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Abstract

Multi-scale modeling plays an important role in understanding the structure and biological func-
tionalities of large biomolecular complexes. In this paper, we present an efficient computational
framework to construct multi-scale models from atomic resolution data in the Protein Data Bank
(PDB), which is accelerated by multi-core CPU and programmable Graphics Processing Units
(GPU). A multi-level summation of Gaussian kernel functions is employed to generate implicit
models for biomolecules. The coefficients in the summation are designed as functions of the struc-
ture indices, which specify the structures at a certain level and enable a local resolution control on
the biomolecular surface. A method called neighboring search is adopted to locate the grid points
close to the expected biomolecular surface, and reduce the number of grids to be analyzed. For
a specific grid point, a KD-tree or bounding volume hierarchy is applied to search for the atoms
contributing to its density computation, and faraway atoms are ignored due to the decay of Gaus-
sian kernel functions. In addition to density map construction, three modes are also employed and
compared during mesh generation and quality improvement to generate high quality tetrahedral
meshes: CPU sequential, multi-core CPU parallel and GPU parallel. We have applied our algorithm
to several large proteins and obtained good results.
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1 Introduction

Finite Element Analysis has been essentially important for the study of biomolecular com-
plexes in a wide range of applications such as estimating electrostatic potentials and diffusion-
based calcium signaling [9, 20, 41, 40, 49, 17, 47]. As progressively larger biomolecular com-
plexes (see Fig. 1) are studied, we need to handle huge amount of computation, which
brings a great challenge for both modeling and simulation. To efficiently represent complex
biomolecules, a multiscale modeling method that controls the local resolution of the speci-
fied hierarchical structure is required, which can significantly reduce the mesh size and thus
lighten the compuational cost for simulations. In addition, with the rapid development of
parallel computers, multi-core CPU and GPU-based computation brings in new directions
for the acceleration of modeling in various fields. In this paper we aim to apply these parallel
computation techniques to multiscale modeling for biomolecules. In the following, let us first
briefly review previous work on biomolecular modeling and efficient computation.

(a) (b) (c)

Fig. 1. Multi-scale model for the thin filament complex (TFC, PDB ID: 2W4U). High resolution
is shown for the actin domain (cyan) with parameters PR = 0.8, PC = 0.5, and PD = 1.0; chain
K (magenta) and troponin C (orange) are further emphasized with PR = 2.0, PC = 1.0, and
PD = 1.0; and the rest of the protein (pink) is blurred with PR = 0.5, PC = 0.3, and PD = 0.8. (a)
Biomolecular surface; (b) exterior tetrahedral mesh; and (c) exterior mesh with embeded protein.
PR, PC and PD are parameters to control the local resolution of residuals, chains and domains,
respectively.

There are three important biomolecular surfaces [10, 11]: the Van der Waals surface (VdW),
the Solvent Accessible Surface (SAS), and the Solvent Excluded Surface (SES). For the VdW,
atoms are represented as rigid spheres with Van der Waals radii, and the biomolecular surface
is defined as the envelope of these spherical surfaces. The SAS and SES can be defined by
assuming a probe rolling around the biomolecule and keeping contact with the atoms. Then
the SAS is formed by tracing the trajectory of the probe center. The topological boundary
of the union of all possible probes is called the SES, with no intersection with atoms. A
lot of research has been conducted in approximating the SES, including the the alpha-
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shapes [13, 1], the beta-shapes [26, 36], the MSMS [37], the advancing front and generalized
Delaunay approaches [27], NURBS approximation [6], and PDE-based methods [46, 53, 21].
The biomolecules were also represented as implicit models. The Gaussian kernel functions
were applied in constructing density maps for the biomolecules [8, 19, 28, 52, 48]. In [18],
the atomic resolution Gaussian density map was built and then filtered using an ideal filter
to obtain a smooth biomolecular surface.

Fast computing is critical in biomolecular modeling [43, 45]. A variety of algorithms were
developed in improving the modeling efficiency. For example, the Fast Fourier Transform
was used in [53, 21] to get better performance of the PDE transform, and a Non-uniform
Fast Fourier Transform (NFFT) was adopted to improve the polynomial-form summation
of the kernel functions [7]. The programmable GPU has brought in a new direction for vast
data processing in geometric modeling [44, 30, 35, 24, 42].

In this paper, we propose an efficient multi-scale modeling framework for biomolecules based
on the multi-level summation of Gaussian kernel functions. The modeling process contains
three steps: Gaussian density computation, adaptive tetrahedral mesh generation, and qual-
ity improvement. A special method called neighboring search is applied for efficiency im-
provement, together with the KD-tree structure and the bounding volume hierarchy (BVH).
The multi-core CPU and GPU-based parallel computation techniques are employed in all
these three steps. The main contributions in this paper include:

(1) Structure specified parameters are adopted in the multi-level summation of Gaussian
kernel functions, enabling a local resolution control for the hierarchical structure of the
complicated biomolecules;

(2) Neighboring search is applied to locate the grid points close to the biomolecular surface,
and thus reduce the number of grids to be analyzed;

(3) KD-tree and BVH are employed to quickly search contributing atoms around a grid
point. Faraway atoms are ignored due to the decay of Gaussian kernel functions; and

(4) Multi-core CPU and GPU-based computation are employed in the entire modeling
process, which significantly accelerate the modeling process.

The remainder of this paper is organized as follows. Section 2 describes the multi-level
summation of Gaussian kernel functions. Section 3 explains the Gaussian density map con-
struction, promoted by the neighboring search, KD-tree structure, BVH, and parallel compu-
tation. Sections 4 and 5 talk about mesh generation and quality improvement, respectively.
Section 6 shows the results. Finally, section 7 draws conclusions and points out the future
work.

2 Multi-scale Biomolecular Modeling

As shown in Fig. 2, biomolecules usually have a complicated hierarchical structure, includ-
ing the atomic, residual, and chain scales. A variety of methods have been developed to
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Fig. 2. Hierarchical structure of the biomolecules.

create multi-resolution models for the biomolecules [5, 52, 18, 46, 53]. However, most of the
previous works only considered the overall resolution control, and the local resolution con-
trol was seldom studied. In this paper, we improve the multi-level summation of Gaussian
kernel functions and enable a local resolution control on the specific hierarchical structure
in biomolecules.

Gaussian kernel functions were introduced in biomolecular modeling by Blinn et al. in 1982
[8]. The biomolecular surface is generated as a level set (isocontour) of the volumetric electron
density map [3, 52]. Zhang et al. [52] improved the kernel functions to make the distance
between the generated surface and the VdW (Van de Waals surface) surface as uniform as
possible, resulting in smoother molecular surfaces. The kernel function is defined as

GiA(x) = e
κ

(
‖x−xiA

‖2−r2iA

)
, (1)

where κ is the decay rate, controlling how fast the Gaussian kernel function decays. xiA
and riA are the center and radius of the ithA atom, respectively. A multi-level summation
of Gaussian kernel functions was applied to control the resolution of biomolecule models
[52]. Lower level structures are classified into groups according to higher level structures.

As the basic unit in the biomolecules, atoms are represented by NA = {N (0)
A , ..., N

(n)
A }.

N
(i)
R (i = 1, 2, ..., nR) are subsets of NA, representing the sets of residues. We have

nR⋃
i=1

N
(i)
R = NA, and N

(i)
R

⋂
16i 6=j6nR

N
(j)
R = ∅. (2)

The elements of NR := {N (i)
R }

nR
i=1 are further grouped into subsets N

(i)
C (i = 1, 2, ..., nC),
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representing peptides:

nC⋃
i=1

N
(i)
C = NR, and N

(i)
C

⋂
16i 6=j6nC

N
(j)
C = ∅. (3)

Similarly, structures with a higher level (e.g., domains) can be represented as the subsets of
peptides. The density distribution of a higher level structure is obtained through the sum-
mation of lower level density. For example, small proteins are made up of several peptides,
so the density map is generated by a two-level summation of Gaussian kernel functions

G(x) =
∑
iC

∑
iR

∑
iA

GiA(x)

PR

PC

, (4)

where iC , iR and iA are the indices of the peptide, residue and atom, respectively. PR and
PC are constant coefficients that control the local resolution of the model. GiA is defined in
Eqn. 1.

To specify the structures at different levels in the biomolecule, non-uniform coefficients are
selected based on the structure indices. For example, the coefficient for the residue level is
defined as

PR = PR(iC , iR), (5)

where iC and iR are indices for the peptide and residue, respectively. The indices can specify
the concerned peptide or residue and control the resolution on the surface locally. In Fig. 3(a),
suppose we only want to emphasize the peptide B (marked in red) for Ribosome 30S (1J5E).
If we vary the coefficients uniformly, all the atomic-level details on the biomolecular surface
will be strengthened (Fig. 3(b)). However, varying only the coefficients for the structures
contained by chain B results in a local resolution control on the certain peptide (Fig. 3(c)).
Similarly, structures at any level (domain, chain or residue) can be emphasized by adjusting
the corresponding coefficients, enabling a flexible local resolution control at multiple scales.

Fig. 4 shows a macromolecular complex representing the thin filament subunit in muscle
fibers. This protein contains 32 peptides, and these chains are grouped into several higher
level structures called protein “domains”, including tropomyosin (red) and actin (green). A
three-level (residue, chain and domain) summation is utilized here to construct the density
map

G(x) =
∑
iD

∑
iC

∑
iR

∑
iA

GiA(x)

PR

PC

PD

, (6)

where iD is the domain index, and PD is the coefficient corresponding to the domain level.
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(a) (b) (c)

Fig. 3. Surface construction of 1J5E from a two-level summation of Gaussian kernels. (a) Uniformly
blurred surface, PR = 0.05 and PC = 0.5; (b) all details on the model are strengthened, PR = 0.5
and PC = 1.0; and (c) only details on chain B are strengthened, PR = 0.5 and PC = 1.0 for chain
B while PR = 0.05 and PC = 0.5 for the remaining structure.

(a) (b)

Fig. 4. Resolution control of TFC at the domain level, PR = 0.7, PC = 0.4. (a) Blurred domain
boundary for tropomyosin (red) and actin (green), PD = 0.25 for the entire protein; and (b) more
detailed features are preserved along the boundary of tropomyosin and actin, PD = 0.8 for these
two domains while PD = 0.25 for the remaining structure.

Domain boundaries are blurred with a small coefficient PD, resulting in a smooth biomolecu-
lar surface (Fig. 4(a)); when PD is set to be a large value, more detailed features are preserved
along the domain boundaries (Fig. 4(b)). Although PD controls the transition region between
different domains, the surface resolution inside each domain is mainly decided by the lower
level coefficients PC and PR. To have a full control of the multi-scale biomolecular models,
the number of levels in the summation of Gaussian kernel functions should be consistent
with the level of biomolecular structures.

Discussion: In a two-level summation, there are two coefficients: PC and PR. PC controls
the boundary resolution of each chain, and PR controls the surface resolution inside the
chain. In a three-level summation, there is one more coefficient (PD), which controls the
boundary resolution of each domain. This local resolution control is very important in some
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applications such as the diffusional distribution simulation of the calcium ions in ventricular
myocytes. Usually, the active site is a small region around certain residues. To simplify the
implicit model, we can use a small PD value to blur the domain boundary, and adjust the
PC and PR values to make a smooth surface for the domain while showing more residue-level
details at the active sites.

3 Density Map Construction

Computational efficiency is critical in biomolecular modeling, especially for large biomolecu-
lar complexes with a complicated structure. When computing the Gaussian density for each
grid point, if we consider the contribution from all the atoms in the biomolecule, the time
complexity will be O(MN), in which M is the number of atoms and N is the number of
grid points. To improve the computational efficiency, the neighboring search algorithm is
applied to reduce the number of grid points to be analyzed; and the KD-tree structure and
a bounding volume hierarchy (BVH) are used to quickly find the contributing atoms for the
Gaussian density at a grid point. Moreover, the multi-core CPU and GPU-assisted parallel
computation are also employed to further accelerate the speed.

3.1 Neighboring Search

Biomolecular surface is extracted from the Gaussian density map as an isosurface. The grid
cell intersecting with the isosurface is called a boundary cell. Vertices on the biomolecular
surface are located either on the edges of (marching cubes [32]) or inside (dual contouring
[22]) the boundary cell. Therefore, the biomolecular surface is only determined by the Gaus-
sian density values at the grid points in boundary cells, while an accurate density calculation
is not necessary for faraway grids. This property has been used in the accelerated isocon-
touring method [4], which detects the boundary cells to achieve a fast surface extraction.

In this paper, a similar idea is adopted and an algorithm called neighboring search [2] is
applied to reduce the number of grid points to be analyzed. This algorithm can find out
all the grid points near the expected isosurface, as long as the biomolecular surface is a
manifold. Therefore, we only need to calculate the Gaussian density at these grid points,
while the density value for the other grids is simply set as a constant. kA is the ratio of
the analyzed grid points over the total grid points. kA is controlled by a pair of predefined
parameters: a lower threshold dl and an upper threshold du. Fig. 5 shows an example of
neighboring search. The blue curves represent the isosurfaces of dl and du. The red curve
represents the target surface. The green cells are the 1-ring neighbors of a given activated
grid cell (magenta). The initially activated cell can be found by searching along a line passing
through the center of the grid. For each neighboring cell, the Gaussian density values are
computed at the eight vertices. If the density indicates that the cell intersects with the
band between the blue curves, the cell is activated. More cells can be activated around the
newly activated cells iteratively until there are no more updates. As a result, all the grid
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(a) (b)

Fig. 5. The neighboring search algorithm. (a) The activated grid cell (magenta) and its 1-ring
neighbors; and (b) the newly activated cell (magenta) in the 1-ring neighbors.

(a) (b) (c)

Fig. 6. Neighboring search results for 2KFX. (a) The interior domain (green); (b) one detected
band using dl = 0.9, du = 1.1 and kA = 0.026; and (c) another detected band using dl = 0.1,
du = 2.0 and kA = 0.12.

Table 1
Ratio of analyzed grid points in 2KFX (513× 513× 513).

Lower threshold dl Upper threshold du Analyzed ratio kA

0.9 1.1 0.026

0.6 1.4 0.048

0.3 1.7 0.092

0.1 2.0 0.12

points close to the surface are analyzed, while faraway points are ignored. Using a flood fill
algorithm, those faraway points are marked as interior or exterior grids. Fig. 6 shows the
neighboring search results for 2KFX. In (a), the green region represents the inside volume;
and in (b) and (c), the green regions represent the band between dl and du. kA varies with
different dl and du, and also depends on the resolution of the grids. It is generally a very
small value, see Table 1.

Discussion: Neighboring search can effectively improve the complexity of Gaussian density
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computation from O(MN) to O(kAMN), in which kA is output-dependent. This method is
based on the assumption that the biomolecular surface is a manifold and all the grid points
close to the expected surface are neighboring to each other. But sometimes biomolecules have
isolated components. If any isolated component is missed in the initial search, the modeling
result would be incorrect. However, if the biomolecular structure is known beforehand, the
initial search route can be easily modified to include all the components.

3.2 KD-tree Structure and Bounding Volume Hierarchy

A Gaussian kernel function decays quickly as it moves away from the atom center. For one
grid point, it is reasonable to ignore faraway atoms, which contribute little to the Gaussian
density map. Two methods are used here to quickly find the nearby atoms: the KD-tree
structure and the bounding volume hierarchy (BVH).

The KD-tree structure is a widely used space-partitioning data structure, which has been
employed in biomolecular modeling [24, 25, 39]. Differently, in this paper a KD-tree is used to
quickly search atoms around grid points. The cost to build this data structure is O(M logM).
Searching atoms within a certain range around a grid point becomes quite efficient due to the
binary tree structure. The error of ignoring faraway atoms can be controlled by a bounding
radius Rkd in the KD-tree search. Suppose an atom is ignored when its density contribution
is less than ε, then Rkd should satisfy eκ(R

2
kd−r

2) < ε. We have

Rkd >

√
ln ε

κ
+ r2, (7)

where r is the radius of the atom; and κ is the decay ratio in Eqn. 1. Pratically, the maximum
atom radius is usually 2.0Å and the decay ratio is 1.0. When ε = 10−6, the bounding radius
Rkd = 4.3 ensures that no atom around a grid point has a density contribution smaller than
ε. For each analyzed grid point, it takes O(logM) to find the nearby atoms and compute
the Gaussian density.

The bounding volume hierarchy is a tree structure on a set of geometric objects. All ge-
ometric objects are wrapped in bounding volumes that form the leaf nodes of the tree.
This technique has been widely used in computer visulization, and also employed in protein
structure representation [14, 33, 39]. In this paper, edges of the bounding volumes are along
the coordinate axes. The smallest box that contains all the atom centers belonging to a
structure is called the minimum bounding box of this structure. The minimum bounding
box is generally expanded by a certain ratio. The margin of the bounding box is constraint
with at least RBVH = 4.3 to make sure all the contributing atoms can be searched (similar
with Eqn. 7). The bounding box of a higher level structure contains bounding boxes of lower
structures. Fig. 7 shows an example of the BVH for a protein with an atom-residue-chain
structure. In Fig. 7(a), the space is subdivided into the bounding boxes (red and green)
of two peptides. The bounding boxes of peptides are further subdivided into the bounding
boxes of residues (Fig. 7(b)). The subdivision allows overlaps and gaps between the children
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(a) (b)

Fig. 7. The bounding box system. (a) The bounding boxes of two peptides; and (b) the bounding
box of one peptide is subdivided into bounding boxes of residues.

boxes. Searching nearby atoms follows a top-down order in the BVH tree structure. The time
complexity for the BVH searching can be O(logM), but in practice the efficiency would be
a bit worse because the structures usually have many overlaps. Moreover, as the atom order
is organized following the hierarchical structure, the construction of the BVH tree can be
easily conducted.

3.3 Parallel Gaussian Density Computation

To further accelerate the speed, multi-core CPU and GPU-based parallel computation are
applied in the Gaussian density calculation. In each step of the neighboring search, the grid
points to be analyzed are distributed to different threads, and the returned Gaussian den-
sity value is used as the input of the next step. The workload for various grid points can be
very different because the number of contributing atoms can vary a lot. For the 8-core CPU
mode, the grid points are randomly distributed to different cores and the computation keeps
at full load for most of the time. Differently, the workload imbalance can seriously influence
the performance of the GPU-based computation. Therefore for GPU computation, the con-
tributing atom number of the previously analyzed grids are recorded, and the workload of
the newly analyzed grid points is estimated using these numbers. Grid points with similar
estimated workload are distributed to the same GPU blocks to achieve a better balance.

As shown in Fig. 8, a variety of proteins are tested using neighboring search, the KD-tree
structure and the BVH. A 2-level summation of Gaussian kernel functions are used, with
PR = 0.5 and PC = 1.0. Time costs are listed in Table 2. The rectilinear grid for each protein
is large enough to contain all the atom centers inside, and the margin on each dimension
is 4.0 Å. For all the proteins, we fix the resolution of the grid to be 0.25 Å. The CPU-
based results in Table 2 are obtained under 8-core parallel computation. All the results are
generated with an Intel E5-1620 CPU, a Nvidia GeForce GTX680 graphic card and 16GB
memory. The algorithms are implemented in C++ by using OpenMP for the multi-core
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Table 2
Efficiency comparison for neighboring search, the KD-tree and BVH. (Grid resolution: 0.25Å; Unit:
second)

PDB
ID

M N T0 TCPU(NS) TCPU(KD) TCPU(BV H) TCPU(NS+KD) TGPU(NS+BV H)

1BOR 832 147 × 149 × 154 3.89 0.76(×5.14) 1.81(×2.15) 2.08(×1.87) 0.65(×6.01) 0.20(×19.44)

1NEQ 1,187 196 × 179 × 175 8.83 1.08 (×8.21) 2.48(×3.55) 2.73(×3.23) 0.93 (×9.53) 0.25(×35.33)

1A63 2,065 275 × 176 × 183 21.60 2.56(×8.45) 5.61(×3.85) 6.57(×3.29) 1.50 (×14.40) 0.33(×65.45)

1A7M 2,809 188 × 260 × 218 34.93 3.37(×10.36) 8.91(×3.92) 9.87(×3.54) 2.03(×17.23) 0.51(×68.49)

1BEB 4,972 232 × 246 × 324 107.38 8.85(×12.13) 18.77(×5.72) 20.65(×5.20) 2.99(×35.94) 0.92(×116.71)

1VNG 8,808 319 × 258 × 307 262.19 20.36(×12.88) 36.42(×7.20) 35.43(×7.40) 6.19(×42.37) 1.20(×218.49)

1GTP 69,980 915 × 591 × 345 15,496.44 820.79(×18.88) 2,060.70(×7.52) 501.83(×30.88) 162.01(× 95.65) 11.33(×1,367.74)

2KXH 70,200 281 × 284 × 256 2,307.54 159.50(×14.47) 253.02(×9.12) 288.08(×8.01) 20.69(×111.54) 2.71(×851.49)

Note: M - the atom number; N - the grid size; T0 - CPU computation without any acceleration algorithm; NS - neighboring search; KD -
KD-tree structure; BV H - bounding volume hierarchy. The numbers in parentheses are the speedups compared to T0.

CPU computation and CUDA 5.0 for the GPU computation. T0 is the time cost of CPU
computation without any acceleration algorithms. Neighboring search, KD-tree structure
and BVH are compared in CPU-based implementations.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Eight proteins tested in Table 2. (a) 1BOR; (b) 1NEQ; (c) 1A63; (d) 1A7M; (e) 1BEB; (f)
1VNG; (g) 1GTP; and (h) 2KXH.

Generally, as the atom number M increases, the speedups for neighboring search, KD-
tree and BVH all become more significant. For KD-tree and BVH, the time complexity of
Gaussian density map generation is improved to O(N logM), compared with the original
O(NM). Therefore, it is easy to understand that the speedups of KD-tree and BVH increase
asM gets larger. For neighboring search, the corresponding time complexity isO(kANM). At
a certain resolution, kA decreases as M gets larger because generally the surface area grows
much slower than the grid size increases. Therefore, the speedup of neighboring search also
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increases as M gets larger. Besides atom number, the efficiency speedups are also affected by
the biomolecular structure. The performance of BVH is directly related to the hierarchical
structure of the biomolecules, while the KD-tree is not. For example, 1GTP and 2KXH
have similar atom numbers, but the structures in 2KXH are much tighter than in 1GTP,
leading to many more overlaps among the bounding boxes. Therefore, the speedup of BVH
for 2KXH (8.01 times) is not as significant as 1GTP (30.88 times).

TCPU(NS+KD) and TGPU(NS+BVH) shows the effect of different combinations of the tech-
niques. As the hierarchical structure information is ignored in the KD-tree, a re-organization
of the atoms is required for multi-level summation of Gaussian kernel functions. The re-
organization needs a lot of memory. Therefore instead of KD-tree, the BVH is chosen for
GPU-based computation. The combination of neighboring search, KD-tree structure and
multi-core CPU computation results in a speedup varying from 6.01 to 111.54 times. For
the combination of neighboring search, BVH and GPU computation, the speedup can range
from 19.44 times for the smallest protein (1BOR) to 1,367.74 times for the largest protein
(1GTP), due to the highly parallel computational capability of the GPU and the maximum
effect of neighboring search.

4 Mesh Generation

The dual contouring method [22, 50] is applied to generate adaptive tetrahedral meshes from
the Gaussian density map. The multi-core CPU and GPU-based parallel computation are
employed to speed up mesh generation.

4.1 Dual Contouring Method

The biomolecular surface is defined as an isosurface of the Gaussian density map, from which
tetrahedral meshes can be extracted using the dual contouring method [50, 52]. A strongly-
balanced octree structure is built from the rectilinear grid that contains the Gaussian density,
and the mesh adaptation is controlled by a feature sensitive error function [50]. To resolve
topology ambiguities, we detect ambiguious cells using a trilinear function, and then split
them into tetrahedral cells [51]. For each octree cell, the minimum and maximum (min-max)
density values are calculated, making it easy to tell if the octree cell is inside or outside the
domain to be meshed. For each leaf cell, a dual vertex is generated and the tetrahedral mesh
is constructed by connecting the dual vertices with octree grids. For each octree boundary
cell that intersects with the biomolecular surface, we choose the mass center as the dual
vertex. The mass center is defined as the the average of all the intersection points between
the biomolecular surface and the cell edges. For interior leaf cells, the dual vertex is the cell
center.

Tetrahedral elements are generated around each minimal edge, which is defined as an edge
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of a leaf cube that do not properly contain any edge of its neighbors. The minimal edge
intersecting with the biomolecular surface is called a sign change edge, and those inside the
domain to be meshed are called interior edges. For each sign change edge, we first find out
all its surrounding leaf cells and obtain three or four dual vertices. These dual vertices and
the interior grid point of this edge form a tetrahedron or a pyramid. For each interior edge,
we also obtain three or four dual vertices. Differently, these dual vertices and two endpoints
of this edge form a pyramid or a diamond. Later, the pyramids and diamonds can be splitted
into tetrahedra. The ambiguous leaf cells are split into tetrahedra, and meshes are generated
by analyzing the edges of these tetrahedra [51].

4.2 Paralleled mesh generation

GPU-based computation has been used in isocontouring for surface mesh generation [38].
Differently, in this paper we aim to apply multi-core CPU and GPU-based techniques to
the dual contouring method for adaptive tetrahedral mesh generation. In the twelve edges
of one leaf cell, at least three of them are independent. As shown in Fig. 9, we divide all the
edges into four groups (orange, green, blue and red), and analyze one group in each step.
For example, the orange group (edge e01, e03 and e04) is analyzed for all the leaf cells. Each
octree cell is distributed to a CPU or GPU thread, and the connectivity can be constructed
in a parallel way. During octree subdivision, the most time-consuming step is the min-max
computation, which is more expensive for the lower level octree cells with more grid points.
To improve the workload balance, octree cells at the same or similar levels are distributed
to the same GPU blocks.

(a) (b)

Fig. 9. Group of the edges.

5 Quality Improvement

In our generated tetrahedral meshes, most elements are in good quality except some elements
around the boundary. Therefore, we need to improve the mesh quality. First, let us choose a
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few metrics to measure mesh quality [50, 29]: the edge ratio, the Jue-Liu parameter [31], and
the dihedral angle. The edge ratio is the ratio of the longest edge length over the shortest
edge length in one element. The Joe-Liu parameter is defined as

Q =
8 · 3 5

2V(∑6
j=1 e

2
j

) 3
2

(8)

where {ej}6j=1 are six edge lengths, and V is the volume of a tetrahedron.

Three techniques are applied to improve the mesh quality: face swapping, edge contrac-
tion, and geometric flow [29]. Both face swapping and edge contraction are operations of
topological optimization. Face swapping reconnects vertices of some elements, while edge
contraction removes a few poor quality elements. Differently, geometric flow relocates ver-
tices iteratively to improve the overall mesh quality. Generally speaking, face swapping and
edge contraction only change the local topology for a few elements (< 1%), and the process
is very fast. Geometric flow smoothing needs to relocate vertices overally, which is the most
time-consuming part for quality improvement. Using a similar data structure with [12], the
parallel computation is applied to the smoothing step. Vertices are relocated and updated
one by one. In the CPU-based computation, METIS [23] is employed to partition the mesh,
and vertices in different parts are independent from each other. The location of the vertices
on the shared boundaries are synchronized after each smoothing step.

For GPU-assisted computation, vertices are relocated after each step to avoid any conflict.
The workload imbalance is the main concern in the implementation. For adaptive meshes,
vertices with a large valence number may happen, which can cause serious workload im-
balance during the GPU-based geometric flow smoothing. Therefore, vertices are grouped
according to their valence number, and the ones with similar valence number are distributed
to the same GPU blocks.

6 Results and Discussion

In this section, all the steps in our multi-scale modeling, including Gaussian density compu-
tation, mesh generation and quality improvement, are tested in three modes: CPU sequential,
CPU 8-core parallel and GPU parallel. Among the tested biomolecular complexes (see Figs.
1, 10 and 11), TFC, the SERCA pump and the myofibril lattice (ML) are from the hu-
man cardiac calcium signaling system, while 2W4A, 1HTQ and 2KU2 are chosen from the
Protein Data Bank (PDB). A 3-level summation of Gaussian kernel functions is applied for
TFC, while the other models use a 2-level summation. Table 3 shows the modeling results,
which are generated from a computer with an Intel Xeon E5-1620 CPU, a Nvidia GeForce
GTX680 graphic card, and 16GB of memory.
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Table 3
Time cost for three testing modes (CPU sequential, CPU 8-core parallel and GPU parallel) and
mesh statistics. (Unit: second)

Complex TFC SERCA ML 2W4A 1HTQ 2KU2

M 69,222 80,157 95,853 0.19M 0.98M 1.23M

Mode CS C-8 G CS C-8 G CS C-8 G CS C-8 G CS C-8 G CS C-8 G

DM 188.6 37.8
(×5.0)

4.8
(×39.3) 165.1 38.4

(×4.3)
11.7

(×14.1) 377.5 75.6
(×5.2)

7.3
(×51.7) 687.4 143.5

(×4.8)
10.2

(×67.4) 6,494.71589.4(×4.1)
88.4

(×73.5) 3,050.2 645.5
(×4.7)

63.2
(×48.3)

MG 13.2 6.6
(×2.0)

2.4
(×5.5) 12.8 6.3

(×2.0)
2.3

(×5.6) 13.1 6.7
(×2.0)

2.4
(×5.5) 12.9 6.7

(×1.9)
2.4

(×5.4) 13.1 6.7
(×2.0)

2.7
(×4.9) 12.9 6.5

(×2.0)
2.4

(×5.4)

QI 157.8 35.8
(×5.0)

6.3
(×25.2) 163.5 37.7

(×4.3)
7.2

(×22.7) 189.5 36.7
(×5.2)

5.8
(×32.7) 213.7 53.2

(×4.0)
6.5

(×32.9) 250.6 68.3
(×3.7)

12.5
(×20.0) 178.0 44.2

(×4.0)
6.7

(×26.6)

Total 359.6 80.2
(×4.5)

13.5
(×26.6) 341.4 82.4

(×4.1)
21.2

(×16.1) 580.1 119.0
(×4.9)

15.5
(×37.4) 914.0 203.4

(×4.5)
19.1

(×47.9) 6,758.41,664.4(×4.1)
103.6

(×65.2) 3241.1 696.2
(×4.7)

72.3
(×44.8)

Mesh size
(V#, E#)

(212,120, 1,094,424) (190,356, 946,273) (271,523, 1,327,336) (276,458, 1,334,008) (399,994, 1,989,245) (243,463, 1,201,048)

Edge ratio
(min, max)

(1.0, 10.24) (1.0, 10.23) (1.0, 10.31) (1.0, 10.98) (1.0, 9.56) (1.0, 10.60)

Joe-Liu
(min, max)

(0.12, 1.0) (0.14, 1.0) (0.18, 1.0) (0.11, 1.0) (0.10, 1.0) (0.15, 1.0)

Dihedral
angle

(min, max)
(15.00◦, 165.25◦) (15.01◦, 167.25◦) (15.03◦, 164.20◦) (15.10◦, 166.23◦) (15.03◦, 167.46◦) (14.86◦, 167.42◦)

Note: M - atom number; CS - CPU sequential; C-8 - 8-core CPU parallel; G - GPU parallel; DM - time for density map construction; MG - time
for mesh generation; QI - time for quality improvement; (V#, E#) - (vertex number, element number).

Thin filament complex (TFC): The thin filament complex is an important component
in myofibrils, which is also the key functional part in the muscle fibers. The contraction of
muscle fibers rely heavily on the interaction between the myosin heads and the filaments.
To study the calcium ion signaling process during the muscle contraction, a cuboidal outer
boundary is inserted around the thin filament, and the exterior tetrahedral meshes are
generated, see the 2W4U model in Fig. 1.

SERCA pump: The SERCA pump works as a pump for the calcium ions in the signaling.
The system contains a segment of lipid and a protein 1SU4 intersecting with it. As shown in
Fig. 10(a-c), a cuboidal boundary is insert around it and intersecting with the membrane.
The exterior mesh is generated which is divided by the membrane into two separated parts.

Myofibril lattice (ML): During the heart muscle contraction, the calcium signaling process
is a combination of the interaction between the thin and thick filaments. A model containing
six thin filaments and four thick filaments is built with a cuboidal outer boundary intersecting
with the filaments, see Fig. 10(d-f). The exterior tetrahedral mesh is generated to represent
the environment around the filaments. The thin filaments here contains six myosin heads,
and the thick filaments are represented by cylinders. The density map for a single thin
filament is generated using the multi-level summation of Gaussian kernel functions, it is
used for the assembly of the intact density map containing six thin filaments. The assembly
step costs about ten seconds, which is not count in Table 3.

As shown in Fig. 11, three large proteins are chosen from the Protein Data Bank, and tested
using our modeling methods. 2W4A is a contractile protein for insect flight muscle. 1HTQ
is a glutamine synthetase from Mycobacterium tuberculosis, the second largest protein we
found in the PDB. 2KU2 is a hydrolase protein, which is also the largest protein we found
in the PDB.
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In Gaussian density map generation, the rectilinear grid size for the Gaussian density map
is constraint to be 513 × 513 × 513. For the CPU-based computation, neighboring search
and the KD-tree structure are applied in both the sequential and parallel modes; while
the combination of neighboring search and BVH is employed in the GPU-based mode. The
speedups of the 8-core CPU computation are similar for all the complexes (4.1∼5.2), while
the speedups of the GPU-assisted computation vary from 14.1 to 73.5 times. The worst
speedup of the GPU computation happens on the SERCA pump, as shown in Fig. 10(a). In
SERCA pump, the lipid (pink) contains most of the atoms without a hierarchical structure,
which greatly reduces the subdivision efficiency of the BVH.

In both 8-core CPU and GPU-based computation, the time costs of mesh generation are
similar for all the tested models although the mesh size differs. This is because in mesh
generation, the most time-consuming step is octree subdivision. Compared to the uniform
grids, the adaptive octree construction requires a much more complicated index system,
which significantly limits the speedups. From Table 3, we can observe that the speedups
are 1.9∼2.0 times for the 8-core CPU computation, and 4.9∼5.6 times for the GPU-based
computation.

During quality improvement, for both the CPU sequential and the 8-core CPU computation,
we can observe that the time cost increases as the mesh size becomes larger. However,
it is more complicated for the GPU-based computation due to its high sensitivity to the
vertex valence number, which also brings in serious workload imbalance on different threads.
As discussed in Section 5, high valence numbers are introduced by mesh adaptation. In
particular, TFC, the SERCA pump, and 1HTQ contain large volumes, and they require
more adaptive meshes to reduce the mesh size. Due to this reason, a workload imbalance is
introduced in their GPU computation. Therefore, for these three models the speedups are
only about 20.0∼25.2 times, not as significant as the others (26.6∼32.9 times).

For the whole modeling process, the 8-core CPU computation introduces a similar speedup
on the efficiency for all the tested proteins (4.1∼4.9 times), while the speedups of the GPU-
assisted computation vary from 16.1 to 65.2 times. In addition, from Table 3 we can observe
that the obtained meshes are in good quality with the minimal dihedral angle ≥ 14.86◦.

7 Conclusion and Future Work

In this paper, a multi-level summation of Gaussian kernel functions is applied to generate
multi-scale implicit models for the biomolecules. Structures at different levels are specified
and emphasized with more details on the local surface. The computational efficiency is
improved by using a combination of neighboring search, KD-tree structure and bounding
volume hierarchy. The CPU and GPU-assisted parallel computation techniques are employed
in all the modeling steps, including Gaussian density map construction, mesh generation and
quality improvement. In our approach, large proteins can be modeled quickly with quality
adaptive tetrahedral meshes as output.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Two biomolecualr complexes in human cardiac calcium signaling system. (a-c) SERCA
pump with PR = 0.2, PC = 0.8 and PR = 0.2, PC = 1.1 for low and high resolution components,
respectively; and (d-f) the myofibril lattice (ML) with PR = 0.5, PC = 0.3 and PR = 0.7, PC = 0.4
for low and high resolution components, respectively. (a) and (d) show the protein structure with
the blue region emphasized in high resolution; (b) and (e) show exterior tetrahedral meshes; and
(c) and (f) show exterior meshes with embeded proteins.

In the future, it is worth to apply the multi-level summation of Gaussian kernel functions in
various application problems such as the diffusion simulation and boundary element solvers
of the Poisson-Boltzmann equation [15, 16, 34]. In particular, the study of large biomolecules
will benefit a lot from the high efficiency introduced by our techniques. The multi-level
summation can also be extended to work for a combination of biomolecular information
from the Protein Data Bank and Cryo-EM scanned images.

17



(a) (b)

(c) (d)

(e) (f)

Fig. 11. Three large proteins. (a-b) 2W4A with PR = 0.2, PC = 0.8 and PR = 0.4, PC = 1.2 for low
and high resolution components, respectively; (c-d) 1HTQ with PR = 0.3, PC = 0.8 and PR = 1.0,
PC = 1.5 for low and high resolution components, respectively; and (e-f) 2KU2 with PR = 0.5,
PC = 1.0 and PR = 1.6, PC = 2.0 for low and high resolution components, respectively. (a), (c)
and (e) show tetrahedral mesh of the proteins with the blue region emphasized in high resolution,
and the pink region shows a cross section of the model; (b), (d) and (f) show the partition results
in parallel computation.
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