

∫ 1

0
f ′(u+ se) ds e

where e = U − u and f ′ is the Frechet derivative of f
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Definition 2

We rewrite this as

F (e) = f(U) − f(u) = A(e)e

with

A(e) =

∫ 1

0
f ′(u+ se) ds.

Note that we can apply the integral mean value theorem to F :

A(e) =

∫ 1

0
F ′(se) ds.

To be precise, we should discuss the smoothness of F .
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Definition 2

Definition
For a fixed e, the adjoint operator A∗(e), defined in the usual way
for the linear operator A(e), is said to be an adjoint for F

Example Continuing the previous example,

F ′(e)v =
∂v

∂t
+ e

∂v

∂x
+

(

a+
∂e

∂x

)

v.

After some technical analysis of the domains of the operators
involved,

A∗(e)w = −
∂w

∂t
−
e

2

∂w

∂x
+ aw.

This coincides with the third adjoint computed above
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Application and Analysis
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Solving the Adjoint Problem

In the first part of this course, I tried to hint at the theoretical
importance of the adjoint with respect to the study of the
properties of a given operator

In the second part of this course, I will try to hint at the practical
importance of the adjoint problem

I hope to motivate going to the expense of actually computing
solutions of adjoint problems numerically
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Accurate Error Estimation
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A Posteriori Error Analysis

Problem: Estimate the error in a quantity of interest computed
using a numerical solution of a differential equation

We assume that the quantity of information can be represented
as a linear functional of the solution

We use the adjoint problem associated with the linear functional
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What About Convergence Analysis?

Recall the standard a priori convergence result for an initial
value problem

{

ẏ = f(y), 0 < t,

y(0) = y0

Let Y ≈ y be an approximation associated with time step ∆t

A typical a priori bound is

‖Y − y‖L∞(0,t) ≤ C e
Lt ∆tp

∥

∥

∥

∥

dp+1y

dtp+1

∥

∥

∥

∥

L∞(0,t)

L is often large in practice, e.g. L ∼ 100 − 10000

It is typical for an a priori convergence bound to be orders of
magnitude larger than the error
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A Linear Algebra Problem

We compute a quantity of interest (u, ψ) from a solution of

Au = b

If U is an approximate solution, we estimate the error

(e, ψ) = (u− U,ψ)

We can compute the residual

R = AU − b

Using the adjoint problem A
⊤φ = ψ, variational analysis gives

|(e, ψ)| = |(e,A⊤φ)| = |(Ae, φ)| = |(R,φ)|

We solve for φ numerically to compute the estimate
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Discretization by the Finite Element Method

We first consider: approximate u : R
n → R solving

{

Lu = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where

L(D,x)u = −∇ · a(x)∇u+ b(x) · ∇u+ c(x)u(x),

• Ω ⊂ R
n, n = 1, 2, 3, is a convex polygonal domain

• a = (aij), where ai,j are continuous and there is a a0 > 0

such that v⊤av ≥ a0 for all v ∈ R
n \ {0} and x ∈ Ω

• b = (bi) where bi is continuous
• c and f are continuous
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Discretization by the Finite Element Method

The variational formulation reads

Find u ∈ H1
0 (Ω) such that

A(u, v) = (a∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v)

for all v ∈ H1
0 (Ω)

H1
0 (Ω) is the space of L2(Ω) functions whose first derivatives are

in L2(Ω)

This says that the solution solves the “average” form of the
problem for a large number of weights v
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Discretization by the Finite Element Method

We construct a triangulation of Ω into simplices, or elements,
such that boundary nodes of the triangulation lie on ∂Ω

Th denotes a simplex triangulation of Ω that is locally
quasi-uniform, i.e. no arbitrarily long, skinny triangles

hK denotes the length of the longest edge of K ∈ Th and h is
the mesh function with h(x) = hK for x ∈ K

We also use h to denote maxK hK
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Discretization by the Finite Element Method

U = 0

Th

K
hK

Ω

Triangulation of the domain Ω
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Discretization by the Finite Element Method

Vh denotes the space of functions that are
• continuous on Ω

• piecewise linear with respect to Th

• zero on the boundary

Vh ⊂ H1
0 (Ω), and for smooth functions, the error of interpolation

into Vh is O(h2) in ‖ ‖

Definition
The finite element method is:

Compute U ∈ Vh such that A(U, v) = (f, v) for all v ∈ Vh

This says that the finite element approximation solves the
“average” form of the problem for a finite number of weights v
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An A Posteriori Analysis for a Finite Element Method

We assume that quantity of interest is the functional (u, ψ)

Definition
The generalized Green’s function φ solves the weak adjoint
problem : Find φ ∈ H1

0 (Ω) such that

A∗(v, φ) = (∇v, a∇φ)−(v,div (bφ))+(v, cφ) = (v, ψ) for all v ∈ H1
0 (Ω),

corresponding to the adjoint problem L∗(D,x)φ = ψ
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An a posteriori analysis for a finite element method

We now estimate the error e = U − u:

(e , ψ)  = (∇e , a ∇ϕ) - (e , div(bϕ)) + (e , cϕ)

            = (a∇e , ∇ϕ) + (b • ∇e , ϕ) + (ce , ϕ)

            =  (a∇u , ∇ϕ) + (b • ∇u , ϕ) + (cu , ϕ)

                     - (a∇U , ∇ϕ) - (b • ∇U , ϕ) - (cU , ϕ)

            = ( f , ϕ) - (a∇U , ∇ϕ) - (b • ∇U , ϕ) - (cU , ϕ)

( f , ϕ)

undo adjoint

Definition The weak residual of U is

R(U, v) = (f, v) − (a∇U,∇v) − (b · ∇U, v) − (cU, v), v ∈ H1
0 (Ω)

R(U, v) = 0 for v ∈ Vh but not for general v ∈ H1
0 (Ω)
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An A Posteriori Analysis for a Finite Element Method

Definition
πhφ denotes an approximation of φ in Vh

Theorem
The error in the quantity of interest computed from the finite
element solution satisfies the error representation,

(e, ψ) = (f, φ− πhφ) − (a∇U,∇(φ− πhφ))

− (b · ∇U, φ− πhφ) − (cU, φ− πhφ),

where φ is the generalized Green’s function corresponding to
data ψ.
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An A Posteriori Analysis for a Finite Element Method

We use the error representation by approximating φ using a
relatively high order finite element method

For a second order elliptic problem, good results are obtained
using the space V 2

h

Definition The approximate generalized Green’s function
Φ ∈ V 2

h solves

A∗(v,Φ) = (∇v, a∇Φ)−(v,div (bΦ))+(v, cΦ) = (v, ψ) for all v ∈ V 2
h

The approximate error representation is

(e, ψ) ≈ (f,Φ − πhΦ) − (a∇U,∇(Φ − πhΦ))

− (b · ∇U,Φ − πhΦ) − (cU,Φ − πhΦ)
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An Estimate for an Oscillatory Elliptic Problem

Example
{

−∆u = 200 sin(10πx) sin(10πy), (x, y) ∈ Ω = [0, 1] × [0, 1],

u = 0, (x, y) ∈ ∂Ω

The solution is u = sin(10πx) sin(10πy)
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An Estimate for an Oscillatory Elliptic Problem

-1

1

0u

x
y

The Solution u = sin(10πx) sin(10πy)
The solution is highly oscillatory
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An Estimate for an Oscillatory Elliptic Problem
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Error/Estimate Ratios versus Accuracy
We hope for an error/estimate ratio of 1. Plotted are the ratios for finite element

approximations of different error. At the 100% side, we are using 5 × 5 - 9 × 9 meshes!

Generally, we want accurate error estimates on bad meshes.

Donald Estep, Colorado State University – p. 84/196



A Posteriori Analysis for Evolution Problems

We write the numerical methods as space-time finite element
methods solving a variational form of the problem

We define the weak residual as for the elliptic example above

The estimate has the form

∫ T

0
(e, ψ) dt =

∫ T

0
(space residual, space adjoint weight) dt

+

∫ T

0
(time residual, time adjoint weight) dt
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An Estimate for Vinograd’s Problem

Example











u̇ =

(

1 + 9 cos2(6t) − 6 sin(12t) −12 cos2(6t) − 4.5 sin(12t)

12 sin2(6t) − 4.5 sin(12t) 1 + 9 sin2(6t) + 6 sin(12t)

)

u,

u(0) = u0

The solution is known
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An Estimate for Vinograd’s Problem
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An Estimate for Vinograd’s Problem

-6190

-2618

953

4525

0 5000 10000

component 1

component 2

Number of Steps

E
st

im
at

e

Pointwise Error at t=4

0 5000 10000
0.0

0.5

1.0

1.5

2.0
component 1

component 2

Number of Steps

E
rr

o
r/

E
st

im
at

e
Results for Decreasing Step Size

Donald Estep, Colorado State University – p. 88/196



An Estimate for Vinograd’s Problem
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A Posteriori Analysis for Nonlinear Problems

Recall that we linearize the equation for the error operator to
define an adjoint operator

Nominally, we need to know the true solution and the
approximation for the linearization

What is the effect of linearizing around the wrong trajectory?

This is a subtle issue of structural stability: do nearby solutions
have similar stability properties?

This depends on the information being computed and the
properties of the problem

We commonly expect this to be true: if it does not hold, there are
serious problems in defining approximations!
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Estimates for the Lorenz Problem

Example We consider the chaotic Lorenz problem



















u̇1 = −10u1 + 10u2,

u̇2 = 28u1 − u2 − u1u3, 0 < t,

u̇3 = −8
3u3 + u1u2,

u1(0) = −6.9742, u2(0) = −7.008, u3(0) = 25.1377
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Estimates for the Lorenz Problem
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Estimates for the Lorenz Problem
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Estimates for the Lorenz Problem
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Estimates for the Lorenz Problem
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General Comments on A Posteriori Analysis

In general, deriving a useful a posteriori error estimate is a four
step process

1. identify or approximate functionals that yield the quantities
of interest and write down an appropriate adjoint problem

2. understand the sources of error

3. derive computable residuals (or approximations) to measure
those sources

4. derive an error representation using a suitable adjoint
weights for each residual
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General Comments on A Posteriori Analysis

Typical sources of error include
• space and time discretization (approximation of the solution

space)
• use of quadrature to compute integrals in a variational

formulation (approximation of the differential operator)
• solution error in solving any linear and nonlinear systems of

equations
• model error
• data and parameter error
• operator decomposition

Different sources of error typically accumulate and propagate at
different rates
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Investigating Stability Properties of Solutions
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The Adjoint and Stability

The solution of the adjoint problem scales local perturbations to
global effects on a solution

The adjoint problem carries stability information about the
quantity of interest computed from the solution

We can use the adjoint problem to investigate stability
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Condition Numbers and Stability Factors

The classic error bound for an approximate solution U of Au = b
is

‖e‖ ≤ Cκ(A)‖R‖, R = AU − b

The condition number κ(A) = ‖A‖ ‖A−1‖ measures stability

κ(A) =
1

distance from A to {singular matrices}

The a posteriori estimate |(e, ψ)| = |(R,φ)| yields

|(e, ψ)| ≤ ‖φ‖ ‖R‖

The stability factor ‖φ‖ is a weak condition number for the
quantity of interest

We can obtain κ from ‖φ‖ by taking the sup over all ‖ψ‖ = 1
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Condition Numbers and Stability Factors

Example We consider the problem of computing (u, e1) from
the solution of

Au = b

where A is a random 800 × 800 matrix

The condition number of A is 6.7 × 104

estimate of the error in the quantity of interest ≈ 1.0 × 10−15

a posteriori error bound for the quantity of interest ≈ 5.4 × 10−14

The traditional error bound for the error ≈ 3.5 × 10−5
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The Condition of the Lorenz Problem

Example We consider the chaotic Lorenz problem



















u̇1 = −10u1 + 10u2,

u̇2 = 28u1 − u2 − u1u3, 0 < t,

u̇3 = −8
3u3 + u1u2,

u1(0) = 1, u2(0) = 0, u3(0) = 0

Numerical solutions always become inaccurate pointwise after
some time
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The Condition of the Lorenz Problem
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The Condition of the Lorenz Problem
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The Residual and Stability Factor for the Inaccurate Solution
The residual is small even when the error is large. In fact, this is a theorem: the residual

of a consistent discretization for a wide class of problems is small regardless of the size

of the error! This indicates the problems in trying to use the residual or “local error” for

adaptive error control. On the other hand, the size of the adjoint grows at an exponential

rate during a brief period at the time when the error becomes 100%.
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The Condition of the Lorenz Problem

x
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Looking Down at Many Solutions
We look straight down at many solutions. Solutions in the lower left are circulating around

one steady state, while solutions show in the upper right are circulating around another

steady state. Solutions going towards both steady states are close together in the yellow

region. The adjoint solution grows rapidly when a trajectory passes through there.
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Adaptive Computation
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Adaptive Computation

The possibility of accurate error estimation suggests the
possibility of optimizing discretizations

Unfortunately, cancellation of errors significantly complicates the
optimization problem

In fact, there is no good theory for adaptive control of error

There is good theory for adaptive control of error bounds

The standard approach is based on optimal control theory

The stability information in adjoint-based a posteriori error
estimates is useful for this
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Optimization Approach to Adaptivity

An abstract a posteriori error estimate has the form

|(e, ψ)| =
∣

∣

(

Residual,Adjoint Weight
)∣

∣

Given a tolerance TOL, a given discretization is refined if
∣

∣

(

Residual,Adjoint Weight
)∣

∣ ≥ TOL

Refinement decisions are based on a bound consisting of a sum
of element contributions

|(e, ψ)| ≤
∑

elements K

∣

∣

(

Residual,Adjoint Weight
)

K

∣

∣

where ( , )K is the inner product on K

The element contributions in the bound do not cancel
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Optimization Approach to Adaptivity

There is no cancellation of errors across elements in the bound,
so optimization theory yields

Principle of Equidistribution: The optimal discretization is one in
which the element contributions are equal

The adaptive strategy is to refine some of the elements with the
largest element contributions

The adjoint weighted residual approach is different than
traditional approaches because the element residuals are
scaled by an adjoint weight, which measures how much error in
that element affects the solution on other elements
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A Singularly Perturbed Convection Problem

Example



















−∇ ·
(

(.05 + tanh(10(x− 5)2 + 10(y − 1)2))∇u
)

+

(

−100

0

)

· ∇u = 1, (x, y) ∈ Ω = [0, 10] × [0, 2],

u = 0, (x, y) ∈ ∂Ω
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A Singularly Perturbed Convection Problem

Final Mesh for an Error of 4% in the Average Value (24,000
Elements)
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A Singularly Perturbed Convection Problem

Quantity of Interest is Average Error in a Patch
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A Singularly Perturbed Convection Problem

1

Final Mesh for an Average Error in a Patch (7,300 Elements)
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A Singularly Perturbed Convection Problem

Quantity of Interest is Average Error in a Patch
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A Singularly Perturbed Convection Problem

^

Final Mesh for an Average Error in a Patch (7,300 Elements)
The residuals of the approximation are large in the coarsely discretized region to the

right - but the adjoint weights are very small, so this region does not contribute

significantly to the error.
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A Singularly Perturbed Convection Problem

Quantity of Interest is Average Error in a Patch
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A Singularly Perturbed Convection Problem

Final Mesh for an Average Error in a Patch (3,500 Elements)
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A Singularly Perturbed Convection Problem
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Probability Approach to Adaptivity

We use a new approach to adaptivity that is probabilistic in
nature

To mark elements for refinement, we first decompose

E = (e, ψ) ≈
∑

elements

elt. contrib.

=
∑

positive contrib.′s

elt. contrib. +
∑

negative contrib.′s

elt. contrib.

= E+ − E−

We apportion the number of elements N to be refined between
the positive and negative contributions as

N+ = N
E+

E+ + E−
, N− = N

E−

E+ + E−
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Probability Approach to Adaptivity

The goal is to balance the positive element contributions so they
cancel to reach the tolerance

To select elements for refinement, we create a probability
density function using the absolute element contributions and
the current steps sizes and then select randomly according to
this distribution

We may also sample so as to reduce the variance of the
element contributions
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Probabilistic Adaptivity for the Oregonator

Example We consider the Oregonator problem



















ẏ1 = 2(y2 − y1y2 + y1 − qy2
1) y1(0) = 1

ẏ2 = 1
s
(−y2 − y1y2 + y3), y2(0) = 0,

ẏ3 = w(y1 − y3), y3(0) = 0,

s = 77.27, w = .161, q = 8.375 × 10−6

We compute with TOL = 10−8 over time T = 50
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Probabilistic Adaptivity for the Oregonator
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Solution of the Oregonator problem
This problem is difficult because the solution has long periods of time on which little

happens punctuated by very rapid transients where the solution changes dramatically.

We plot the components in the region around one of the transient periods.
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Probabilistic Adaptivity for the Oregonator

Final Time Error Element Contributions

-1.5E-10

-5E-11

5E-11

1.5E-10

2.5E-10
2.

3

6.
9

11
.5

16
.1

20
.7

25
.3

29
.9

34
.5

39
.1

43
.7

48
.3

C
on

tr
ib

ut
io

n

Average Error Element Contributions

-1.5E-6

-0.5E-6
0

1.0E-6

2.0E-6

1
9
.3

1
9
.9

2
0
.5

2
1

2
1
.6

2
2
.2

2
2
.8

2
3
.4

2
3
.9

Time

C
o
n
tr

ib
u
ti

o
n

Time

Y1
Y2
Y3

Element contributions to the error: final time (left) and average
error (right)

We see that the element contributions are largest in the brief transient periods.
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Probabilistic Adaptivity for the Oregonator

Using the classical dual-weighted optimal control approach to
adaptivity requires 188,279 time steps

Using the probability approach requires 20108 time steps
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Operator Decomposition for
Multiscale, Multiphysics Problems
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Analyzing the Effects of Operator Decomposition

In operator decomposition, the instantaneous interaction
between different physics is discretized

This results in new sources of instability and error

We use duality, adjoints, and variational analysis in new ways to
analyze operator decomposition

• We estimate the error in the specific information passed
between components

• We account for the fact that the adjoints to the original
problem and an operator decomposition discretization are
not the same

Additional work is required to obtain computable estimates
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Operator Decomposition for Elliptic Systems











−∆u1 = sin(4πx) sin(πy), x ∈ Ω

−∆u2 = b · ∇u1 = 0, x ∈ Ω,

u1 = u2 = 0, x ∈ ∂Ω,

b =
2

π

(

25 sin(4πx)

sin(πx)

)

The quantities of interest are

u2(.25, .25) ≈ 〈δreg(.25, .25), u2〉

and the average value

Estimating the error requires auxiliary estimates of the error in
the information that is passed between components
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Operator Decomposition for Elliptic Systems

We use uniformly fine meshes for both components

For the error in u(.25, .25)
discretization contribution ≈ .0042

decomposition contribution ≈ .0006
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Solutions of components 1 and 2
We see that the error in the transferred information is small but not significant.
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Operator Decomposition for Elliptic Systems

We use uniformly fine meshes for both components
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The adjoint solution for the functional on u2 is large due to the adjoint data (an

approximate delta function). The adjoint associated with the information transferred

between the components is large in the same region. This indicates that the accuracy of

u1 in this region impacts the accuracy of u2.
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Operator Decomposition for Elliptic Systems

We adapt the mesh while ignoring the contributions to the error
from operator decomposition

For the average error
discretization error ≈ .0001

decomposition contribution ≈ .2244
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U1 on a coarse mesh and the total error of U2

Independently adapting each component mesh makes the error worse!

Donald Estep, Colorado State University – p. 130/196



Operator Decomposition for Elliptic Systems

We adapt the meshes for both components using the primary
error representation for U2 and the secondary representation for
U1 respectively

Transferring the gradient ∇U1 leads to increased sensitivity to
errors
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Final refined solutions for components 1 and 2
We actually refine the mesh for u1 more than the mesh for u2.
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Operator Splitting for Reaction-Diffusion Equations

We consider the reaction-diffusion problem

{

du
dt

= ∆u+ F (u), 0 < t,

u(0) = u0

The diffusion component ∆u induces stability and change over
long time scales

The reaction component F induces instability and change over
short time scales
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Operator Splitting for Reaction-Diffusion Equations
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On (tn−1, tn], we numerically solve

{

duR

dt
= F (uR), tn−1 < t ≤ tn,

uR(tn−1) = uD(tn−1)

Then on (tn−1, tn], we numerically solve

{

duD

dt
− ∆(uD), tn−1 < t ≤ tn,

uD(tn−1) = uR(tn)

The operator split approximation is u(tn) ≈ uD(tn)
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Operator Splitting for Reaction-Diffusion Equations
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Operator Splitting for Reaction-Diffusion Equations

To account for the fast reaction, we approximate ur using many
time steps inside each diffusion step
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Diffusion Integration:

Reaction Integration:

Donald Estep, Colorado State University – p. 135/196



Operator Splitting for Reaction-Diffusion Equations

The Brusselator problem











∂ui

∂t
− 0.025 ∂2ui

∂x2 = fi(u1, u2) i = 1, 2

f1(u1, u2) = 0.6 − 2u1 + u2
1u2

f2(u1, u2) = 2u1 − u2
1u2

• Use a linear finite element method in space with 500
elements

• Use a standard first order splitting scheme
• Use Trapezoidal Rule with time step of .2 for the diffusion

and Backward Euler with time step of .004 for the reaction
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Operator Splitting for Reaction-Diffusion Equations
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Instability in the Brusselator Operator Splitting
On the left we plot the error versus time step at different times. For large times, there is a

critical step size above which there is no convergence. On the right, we plot one of the

inaccurate solutions. The instability is a direct consequence of the discretization of the

operator splitting in time

Donald Estep, Colorado State University – p. 137/196



Operator Splitting for Reaction-Diffusion Equations

We derive a new type of hybrid a priori - a posteriori estimate

(e(tN ), ψ) = Q1 + Q2 + Q3

• Q1 estimates the error of the numerical solution of each
component

• Q2 ≈
∑N

n=1(Un−1, En−1), E ≈ a computable estimate for
the error in the adjoint arising from operator splitting

• Q3 = O(∆t2) is an a priori expression that is provably
higher order

Donald Estep, Colorado State University – p. 138/196



Operator Splitting for Reaction-Diffusion Equations

Accuracy of the error estimate for the Brusselator example at
T = 2
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Operator Splitting for Reaction-Diffusion Equations

Accuracy of the error estimate for the Brusselator example at
T = 8 (left) and T = 40 (right)
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Operator Decomposition for Conjugate Heat Transfer

Example A relatively cool solid object is immersed in the flow of
a hot fluid
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The goal is to describe the temperature of the solid object
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Operator Decomposition for Conjugate Heat Transfer

We use the Boussinesq equations for the fluid, coupled to the
heat equation for the solid

We use application codes optimized for single physics

The solution of each component is sought independently using
data obtained from the solution of the other component

On the boundary of the object, Neumann conditions are passed
from the solid to the fluid, and Dirichlet conditions are passed
from the fluid to the solid
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Operator Decomposition for Conjugate Heat Transfer

Passing derivative information in the Neumann boundary
condition causes a loss of order

This error can be estimated accurately using an adjoint
computation

We devise an inexpensive postprocessing technique for
computing the transferred information accurately

We recover the full order of convergence
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Analysis of Model Sensitivity
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Kernel Density Estimation

F is a nonlinear operator:

Space of data and parameters −→
F

Space of outputs

Assume that the data and/or the parameters are unknown within
a given range and/or subject to random or unknown variation

Problem: determine the effect of the uncertainty or variation on
the output of the operator

We consider the input to be a random vector associated with a
probability distribution

The output of the model is random vector associated with a new
distribution
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The Monte-Carlo Method

The Monte-Carlo method is the standard technique for solving
this problem

The model is solved for many samples drawn from the input
space according to its distribution

The Monte-Carlo method has robust convergence properties
and is easy to implement on scalar and parallel computers

However, the Monte-Carlo method may be expensive because it
converges very slowly
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A Finite-Dimensional Problem

We determine the distribution of a linear functional (x, ψ) given
the random vector λ ∈ R

d, where x satisfies

f(x;λ) = b

Assuming λ is distributed near a sample value µ, we solve

f(y;µ) = b

With A = Dxf(y;µ), the adjoint problem is

ATφ = ψ,

Applying Taylor’s theorem to the representation formula yields

〈x, ψ〉 ≈ 〈y, ψ〉 −
〈

Dλf(y;µ)(λ − µ), φ
〉
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Using the Adjoint Problem

If λ− µ is a random vector then
〈

Dλf(y;µ)(λ − µ), φ
〉

is a new
random variable

We can use this information to speed up random sampling in
several ways

For example, we compute an error estimate for the constant
approximation generated from the sample point and adaptively
sample (Fast Adaptive Parameter Sampling (FAPS)) Method

Note that we adapt the sample according to the output
distribution rather than the input distribution!
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A Predator Prey Example

Example We model a prey u with a logistic birth/death process
consumed by predator v



















∂tv − δ∆v = λ1v h(u;λ2) − λ3v, Ω × (0, T ],

∂tu− δ∆u = λ4u(1 − u
λ5

) − λ6v h(u;λ2),

∂nv = ∂nu = 0, ∂Ω × (0, T ],

v = v0, u = u0, Ω × {0}

The (Holling II) functional response h(u) = h(u;λ2) satisfies

• h(0) = 0

• limx→∞ h(x) = 1

• h is strictly increasing
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Predator Prey Reference Parameter Values

We assume a (truncated) normal distribution in the region

Description Name Mean Perturbation

encounter gain µ1 1 ±50%

response gain µ2 10.1 ±50%

predator death rate µ3 1 ±50%

prey growth rate µ4 5 ±50%

prey carrying capacity µ5 1 ±50%

encounter loss µ6 1 ±50%

We use the L1 norm of the prey population at t = 10 as the
quantity of interest (ψ = δ(t− 10)(0, 1)⊤)

We use a 12400 point Monte-Carlo computation as a reference
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Evolution of the Solution

We show a few snapshots in time of the predator (left) and prey
(right). Warmer colors mean higher density.
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Evolution of the Solution

We show a few snapshots in time of the predator (left) and prey
(right). Warmer colors mean higher density.
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Evolution of the Solution

We show a few snapshots in time of the predator (left) and prey
(right). Warmer colors mean higher density.
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Evolution of the Solution

We show a few snapshots in time of the predator (left) and prey
(right). Warmer colors mean higher density.
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Evolution of the Solution

We show a few snapshots in time of the predator (left) and prey
(right). Warmer colors mean higher density.
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Predator Prey Results (Cumulative Density)
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Predator Prey Results (Dimension Reduction)
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The gradient can be used to determine which parameters do not contribute significantly,

leading to dimension reduction.
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Adaptive Error Control for Kernel Density Estimation

Solving the kernel density estimation problem requires solving
the problem for a variety of data and parameter values

The corresponding solutions can exhibit a variety of behaviors

It is important to control the numerical errors so that they do not
bias the analysis results
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Adaptive Error Control for Kernel Density Estimation

Example We consider the chaotic Lorenz problem



















u̇1 = −10u1 + 10u2,

u̇2 = λu1 − u2 − u1u3, 0 < t,

u̇3 = −8
3u3 + u1u2,

u1(0) = −6.9742, u2(0) = −7.008, u3(0) = 25.1377

We vary λ ∼ Unif [25, 31]

We use 1000 point Monte-Carlo sampling with both a fixed time
step computation and an adaptive computation with error
smaller than 10−5
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Adaptive Error Control for Kernel Density Estimation
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Adaptive Error Control for Kernel Density Estimation
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Adaptive Error Control for Kernel Density Estimation
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Adaptive Error Control for Kernel Density Estimation
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Comments on Model Sensitivity Analysis and Adjoints

In general, the adjoint solution provides an efficient way to
approximate

∇parameter quantity of interest

This is one reason that adjoints are natural for analysis of model
sensitivity and in optimization problems

A posteriori analysis represents the effects of random
perturbation in terms of a convolution with the adjoint solution

This provides a way to include both deterministic and
probabilistic representations of uncertainty in the same analysis
framework

Donald Estep, Colorado State University – p. 164/196



Parameter Optimization for an Elliptic Problem
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An Elliptic Problem with Parameter

We solve the elliptic problem

{

−∇ · (a(x)∇u) = f(u, x;λ), x ∈ Ω, λ ∈ Λ,

u = 0, x ∈ ∂Ω.

Search for λ ∈ Λ that optimizes a linear functional

q(u(λ)) = (u, ψ) =

∫

Ω
u(x;λ)ψ(x) dx

We use a conjugate gradient method using the Hestenes-Stiefel
formula and the secant method for the line search

λ
∼

λ
q(u(λ))

q(u(λ))

∆

λ

∼

∼

old new
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The Role of the Adjoint Problem

We optimize
q(u(λ)) = (u(λ), ψ)

φ solves the linearized adjoint problem

{

−∇ · (a(x)∇φ) −D∗
uf(u;λ)φ = ψ, x ∈ Ω,

u = 0, x ∈ ∂Ω.

D∗
uf is the adjoint of the Jacobian of f

The gradient formula at λ̃ ∈ Λ

∇λq(ũ; λ̃) · (λ− λ̃) ≈
(

∇λf(ũ; λ̃) · (λ− λ̃), φ̃
)

ũ and φ̃ solutions for parameter value λ̃
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Numerical Approximations

Standard finite element approximation: compute U ∈ Vh

(a∇U,∇v) = (f(U), v) for all v ∈ Vh

Vh is the standard space associated with a triangulation of Ω

Using U affects both

q(u(λ)) → q(U(λ))

∇λq(u(λ)) → ∇λq(U(λ))

We need to control the errors in the value and the gradient used
for the search
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A Posteriori Estimate of Numerical Error

The a posteriori estimate is

error in q(U) ≈ (a∇U,∇(φ− πhφ)) − (f(U), φ− πhφ)

The true value of the gradient can be estimated as

∇λq(ũ; λ̃) · (λ− λ̃) ≈
(

∇λf(Ũ ; λ̃) · (λ− λ̃), φ̃
)

+R(U, φ) −R(U, φ̃)

This is the computable correction for the effects of numerical
approximation

This expression reflects the change in stability arising from the
change in parameter value

If we control this error, we can prove that the search leads to a
minimum
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Adaptive Error Control

The a posteriori estimate has the form

|error in q(U)| ≈

∣

∣

∣

∣

∣

∑

elements

element contribution

∣

∣

∣

∣

∣

The corresponding bound on the error in the gradient has the
form

|error in ∇λq(U)| ≤
∑

elements

∣

∣change in element contribution
∣

∣

We alter the adaptive strategy accordingly
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Optimization Example

We optimize (u, 1) where u solves

{

−u′′ = u2 + tanh2
(

20eλ1(1−λ1)(x− eλ2(1−λ2)−1)
)

cos2(π2x), [−1, 1],

u(−1) = u(1) = 0
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Optimization Example: Meshes
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The sequence of meshes
The meshes for each search step are plotted vertically. The meshes are refined to

control the error in the gradients. The refinement typically affects a small number of

elements in each step.
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Domain Decomposition

Donald Estep, Colorado State University – p. 173/196



Stability in Elliptic Problems

A characteristic of elliptic problems is a global domain of
influence

A local perturbation of data near one point affects a solution u
throughout the domain of the problem

However in many cases, the strength of the effect of a
perturbation on a point value of a solution decays significantly
with the distance to the support of the perturbation

The effective domain of influence for a functional of the solution
is reflected in the graph of the adjoint solution
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A Decomposition of the Solution

The effective domain of influence of a particular functional will
not be local unless the data for the adjoint problem has local
support

We use a partition of unity to “localize” a problem in which
supp (ψ) does not have local support

Corresponding to a partition of unity {pi,Ωi}, ψ ≡
∑N

i=1 ψpi,

Definition
The quantities {(U,ψpi)} corresponding to the data {ψi = ψpi}
are called the localized information corresponding to the
partition of unity

We consider the problem of estimating the error in the localized
information for 1 ≤ i ≤ N
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A Decomposition of the Solution

We obtain a finite element solution via:

Compute Ûi ∈ V̂i such that A(Ûi, v) = (f, v) for all v ∈ V̂i,

where V̂i is a space of continuous, piecewise linear functions on
a locally quasi-uniform simplex triangulation Ti of Ω obtained by
local refinement of an initial coarse triangulation T0 of Ω

{V̂i} is globally defined and the “localized” problem is solved
over the entire domain

We hope that this will require a locally refined mesh because the
corresponding data has localized support
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A Decomposition of the Solution

A partition of unity approximation in the sense of Babuška and
Melenk uses Ui = χiÛi, 1 ≤ i ≤ N , where χi is the characteristic
function of Ωi

The local approximation Ui is in the local finite element space
Vi = χiV̂i

Definition
The {partition of unity approximation is defined by
Up =

∑N
i=1 Uipi, which is in the fpartition of unity finite element

space

Vp =

N
∑

i=1

Vipi =

{

N
∑

i=1

vipi : vi ∈ Vi

}
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A Decomposition of the Solution

We use the generalized Green’s function satisfying the adjoint
problem:

Find φi ∈ H1
0 (Ω) such that A∗(v, φi) = (v, ψi) for all v ∈ H1

0 (Ω).

Letting πiφi denote an approximation of φi in V̂i,

Theorem The error of the partition of unity finite element
solution satisfies

(u− Up, ψ) =
N
∑

i=1

(

(f, φi − πiφi) − (a∇Ûi,∇(φi − πiφi))

− (b · ∇Ûi, φi − πiφi) − (cÛi, φi − πiφi)
)
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Computation of Multiple Quantities of Interest

We present an algorithm for computing multiple quantities of
interest efficiently using knowledge of the effective domains of
influence of the corresponding Green’s functions

We assume that the information is specified as {(U,ψi)}
N
i=1 for a

set of N functions {ψi}
N
i=1

Two approaches:

Approach 1: A Global Computation
Find one triangulation such that the corresponding finite
element solution satisfies |(e, ψi)| ≤ TOLi, for 1 ≤ i ≤ N

Approach 2: A Decomposed Computation
Find N independent triangulations and finite element
solutions Ui so that the errors satisfy |(ei, ψi)| ≤ TOLi, for
1 ≤ i ≤ N
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Computation of Multiple Quantities of Interest

If the correlation between the effective domains of influence
associated to the N data {ψi} is relatively small, then each
individual solution in the Decomposed Computation will require
significantly fewer elements than the solution in the Global
Computation to achieve the desired accuracy

This can yield significant computational advantage in terms of
lowering the maximum memory requirement to solve the
problem

We optimize resources by combining localized computations
whose domains of influence are significantly correlated
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Domain Decomposition Example

Consider once again



















−∇ ·
((

.05 + tanh
(

10(x− 5)2 + 10(y − 1)2
))

∇u
)

+

(

−100

0

)

· ∇u = 1, (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω,

where Ω = [0, 10] × [0, 2]
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Domain Decomposition Example

We use an initial mesh of 80 elements and an error tolerance of
TOL = .04% for the average error over Ω

Level Elements Estimate
1 80 −.0005919

2 193 −.001595

3 394 −.0009039

4 828 −.0003820

5 1809 −.0001070

6 3849 −.00004073

7 9380 −.00001715

8 23989 −.000007553
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Domain Decomposition Example

Final Mesh for an Error of 4% in the Average Value (24,000
Elements)
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Domain Decomposition Example

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Domains for the partition of unity
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Domain Decomposition Example

Significant Correlations:
Ω3 with Ω4 Ω6 with Ω7 Ω7 with Ω6 Ω9 with Ω8 Ω10 with Ω8, Ω9

Ω13 with Ω14 Ω16 with Ω17 Ω17 with Ω16 Ω19 with Ω18 Ω20 with Ω18, Ω19

There are no significant correlations in the “cross-wind” direction

Donald Estep, Colorado State University – p. 185/196



Domain Decomposition Example

Data TOL Level Elements Estimate
ψ1 .04% 7 7334 −6.927 × 10−7

ψ2 .04% 7 8409 −5.986 × 10−7

ψ3 .04% 7 7839 −5.189 × 10−7

ψ4 .04% 7 7177 −5.306 × 10−7

ψ5 .04% 7 7301 −4.008 × 10−7

ψ6 .02% 7 6613 −2.471 × 10−7

ψ7 .02% 7 4396 −2.938 × 10−7

ψ8 .02% 7 4248 −1.656 × 10−7

ψ9 .02% 7 3506 −1.221 × 10−7

ψ10 .02% 7 1963 −5.550 × 10−8
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Domain Decomposition Example

1

^
Final Mesh for an Average Error in a two Patches
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Domain Decomposition Example

The global computation uses roughly 3 times the number of
elements of the largest individual computation in the
decomposed computation

In a high performance computing environment, the cost of
solution typically scales superlinearly with memory usage

There is a much greater effect of decay of influence on complex
geometry, e.g. with “holes”, interior corners, and so on
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Work in Progress
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Applications Not Discussed

• Analysis of operator decomposition for coupling stochastic
models, e.g. molecular dynamics, to continuum models

• Determining the range of acceptable error on parameters
and data in order to compute a quantity of interest to an
acceptable accuracy

• Error estimates for operator decomposition for multiphysics
problems with “black box” components

• Data assimilation and model calibration under uncertainty

• Parallel space-time adaptive integration and compensated
domain decomposition
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