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Abstract

We consider the numerical solution of the Poisson-Boltzmann equation (PBE), a three-dimensional second
order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting
features impacting numerical algorithms, including discontinuous coefficients representing material interfaces,
rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including
nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this work,
we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of
these types of equations.

We first outline the physical model and derive the PBE, which describes the electrostatic potential of a
large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and
nonlinear PBE using standard function space methods; since this equation has not been previously studied
theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We
also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations
which are produced. In particular, we show that the discrete nonlinear problem is well-posed.

We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of
Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show
that in certain simplified cases the two approaches are equivalent, with different averaging procedures corre-
sponding to different prolongation operators. We extend these methods to the nonlinear case through global
inexact-Newton iteration, and derive necessary and sufficient descent conditions for the inexact-Newton di-
rection, resulting in extremely efficient yet robust global methods for nonlinear problems. After reviewing
some of the classical and modern multilevel convergence theories, we construct a theory for analyzing general
products and sums of operators, based on recent ideas from the finite element multilevel and domain decom-
position communities. The theory is then used to develop an algebraic Schwarz framework for analyzing our
Galerkin-based multilevel methods.

Numerical results are presented for several test problems, including a nonlinear PBE calculation of the
electrostatic potential of Superoxide Dismutase, an enzyme which has recently been linked to Lou Gehrig’s
disease. We present a collection of performance statistics and benchmarks for the linear and nonlinear
methods on a number of sequential and parallel computers, and discuss the software developed in the course
of the research.

iii



Preface

In this work we consider nonlinear elliptic equations of the form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
d,

as well as the special case of linear equations. The tensor ā(x) as well as the scalar functions b(x, u(x))
and f(x) may be only piecewise continuous, and in fact may jump by orders of magnitude across internal
boundaries or interfaces in the domain. Problems of this type, referred to as interface problems, occur (on
their own, or as the equilibrium form of a governing diffusion equation) in various applications, including
flows in porous media, nuclear physics, semiconductor physics, population genetics, astrophysics, combustion,
and biophysics, to name only a few.

As research in numerical analysis, our aim is to develop efficient and accurate numerical methods for
approximating the solutions of these types of equations, and to understand the various complexity and
convergence properties of these methods. As scientists attempt to solve larger and larger problems, it
becomes important to develop nearly optimal or optimal complexity algorithms (in this case, algorithms
which scale linearly with the number of unknown quantities). Our approach is to employ certain types of
multilevel or multigrid iterative methods, which can be shown (both theoretically and numerically) to be
optimal in this sense in many situations.

While the methods we consider are generally applicable to the class of nonlinear interface problems above,
we will focus our efforts on some nonlinear elliptic equations which arise in a particular application from
biophysics: the Poisson-Boltzmann equation (PBE) in its various forms, including a linearization. This
equation, a three-dimensional second order nonlinear elliptic partial differential equation, has several inter-
esting features impacting numerical algorithms, including discontinuous coefficients representing material
interfaces, rapid nonlinearities, three spatial dimensions, and infinite domain. In this work, we study the
PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types
of equations.

Before we give a preview of the work, let us diverge for a moment to construct an appropriate frame of
reference. The field of numerical analysis, or computational mathematics, is concerned with several of the
steps required to solve a scientific problem of current interest using modern computers:

(1) Statement of the physical problem as a governing system of equations

(2) Analysis of the properties of the governing system

(3) Construction and analysis of an approximating system

(4) Development and analysis of numerical methods for the approximating system

(5) Efficient implementation of the numerical methods on sequential or parallel computers

(6) Analysis of the results.

The degree of concern for a particular step depends on the particular area of specialization. Steps 1 and 6
clearly must involve the physical scientist. Steps 2 through 4 are in the realm of applied mathematics and
numerical analysis, whereas in this era of complex parallel computers, Step 5 requires the computer scientist.
While our emphasis here is Steps 3 through 5, we must also be concerned somewhat with Step 2; this is
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PREFACE v

necessary for the following reasons. For the analysis of multilevel iterative methods, as opposed to other
iterative methods which often can be analyzed from purely algebraic properties of the discrete equations,
one must have a good understanding of the mathematical properties of the continuous equations involved
(i.e., how smooth or regular the solutions are), and an understanding of the finite element method for
discretization, which itself requires knowledge of properties of the continuous problem.

Overview

We now give a brief overview of the material, which is presented in three parts. Note: At the beginning of
each chapter, we state clearly the purpose of the chapter, and provide a short overview of the material to
follow.

Part I (Chapters 1 and 2) begins in Chapter 1 with the Poisson-Boltzmann equation, which arises in the
Debye-Hückel theory of macromolecule electrostatics. The unknown function u(x) in the equation represents
the electrostatic potential generated by a macromolecule lying in an ionic solvent. Since the fundamental
forces in molecular systems are electrostatic in origin, calculation of the potential using Poisson-Boltzmann
equation is useful for several applications in biophysics, and in particular the electrostatic forces needed for
molecular and Brownian dynamics simulation can be computed from the potential. Some of the properties of
the Poisson-Boltzmann equation make it a formidable problem, for both analytical and numerical techniques.
To motivate the work, we provide a thorough discussion of the Poisson-Boltzmann equation, including
derivation from a few basic assumptions, discussions of special case solutions, as well as common (analytical)
approximation techniques.

In Chapter 2, we study the theoretical properties of the linearized and nonlinear PBE using standard
function space methods. Solutions to general elliptic equations can be explicitly constructed in only very ideal
situations (which is of course the main reason we are interested in numerical methods), and it is therefore
important to have some knowledge of the existence and uniqueness theory for the equations involved, even if
it is nonconstructive. This is especially true in the nonlinear case, where even small changes in a coefficient
function or boundary data can be sufficient to cause bifurcations in the solution of a formerly uniquely
solvable problem; it is important to know when the problem is well-posed.1 Since the Poisson-Boltzmann
equation does not appear to have been previously studied in detail theoretically, we provide existence and
uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations
of the PBE, establishing several properties of the discrete equations which are produced. In particular, we
show that the discrete nonlinear problem is well-posed.

In Part II (Chapters 3, 4, and 5), we study and develop multilevel methods for linear and nonlinear
elliptic problems. In Chapter 3, we provide a detailed overview and analysis of linear multilevel methods
and conjugate gradient accelerations. We study special methods for interface problems based on algebraic
enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil
calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging
procedures corresponding to different prolongation operators. In Chapter 4, we develop methods for non-
linear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a
globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition
for the inexact-Newton direction, enabling the development of extremely efficient yet robust damped-inexact-
Newton-multilevel methods. In Chapter 5, we outline the fundamental ideas of modern multilevel conver-
gence theory, and we adapt and apply some of the more recent results from the finite element multilevel
literature to the Galerkin-based methods. In particular, we develop a fully algebraic theory for bounding
the norms and condition numbers of products and sums of operators, based on recent results appearing in
the finite element multilevel and domain decomposition literature. This theory is then used to develop an
algebraic Schwarz theory framework for analyzing our Galerkin-based multilevel methods.

The motivation for considering multilevel methods for the discretized Poisson-Boltzmann equation is their
observed optimal or near optimal behavior for a wide range of elliptic problems. In certain situations which
will be explained in more detail later, classical multigrid methods can be shown to possess a contraction

1The term “well-posedness” as used here refers to three questions: existence of a solution, uniqueness of a solution, and
continuous dependence of the solution on the data of the problem.
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property of the form:

‖u − un+1‖A ≤ δJ‖u − un‖A, δJ = 1 − 1

C(α, J)
< 1,

where J is the number of levels in the multilevel algorithm, and α is a regularity parameter, which indicates
how “smooth” the solution to the underlying elliptic problem is in a certain mathematical sense. The norm
‖ · ‖A above denotes the energy norm, and the other quantities appearing above are the true solution to
the discrete problem u, and the successive iterates un and un+1 produced by the method to approximate u,
starting with some initial u0.

In the context of a problem containing N pieces of data, a solution method for the problem can be
considered to be of optimal order if the complexity of the method is O(N). If δJ can be shown to be
independent of the number of levels J in a multilevel method, then often each iteration of the method can
be constructed to have a complexity of O(N) for N mesh points. In addition, if the contraction number
δJ can be shown to be independent of the mesh size, then the complexity of the resulting algorithm which
produces a result with error on the order of truncation error can be shown to be O(N ln N). When a “nested
iteration” technique is employed to provide an improved initial approximation, it can be shown that this
cost improves to the optimal O(N). Similar properties can often be shown analytically or numerically for
nonlinear multilevel iterative methods. These types of complexity properties become especially important
when large three-dimensional problems are considered (extremely large N), and the importance of multilevel
methods becomes clear when one notes that no other class of methods has been shown to demonstrate this
optimal complexity behavior for such a broad range of problems.

Part III (Chapters 6, 7, and 8) consists of several detailed numerical studies of the multilevel methods
developed earlier. In particular, we present experiments with several linear (Chapter 6) and nonlinear
(Chapter 7) test problems, provide detailed numerical studies of the complexity and convergence properties
of the methods as a function of the problem and method parameters, and apply the most promising of the
multilevel methods to the linearized and nonlinear Poisson-Boltzmann equations. We attempt to determine
numerically as completely as possible the convergence and complexity properties of these multilevel methods
for the Poisson-Boltzmann equation. We demonstrate the utility of our methods and software in Chapter 7
by including a nonlinear PBE calculation of the electrostatic potential of Superoxide Dismutase, an enzyme
which has recently been linked to Lou Gehrig’s disease. Chapter 8, the final chapter, consists of a collection
of performance statistics and benchmarks for the linear and nonlinear solvers on a number of sequential and
parallel computers.

In Appendix A we provide the details of computing the Galerkin coarse matrix entries (outlined in
Chapter 3) directly and by using MAPLE and MATHEMATICA. In Appendix B we discuss the software
developed in the course of the research.

Before we begin, we wish to make a final comment. The material we present is somewhat broad, and
as a result the manuscript is long. Although we have tried to eliminate as many errors as possible, there
are bound to be many more. We will also have certainly left out many references that should have been
included. Making our apologies in advance, we would appreciate hearing from the reader when errors and/or
omissions are found.



Acknowledgments

This is a summary of work done over a six year period while a member of the Numerical Computing Group
(NCG) in the Department of Computer Science at the University of Illinois, Urbana-Champaign. NCG
includes Professors Tom Kerkhoven, Faisal Saied, Paul Saylor, and Bob Skeel. I wish to thank each for being
on my dissertation committee, along with Professor Shankar Subramaniam of the Beckman Institute at the
University of Illinois, who was the fifth committee member.

I especially wish to express my gratitude to Professor Saied, who supervised my dissertation work.
Professor Saied gave me tremendous freedom in pursuing this topic, and was always willing to listen to
my ideas. His genuine excitement about and interest in numerical analysis and science in general is quite
infectious, and working with him closely over the last three years not only helped to turn my work into
something interesting, but also something thoroughly enjoyable to me. I wish to thank him for both his help
and friendship during my stay in Urbana.

Professor Kerkhoven, Professor Saylor, and Professor Skeel have each been helpful at various times over
the last six years. Professor Saylor has always been supportive and encouraging, and his generosity and
kindness helped make life as a graduate student much less difficult. Professor Kerkhoven’s expertise in
semiconductor modeling and the mathematics of elliptic equations was very helpful, especially in the last
year, and I hope to continue to learn from him in the future. Professor Skeel, who funded most of my Ph.D.
studies, introduced me to the Poisson-Boltzmann problem, and has been an inspiration to me during my
studies in Urbana.

Several scientists from outside NCG contributed to this work. In particular, Professor Subramaniam
has been very helpful with his knowledge of biophysics and the Poisson-Boltzmann equation. Dr. Richard
Kozack, also at the Beckman Institute, was always prepared to answer my questions about biophysics,
whether at the office or while playing pool. Dr. Anthony Nicholls at Columbia University took great pains
to help me throughout the project, which included an invitation to visit the lab of Dr. Barry Honig at
Columbia for a few days in the Summer of 1992; I wish to thank Anthony for his help and advice during the
last two years. Dr. Stefan Vandewalle, during our first few months as postdocs together at Caltech, read
the material on algebraic Schwarz theory quite carefully, suggesting simplifications in some of the proofs and
also establishing an improved bound for Lemma 5.26.

I was given the opportunity to spend the summers of 1991 and 1992 at Lawrence Livermore National
Laboratory, which enabled me to learn from many quality people, including Steve Ashby, Chuck Baldwin,
Milo Dorr, Rob Falgout, Anthony Skjellum, and Bert Still. Steve took a strong interest in me throughout
my graduate studies, and was kind enough to include me in many of his projects. Milo, Tony, Rob, Bert, and
Chuck provided a stimulating environment in which I was always challenged. Rob was kind enough to teach
me the stencil calculus he developed in his thesis, which was very helpful to me this last year. Interactions
(at LLNL and elsewhere) with Tom Manteuffel, Beth Ong, Randy Bank, Jan Mandel, Joel Dendy, and Paul
Newton at various times were also extremely helpful.

Franklin Bodine of the Beckman Institute at the University of Illinois helped produce the 3D visual-
izations of SOD appearing here. The Chemistry Department at the University of Houston provided access
to the University of Houston Brownian Dynamics (UHBD) Program, developed in the laboratory of Dr.

vii



viii ACKNOWLEDGMENTS

J. Andrew McCammon. The vectorizable plane-diagonal-wise ordered incomplete Cholesky factorization
preconditioners, used for comparisons with some of the linear multilevel solvers, were obtained from the
NETLIB numerical software library with the help of Dr. Henk van der Vorst.

The National Center for Supercomputer Applications, located at the University of Illinois at Urbana-
Champaign, provided access to the Cray Y-MP through support by the National Science Foundation. Access
to the Convex C240 was provided by the Computing Services Organization, also at the University of Illinois
at Urbana-Champaign. CRL/DCS provided support for the SUN workstations on which this work was
written, using LATEXalong with Xdvi and GhostView postscript previewers. All plots appearing here were
generated by MATLAB 4.0 and XFIG. This work was supported in part by Department of Energy Grant
No. DOE DE-FG02-91ER25099. The Center Library, with its large number of holdings, was indispensable to
the work presented here, and The Center Espresso Bar and Sound System provided espresso and stimulating
Stan Getz music at all hours.

Steve Lee and Dan Okunbor shared the ups and downs of graduate student life with me over the last five
years; I wish to thank them for many insightful discussions about numerical analysis, coffee, and Nigeria.
I am leaving three “families” at the same time as I depart from Urbana: my French friends Vincent, Vero,
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Notation

The notation we employ is fairly standard. Generally, points and functions are written in lower case, e.g.
u, with boldface u and overbars ū representing vector and matrix functions, respectively. Sometimes it
will be more standard to represent vectors and operators in finite-dimensional spaces by subscripts such as
uk and Ak, respectively. Operators are written in uppercase, with caligraphic type for the special case of
differential operators. Spaces are represented with the standard symbols in uppercase, or in caligraphic type
for arbitrary Hilbert spaces.

Sets, points, vectors, and tensors

R
d Euclidean d-space.

x A point x ∈ R
d,x = (x1, . . . , xd), where xi ∈ R.

|x| The norm in R
d, (
∑d

i=1 x2
i )

1/2.
Ω ⊂ R

d Ω is a bounded subset of R
d.

Ω1 ⊂⊂ Ω The closure of Ω1 is contained in Ω, or Ω̄1 ⊂ Ω.
∂Ω or Γ The boundary of Ω ⊂ R

d.
u(x) Scalar functions (zero order tensors), mapping Ω 7→ R.
u(x) Vector functions (first order tensors), mapping Ω 7→ R

d.
ū(x) Matrix functions (second order tensors), mapping Ω 7→ L(Rd, Rd).

u · v The dot (scalar) product of two vectors,
∑d

i=1 uivi.
uv The dyadic (tensor) product of two vectors, (uv)ij = uivj .

ū · v The tensor-vector product, (ū · v)i =
∑d

j=1 uijvj .

v · ū The vector-tensor product, (v · ū)i =
∑d

j=1 vjuji.

uijvj Einstein summation convention for repeated indices,
∑d

j=1 uijvj .

supp u The support of u on Ω; the closure Ω̄1 of the set Ω1 ⊂ Ω on which u 6= 0.
supp u ⊂ Ω u has compact support in Ω.
dist(x, Ω) The distance between a point x and a set Ω, infy∈Ω |x − y|.
int(Ω) The set of interior points of Ω.
meas(Ω) Lebesgue measure or volume of the set Ω.

xvi
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Differentiation and integration

α A multi-index; the d-tuple α = (α1, . . . , αd), αi a nonnegative integer.

|α| ∑d
i=1 αi.

Dαu ∂|α|u/(∂xα1
1 · · · ∂xαd

d ).
Diu ∂u/∂xi.
∇ (D1, . . . , Dd).
grad u The gradient of a scalar function, (grad u)i = (∇u)i = Diu.
grad u The gradient of a vector function, (grad u)ij = (∇u)ij = Diuj .

div u The divergence of a vector function, div u = ∇ · u =
∑d

i=1 Diui.
u′ The gradient vector of a scalar function, u′ = (∇u)T .
u′ The Jacobian matrix of a vector function, u′ = (∇u)T .
∫

Ω
u dx Volume integration of a function u(x) over a set Ω.

∮

∂Ω u ds Surface integration of a function u(x) over the boundary ∂Ω of Ω.

Spaces

H, H∗ Hilbert space and its associated dual space.
L(H1,H2) Space of linear operators mapping H1 into H2.
L(H1 ×H2, R) Space of bilinear forms mapping H1 ×H2 into R.
Hk, Mk, Uk Subspaces of a Hilbert space.
Ck(Ω), Ck

0 (Ω) Spaces of k-times continuously differentiable functions.
Lp(Ω) Lebesgue space of p-th power integrable functions.
W k(Ω) Space of k-times weakly differentiable functions.

W k,p(Ω), W k,p
0 (Ω) Sobolev spaces associated with W k(Ω) and Lp(Ω).

Hk(Ω), Hk
0 (Ω) Sobolev spaces W k,2(Ω) and W k,2

0 (Ω).
H−k(Ω) Dual space of Hk(Ω).

Norms

(·, ·)H, ‖ · ‖H, ‖ · ‖H∗ Inner-product and norm in H, and the norm in H∗.
(·, ·)k, ‖ · ‖k Inner-product and norm in Hk, Mk, or Uk.
(·, ·)A, ‖ · ‖A A-inner-product and A-norm defined by A(·, ·) = (A·, ·).
‖ · ‖Lp(Ω) Norm in Lp(Ω).
(·, ·)L2(Ω), ‖ · ‖L2(Ω) Inner-product and norm in L2(Ω).

‖ · ‖W k,p(Ω), | · |W k,p(Ω) Norm and semi-norm in W k,p(Ω) and W k,p
0 (Ω) .

(·, ·)Hk(Ω), ‖ · ‖Hk(Ω), | · |Hk(Ω) Inner-product, norm, semi-norm in Hk(Ω) and Hk
0 (Ω).

(·, ·), ‖ · ‖ = (·, ·)1/2 Generic inner-product and its induced norm.

Functions and operators

u, uk Elements of a Hilbert space H.
B, Bk Linear operators mapping H1 into H2.
BT , B∗ (Hilbert) adjoint and (Hilbert) A-adjoint of a linear operator B.
F (·), Fk(·) Linear or nonlinear functions or functionals on H.
F ′(·), F ′

k(·) G(Gauteux)- or F(Frechet)-derivative of F (·) and Fk(·).
A(·, ·), Ak(·, ·) Bilinear forms mapping H1 ×H2 into R.
L, N (·) Linear and nonlinear differential operators on H.
λi(B), σ(B), ρ(B) Eigenvalue, point spectrum, and spectral radius of operator B.



xviii NOTATION

Multilevel methods

H1 ⊂ H2 ⊂ · · · ⊂ HJ ≡ H Nested sequence of Hilbert spaces.
(·, ·)k, ‖ · ‖k Inner-product and induced norm in Hk.
Akuk = fk Discrete linear equations in Hk.
Ck Two-level operator in Hk.
Bk Multilevel operator in Hk.
Rk Smoothing operator in Hk.
Qk;k−1 Orthogonal projector from Hk onto Ik

k−1Hk−1.
Pk;k−1 A-orthogonal projector from Hk onto Ik

k−1Hk−1.
Ek = I − BkAk Multilevel error propagator at level k.
Ik
k−1 Prolongation operator from Hk−1 to Hk.

Ik−1
k Restriction operator from Hk to Hk−1.

Ik = IJ
J−1I

J−1
J−2 · · · Ik+2

k+1 Ik+1
k Composite prolongation operator from Hk to H.

IT
k (Variational) composite restriction operator from H to Hk.

Schwarz methods

H =
∑J

k=0 IkHk, IkHk ⊆ H A Hilbert space H and subspaces.
H0,H1, · · · ,HJ , dim(Hk) ≤ dim(H) Subspaces of the Hilbert space H.
(·, ·), ‖ · ‖ Inner-product and induced norm in H.
(·, ·)k, ‖ · ‖k Inner-product and induced norm in Hk.
Ik Prolongation operator from Hk to H.
IT
k (Variational) restriction operator from H to Hk.

Au = f Linear operator equation in H.
Ak = IT

k AIk Operator A restricted variationally to Hk.
Rk ≈ A−1

k Approximate subspace solver in Hk.
Qk = Ik(IT

k Ik)−1IT
k Orthogonal projector onto IkHk.

Pk = IkA−1
k IT

k A = Ik(IT
k AIk)−1IT

k A A-orthogonal projector onto IkHk.
Tk = IkRkIT

k A Approximate A-orthogonal projector onto IkHk.
E = (I − TJ) · · · (I − T1)(I − T0) Product error propagator in H.
P = T0 + T1 + · · ·TJ Sum error propagator in H.
C0, ω Product and sum operator theory constants.
Θ, Ξ Interaction matrices.
ω0, ω1 Subspace solver spectral bounds.
S0 Stability constant for subspace splittings.

Abbreviations

PDE Partial differential equation
PBE Poisson-Boltzmann equation
MG Multigrid or multilevel
DD Domain decomposition
PD Positive definite.
SPD Symmetric positive definite with respect to (·, ·).
X-SPD Symmetric positive definite with respect to (·, ·)X .



1. The Physical Model

In this chapter, we motivate the material to follow by discussing the Poisson-Boltzmann equation in detail,
along with some of its applications. We first review classical and molecular dynamics, Brownian dynamics,
the Debye-Hückel Theory, and derive the Poisson-Boltzmann equation from a few basic assumptions. A
linearized form of the equation is also obtained, and its validity is discussed. Some special situations are
studied, in which analytical solutions can be obtained in the form of Green’s functions for the linearized
equation over the entire domain, or pieced together from analytical solutions in separate regions. We finish
the chapter by specifying completely the two equations which provide the focus for the remainder of the work:
the nonlinear and linearized Poisson-Boltzmann equations in bounded domains, where boundary conditions
are approximated using some common analytical techniques.

While this chapter consists mainly of background material, our contributions here are as follows.

• It seems difficult to find a full derivation of the Poisson-Boltzmann equation in the literature; therefore,
we have provided a detailed derivation.

• The two most useful analytical solutions are presented together, along with detailed explanations of
the corresponding models and the complete derivations of the solutions.

• We collect together in one place most of the relevant references and sources for information about the
Poisson-Boltzmann equation and its use, including references from the biophysics, physics, chemistry,
and biology communities.

1.1 Introduction

Let us begin with a quote from an article appearing recently in Chemical Review [43]:

Electromagnetism is the force of chemistry. Combined with the consequences of quantum and
statistical mechanics, electromagnetic forces maintain the structure and drive the processes of the
chemistry around us and inside us. Because of the long-range nature of Coulombic interactions,
electrostatics plays a particularly vital role in intra- and intermolecular interactions of chemistry
and biochemistry.

Currently, there is intensive study of the electrostatic properties of biomolecules in both the physics and
chemistry communities. Excellent surveys outlining some of these efforts can be found in [32, 171]. Contin-
uum models of molecules in ionic solutions, first proposed in 1923 by Debye and Hückel [45], are increasingly
important tools for studying electrostatic interactions, and are now being incorporated into molecular and
Brownian dynamics simulators [41, 154, 169]. Since the electrostatic behavior contributes to the structure,
binding properties, as well as the kinetics of complex molecules such as proteins, modeling these interactions
accurately is an important problem in biophysics.

The fundamental equation arising in the Debye-Hückel theory is a three-dimensional second order nonlin-
ear partial differential equation describing the electrostatic potential Φ(r) at a field position r. In the special
case of a 1:1 electrolyte, this equation can be written for the dimensionless potential u(r) = eck

−1
B T−1Φ(r)

1
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as follows:

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri), (1.1)

where the permitivity ε(r) takes the values of the appropriate dielectric constants in the different regions
of the model (the value εm in the molecular region, and a second value εw in both the solution region and
an ion-exclusion layer surrounding the molecule). The modified Debye-Hückel parameter κ̄(r), which takes
the values κ̄(r) =

√
εwκ in the solution region and κ̄(r) = 0 in the molecule region (where κ is the usual

Debye-Hückel parameter), is proportional to the ionic strength of the solution (the modification makes κ̄(r)
dielectric independent). The molecule is represented by Nm point charges qi = ziec at positions ri, yielding
the delta functions in (1.1), and the constants ec, kB , and T represent the charge of an electron, Boltzmann’s
constant, and the absolute temperature. Equation (1.1) is referred to as the nonlinear Poisson-Boltzmann
equation, and its solution is usually approximated by solving the linearized Poisson-Boltzmann equation:

−∇ · (ε(r)∇u(r)) + κ̄2(r)u(r) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri). (1.2)

Analytical solutions to the linearized and nonlinear Poisson-Boltzmann equations are quite complex, even
in the few simple situations for which they exist [176]; see our discussion later in this chapter. A very early
analytical approximation approach to the nonlinear Poisson-Boltzmann equation appears in [31], whereas
analytical approaches to closely related equations can be found in [69, 177].

Due to advances in computational algorithms and hardware in recent years, several investigations into
the efficiency and accuracy of numerical methods for the linearized equation have appeared [42, 72, 116,
152, 154, 171, 186]. We mention in particular the popular computer programs DELPHI and UHBD, which
are both based on fast numerical approximation of solutions to the linearized Poisson-Boltzmann equation.
The UHBD (University of Houston Brownian Dynamics Simulator) program incorporates solutions of the
linearized Poisson-Boltzmann equation into Brownian dynamics simulations [32, 41, 43].

The nonlinear Poisson-Boltzmann equation is only now beginning to find use as a tool for studying
electrostatic properties, and various numerical methods are being proposed and investigated [3, 112, 135,
152, 160, 170]. In particular, recent extensions to the program DELPHI, developed at Columbia University,
represent the first serious attempt at providing robust solutions to the full nonlinear Poisson-Boltzmann
equation [72, 152, 170, 171].

We note that there have been no detailed studies or comparisons of the efficiency and robustness of the
many of the proposed numerical methods. The focus of this dissertation is the development and analysis
of more efficient and robust numerical methods for both the linear and nonlinear Poisson-Boltzmann equa-
tions. In particular, we will present new methods for both the linear and nonlinear equations, based on the
multilevel iteration idea, which are substantially more efficient and robust than methods currently used for
these equations. Extensive numerical experiments with implementations of these new methods on a number
of vector and parallel computers will show that these methods can solve the full nonlinear problem in sub-
stantially less time than existing linear methods require for only the linear problem, and that the advantage
of the new methods grows with the problem size. In addition, we will present detailed comparisons to many
of the existing methods for both the linear and nonlinear equations.

In the remainder of this chapter we will discuss the Poisson-Boltzmann equation in more detail, giving a
full derivation of the equation from a few assumptions, and will discuss some applications of the equation.

1.1.1 Classical and continuum mechanics

The fundamental problem of classical mechanics is the n-Body Problem:

Given n particles of mass mi acted upon by forces fi, with initial particle positions
ri(0) = (xi0, yi0, zi0) and velocities vi(0) = ṙi(0), describe the positions of the
particles, ri(t), over time.

For each particle i = 1, . . . , n, the function ri(t) : R 7→ R
3 represents the motion of the particle over time.

The configuration space of the system of n particles is the direct product of the n copies of R
3 required to
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represent the system over time, which is simply the space R
N = R

3 × · · · ×R
3 n-times, so that N = 3n. We

define the mapping r(t) = (r1(t)
T , . . . , rn(t)T )T , where r : R 7→ R

N maps time into configuration space, and
the force mapping f(r, ṙ, t) : R

N ×R
N ×R 7→ R

N . The mapping r(t) represents the motion of the system of
n particles over time.

The solution to the problem above is given by Newton’s second law of motion, f = Ma, where M is an
N × N diagonal matrix with the masses mi repeated along the diagonal, M = diag(m1, m1, m1, m2, m2,
m2, . . ., mn, mn, mn). This yields a system of ordinary differential equations for the system configuration
r at time t:

M r̈ = f , r(0) = r0, ṙ(0) = v0.

Assuming that the total force on the particles is conservative, meaning that is is both irrotational (∇×f = 0)
and time-independent, then the force can be derived from a potential function as f = −∇Φ(r), where Φ :
R

N 7→ R, and where the gradient operator is defined on the product of spaces as ∇ = (∂Φ/∂r1, . . . , ∂Φ/∂rn).
The system can then be written as:

M r̈ = −∇Φ, r(0) = r0, ṙ(0) = v0.

This second order system of ordinary differential equations can be written as a first order Hamiltonian
dynamical system by defining generalized position and momentum coordinates (see pages 60-65 of [4]), and
the solution of this system of equations completely describes the complex behavior of the system of n particles
over time. Integrating these equations analytically is in most cases not possible, so numerical methods must
be employed; see for example [155] for specially designed numerical integrators for Hamiltonian systems.
In any numerical integration procedure, the force function f must be evaluated, either directly or from the
potential function Φ.

1.1.2 The potential function

The potential function is usually the sum of several distinct potential functions:

Φ =

p
∑

i=1

Φi,

where for example the near field Φ1 may include the Van der Waals potential of chemical physics, or the
Lennard-Jones potential of noble gases, while the external field Φ2 would include, for example, externally
applied magnetic fields. The far field Φ3 might include the gravitational potential, or the electrostatic
potential of a system of charged particles.

The near field by definition exhibits rapid decay; for example, the Lennard-Jones 6-12 power potential
of noble gases:

Φ(r) =

N
∑

i=1

4ε

[

(

σi(r)

|r − ri|

)12

−
(

σi(r)

|r− ri|

)6
]

,

decays as |r|−6, where σi(r) is a measure of the equilibrium distance between particle i and field position r,
and ε is a material permitivity parameter. On the other hand, the far field decays much more slowly. For
example, the electrostatic potential of a system of N charged particles is:

Φ(r) =

N
∑

i=1

qi

ε|r− ri|
,

which decays only as |r|−1.
To accurately approximate the near field potential Φ1 for a system of N particles, only local interactions

need be considered. In addition, calculating an approximation to the external field potential Φ2 for each
particle is independent of all the other particles. However, the approximation of the far field potential Φ3

will require the calculation of all pair-wise interactions of the N particles, as the decay is sufficiently slow.
Therefore, the complexity of computing each field to high accuracy is clearly:
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Φ1 (near field – rapid decay) −→ O(N)
Φ2 (external field – independent of N) −→ O(N)
Φ3 (far field – slow decay) −→ O(N 2).

For this reason, computation of the far field potential presents the most difficulty in practical numerical
computations. Recently, a fast direct method known as the Fast Multipole Method [75] has been developed,
which reduces the complexity of approximating the far field potential. This method is already becoming
extremely useful for N -body problems occurring in many application areas.

Continuum methods, in which some portion of the problem is treated as a continuum governed by
partial rather than ordinary differential equations, offer an alternative in many cases where only the macro-
properties of the system are important. The Debye-Hückel Theory, which we discuss more fully below, is a
continuum approach for molecular systems consisting of proteins or other complex macromolecules lying in
ionic solutions. This continuum approach may be particularly suitable for molecular dynamics or Brownian
dynamics simulations, when the electrostatic force is the dominant force in determining the behavior of the
system.

1.1.3 Molecular dynamics

The motions of large complex biomolecules (such as a proteins) obey the laws of classical mechanics, and in
fact this problem is simply a particular instance of the N -body problem. The dynamics of such a molecule
are again described by Newton’s second law, where the electrostatic forces, chemical bonds, and other forces
are represented by the potential function Φ(r). Since biomolecules always occur in solvents such as ionic
water solutions, the equations of motion must incorporate the electrostatic effect of extremely large numbers
of small solvent molecules. The O(N 2) complexity for approximation of the far field, and the large numbers
of ions required for accurate approximation, makes this approach infeasible for large biomolecules. Even
in the case of a fast method with complexity O(N), the number of ions required may still be too large for
practical computations. Continuum representations of the solvent molecules offer a tractable alternative for
electrostatic force calculations.

1.1.4 Brownian dynamics

If the electrostatic potential has been computed for a large complex molecule, for example an enzyme or
an antibody protein, the binding properties of the enzyme or antibody can be investigated using Brownian
dynamics simulations. Brownian dynamics refers to the simulation of an interacting system of particles
combining the deterministic effects of Newton’s second law of motion (dynamics) with stochastic effects
(Brownian motion). A system of n interacting particles which also exhibit Brownian effects is described by
the stochastic system of ordinary differential equations:

M r̈ = −∇Φ + N(t), r(0) = r0, ṙ(0) = v0,

which represents Newton’s second law incorporating a random or white noise term N(t). The random terms
are usually taken to be Gaussian, with each component function Ni(t) independent, so that:

E[Ni(t)] = 0,

E[Ni(t)Nj(t + t0)] = δijδ(t0),

where E[·] represents the expectation operation in the usual statistical sense.
The presence of the random term N(t) implies that the solution r(t) of the system can only be described

statistically, i.e., by a probability distribution P (t, r, ṙ). It can be shown (page 254 of [190]) that the solution of
a parabolic partial differential equation known as a Fokker-Planck equation yields the probability distribution
P ; to integrate this equation numerically requires evaluation of the potential Φ appearing above.

The distribution P can be used to calculate the probability that two agents which are undergoing both
diffusive (Brownian) motion and force interactions will react; see for example [41] for a discussion of prac-
tical implementation techniques. Fast numerical approximation of the electrostatic potential field with
the linearized Poisson-Boltzmann equation has proven extremely valuable for Brownian dynamics simula-
tions [32, 41, 43].
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Figure 1.1: Two-dimensional view of the three-dimensional Debye-Hückel model.

1.2 Debye-Hückel theory and the Poisson-Boltzmann equation

In 1923, Debye and Hückel proposed a continuum method for the calculation of electrostatic free energy of
small spherical ions in an ionic solution [45]. In their method, the ionic solution is treated as a continuum with
a dielectric constant, and a partial differential equation governing the electrostatic potential is developed
based on Gauss’ law and the Boltzmann distribution law. Below, we describe an extension to the basic
Debye-Hückel model, and derive the Poisson-Boltzmann equation. See any of [39, 91, 148, 168, 176] for more
information.

1.2.1 The Debye-Hückel model

The model motivating the Debye-Hückel theory is given in Figure 1.1. In this model, the molecule for
which we wish to determine the electrostatic potential is located in region Ω1. In the original theory, Ω1

simply contained a particular ion of the solution; however, the theory is easily extended to more complicated
macromolecules such as proteins. We are interested in the more general model and will develop it briefly
now.

Region Ω3 consists of the solvent with dielectric constant ε3, assumed to contain mobile ions. Region Ω2

is an exclusion layer around the macromolecule in which no mobile charges of the solvent are present, but
which has the same dielectric constant ε2 = ε3 as region Ω3. If some solvent also penetrates region Ω1, then
this region will have a non-unit dielectric constant ε1. Assuming that all mobile ions are univalent, we can
treat them as positive and negative ions with charge +ec and −ec, where ec is the charge of an electron.
(Higher valence ions can be treated in a fashion similar to the following.)

The electrostatic potential satisfies Gauss’ law in each of the three regions. In differential form this yields
a separate Poisson equation

∇2Φk(r) =
−4πρk(r)

εk
,

for each region Ωk, k = 1, 2, 3. In order to use these equations to determine the potential Φk(r) in each
region, the charge density functions ρk(r) must be defined.
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1.2.2 Gauss’ law and the Boltzmann distribution law

Define a coordinate system in three-space, r = (x, y, z). If the molecule is represented by a series of Nm

charges qi at positions ri, where qi = ziec, zi ∈ R, i = 1, . . . , Nm, then the potential in region Ω1 can be
computed directly as

Φ1(r) =

Nm
∑

i=1

qi

ε1|r − ri|
.

Recalling that the free space Green’s function for the three-dimensional Laplacian is given by (−4π|r−r0|)−1,
and by applying the Laplacian to both sides of the equation above, we have

∇2Φ1(r) =

Nm
∑

i=1

−4πqi

ε1
δ(r − ri),

where δ(r) is the Dirac delta function.

In Ω2, the charge density function is given by ρ2(r) = 0 due to the absence of the mobile ions. Gauss’
law for the potential in Ω2 is then

∇2Φ2(r) =
−4πρ2(r)

ε2
= 0.

In Ω3, assume that the bulk concentration of ions is M per cubic centimeter for each of the two ions
present, one of charge +ec, the other of charge −ec. The number M+ of positive ions and M− of negative ions
per cubic centimeter will differ near the molecule in Ω1. The fundamental assumption in the Debye-Hückel
theory is that the ratio of the concentration of one type of ion near the molecule in Ω1 to its concentration
far from Ω1 is given by the Boltzmann distribution law

e−Wi(r)/[kBT ],

where T is the absolute temperature, kB is Boltzmann’s constant, and Wi(r) is the work required to move
the ion of type i from |r| = ∞ (Φ(r) = 0) to the point r.

Since we have only two types of ions in our model, we have simply

W1(r) = +ecΦ3(r), W2(r) = −ecΦ3(r),

for the positive and negative ions, respectively. Therefore, the Boltzmann distribution law applied here gives

M+ = Me−ecΦ3(r)/[kBT ], M− = Me+ecΦ3(r)/[kBT ],

where we assume that M+ = M− = M far from Ω1. The charge density at any point in Ω3 will then be
given by:

ρ3(r) = M+ec − M−ec = Mece
−ecΦ3(r)/[kBT ] − Mece

ecΦ3(r)/[kBT ] = −2Mec sinh

(

ecΦ3(r)

kBT

)

.

Gauss’ law for Ω3 then becomes:

∇2Φ3(r) =
−4πρ3(r)

ε3
=

(

8πMec

ε3

)

sinh

(

ecΦ3

kBT

)

.

1.2.3 The Debye-Hückel parameter

The ionic strength of the solvent is defined as

Is =
1

2

NI
∑

i=1

ciz
2
i ,
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where NI is the number of different types of ions, and ci is the molar concentration of ion type i with charge
qi = ziec, zi ∈ R. In our model, we have NI = 2, z1 = z2 = 1, and c1 = c2 = 1000M/NA, where NA is
Avogadro’s number. The ionic strength is then

Is =
1

2

NI
∑

i=1

ciz
2
i =

1000M

NA
.

This yields M = IsNA/1000, and with this we can rewrite the equation for Ω3 as

∇2Φ3(r) =

(

8πNAecIs

1000ε3

)

sinh

(

ecΦ3(r)

kBT

)

.

With the Debye-Hückel parameter κ defined to be:

κ =

(

8πNAe2
c

1000ε3kBT

)1/2

I1/2
s ,

we can write the equation for Ω3 in final form as

∇2Φ3(r) = κ2

(

kBT

ec

)

sinh

(

ecΦ3(r)

kBT

)

.

1.2.4 Interface continuity conditions

Physically, we expect the function Φ(r) to be continuous at the interfaces of the regions, as well as the
dielectric times the normal derivative of the function, ε∇Φ(r) ·n, where n is the unit outward normal vector
(see for example page 174 in [67] for a discussion of these types of continuity conditions). The discontinuous
dielectric interface then implies a discontinuous normal derivative of Φ(r) at the interfaces. In particular, on
Γ12 = Ω1

⋂

Ω2, it must be true that:

Φ1(r) = Φ2(r), ε1∇Φ1(r) · n = ε2∇Φ2(r) · n,

while on Γ23 = Ω2

⋂

Ω3, we must have:

Φ2(r) = Φ3(r), ε2∇Φ2(r) · n = ε3∇Φ3(r) · n.

The appropriate boundary conditions for the infinite domain Ω = Ω1 ∪ Ω2 ∪ Ω3 = R
3 are Φ(∞) = 0.

1.2.5 The nonlinear and linearized Poisson-Boltzmann equations

We now define the piecewise constant function ε(r) on Ω, and define a modified Debye-Hückel parameter κ̄(r)
(modified to be dielectric independent) as:

ε(r) =

{

ε1 if r ∈ Ω1,
ε2(= ε3) if r ∈ Ω2 or Ω3,

}

, κ̄(r) =

{

0 if r ∈ Ω1 or Ω2,√
ε3κ if r ∈ Ω3,

}

.

This extension of κ is consistent, since the ionic strength of the solvent in regions Ω1 and Ω2 is zero. With
these definitions, we can write a single field equation, the nonlinear Poisson-Boltzmann equation, governing
the electrostatic potential Φ(r) in all three regions:

−∇ · (ε(r)∇Φ(r)) + κ̄2(r)

(

kBT

ec

)

sinh

(

ecΦ(r)

kBT

)

= 4π

Nm
∑

i=1

qiδ(r − ri) in R
3, (1.3)

Φ(∞) = 0.

Using the first term in the series expansion sinh x = x+ x3

3! + x5

5! + · · · as a linear approximation to sinhx,
we have the following linearized equation and boundary condition

−∇ · (ε(r)∇Φ(r)) + κ̄2(r)Φ(r) = 4π

Nm
∑

i=1

qiδ(r − ri) in R
3, (1.4)
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Figure 1.2: A spherical molecule with spherically symmetric charge.

Φ(∞) = 0,

which we refer to as the linearized Poisson-Boltzmann equation.

Remark 1.1. Note that the above equations cannot be interpreted “classically” for the following reason. The
coefficients ε(r) and κ̄(r) are discontinuous at solvent interfaces, which implies that the first derivative of the
potential Φ(r) must also be discontinuous at the interfaces. Therefore, the potential Φ(r) /∈ C2(R3), and the
derivatives in equation (1.3) and equation (1.4) cannot be interpreted in the classical sense. In Chapter 2,
we will discuss the correct interpretation of equations (1.3) and (1.4) in terms of weak solutions.

1.3 Analytical solutions of the Poisson-Boltzmann equation

In special cases, analytical solutions to the linearized Poisson-Boltzmann equation can be explicitly con-
structed separately in different model regions and pieced together by enforcing continuity conditions at
the region boundaries. In other situations, simplifying assumptions can be made which results in a single
analytically solvable equation which governs the entire domain. We now present briefly two solutions as
representative of each situation; these solutions appear in somewhat altered forms in [148] and [176]. The
second of these solutions will be useful to us at the end of the chapter.

1.3.1 Spherical molecule with uniform charge

Consider a spherical molecule with spherically symmetric total charge q on the molecule surface, immersed
in a solvent containing mobile univalent ions, as depicted in Figure 1.2. Defining the coordinate system to
be centered at the molecule, the radius of the molecule defining region Ω1 is denoted by R. The ions may
approach only to a distance a > R, which defines the ion exclusion layer Ω2 around the molecule. The ionic
solvent then lies in the region Ω3. The solvent dielectric constant in regions Ω2 and Ω3 is denoted εw, while
the molecule dielectric in region Ω1 is denoted εm. Since the charge q is assumed to be evenly distributed
over molecule surface of area 4πR2, the molecule has the uniform charge density:

σ =
q

4πR2
.
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In spherical coordinates with spherical symmetry the linearized form of the Poisson-Boltzmann equation
is easily seen to reduce to:

region Ω1 : − 1

r2

d

dr

(

r2 d

dr
Φ(r)

)

= 0, r < R,

region Ω2 : − 1

r2

d

dr

(

r2 d

dr
Φ(r)

)

= 0, R < r < a,

region Ω3 : − 1

r2

d

dr

(

r2 d

dr
Φ(r)

)

+ κ2Φ(r) = 0, r > a,

boundary condition : Φ(∞) = 0,

where the zero source functions are a result of placing the charge on the molecule surface. For boundary
conditions on Γ12 = Ω1

⋂

Ω2 (at r = R), we must have:

Φ1(r) = Φ2(r), ε1

(

dΦ1

dr

)

− ε2

(

dΦ2

dr

)

= −4πσ =
−q

R2
,

whereas on Γ23 = Ω2

⋂

Ω3 (at r = a), we must have:

Φ2(r) = Φ3(r), ε2

(

dΦ2

dr

)

= ε3

(

dΦ3

dr

)

.

It is quite easy to verify (by differentiating twice) that the general solution in each region is:

region Ω1 : Φ1(r) = c1 +
c2

r
.

region Ω2 : Φ2(r) = c3 +
c4

r
.

region Ω3 : Φ3(r) = c5
e−κr

r
+ c6

eκr

r
.

The boundary and continuity conditions, and the requirement that Φ(r) be finite in region Ω1, give six
conditions for the six constants. The resulting expressions for the solution in each region are:

region Ω1 : Φ1(r) =
q

εwR

(

1 − Rκ

1 + κa

)

.

region Ω2 : Φ2(r) =
q

εwr

(

1− rκ

1 + κa

)

.

region Ω3 : Φ3(r) =
qeκa

εw(1 + κa)
· e−κr

r
.

1.3.2 Complete solvent penetration

Consider a long rod-shaped molecule, which the ionic solution is assumed to completely penetrate, as depicted
in Figure 1.3. In this case, the (nonlinear or linearized) equation developed earlier for the solvent region Ω3

now governs the entire domain:

−∇2Φ(r) + κ2Φ(r) =

(

4π

εw

) Nm
∑

i=1

qiδ(r − ri) in R
3,

Φ(∞) = 0,

where again the molecule is represented by set of Nm point charges {qi}, and the solvent dielectric constant
(valid now for all three regions) is denoted εw.
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Figure 1.3: A long rod-shaped molecule in an ionic solution.

Recall the free-space Green’s functions for the three-dimensional Helmholtz-like equation of the form:

−∇2Φ(r) + κ2Φ(r) = δ(r − ri),

which are given by:

G1(r, ri) ≡
e+κ|r−ri|

4π|r − ri|
, G2(r, ri) ≡

e−κ|r−ri|

4π|r − ri|
.

The boundary condition Φ(∞) = 0 clearly eliminates G1, and we have then for a single charge qi, a solution
of the form:

Φ(i)(r) =
e−κ|r−ri|

εw|r − ri|
qi.

Since the equation is linear with homogeneous boundary conditions, the principle of superposition applies,
yielding the full solution for the rod-like molecule in a penetrating solvent:

Φ(r) =

Nm
∑

i=1

Φ(i)(r) =

Nm
∑

i=1

e−κ|r−ri|

εw|r − ri|
qi. (1.5)

1.3.3 Other analytical solutions

Analytical solutions to the linearized form of the Poisson-Boltzmann equation have been given in slightly more
complex situations [154, 176], in which a spherical molecular geometry is still required, but the spherical
symmetry assumption on the charge distribution is relaxed. In this case, the Green’s function which is
obtained (see for example [154]) is extremely complex, involving a combination of spherical harmonics,
Hankel functions, Neumann functions, and Bessel functions.

In the very special simplified case of an infinite planar molecule, there is an alternative to the nonlinear
Poisson-Boltzmann model, referred to as the Guy-Chapman theory (cf. Guoy [77] and Chapman [35]).
However, in the more general case without symmetries or other assumptions, even knowledge of existence
and uniqueness of a solution, especially in the nonlinear case, is a difficult question. Without strong continuity
assumptions on the coefficients, the standard potential theory [121] is not useful for proving that a unique
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solution exists. We consider a more general formulation of the problem in the next chapter, in which more
powerful tools are available to prove existence and uniqueness results for a large class of problems. However,
even with the knowledge that a unique solution exists, in most cases there remains no closed form expression
for such a solution. Therefore, these solutions must be approximated numerically.

1.3.4 Some common analytical approximation techniques

The analytical solution (1.5) is often used in numerical computations to provide boundary conditions for
either (1.3) or (1.4) in a bounded domain Ω with boundary Γ. The value of r = rmax ∈ Γ is chosen as large
as necessary to make the above approximation as accurate as required. Note that the potential Φ(rmax) → 0
exponentially as the position |rmax| → ∞. We will assume the validity of the Debye-Hückel model, as well
as the validity of using a bounded domain as an approximation. By defining the dimensionless potential as

u(r) =
ecΦ(r)

kBT
,

we will consider in the remainder of this work the following two equations with associated boundary conditions
on bounded domains, which we will continue to denote as the nonlinear Poisson-Boltzmann equation

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri) in Ω ⊂ R
3, (1.6)

u(r) =

(

e2
c

kBT

) Nm
∑

i=1

e−κ|r−ri|

εw|r − ri|
zi on Γ,

and the linearized Poisson-Boltzmann equation

−∇ · (ε(r)∇u(r)) + κ̄2(r)u(r) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri) in Ω ⊂ R
3, (1.7)

u(r) =

(

e2
c

kBT

) Nm
∑

i=1

e−κ|r−ri|

εw|r − ri|
zi on Γ,

where in each case Ω is taken to be a bounded domain with a suitably smooth boundary Γ. It will be
convenient later to choose Ω to be polygonal.

Finally, motivated both by physical considerations [127] and technical reasons which we will discuss in the
next chapter, it is often the case that the delta functions appearing in the right hand sides of the equations
are approximated with smooth bounded functions fi(r − ri), representing a smearing of the point charges
ziδ(r − ri). In some of the following chapters we will use this approximation.

1.4 Units and physical constants

Up to this point, we have ignored as much as possible the units, constants, and other physical considerations
in our derivation of the equations. In this section, we compile some of this information, in order to provide
a more complete understanding of the equations and the relative magnitudes of the various functions and
parameters involved.

The fundamental CGS (centimeter-gram-second) units appearing in electrostatics are:

abbr. unit represents

cm centimeter distance
esu electrostatic unit charge
mol mole quantity
K Kelvin temperature

Some derived units, including some equivalent SI (international standard) units, are:
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abbr. unit represents equivalent expressions

dyn dyne force esu2/cm2

erg erg energy dyn · cm
o

A angstrom distance 10−8cm
l liter volume cm3

molar moles per liter concentration mol/l
m meter distance 102cm
cal calorie energy 4.184× 107erg
kcal kilo-calorie energy 4.184× 1010erg, 103cal

The collection of required physical constants is as follows:

abbr. name value

NA Avagadro’s number 6.0220450× 1023

kB Boltzmann’s constant 1.3806620× 10−16erg/K
ec Fundamental charge 4.8032424× 10−10esu

We mention two commonly used energy units:

e2
c
o

A
=

(4.8032424× 10−10esu)2

10−8cm
·
(

dyn · cm2

esu2

)

·
(

erg

dyn · cm

)

·
(

kcal

4.184× 1010erg

)

·
(

NA

mol

)

= 332.06364
kcal

mol
,

and, for a representative temperature of T = 298K, the “K-T” energy unit:

kBT = (1.3806620× 10−16erg/K) · (298K) ·
(

kcal

4.184× 1010erg

)

·
(

NA

mol

)

= 0.5921830
kcal

mol
.

The electrostatic force exerted by charge q1 at position r1 on charge q2 at position r2 is given by the
expression:

f = k
q1q2

r2
u,

where k = 1 due to the choice of CGS units, yielding the force f in dyn units. The charges q1 and q2 are
in esu units, r is the distance between the charges in cm, and u is the unit vector pointing from q1 to q2.
The units of the electrostatic potential Φ(r) are dyn · cm/esu, which yields energy units of dyn · cm for the
potential energy

∫

Φdq, field units of dyn/esu for the electrostatic field e = −∇Φ, and force units of dyn for
the electrostatic force f = qe. The dimensionless potential we defined earlier is as follows:

u(r) =
ecΦ(r)

kBT
,

which is clearly dimensionless since Boltzmann’s constant kB has units erg/K = dyn·cm/K, the temperature
T has units K, and the charge ec has units of esu.

Consider now the nonlinear Poisson-Boltzmann equation:

−∇ · (ε(r)∇u(r)) + κ̄2(r) sinh(u(r)) =

(

4πe2
c

kBT

) Nm
∑

i=1

ziδ(r − ri). (1.8)

The dimensionless dielectric function ε(r) in (1.8) has been empirically determined to be:

ε(r) =

{

ε1 ≈ 2 if r ∈ Ω1,
ε2 = ε3 ≈ 80 if r ∈ Ω2 or Ω3.

}

.

Molecules of interest such as enzymes and proteins have the scale of ten to over one hundred angstroms,
and it is common to choose a truncated domain of at least three times the size of the molecule for accurate
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approximation of the boundary conditions. Therefore, we will be working on the scale of angstroms, and the
first term in (1.8) clearly has units of angstrom−2. The second term sinh(u(r)) in (1.8) remains dimensionless,
therefore the parameter κ̄2(r) must have units of angstrom−2.

We will first determine κ2 for a representative temperature of T = 298K.

κ2 =

(

8πNAe2
c

1000ε3kBT

)

Is =

(

8π · (6.0220450× 1023/mol) · (4.8032424× 10−10esu)2

1000ε3 · (1.3806620× 10−16esu/K) · (298K)

)

Is

= 8.486902807× 1016 ·
(

esu2

erg · mol

)

· Is

ε3
.

Performing some unit conversion:

8.486902807× 1016 ·
(

esu2

erg · mol

)

·
(

dyn · cm2

esu2

)

·
(

erg

dyn · cm

)

·
(

mol

cm3

)

·
(

104cm2

1020
o

A
2

)

· Is

ε3

= 8.486902807
o

A
−2 Is

ε3
,

we have the final expression for κ2, where the now dimensionless number Is is taken to be the ionic strength
measured in moles per liter, referred to as the molar strength of the ionic solution.

Now, κ̄(r) is defined as:

κ̄(r) =

{

0 if r ∈ Ω1 or Ω2,√
ε3κ if r ∈ Ω3,

}

.

Since κ̄2 = ε3κ
2 in Ω3, we have for T = 298K that:

κ̄2(x ∈ Ω3) = 8.486902807
o

A
−2

Is.

For a typical ionic strength of 0.1 molar, or Is = 0.1, this yields:

κ̄2(x ∈ Ω3) = 0.8486902807
o

A
−2

.

For the source term in (1.8), the coefficients zi ∈ R representing fractions of unit charge are dimensionless,
and the delta functions δ(·) contribute units of angstrom−3. Taking a representative temperature of T =
298K, a single term in the sum has the form:

(

4πe2
c

kBT

)

ziδ(r − ri) =

(

4π · (4.8032424× 10−10esu)2

(1.3806620× 10−16esu/K) · (298K)

)

ziδ(r − ri)

= 7.046528885× 10−5 ·
(

esu2

erg

)

· ziδ(r − ri).

Performing some unit conversion:

7.046528885× 10−5 ·
(

esu2

erg

)

·
(

dyn · cm2

esu2

)

·
(

erg

dyn · cm

)

·
(

108
o

A

cm

)

·
(

1
o

A
3

)

· ziδ(r − ri)

= 7046.528885
o

A
−2

ziδ(r − ri),

where δ(·) is now taken as dimensionless.
We are now in a position to relate the magnitudes of the various problem parameters. Consider a very

broad range of temperatures T ∈ [200K, 400K], a broad range of ionic strengths Is ∈ [0, 10], and the following
representative polygonal domain:

Ω = [0, 100
o

A] × [0, 100
o

A] × [0, 100
o

A].
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We assume that the set of discrete charges {x1, . . . ,xNm} representing the molecule lie well within the domain,
and hence far from the boundary Γ of Ω. The nonlinear Poisson-Boltzmann equation for the dimensionless
potential u(x) then has the general form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ.

From the above discussion, the problem coefficients are of the following forms, and satisfy the following
bounds for the given temperature and ionic strength ranges:

(1) ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 2 ≤ ε(x) ≤ 80, ∀x ∈ Ω.

(2) b : Ω × R 7→ R, b(x, u(x)) = κ̄2(x) sinh(u(x)), 0 ≤ κ̄2(x) ≤ 127.0, ∀x ∈ Ω.

(3) f : Ω 7→ R, f(x) = C ·∑Nm

i=1 ziδ(x − xi), 5249.0 ≤ C ≤ 10500.0, − 1 ≤ zi ≤ 1, ∀x ∈ Ω.

(4) g : Γ 7→ R, g(x) = [C/(4πεw)] · ∑Nm

i=1 [zie
−κ̄(x)|x−xi|/

√
εw ]/|x − xi|, εw = 80, ∀x ∈ Γ.

By assuming that the charges xi do not lie near the boundary Γ, which will always be the case for our
choice of domain and boundary, we see that the boundary function g(x) is a well-behaved continuously
differentiable function of x, g ∈ C1(Γ). Note that the linearized Poisson-Boltzmann equation is exactly as
described above, with the following simple modification: b(x, u(x)) = κ̄2(x)u(x).



2. Analysis of the Equations

The purpose of this chapter is to present a theoretical study of the nonlinear Poisson-Boltzmann equation
using modern tools. A priori estimates of solutions are derived in certain cases, and several basic existence
and uniqueness theorems are established, for both the linearized and nonlinear Poisson-Boltzmann equations.
We also develop the discrete analogues of these theorems for establishing that our discretizations lead to well-
posed problems. While the continuous and discrete equations in the linear case are fairly well understood,
we also review this material. Since we would like this work to be readable by a general scientific audience,
we provide a summary of the relevant background material; however, this adds somewhat to the length of
the chapter, since a fairly nontrivial framework must be constructed to analyze general partial differential
equations. Since the Poisson-Boltzmann equation does not appear to have been previously studied in detail
theoretically, we hope that this chapter will help to provide a better understanding of this problem. This type
of analysis may help researchers in biophysics gain a better understanding of the mathematical properties
of this equation, and what these properties may imply about the underlying physics of the problem.

As pertains to the Poisson-Boltzmann equation, our contributions here are as follows.

• We apply Lax-Milgram theory and the extension due to Babǔska to the linearized Poisson-Boltzmann
equation, showing rigorously the existence of unique weak solutions.

• We establish some a priori estimates in the linear case, leading to well-posedness in both the continuous
and discrete cases.

• We show existence and uniqueness of solutions to the nonlinear Poisson-Boltzmann equation by adapt-
ing a proof of Kerkhoven and Jerome, which uses techniques from convex functional analysis.

• We establish several properties of box-method discretizations of the linearized Poisson-Boltzmann
equation.

• We prove that a box-method discretization of the full nonlinear Poisson-Boltzmann equation yields
a nonlinear algebraic operator which is a homeomorphism, so that the discrete nonlinear problem is
well-posed.

2.1 Review of elliptic theory

The linearized Poisson-Boltzmann equation is a member of a particular class of second order linear elliptic
equations. To formulate a typical problem from this class in a general setting, consider a bounded region
Ω ⊂ R

d with boundary Γ = ΓD ∪ ΓN , where ΓD ∩ ΓN = ∅. We are concerned with general second order
linear elliptic equations, which can be written in the strong, divergence form as:

−∇ · (ā∇û) + bû = f in Ω, (2.1)

û = gD on ΓD, (2.2)

(ā∇û) · n + cû = gN on ΓN , (2.3)

with b(x) : Ω 7→ R, f(x) : Ω 7→ R, gD(x) : ΓD 7→ R, gN(x) : ΓN 7→ R, c(x) : ΓN 7→ R, û(x) : Ω 7→ R, and
with the matrix function ā(x) : Ω 7→ L(Rd, Rd). The equation and boundary condition are often written as

15
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LΩû = fΩ in Ω, LΓû = fΓ on Γ, or simply as the abstract equation Lû = f . The equation is elliptic if the
matrix ā(x) = [aij(x)] is positive definite for all x ∈ Ω, and strongly elliptic if there exists λ > 0 such that
∑

ij aijηiηj ≥ λ|η|2, ∀x ∈ Ω, η ∈ R
d.

The nonlinear Poisson-Boltzmann equation is a member of a class of second order semi-linear elliptic
equations. On a bounded region Ω ⊂ R

d with boundary Γ = ΓD∪ΓN , where ΓD ∩ΓN = ∅, a typical problem
from this class, written in strong, divergence form, is

−∇ · (ā∇û) + b(x, û) = f in Ω, (2.4)

û = gD on ΓD, (2.5)

(ā∇û) · n + cû = gN on ΓN , (2.6)

where now b(x, û(x)) : Ω × R 7→ R. Ellipticity is defined as in the linear case. We denote the equation and
boundary condition abstractly as N (û) = f .

Both the nonlinear and linearized Poisson-Boltzmann equations are referred to as interface problems, due
to the discontinuities in the coefficients representing material interfaces in the physical problem. These coef-
ficient discontinuities preclude the use of classical potential theory for providing an existence and uniqueness
theory for these problems (for example Chapter 4 in [70]). The question of well-posedness is a nontrivial
matter, especially in the nonlinear case. The Bratu problem (page 432 in [40]), a nonlinear elliptic equation
quite similar to the nonlinear PBE, represents an example for which the slightest variation of a single problem
parameter alternatively produces a unique solution, multiple solutions, or no solution at all.

In special cases, solutions to the linearized and nonlinear Poisson-Boltzmann equation can be constructed
analytically; more generally, this is not possible, and numerical techniques must be employed to construct
an approximate solution. However, in order to justify any attempt to solve the problem numerically, some
knowledge of the existence and uniqueness of a solution to the problem, even if this knowledge does not pro-
vide an expression for the solution itself, is desirable. The generalized theory of partial differential equations
considers the existence and uniqueness of weak solutions in a Hilbert space, for which more powerful tools
are available to provide existence and uniqueness theories for a large class of problems.

We first introduce some standard notation and develop some of the fundamental theorems and ideas used
in the analysis of abstractly formulated partial differential equations. This background may be found for
example in [44, 115, 161].

2.1.1 Notation and classical function spaces

We denote Euclidean d-space as R
d, a point of which is denoted x = (x1, . . . , xd), where xi ∈ R. The norm

in R
d is defined as |x| = (

∑d
i=1 x2

i )
1/2. The set Ω ⊂ R

d denotes a (usually open) bounded subset of R
d, and

the boundary of such a set is denoted Γ. The notation meas(Ω) is used to denote the (Lebesgue) measure
or volume of the set Ω. By Ω1 ⊂⊂ Ω we mean that the closure of Ω1 (closed and bounded in R

d, hence
compact) is contained in Ω, or Ω̄1 ⊂ Ω. The support of a function u defined over a set Ω is the closure Ω̄1 of
the set Ω1 ⊂ Ω on which u 6= 0. If Ω̄1 ⊂ Ω, we say that u has compact support in Ω. The distance between
a point x and a set Ω is denoted:

dist(x, Ω) = inf
y∈Ω

|x − y|.

Scalar functions (zero order tensors) are denoted as u(x) : Ω 7→ R, vector functions (first order tensors)
as u(x) : Ω 7→ R

d, and matrix functions (second order tensors) as ū(x) : Ω 7→ L(Rd, Rd). Employing the
Einstein summation convention, the usual notational conventions for tensor products are followed: the dot
(scalar) product of two vectors is denoted u ·v = uivi; the dyadic (tensor) product of two vectors is denoted
(uv)ij = uivj ; and the (vector) products of vectors and second order tensors are denoted (ū · v)i = uijvj ,
and (v · ū)i = vjuji.

By a multi-index α we mean the d-tuple α = (α1, . . . , αd), αi a nonnegative integer, where |α| =
∑d

i=1 αi,
which is used to denote mixed partial differentiation of order |α|:

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαd

d

.
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Single partial differentiation is denoted as Diu = ∂u/∂xi, and by defining the vector ∇ = (D1, . . . , Dd), the
gradient and divergence operations can be written as tensor products: (grad u)i = (∇u)i = Diu, (grad u)ij

= (∇u)ij = Diuj , and div u = ∇ · u = Diui.
Volume integration of a function u(x) over a set Ω is denoted

∫

Ω u dx, whereas surface integration over
the boundary Γ is denoted

∮

Γ
u ds. Integration means in the Lebesgue sense, which is necessary due to the

requirement that the function spaces which we discuss below, which employ the integral of a function as the
norm, have the completeness property; see for example [119] for a thorough discussion of the deficiencies of
the Riemann integral for this purpose.

The generalized theories of differential and integral equations are formulated in Banach (complete normed)
spaces and Hilbert (complete inner product) spaces referred to as Sobolev spaces; the basic notions and
properties of real Banach and Hilbert spaces are summarized in [44, 89]. By real, we mean that the scalar
field associated with the Hilbert (Banach) space H as a topological vector space is R. We now review a few
classical function spaces which are needed in order to understand the Sobolev spaces.

The space of k-times continuously differentiable functions defined in Ω is denoted Ck(Ω). The subspace
of Ck(Ω) with compact support is denoted Ck

0 (Ω). It can be shown that if u ∈ Ck
0 (Ω), then Dαu = 0 on

Γ, 0 ≤ |α| ≤ k − 1.
The Lebesgue space Lp(Ω) of measurable functions on Ω represents the space of functions with finite norm

defined by

‖u‖Lp(Ω) =

(∫

Ω

|u|p dx

)1/p

.

The spaces Lp(Ω), for 1 ≤ p < ∞, are Banach spaces (the Riesz-Fischer Theorem, page 232 in [115]), and
the special case of p = 2 is a Hilbert space when equipped with the inner product and norm:

(u, v)L2(Ω) =

∫

Ω

uv dx, ‖u‖L2(Ω) = (u, u)
1/2
L2(Ω).

By the nature of the Lebesgue integral, an element u of Lp(Ω) represents an equivalence class of functions
which are equal almost everywhere (AE) in the sense that ‖u1 − u2‖Lp(Ω) = 0, for every u1 and u2 in the
class which u represents. The convention is to represent the class with the smoothest function in the class.

A function u for which there is a constant C such that |u| ≤ C AE on Ω is called essentially bounded
on Ω, and the greatest lower bound of all possible constants C is called the essential supremum of |u|, or
ess sup

x∈Ω |u|. The space L∞(Ω) denotes the space of all essentially bounded functions on Ω. With norm
given by ‖u‖L∞(Ω) = ess sup

x∈Ω |u|, it can be shown that L∞(Ω) is a Banach space (page 237 in [115]).
An important relationship in the Lp(Ω) spaces is Hölder’s inequality: if 1 < p < ∞, u ∈ Lp(Ω), u ∈ Lq(Ω),

where p and q are conjugate exponents in the sense that 1/p + 1/q = 1, then uv ∈ L1(Ω), and

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

It can be shown that Hölder’s inequality also holds with p = 1, q = ∞, or p = ∞, q = 1. The case p = q = 2
is referred to as the Cauchy-Schwarz inequality. Also we have Minkowski’s inequality: if 1 ≤ p < ∞, and
u, v ∈ Lp(Ω), then

‖u + v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Finally, a function u defined AE on Ω is said to be locally integrable on Ω if u ∈ L1(A) for each measurable
set A ⊂⊂ Ω. The space of locally integrable functions on Ω is denoted L1

loc(Ω).

2.1.2 Some fundamental theorems in Hilbert space

Consider now the real Hilbert space H, equipped with the inner product (·, ·)H inducing the norm ‖ · ‖H =

(·, ·)1/2
H . The theorems which will be important here involve linear functionals and bilinear forms operating

on elements of H.
Recall that a functional F (u) : H 7→ R is linear if F (αu + βv) = αF (u) + βF (v), ∀u, v ∈ H, α, β ∈ R,

and bounded if for some C ∈ R, |F (u)| ≤ C‖u‖H ∀u ∈ H. Similarly, the form A(u, v) : H×H 7→ R is called
bilinear if for all u, v, w ∈ H and all α, β ∈ R it is true that

A(αu + βv, w) = αA(u, w) + βA(v, w)



18 2. ANALYSIS OF THE EQUATIONS

A(u, αv + βw) = αA(u, v) + βA(u, w).

The form A(·, ·) is called bounded if for some positive M ∈ R, |A(u, v)| ≤ M‖u‖H‖v‖H, ∀u, v ∈ H, and A(·, ·)
is called coercive if for some positive m ∈ R, A(u, u) ≥ m‖u‖2

H, ∀u ∈ H.
If the bilinear form A(·, ·) is symmetric, meaning that A(u, v) = A(v, u) ∀u, v ∈ H, and positive in the

sense that A(u, u) > 0 ∀u ∈ H, u 6= 0, and if A(u, u) = 0 if and only if u = 0, then since the form is linear,
it follows that A(·, ·) defines in inner-product on H and induces the norm ‖u‖A = A(u, u)1/2.

The set of bounded linear functionals F (u) : H 7→ R forms the dual space of H, denoted as H∗. The dual
space is a Banach space (Theorem 2.10-4 in [129]) when equipped with the norm:

‖F‖H∗ = sup
‖u‖H 6=0

|F (u)|
‖u‖H

= sup
‖u‖H=1

|F (u)|.

We now state without proof three basic theorems relating bilinear forms and linear functionals to linear
operators on and elements of a Hilbert space; these theorems are important tools for proving existence and
uniqueness results for abstract formulations of partial differential equations.

Theorem 2.1 (Bounded Operator Theorem) Let A(u, v) be a bounded bilinear form on a Hilbert space H.
Then there exists a unique bounded linear operator A : H 7→ H such that

A(u, v) = (Au, v) ∀u, v ∈ H.

Proof. See for example Theorem 4.3.6 in [44].

Theorem 2.2 (Reisz Representation Theorem) Let F (u) be a bounded linear functional on a Hilbert space
H. Then there exists a unique f ∈ H such that

F (u) = (u, f) ∀u ∈ H, and ‖F‖∗ = ‖f‖.

Proof. See for example Theorem 3.11.1 in [44].

Theorem 2.3 (Lax-Milgram Theorem) Let H be a real Hilbert space, let the bilinear form A(u, v) be bounded
and coercive on H×H, and let F (u) be a bounded linear functional on H. Then there exists a unique solution
to the problem:

Find u ∈ H such that A(u, v) = F (v) ∀v ∈ H.

Proof. See for example Theorem 1.1.3 in [36].

2.1.3 Weak derivatives and Sobolev spaces

The appropriate Banach and Hilbert spaces in which to search for weak solutions to partial differential
equations will be seen to be the Sobolev spaces. There are several equivalent ways to define the integer order
Sobolev spaces. One way is to begin by defining the Sobolev norms and construct the Sobolev spaces by the
completion of Ck(Ω) with respect to these norms. While this construction may seem artificial, recall that
the real numbers are constructed from the rationals in precisely this same way, so that a Sobolev space is as
“real” as R (the author found this argument in [132] quite persuasive).

A second equivalent approach (the equivalence is the Meyers-Serrin Theorem; see page 45 in [1]) begins
by defining the weak derivative of a function u ∈ L1

loc(Ω) corresponding to a multi-index α, which is the
function Dαu satisfying:

∫

Ω

φDαu dx = (−1)|α|
∫

Ω

uDαφ dx, ∀φ ∈ C
|α|
0 (Ω).

The space of k-times weakly differentiable functions is denoted W k(Ω), and the subspace of W k(Ω) whose
weak derivatives are Lebesgue p-integrable, 1 ≤ p ≤ ∞, is a Banach space (Theorem 3.2 in [1]) called a
Sobolev space, denoted along with its norm as:

W k,p(Ω) = {u ∈ W k(Ω) : Dαu ∈ Lp(Ω), 0 ≤ |α| ≤ k},
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‖u‖W k,p(Ω) = (
∑

0≤|α|≤k

‖Dαu‖p
Lp(Ω))

1/p, 1 ≤ p < ∞, ‖u‖W k,∞(Ω) = max
0≤|α|≤k

{ess sup
x∈Ω

|Dαu|},

where Dα denotes weak differentiation. The norm in W k,p(Ω) can be written in terms of the semi-norm
| · |W k,p(Ω), in the following way:

‖u‖p
W k,p(Ω)

=

k
∑

j=0

|u|p
W k,p(Ω)

, where |u|W k,p(Ω) =





∑

|α|=k

‖Dαu‖p
Lp(Ω)





1/p

.

Note that W 0,p(Ω) = Lp(Ω), and that | · |W 0,p(Ω) = ‖ · ‖W 0,p(Ω) = ‖ · ‖Lp(Ω), 1 ≤ p ≤ ∞.

For the case p = 2 the space is denoted Hk(Ω) = W k,2(Ω), and is a Hilbert space when equipped with
the inner product and norm

(u, v)Hk(Ω) =
∑

0≤|α|≤k

(Dαu, Dαv)L2(Ω), ‖u‖Hk(Ω) = ‖u‖W k,2(Ω) = (u, u)
1/2

Hk(Ω)
.

Again, note that H0(Ω) = L2(Ω), and also (·, ·)H0(Ω) = (·, ·)L2(Ω) and | · |H0(Ω) = ‖ · ‖H0(Ω) = ‖ · ‖L2(Ω). The
following subspace is important

Hk
0 (Ω) = {u ∈ Hk(Ω) : Dαu = 0 ∀ x ∈ Γ, 0 ≤ |α| ≤ k − 1},

which is also a Hilbert space when equipped with (·, ·)Hk(Ω) and ‖ · ‖Hk(Ω). Finally, we note that it is

standard to denote the dual space of bounded linear functionals over the space Hk(Ω) as H−k(Ω), with the
corresponding dual norm ‖ · ‖H−k(Ω).

While the Sobolev spaces may be defined for arbitrary domains Ω, in order for the various well-known
properties of these spaces to hold, the set Ω must satisfy certain conditions. These conditions usually include
being bounded, and having a locally Lipshitz boundary, which is essentially a smoothness assumption on the
boundary Γ excluding certain types of domains such as those with cusps. The Lipshitz condition is simply
that for each point x0 ∈ Γ there exists δ > 0 such that Γ

⋂{ x | ‖x − x0‖ < δ} is the graph of a Lipshitz
continuous function. If Ω is bounded and has a locally Lipshitz boundary, then the notation Ω ∈ C0,1 is used
(c.f. page 67 in [1] or page 47 in [68]). For example, bounded open convex sets Ω ⊂ R

d satisfy Ω ∈ C0,1

(Corollary 1.2.2.3 in [76]). Therefore, convex polygonal domains are in C0,1.

2.1.4 The Sobolev Imbedding Theorems and the Trace Theorem

The Sobolev Imbedding Theorems are a collection of theorems describing the relationships between the Sobolev
spaces and some of the classical functions spaces. To say that a Banach space X is continuously imbedded
in a Banach space Y , denoted as X ↪→ Y , means that X is a subspace of Y , and that there exists a bounded
and linear (hence continuous), one-to-one mapping A from X into Y . If the mapping A is compact (i.e., A
maps bounded sets into pre-compact sets), then the imbedding is called compact; if the image AX ⊂ Y is
dense in Y (the closure of the image is Y , or AX = Y ), then the imbedding is called dense. One of the main
Sobolev imbedding theorems is (case C of Theorem 5.4 in [1]):

Theorem 2.4 (Sobolev Imbedding Theorem) If Ω ⊂ R
d satisfies Ω ∈ C0,1, then for nonnegative integers k

and s and 1 ≤ p < ∞ it is true that:

W k,p(Ω) ↪→ Cs(Ω̄), k > s +
d

p
.

Proof. See for example page 97 in [1].

In particular, this theorem implies that there exists C such that:

max
x∈Ω̄

|Dαu(x)| ≤ C‖u‖Hk(Ω), 0 ≤ |α| ≤ s.
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These imbedding theorems may also be interpreted in terms of fractional exponents; fractional order
Sobolev spaces can be defined in several equivalent ways, the most intuitive being through the use of the
Fourier transform (page 109 in [128]).

To discuss the concept of a weak solution, we must have a notion of the restriction of a function in a
Sobolev space to the boundary Γ of the domain Ω; the following theorem states that this is always possible
for domains Ω ∈ C0,1.

Theorem 2.5 (The Trace Theorem) If Ω ∈ R
d satisfies Ω ∈ C0,1, then there exists exactly one bounded

linear operator T , the “trace operator”, which maps u ∈ W 1,p(Ω) to a function Tu ∈ Lp(Γ), and such that
if u ∈ C∞(Ω̄), then Tu = u|Γ. This implies that there exists C such that ‖u‖L2(Γ) ≤ C‖u‖H1(Ω).

Proof. See for example Theorem 8.15 in [128].

Remark 2.1. Note that if one defines the fractional order Sobolev spaces, then Lp(Γ) can be replaced with the
space W 1−1/p,p(Γ). It can be shown that a function g is the trace of some function in W 1,p(Ω) if and only if
g ∈ W 1−1/p,p(Γ); this result can be found in Theorem 6.8.13 and Theorem 6.9.2 in [130]. If g ∈ W 1−1/p,p(Γ)
is the trace of u ∈ W 1,p(Ω), then we denote this as g = u|Γ, or g = tr u.

An important relationship in Sobolev spaces involving a function and its gradient is the Poincaré-
Friedrichs inequality (page 12 in [36]), also called Friedrich’s first inequality, which can be derived from
the Sobolev imbedding theorems:

‖u‖L2(Ω) ≤ ρ|u|H1(Ω), ∀u ∈ H1
0 (Ω), ρ ∈ R, ρ > 0. (2.7)

2.1.5 Green’s identities and weak solutions to elliptic equations

To relate the weak solution of a boundary value problem to the classical solution, we need Green’s integral
identities, generalized to Sobolev spaces.

Theorem 2.6 (Green’s Integral Identities) If Ω ⊂ R
d satisfies Ω ∈ C0,1, then for p > 1, q > 1, 1/p+1/q = 1,

and u ∈ W 1,p, v ∈ W 1,q, it is true that:

∫

Ω

Diu(x)v(x) dx = −
∫

Ω

u(x)Div(x) dx +

∫

Γ

u(x)v(x)νi ds

where Di is the weak derivative with respect to xi, and νi is the i-th component of the unit vector normal to
Γ. The functions in the surface integral are understood to be the traces of the functions u and v.

Proof. See Theorem 1.1 on page 121 of [150], or Theorem 13.12 in [68].

Now, consider the case of equations (2.1)–(2.3). If there are discontinuities present in the equation
coefficients, specifically in the coefficient ā(x), then it makes no sense in terms of a classical solution. The
definition of the weak solution centers on a weaker form of the problem; although the weak solution is
defined very generally, one can show (using the Green’s integral identities) that the weak solution is exactly
the classical solution in the case that the coefficients and the domain are “nice” enough (c.f. Corollary 8.11
in [70]). In addition, finite element methods and variational multigrid methods are constructed from weak
formulations of the given elliptic problem. Therefore, we will derive the general weak forms of problems (2.1)–
(2.3) and (2.4)–(2.6).

Defining first the following subspace of H1(Ω):

H1
0,D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

Note that H1
0,D(Ω) is also a Hilbert space. We now begin by multiplying the strong form equation (2.1) by

a test function v ∈ H1
0,D(Ω) and integrating (in the Lebesgue sense) over Ω to obtain:

∫

Ω

(−∇ · (ā∇û) + bû) v dx =

∫

Ω

fv dx,
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which becomes, after applying generalized Green’s identities,

∫

Ω

(ā∇û) · ∇v dx −
∫

Γ

v(ā∇û) · n ds +

∫

Ω

bûv dx =

∫

Ω

fv dx. (2.8)

The boundary integral above is reformulated using (2.3) as follows:

∫

Γ

v(ā∇û) · n ds =

∫

ΓD

v(ā∇û) · n ds +

∫

ΓN

v(ā∇û) · n ds = 0 +

∫

ΓN

v(gN − cû) ds. (2.9)

If the boundary function gD is regular enough so that gD ∈ H1/2(ΓD), then from the Trace Theorem
(refer to Theorem 2.5 above and the discussion following the theorem), there exists w ∈ H1(Ω) such that
gD = tr w. Employing such a function w ∈ H1(Ω) satisfying gD = tr w, we define the following affine or
translated Sobolev space:

H1
g,D(Ω) = {û ∈ H1(Ω) : u + w, u ∈ H1

0,D(Ω), gD = tr w}.

It is easily verified that the solution û to the problem (2.1)–(2.3), if one exists, lies in H1
g,D(Ω), although

unfortunately H1
g,D(Ω) is not a Hilbert space, since it is not linear. (Consider that if u, v ∈ H1

g,D(Ω), it

holds that u + v 6∈ H1
g,D(Ω).) It is important that the problem be phrased in terms of Hilbert spaces such

as H1
0,D(Ω), in order that certain analysis tools and concepts be applicable. Therefore, we will do some

additional transformation of the problem.
So far, we have shown that the solution to the original problem (2.1)–(2.3) also solves the following

problem:
Find û ∈ H1

g,D(Ω) such that Â(û, v) = F̂ (v) ∀v ∈ H1
0,D(Ω), (2.10)

where from equations (2.8) and (2.9), the bilinear form Â(·, ·) and the linear functional F̂ (·) are defined as:

Â(û, v) =

∫

Ω

(ā∇û · ∇v + bûv) dx +

∫

ΓN

cûv ds, F̂ (v) =

∫

Ω

fv dx +

∫

ΓN

gNv ds.

Since we can write the solution û to equation (2.10) as û = u + w for a fixed w satisfying gD = tr w, we can
rewrite the equations completely in terms of u and a new bilinear form A(·, ·) and linear functional F (·) as
follows:

Find u ∈ H1
0,D(Ω) such that A(u, v) = F (v) ∀v ∈ H1

0,D(Ω), (2.11)

A(u, v) =

∫

Ω

ā∇u · ∇v + buv dx +

∫

ΓN

cuv ds, (2.12)

F (v) =

∫

Ω

fv dx +

∫

ΓN

gNv ds − A(w, v). (2.13)

Clearly, the “weak” formulation of the problem given by equation (2.11) imposes only one order of
differentiability on the solution u, and only in the weak sense. It is easily verified that A(u, v) : H1

0,D(Ω) ×
H1

0,D(Ω) 7→ R defines a bilinear form, and F (u) : H1
0,D(Ω) 7→ R defines a linear functional. Since H1

0,D(Ω) is

a Hilbert space, if it can also be verified that A(·, ·) is bounded and coercive on H1
0,D(Ω), and if F (u) can

be shown to be in the dual space (H1
0,D(Ω))∗ = H−1(Ω) of bounded linear functionals on H1

0,D(Ω), then
the existence and uniqueness of a weak solution to equation (2.11) follows from the Lax-Milgram Theorem
(Theorem 2.3). The boundedness and coerciveness conditions must be verified on an individual basis for
different coefficient functions {ā, b, c, f, gD, gN} and for different domains Ω.

If the boundary conditions supplied are only Dirichlet, so that ΓD ≡ Γ and ΓN ≡ ∅, which gives that
H1

0,D(Ω) ≡ H1
0 (Ω), then the weak formulation simplifies to

Find u ∈ H1
0 (Ω) such that A(u, v) = F (v) ∀v ∈ H1

0 (Ω), (2.14)

A(u, v) =

∫

Ω

ā∇u · ∇v + buv dx, (2.15)
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F (v) =

∫

Ω

fv dx − A(w, v). (2.16)

The above discussion is also valid for nonlinear equations of the form (2.4)–(2.6). The required weak
formulation is easily arrived at:

Find u ∈ H1
0,D(Ω) such that A(u, v) + (N(u), v) = F (v) ∀v ∈ H1

0,D(Ω), (2.17)

where the corresponding forms are:

A(u, v) =

∫

Ω

ā∇u · ∇v dx +

∫

ΓN

cuv ds, (N(u), v) =

∫

Ω

b(x, w + u)v dx, (2.18)

F (v) =

∫

Ω

fv dx +

∫

ΓN

gNv ds − A(w, v), (2.19)

and where the fixed known function w ∈ H1(Ω) has trace g = tr w. Since the form (N(·), ·) is nonlinear, the
Lax-Milgram Theorem cannot be applied, and more general methods must be used to show existence and
uniqueness, such as topological, fixed-point, or variational methods (see for example the discussions in [68]).
In fact, for the weak solution to even be defined, the integrals above must be finite; this is not immediately
true if rapid nonlinearities are present.

If the boundary conditions supplied are only Dirichlet, then as in the linear case, the weak formulation
simplifies to

Find u ∈ H1
0 (Ω) such that A(u, v) + (N(u), v) = F (v) ∀v ∈ H1

0 (Ω), (2.20)

where the corresponding forms are:

A(u, v) =

∫

Ω

ā∇u · ∇v dx, (N(u), v) =

∫

Ω

b(x, w + u)v dx, (2.21)

F (v) =

∫

Ω

fv dx − A(w, v), (2.22)

Remark 2.2. For second order elliptic problems as discussed above, it is often possible to prove regularity
theorems or “shift theorems” of the form:

‖u‖H1+α(Ω) ≤ C‖f‖H(1+α)−2(Ω) = C‖f‖Hα−1(Ω),

where 0 < α ≤ 1. These theorems can be shown using the closed graph theorem when the problem coefficients
and domain are smooth enough; see for example page 51 in [167], or page 75 in [172]. The book [76] is also
devoted to establishing these types of theorems. For a discussion of regularity results and their impact on
multilevel methods and convergence theory, see [46, 141]. In the analysis of finite element and multilevel
numerical methods, these theorems are often essential, and are referred to as elliptic regularity assumptions.
In fact, many multigrid convergence proofs rely on a particularly strong form of the above inequality called
the full elliptic regularity assumption, which requires that the above inequality hold with α = 1. These
proofs rely on the use of duality arguments (which employ the elliptic regularity assumptions) originating in
the finite element error analysis literature, often referred to as L2-lifting or the Aubin-Nitsche trick (pages
136-139 in [36]). Unfortunately, for problems with discontinuous coefficients, these inequalities either do not
hold at all, or hold only with extremely large constants C depending on the magnitudes of the coefficient
jumps.

2.1.6 Nonlinear operators and the Gateaux and Frechet derivatives

In this section we present some background material regarding nonlinear operators on Hilbert spaces, and
the basic ideas of Gateaux and Frechet derivatives of nonlinear operators.

Let H1, H2, and H be real Hilbert spaces, each with an associated inner-product (·, ·) inducing a norm
‖ · ‖ = (·, ·)1/2. Let F (·) be a nonlinear operator such that F : D ⊂ H1 7→ H2. If F (·) is both one-to-one and
onto, then it is called a bijection, in which case the inverse mapping F−1(·) exists. If both F (·) and F−1(·)
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are continuous, then F (·) is called a homeomorphism. Concerning the solution of the operator equation
F (u) = v, it is important that F (·) be a homeomorphism for the problem to be well-posed in the Hadamard
sense.1

The following notions of differentiation of operators on abstract spaces are important.

Definition 2.1 The mapping F : D ⊂ H1 7→ H2 is called Gateaux- or G-differentiable at u ∈ int(D) if
there exists F ′(u) ∈ L(H1,H2) such that for any h ∈ H1:

lim
t→0

1

t
‖F (u + th) − F (u) − tF ′(u)(h)‖ = 0.

The linear operator F ′(u) is unique and is called the G-derivative of F at u. The directional derivative of F
at u in the direction h is given by F ′(u)(h).

Definition 2.2 The mapping F : D ⊂ H1 7→ H2 is called Frechet- or F-differentiable at u ∈ int(D) if there
exists F ′(u) ∈ L(H1,H2) such that for any h ∈ H1:

lim
‖h‖→0

1

‖h‖‖F (u + h) − F (x) − F ′(u)(h)‖ = 0.

The unique linear operator F ′(u) is called the F-derivative of F at u. It is clear from the definitions above
that the existence of the F-derivative implies the existence of the G-derivative, in which case it is easy to
show they are identical; otherwise, the G-derivative can exist more generally than the F-derivative.

Consider the functional J : H 7→ R, defined in terms of a bounded linear operator A ∈ L(H,H) in the
following way:

J(u) =
1

2
(Au, u) ∀u ∈ H.

From the definition of the F-derivative above, it is easy to see (cf. page 418 of [44]) that the F-derivative
of J at u ∈ H is a bounded linear functional, or J ′(·)(·) : H 7→ L(H, R). (Refer to [117] for discussions of
general multi-linear forms on a Hilbert space H.) We can calculate the F-derivative of J(·) by identifying
the component of [J(u + h) − J(u)] which is linear in h as follows:

J(u + h) − J(u) =
1

2
(A(u + h), u + h) − 1

2
(Au, u)

=
1

2
(Au, u) +

1

2
(Au, h) +

1

2
(Ah, u) +

1

2
(Ah, h) − 1

2
(Au, u)

=
1

2
(Au, h) +

1

2
(h, AT u) +

1

2
(Ah, h) =

1

2
((A + AT )u, h) +

1

2
(Ah, h)

=
1

2
((A + AT )u, h) + O(‖h‖2).

The F-derivative of J(·) is then

J ′(u)(v) =
1

2
((A + AT )u, v) ∀v ∈ H,

where AT is the adjoint of A with respect to (·, ·). It follows from the Reisz Representation Theorem
(Theorem 2.2) that J ′(u)(·) can be identified with an element J ′(u) ∈ H,

J ′(u)(v) = (J ′(u), v) ∀v ∈ H,

called the gradient or the F-differential of J(·) at u, which in this case is J ′(u) = 1
2 (A + AT )u.

It is not difficult to see (see for example [117] page 505 for discussion) that the second F-derivative of
J at u can be interpreted as a (symmetric) bilinear form, or B(·, ·) = J ′′(·)(·, ·) : H 7→ L(H × H, R). To

1Well-posedness “in the sense of Hadamard” [124] refers to three criteria: existence of a solution, uniqueness of a solution,
and continuous dependence of the solution on the data of the problem.
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calculate J ′′(·), we simply identify the component of [J(u + h) − J(u)] which is now quadratic in h. From
above, we see that the quadratic term is:

B(h, h) =
1

2
(Ah, h).

To recover the full symmetric form B(u, v) from B(h, h), we can employ the following standard trick:

B(v + w, v + w) = B(v, v) + 2B(v, w) + B(w, w)

⇒ B(v, w) =
1

2
[B(v + w, v + w) − B(v, v) − B(w, w)].

This yields:

J ′′(u)(v, w) =
1

2
[(A(v + w), v + w) − (Av, v) − (Aw, w)]

=
1

2
[(Av, w) + (Aw, v)] =

1

2
[(Av, w) + (w, AT v)]

=
1

2
((A + AT )v, w) ∀v, w ∈ H.

It now follows (from Theorem 2.1) that J ′′(u)(·, ·) can be identified with the bounded linear operator J ′′(u) ∈
L(H,H) such that

J ′′(u)(v, w) = (J ′′(u)v, w) =
1

2
((A + AT )v, w),

so that J ′′(u) = 1
2 (A+AT ). Of course, J ′′(·) can be computed directly from the definition of the F-derivative,

beginning with J ′(·). Finally, note that if A is self-adjoint, then the expressions for J ′(·) and J ′′(·) simplify
to:

J ′(u) = Au, and J ′′(u) = A.

Consider now the functional J : H 7→ R, defined in terms of a nonlinear operator F : H 7→ H as follows:

J(u) =
1

2
‖F (u)‖2 =

1

2
(F (u), F (u)).

We will find the following result quite useful for the solution of nonlinear equations in a later chapter.

Lemma 2.7 The Frechet derivative of J(u) = 1
2‖F (u)‖2 is given by J ′(u) = F ′(u)T F (u).

Proof. We identify the component of [J(u + h)− J(u)] linear in h by expanding F (·) in a generalized Taylor
series in H (see for example page 255 in [124]) about the point u:

J(u + h) − J(u) =
1

2
(F (u + h), F (u + h)) − 1

2
(F (u), F (u))

=
1

2
(F (u) + F ′(u)h + · · · , F (u) + F ′(u)h + · · ·) − 1

2
(F (u), F (u))

=
1

2
(F ′(u)h, F (u)) +

1

2
(F (u), F ′(u)h) + O(‖h‖2)

= (F ′(u)T F (u), h) + O(‖h‖2).

Finally, from the Reisz Theorem we have J ′(u) = F ′(u)T F (u).

Note that, in the case of linear operators, it is easy to show that boundedness is equivalent to continuity,
and that all linear operators on finite-dimensional spaces are bounded. However, this is not true in the
general case of nonlinear operators, and a separate notion of continuity is required. In ε − δ verbage, the
mapping F : D ⊂ H 7→ H is called continuous at u ∈ D if, given ε > 0, there exists δ = δ(u, ε) > 0, such
that if v ∈ D and ‖u − v‖ < δ, then ‖F (u) − F (v)‖ < ε. If F is continuous at each u ∈ D then F is
called continuous on D, and further, if δ = δ(ε), then F is called uniformly continuous on D. An equivalent
and perhaps more intuitive definition of continuity is that limn→∞ un = u∗ implies limn→∞ F (un) = F (u∗),
where {un} is a sequence, un ∈ H. It can be shown that F-differentiability implies continuity (see for example
Theorem 3.1.6 in [158]).
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2.1.7 Gradient mappings and convex functionals

In this section, we discuss the fundamental ideas about convex functionals and their associated gradient
mappings. The partial differential equations we are considering in this work arise naturally from an associated
minimization problem as the Euler or Euler-Lagrange equations, which represent the requirement that the
first variation of the associated energy functional vanish at the minimum of the functional. The calculus of
variations [131], developed in the 18th century, was the extension of the ideas of critical points and extreme
points of a function f : R 7→ R to functionals on function spaces. It was made rigorous with the introduction
of the G- and F-derivatives of operators on function spaces early in this century (cf. the excellent book [68]
for some historical comments with regard to nonlinear partial differential equations). As a result of this
historical development, it is common to refer to zero-point problems which are associated with minimization
problems as variational problems.

Consider now the (energy) functional, J : H 7→ R. A global minimizer of J(·) on H is a point u∗ ∈ H
such that J(u∗) = minv∈H J(v). A local minimizer of J(·) on H is a point u∗ ∈ D ⊂ H such that J(u∗) =
minv∈D J(v). Assume now that

J ′(u) = F (u), ∀u ∈ H.

This leads us to the important concept of a gradient mapping.

Definition 2.3 The mapping F : D ⊂ H 7→ H is called a gradient or potential mapping if for some G-
differentiable functional J : D ⊂ H 7→ R it holds that F (u) = J ′(u) ∀u ∈ D.

Regarding the functional J(·), the following are some minimal important concepts.

Definition 2.4 The functional J : D ⊂ H 7→ R is called convex on D if ∀u, v ∈ D and α ∈ (0, 1) it holds
that:

J(αu + (1 − α)v) ≤ αJ(u) + (1 − α)J(v),

whenever the right-hand side of the inequality is defined.

The functional J(·) is called strictly convex if the inequality in Definition 2.4 is strict. If J(u) → +∞
when ‖u‖ → +∞, then J(·) is said to be coercive. The functional J(·) is called lower semi-continuous at
the point v0 ∈ D if for any t < J(v0) there exists δ > 0 such that for all v with ‖v − v0‖ < δ, it holds that
t < J(v). It can be shown (page 159 in [115]) that J(·) is lower semi-continuous at v0 if and only if:

J(v0) = limv→v0
J(v) = lim inf

v→v0

J(v) = sup
δ>0

inf{J(v) | ‖v − v0‖ < δ}.

If J 6≡ +∞, J(v) > −∞ ∀v ∈ D, then J(·) is called proper on D.
We are interested in the connection between the following two problems:

Problem 1: Find u ∈ D ⊂ H such that J(u) = infv∈D⊂H J(v).
Problem 2: Find u ∈ D ⊂ H such that F (u) = J ′(u) = 0.

The Euler necessary condition for the existence of a local minimizer formalizes the idea of critical points of
functionals J(·) on H.

Theorem 2.8 (Euler Condition) If the functional J : D ⊂ H 7→ R is G-differentiable with F (u) =
J ′(u) ∀u ∈ D, and if u∗ is a local minimizer of J(·), then the F (u∗) = 0.

Proof. See Corollary 8.3.1 in [44].

The following theorem gives sufficient conditions for Problem 1 to be uniquely solvable.

Theorem 2.9 (Ekland-Temam Theorem) If J : D ⊂ H 7→ R is a convex, lower semi-continuous, proper,
and coercive functional, with D a non-empty closed convex subset of H, then J(·) has a local minimizer
u∗ ∈ D. Further, if J(·) is strictly convex on D, then u∗ is unique.

Proof. See Proposition 1.2 in [62].
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2.2 A solution theory for the PBE

Consider the general second order linear elliptic equation (2.1), which as we have seen has the weak form:

Find u ∈ H1
0 (Ω) such that A(u, v) = F (v) ∀v ∈ H1

0 (Ω), (2.23)

where

A(u, v) =

∫

Ω

(ā∇u · ∇v + buv) dx, F (v) =

∫

Ω

fv dx − A(w, v), Ω ⊂ R
d, (2.24)

with Ω ∈ C0,1 and g = tr w, and where the problem coefficients satisfy:

1. 0 < aij(x) ≤ c1 < ∞, ∀x ∈ Ω, i, j = 1, . . . , d.

2. 0 ≤ b(x) ≤ c2 < ∞, ∀x ∈ Ω.

3. f(x) ∈ L2(Ω).

4. w(x) ∈ H1(Ω), g(x) ∈ H1/2(Γ), g = tr w.

5. The differential operator is strongly elliptic:
∃λ > 0 such that

∑

ij aij(x)ηiηj ≥ λ|η|2, ∀x ∈ Ω, η ∈ R
d.

We begin our analysis with this problem.

2.2.1 A preliminary lemma

Given the very weak assumptions on the coefficients in the above problem, we can prove the following
preliminary result, which will be used later to prove the existence of a unique solution to the linearized
Poisson-Boltzmann equation.

Lemma 2.10 There exists a unique weak solution u ∈ H1
0 (Ω) to problem (2.23)-(2.24).

Proof. We show that with the assumptions on the problem coefficients, the conditions of the Lax-Milgram
Theorem are met, and the existence and uniqueness of a weak solution u ∈ H1

0 (Ω) to (2.23)–(2.24) follows
by application of the Lax-Milgram Theorem.

First, it is immediately clear from the linearity of Lebesgue integration that A(·, ·) and F (·) define bilinear
and linear forms on H1

0 (Ω), respectively. We must show that F (·) is bounded, and that A(·, ·) is bounded
and coercive.

Consider the bilinear form A(·, ·). The strong ellipticity assumption and nonnegativity of b(x) gives

A(u, u) =

∫

Ω

(ā∇u · ∇u + bu2) dx =

∫

Ω

(

d
∑

i,j=1

aijDiuDju + bu2) dx

≥
∫

Ω

(λ
d
∑

i=1

|Diu|2 + bu2) dx ≥ λ

∫

Ω

d
∑

i=1

|Diu|2 dx = λ|u|2H1(Ω).

Since we have assumed only that b(x) is nonnegative, we must employ Friedrich’s first inequality to obtain
the proper norm of u bounding A(·, ·) from below:

A(u, u) ≥ λ|u|2H1(Ω) = λ

(

1

2
|u|2H1(Ω) +

1

2
|u|2H1(Ω)

)

≥ λ

(

1

2ρ2
‖u‖2

L2(Ω) +
1

2
|u|2H1(Ω)

)

≥ m
(

‖u‖2
L2(Ω) + |u|2H1(Ω)

)

= m‖u‖2
H1(Ω),

where m = min{λ/2ρ2, λ/2}. Therefore A(·, ·) is coercive, with coercivity constant m.
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It remains to show that A(·, ·) is bounded on H1
0 (Ω). By repeated application of Hölder’s inequality, we

have that

|A(u, v)| = |
∫

Ω

(ā∇u · ∇v + buv) dx| = |
d
∑

i,j=1

∫

Ω

aijDiuDjv dx +

∫

Ω

buv dx|

≤
d
∑

i,j=1

∫

Ω

|aijDiuDjv| dx +

∫

Ω

|buv| dx ≤
d
∑

i,j=1

‖aij‖L∞(Ω)‖DiuDjv‖L1(Ω) + ‖b‖L∞(Ω)‖uv‖L1(Ω)

≤
d
∑

i,j=1

‖aij‖L∞(Ω)‖Diu‖L2(Ω)‖Djv‖L2(Ω) + ‖b‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω)

≤
d
∑

i,j=1

‖aij‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω) + ‖b‖L∞(Ω)‖u‖H1(Ω)‖v‖H1(Ω) ≤ M‖u‖H1(Ω)‖v‖H1(Ω),

where M = 9c1 + c2 ≥∑d
i,j=1 ‖aij‖L∞(Ω) + ‖b‖L∞(Ω).

Consider now the linear functional F (·). Since A(·, ·) is bounded, we have that:

|F (v)| = |
∫

Ω

fv dx − A(w, v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) + M‖w‖H1(Ω)‖v‖H1(Ω)

≤ ‖f‖L2(Ω)(‖v‖2
L2(Ω) + |v|2H1(Ω))

1/2 + M‖w‖H1(Ω)‖v‖H1(Ω)

= (‖f‖L2(Ω) + M‖w‖H1(Ω))‖v‖H1(Ω) ≤ C‖v‖H1(Ω),

where we have employed the Cauchy-Schwarz inequality, the definition of ‖ · ‖H1(Ω), the fact that f ∈ L2(Ω),
and that w ∈ H1(Ω) is fixed. Therefore, F (·) is a bounded linear functional on H1

0 (Ω).

2.2.2 A priori estimates in the linearized case

Assume that we are given some Hilbert space {H, (·, ·)H , ‖ · ‖H = (·, ·)1/2
H } and the following problem:

Find u ∈ H such that A(u, v) = F (v) ∀v ∈ H, (2.25)

where the bilinear form A(·, ·) is bounded and coercive on H×H, the linear form F (·) is bounded on H, or
more explicitly:

m‖u‖2
H ≤ A(u, u), |A(u, v)| ≤ M‖u‖H‖v‖H , |F (v)| ≤ L‖u‖H , ∀u, v ∈ H,

where m, M , and L are positive constants. It follows from the Lax-Milgram Theorem that problem (2.25)
has a unique solution in the space H.

However, in addition to simply saying that u ∈ H and that the H-norm of u is finite,

‖u‖H < ∞,

we can actually derive a bound on the magnitude of the H-norm of u in terms of the parameters m, M , and
L above in the following way. We begin with

m‖u‖2
H ≤ A(u, u) = F (u) ≤ L‖u‖H ,

and (assuming u 6= 0) we have by division

‖u‖H ≤ L

m
.

(Note that if u = 0 this bound is trivially satisfied.)
Recall now from the previous section that for the particular weak form PDE problem (2.23)–(2.24), the

coercivity constant m and the continuity constants M and L took the forms

m = min{λ/2ρ2, λ/2}, M = 9c1 + c2, L = ‖f‖L2(Ω) + M‖w‖H1(Ω),
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where the Hilbert space in question of importance is H1(Ω), and the various parameters arose from the
Poincare inequality, ellipticity assumptions on the operator, and bounds on the PDE coefficients (refer to
the previous section for details). An a priori bound on the magnitude of the solution to the problem (2.23)–
(2.24) in the H1(Ω) norm then takes the form:

‖u‖H1(Ω) ≤
‖f‖L2(Ω) + (9c1 + c2)‖w‖H1(Ω)

min{λ/2ρ2, λ/2} .

Whether it is possible to obtain such a priori bounds on the solution in stronger norms is an extremely
difficult question. Such bounds are referred to as elliptic regularity inequalities; see Remark (2.2) for some
additional comments.

2.2.3 Existence and uniqueness theorems for the linearized PBE

Consider the linearized Poisson-Boltzmann equation, where we allow a very broad range of temperatures
T ∈ [200K, 400K], a broad range of ionic strengths Is ∈ [0, 10], and the following representative polygonal
domain:

Ω = [0, 100
o

A] × [0, 100
o

A] × [0, 100
o

A].

We assume that the set of discrete charges {x1, . . . ,xNm} representing the molecule lie well within the domain,
and hence far from the boundary Γ of Ω. It is not difficult to show (Chapter 1 in [94]) that the linearized
Poisson-Boltzmann equation for the dimensionless potential u(x) then has the form of equation (2.1):

−∇ · (ā(x)∇u(x)) + b(x)u(x) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ,

with the equivalent weak formulation (2.23)–(2.24). It is shown in Chapter 1 of [94] that the problem
coefficients have the following forms, and satisfy the following bounds for the given temperature and ionic
strength ranges:

1. ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 2 ≤ ε(x) ≤ 80, ∀x ∈ Ω.

2. b : Ω 7→ R, b(x) = κ̄2(x), 0 ≤ κ̄2(x) ≤ 127.0, ∀x ∈ Ω.

3. f : Ω 7→ R, f(x) = C ·∑Nm

i=1 ziδ(x − xi), 5249.0 ≤ C ≤ 10500.0, − 1 ≤ zi ≤ 1, ∀x ∈ Ω.

4. g : Γ 7→ R, g(x) = [C/(4πεw)] · ∑Nm

i=1 [zie
−κ̄(x)|x−xi|/

√
εw ]/|x− xi|, εw = 80, ∀x ∈ Γ.

By assuming that the charges xi do not lie near the boundary Γ, which will always be the case for our choice
of domain and boundary, we see that the boundary function g(x) is a well-behaved continuously differentiable
function of x, g ∈ C1(Γ).

We can use Lemma 2.10 to prove the following result for the linearized Poisson-Boltzmann equation.

Theorem 2.11 There exists a unique weak solution u ∈ H1(Ω) to the linearized Poisson-Boltzmann equation
if the source terms are approximated by L2(Ω) functions.

Proof. The proof consists of verifying the assumptions on the problem coefficients as required to apply
Lemma 2.10. First, note that the assumptions on ā(x) and b(x) are clearly satisfied. Since the source
functions δ(x−xi) are approximated with functions fi(x−xi) ∈ L2(Ω), we have that the composite function

f(x) = C ·∑Nm

i=1 zifi(x − xi) is also clearly in L2(Ω). By assuming that the fixed “charge” points xi are
located away from the boundary Γ, we have that g ∈ C1(Γ) ⊂ H1(Γ), and from Remark 2.1 we know that
there exists w ∈ H1(Ω) such that g = tr w. The strong ellipticity assumption follows from the lower bound
on the tensor components aij(x); in other words, the tensor ā(x) is uniformly positive definite in x due to
the lower bound of 2 for aij(x). The theorem now follows from Lemma 2.10.

In the case that the function f in (2.24) consists of delta functions representing point charges (and
so f /∈ L2(Ω)), the Lax-Milgram Theorem cannot be used to show existence and uniqueness of solutions
because the resulting linear functional F in (2.24) is no longer bounded; this is because the imbedding
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W 1,2(Ω) ↪→ C0(Ω̄) given in Theorem 2.4 fails if the spatial dimension d is greater than one. To understand
what the problem is, consider the linear functional:

F (v) =

∫

Ω

fv dx =

∫

Ω

δ(x0)v dx, ∀v ∈ H1
0 (Ω). (2.26)

For F (·) to be in the dual space of bounded linear functionals on H1
0 (Ω), required for the Lax-Milgram

Theory, we must have that the norm:

‖F‖H−1(Ω) = sup
v∈H1

0 (Ω)

|
∫

Ω δ(x0)v(x) dx|
‖v(x)‖H1(Ω)

= sup
v∈H1

0 (Ω)

|v(x0)|
‖v(x)‖H1(Ω)

is bounded. Now, if the imbedding H1(Ω) ↪→ C0(Ω̄) holds, then v(x) is a continuous function on the bounded
set Ω, and since Ω̄ is close and bounded and hence compact, we must have that v(x) is uniformly continuous,
and therefore bounded, v(x0) ≤ C < ∞, and so the functional above is bounded. However, if the imbedding
fails, which is the case when d = 2 or d = 3, then v(x) may not be bounded, and hence v(x0) may not be
finite, so that the linear functional is unbounded.

By this argument combined with Theorem 2.4, it holds that the function v(x) ∈ C0(Ω̄) (so that v(x) is
bounded for all x ∈ Ω ⊂ R

d) only if v(x) ∈ Hk
0 (Ω), where k is such that:

• d = 1: k > s + d
p = 0 + 1

2 = 1
2 .

• d = 2: k > s + d
p = 0 + 2

2 = 1.

• d = 3: k > s + d
p = 0 + 3

2 = 3
2 .

Therefore, for Ω ⊂ R
d where d = 3, if we select v(x) from H2

0 (Ω) for example, then the linear functional
F (·) in (2.26) will be bounded.

This leads to the following approach, which involves the selection of the test functions from a different
space than the solution space. First, note that by applying Green’s integral identities again, we can produce
the following “weaker” form of the problem which imposes no differentiability on the solution u:

Find u ∈ H0
0 (Ω) = L2

0(Ω) such that A(u, v) = F (v) ∀v ∈ H2
0 (Ω), (2.27)

where

A(u, v) =

∫

Ω

[∇ · (ā∇v)u + buv] dx, F (v) =

∫

Ω

fv dx − A(w, v), Ω ⊂ R
3. (2.28)

The following theorem allows one to work with these two separate Hilbert spaces, allowing the test
functions to be chosen from the higher regularity space.

Theorem 2.12 (Generalized Lax-Milgram Theorem) Let H1 and H2 be two real Hilbert spaces, let A(u, v)
be a bilinear form on H1 ×H2 which is bounded in the sense that:

|A(u, v)| ≤ M‖u‖H1‖v‖H2 , ∀u ∈ H1, ∀v ∈ H2,

and coercive in the sense that:

inf
‖u‖H1=1

sup
‖v‖H2≤1

|A(u, v)| ≥ m > 0, sup
u∈H1

|A(u, v)| > 0, v 6= 0,

and let F (u) be a bounded linear functional on H2. Then there exists a unique solution to the problem:

Find u ∈ H1 such that A(u, v) = F (v) ∀v ∈ H2.

Proof. See for example Theorem 5.2.1, page 112 in [10].

Theorem 2.13 There exists a unique weak solution u ∈ L2(Ω) to the linearized Poisson-Boltzmann equa-
tion.

Proof. We only outline the proof here, which consists of taking H1 = L2(Ω), H2 = H2
0 (Ω), and verifying the

assumptions of the Generalized Lax-Milgram Theorem.
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2.2.4 An existence and uniqueness theorem for the nonlinear PBE

The standard existence and uniqueness theory for nonlinear elliptic equations, as presented for example
in [68], involves restricting the theory to a class of nonlinearities satisfying an extended Carathéodory property,
denoted CAR(p). Among several properties of the nonlinear functions b(x, u(x)) ∈ CAR(p) is a polynomial
growth condition (see page 82 of [68]), which requires that the nonlinear function b(x, u(x)) be bounded by a
function which grows as a polynomial of degree p in u. (The degree p is tied to the solution space W k,p(Ω).)
This excludes the nonlinear Poisson-Boltzmann equation, where we are faced with the nonlinear function

b(x, u(x)) = κ̄2(x) sinh(u(x)) =
κ̄2(x)

2
(eu(x) − e−u(x)).

The need for the polynomial growth condition is easy to see, if one considers the nonlinear term as it appears
in the weak form of the Poisson-Boltzmann equation:

∫

Ω

b(x, u + w)v dx =

∫

Ω

κ̄2 sin(u + w)v dx =

∫

Ω

κ̄2

2
(eu+w − e−u−w)v dx, ∀v ∈ H1

0 (Ω).

The problem is that u ∈ H1(Ω) does not guarantee that b(x, u) ∈ L2(Ω); in other words, in order for
the weak solution to even be defined, the integral above involving b(·, ·) must be finite. It can be shown
that the polynomial growth condition guarantees this for a certain Sobolev space (not necessarily H 1(Ω)).
Therefore, it is not clear that the weak solution u ∈ H1(Ω) is even well-defined in the case of the nonlinear
Poisson-Boltzmann equation and similar equations.

There appear to be two approaches available for problems with these types of rapid nonlinearities for
which the standard theory does not apply. The first is an extended form of monotone operator theory, which
we will not discuss further; essentially, the idea is to restrict the solution space to a subspace of H 1(Ω) for
which the weak solution is well-defined, and then use a monotone operator theory for the subspace problem.
This theory is presented in the papers [33, 60, 92].

A second approach, which we will follow below, is to side-step the question altogether of exactly when
b(x, u) ∈ L2(Ω), by appealing to some results from convex analysis. This approach is taken in [113, 114, 123]
for a very similar equation arising in semiconductor physics. Our proof below follows closely the proof of
Lemma 3.1 in [114].

Theorem 2.14 There exists a unique weak solution u ∈ H1(Ω) to the nonlinear Poisson-Boltzmann equation
if the source terms are approximated by L2(Ω) functions.

Proof. The idea of the proof is to identify a convex functional J(·) for which the weak form of the nonlinear
Poisson-Boltzmann equation is the associated gradient mapping as discussed in §2.1.7 above, and then
appeal to the Ekland-Temam Theorem (Theorem 2.9). First, recall the weak formulation of the nonlinear
Poisson-Boltzmann equation:

Find u ∈ H1
0 (Ω) such that A(u, v) + (N(u), v) = F (v) ∀v ∈ H1

0 (Ω), (2.29)

where the corresponding forms are:

A(u, v) =

∫

Ω

ā∇u · ∇v dx, (N(u), v) =

∫

Ω

b(x, w + u)v dx,

F (v) =

∫

Ω

fv dx − A(w, v),

and where the fixed known function w ∈ H1(Ω) has trace g = tr w. The coefficients defining the nonlinear
Poisson-Boltzmann equation satisfy:

1. ā : Ω 7→ R, aij(x) = δijε(x), 2 ≤ ε(x) ≤ 80, ∀x ∈ Ω.

2. b : Ω × R 7→ R, b(x, u(x)) = κ̄2(x) sinh(u(x)), 0 ≤ κ̄2(x) ≤ 127.0, ∀x ∈ Ω.

3. f : Ω 7→ R, f(x) = C ·∑Nm

i=1 ziδ(x − xi), 5249.0 ≤ C ≤ 10500.0, − 1 ≤ zi ≤ 1, ∀x ∈ Ω.
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4. g : Γ 7→ R, g(x) = [C/(4πεw)] · ∑Nm

i=1 [zie
−κ̄(x)|x−xi|/

√
εw ]/|x− xi|, εw = 80, ∀x ∈ Γ.

We assume that the fixed “charges” xi do not lie near the boundary Γ, so that the boundary function g(x)
is a well-behaved continuously differentiable function of x, g ∈ C1(Γ).

Following Lemma 3.1 in [113], we begin by defining a nonlinear function, specifically constructed for the
case of the Poisson-Boltzmann problem:

p(x, y) =
κ̄2(x)

2

[

(ey − 1)ew(x) + (e−y − 1)e−w(x)
]

. (2.30)

Note that p(x, 0) = 0, and that the derivative of p(x, y) with respect to y yields the Poisson-Boltzmann
nonlinearity:

p′(x, y) =
∂p(x, y)

∂y
=

κ̄2(x)

2

(

eyew(x) − e−ye−w(x)
)

= κ̄2(x) sinh(w(x) + y) = b(x, w + y).

We now define the functional J(·) : H1
0 (Ω) 7→ R conditionally as:

J(v) =

{

1
2A(v, v) +

∫

Ω p(x, v) dx − F (v), p(·, v) ∈ L2(Ω) for v ∈ H1
0 (Ω),

+∞, p(·, v) 6∈ L2(Ω) for v ∈ H1
0 (Ω).

}

. (2.31)

We will compute directly the F-derivative of J(·), to show that the Euler condition for the particular func-
tional J(·) we have constructed yields the weak form of the nonlinear PBE in equation (2.29) from J ′(u) = 0,
or actually from:

Find u ∈ H such that (J ′(u), v) = 0 ∀v ∈ H.

As discussed earlier, we simply identify the component of [J(u + h) − J(u)] which is linear in h. First, note
that J(·) can be written in terms of the weak form components and the nonlinear function p(·) as:

J(u) =
1

2
A(u, u) + (p(x, u), 1) − F (u).

Now consider [J(u + h) − J(u)], where we employ a Taylor expansion of p(x, ·) about u(x):

J(u + h) − J(u) = [
1

2
A(u + h, u + h) + (p(x, u + h), 1) − F (u + h)] − [

1

2
A(u, u) + (p(x, u), 1) − F (u)]

=
1

2
[A(u, h) + A(h, u) + A(h, h)] + [(p(x, u) + p′(x, u)h + · · · , 1) − (p(x, u), 1)]

+[F (u) + F (h) − F (u)]

= A(u, h) + (p′(x, u), h) − F (h) + O(‖h‖2).

Therefore, the F-derivative of the functional J(·) and the corresponding Euler condition are:

Find u ∈ H such that (J ′(u), v) = A(u, v) + (N(u), v) − F (v) = 0 ∀v ∈ H,

where N(u) = p′(x, u) = b(x, w +u). This is exactly the weak form of the nonlinear PBE in equation (2.29),
so that the weak form of the nonlinear PBE is the gradient mapping formulation of the functional J(·) we
have constructed in equation (2.31).

To show that J(·) has a minimum u ∈ H1
0 (Ω), we can use Theorem 2.9 (the Ekland-Temam Theorem)

if we can show that the functional J(·) is proper, convex, lower semi-continuous, and coercive on H 1
0 (Ω).

First, due to the conditional definition of J(·), it follows immediately that J(v) > −∞ ∀v ∈ H1
0 (Ω), and

that J 6≡ +∞ (take v ≡ 0), so by the discussion in §2.1.7, we have that J(·) is a proper functional on the
space H1

0 (Ω). It remains to verify the other three properties for the functional J(·).
In the proof of Lemma 3.1 in [113], it is stated without proof that J(·) as defined for the semiconductor

equation is convex. It is then shown that J(·) is lower semi-continuous and coercive by re-norming H 1
0 (Ω)

with an equivalent but more convenient norm, and using Fatou’s lemma and the Cauchy-Schwarz inequality.
We will use similar approach, but will employ some simple results from [162, 172] to establish these three
properties for J(·) below.
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To begin, recall that all linear functions and linear spaces are trivially convex by the definition of linearity:

L(αu + (1 − α))v ≡ αLu + (1 − α)Lv.

For example, the set R is a convex set. In addition, a linear combination F (u) =
∑N

i=1 cifi(u) of general
convex functions fi(u) is again a convex function, since

F (αu + (1 − α)v) =

N
∑

k=1

cifi(αu + (1 − α)v) ≤
N
∑

k=1

ci[αfi(u) + (1 − α)fi(v)]

= α

(

N
∑

k=1

cifi(u)

)

+ (1 − α)

(

N
∑

k=1

cifi(v)

)

= αF (u) + (1 − α)F (v).

Now, it can be shown (Theorem 2.B, page 155 in [172]) that if p : K 7→ R is G-differentiable on a convex set
K (e.g., K = R), then p(·) is convex if and only if

(p′(u) − p′(v))(u − v) ≥ 0, ∀u, v ∈ K.

Note that, for a fixed x and a fixed w(x), the Poisson-Boltzmann nonlinearity given by p′(x, u) = κ̄2(x)
sinh(w(x) + u) is a monotonically increasing function of u. This follows from the fact that

p′′(x, u) = κ̄2(x) cosh(w(x) + u) ≥ 0, ∀u ∈ K.

Therefore, [u− v] and [p(x, u)− p(x, v)] always have the same sign for any u, v ∈ K, so that p(·, u) is convex
for u ∈ K. Now, let P (u) =

∫

Ω
p(·, u) dx. Since p(·, u) is convex, we have that

P (αu + (1 − α)v) =

∫

Ω

p(x, αu + (1 − α)v) dx ≤
∫

Ω

[αp(x, u) + (1 − α)p(x, v)] dx

= α

∫

Ω

p(x, u) dx + (1 − α)

∫

Ω

p(x, v) dx = αP (u) + (1 − α)P (v),

so that also P (u) is a convex function of u. This is of course due to the fact that the integral operator is
linear. Now, since the other terms comprising the functional J(·) are linear and hence convex, the composite
functional J(·) is a linear combination of convex functions, and it follows from our discussion above that J(·)
itself is convex on K.

To show lower semi-continuity of J(·), we note that it can be shown (Corollary 2.D in [172]) that if p(·)
is G-differentiable and convex on a convex set K, then p(·) is lower semi-continuous on K. Therefore, p(·)
as defined in equation (2.30) is lower semi-continuous. In addition, by the Tonelli Theorem (Theorem 9.16,
page 347 in [162]), the function P (u) is lower semicontinuous on Lp(Ω) if and only if p(·, u) is continuous
and convex in u; both of these conditions on p(·, u) hold, so that P (u) is lower semicontinuous. Since all
linear functions are trivially lower semi-continuous, it follows immediately that the linear combination of
lower semicontinuous functionals forming J(·) is itself a lower semi-continuous functional.

To employ the Ekland-Temam Theorem, it remains to show that J(·) is coercive. First, note that if
α = inf Ω̄ w, β = supΩ̄ w, we have that:

p(x, v) =
κ̄2

2

[

(ev − 1) ew +
(

e−v − 1
)

e−w
]

≥ − κ̄2

2

[

eβ + e−α
]

> −∞, (2.32)

from which it follows that
∫

Ω

p(x, v) dx ≥ −meas(Ω)
κ̄2

2

[

eβ + e−α
]

> −∞.

Using a simple argument as in Lemma 2.10 above, due to the boundedness, positivity, and symmetry of the
tensor ā(x), we have that the energy norm

‖v‖A = A(v, v)1/2 =

(∫

Ω

ā∇v · ∇v dx

)1/2
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is equivalent to the norm in H1
0 (Ω) in the sense that:

√
m‖v‖H1(Ω) ≤ ‖v‖A ≤

√
M‖v‖H1(Ω), (2.33)

where m and M are the boundedness and coerciveness constants (for the linear form A(u, v)) as in the
previous Lemma 2.10. Now, consider that

J(v) =
1

2

∫

Ω

ā∇v · ∇v dx +

∫

Ω

p(x, v) dx − F (v)

≥ m

2
‖v‖2

H1(Ω) − meas(Ω)
κ̄2

2

[

eβ + e−α
]

− ‖f‖L2(Ω)‖v‖L2(Ω) − M‖w‖H1(Ω)‖v‖H1(Ω),

where we have employed equations (2.32) and (2.33), and the bound for F (v) which was derived in the proof
of Lemma 2.10. Since f and w are fixed, and since

lim
‖v‖L2(Ω)→+∞

‖v‖2
H1(Ω)

‖v‖L2(Ω)
= lim

‖v‖L2(Ω)→+∞

‖v‖2
L2(Ω) + |v|2H1(Ω)

‖v‖L2(Ω)
≥ lim

‖v‖L2(Ω)→+∞
‖v‖L2(Ω) = +∞,

we have that J(v) → +∞ as ‖v‖H1(Ω) → +∞, so that J(·) is coercive on H1
0 (Ω).

Therefore, since we have shown that the functional J(·) is proper, convex, lower semi-continuous, and
coercive on H1

0 (Ω), by the Ekland-Temam Theorem there exists a minimizer u ∈ H1
0 (Ω) of J(·).

Finally, it remains to show that the minimizer of J(·), and therefore a solution to the nonlinear PBE, is
unique. The uniqueness can be seen by the following argument. Assume that two solutions u1 and u2 exist,
each of which satisfy the weak form (2.29). If we subtract the two equations, we have by the linearity of
A(·, ·):

A(u1 − u2, v) + (N(u1) − N(u2), v) = 0 ∀v ∈ H1
0 (Ω).

Taking v = u1 −u2, since N(u) is monotonically increasing in u, it holds that (N(u1)−N(u2), u1 −u2) ≥ 0,
so that we must have A(u1 − u2, u1 − u2) ≤ 0. But since A(·, ·) defines a norm as discussed above, we must
also have

A(u1 − u2, u1 − u2) = ‖u1 − u2‖2
A ≥ 0.

Thus, ‖u1 − u2‖A = 0 must hold, which is true only if u1 = u2.

Remark 2.3. Note that, by the conditional definition of J(·), the question of whether eu 6∈ L2(Ω) is avoided
altogether; these situations are lumped into the conditional J(·) = +∞, which is a valid definition of a
proper convex functional as required for the use of the Ekland-Temam Theorem. We note that a similar
proof can be constructed along the lines of the proof of Theorem 2.1 on page 543 of [73].

It is also possible to show uniqueness through the Ekland-Temam Theorem rather than directly as above;
the functional J(·) can be shown to be strictly convex rather than simply convex.

2.3 The box-method and properties of the discrete PBE

Consider the linear equation:

−∇ · (ā∇u) + bu = f in Ω ⊂ R
3, u = g on Γ. (2.34)

We are concerned with the case (as with the linearized Poisson-Boltzmann equation) that the functions
{ā, b, f} are piecewise Ck functions on Ω, with k large. We also assume that the coefficient discontinuities
are regular, and can be identified during the discretization process.

We will also consider the strong form of the nonlinear equation:

−∇ · (ā∇u) + b(x, u) = f in Ω ⊂ R
3, u = g on Γ. (2.35)

We begin by partitioning the domain Ω into the finite elements or volumes τ j , such that:

• Ω ≡ ⋃M
j=1 τ j , where the elements τ j are arbitrary hexahedra or tetrahedra.
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• {ā, b, f} have discontinuities along boundaries of the τ j .

• The union of the l (eight or four) corners of all the τ j form the nodes xi.

• {τ j;i} ≡ {τ j : xi ∈ τ j}.
• τ (i) ≡ ⋃j τ j;i ≡ {⋃j τ j : xi ∈ τ j}.
• Continuity required of u(x) and of ā∇u · n across interfaces.

We now briefly discuss the box-method, a method for discretizing interface problems which yields reliably
accurate approximations. This method, in one form or another, has been one of the standard approaches
for discretizing two- and three-dimensional interface problems occurring in reactor physics and reservoir
simulation [179, 180]. Similar methods are used in computational fluid dynamics. The motivation for these
methods has been the attempt to enforce conservation of certain physical quantities in the discretization
process.

Remark 2.4. Note that a standard Taylor series approach to discretization is not reliable since the truncation
error depends on various derivatives of the solution, which may be large (or nonexistent) at or near interfaces.
A simple application of the finite element method ignoring the interfaces is not reliable either, as the standard
error estimates will be invalid due to solution singularities at interface corners or intersections (see for
example [174], pg. 266, or [9], pg. 245, or §8.4 in [76]).

2.3.1 General formulation

We begin by integrating (2.34) over an arbitrary τ (i). Note that in many cases the underlying conservation
law was originally phrased in integral form. The resulting equation is:

−
∑

j

∫

τj;i

∇ · (ā∇u) dx +
∑

j

∫

τj;i

bu dx =
∑

j

∫

τj;i

f dx.

Using the divergence theorem, we can rewrite the first term on the left, yielding:

−
∑

j

∫

∂τj;i

(ā∇u) · n ds +
∑

j

∫

τj;i

bu dx =
∑

j

∫

τj;i

f dx,

where ∂τ j;i is the boundary of τ j;i, and n is the unit normal to the surface of τ j;i.

Note that all interior surface integrals in the first term vanish, since ā∇u · n must be continuous across
the interfaces. We are left with:

−
∫

∂τ (i)

(ā∇u) · n ds +
∑

j

∫

τj;i

bu dx =
∑

j

∫

τj;i

f dx, (2.36)

where ∂τ (i) denotes the boundary of τ (i).

Since this last relationship holds exactly in each τ (i), we can use (2.36) to develop an approximation
at the nodes xi at the “centers” of the τ (i) by employing quadrature rules and difference formulas. In
particular, the volume integrals in the second two terms in (2.36) can be approximated with quadrature
rules. Similarly, the surface integrals required to evaluate the first term in (2.36) can be approximated
with quadrature rules, where ∇u is replaced with an approximation. Error estimates can be obtained from
difference and quadrature formulas, as in Chapter 6 of [179], or more generally by analyzing the box-method
as a special Petrov-Galerkin finite element method [18, 122].

Remark 2.5. This procedure is sometimes referred to as the integral method in one dimension, the box-method
in two dimensions, and the finite volume method in three dimensions, although it is standard to refer to the
method in any dimension as the box-method.
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2.3.2 Non-uniform Cartesian meshes

We now restrict ourselves to the case that the τ j are hexahedral elements, whose six sides are parallel
to the coordinate axes. With regard to the notation above, since we are working with R

3, we will define
x = x1, y = x2, z = x3. By restricting our discussion to elements which are non-uniform Cartesian (or
axi-parallel), the spatial mesh may be characterized by the nodal points

x = (x, y, z) such that







x ∈ {x0, x1, . . . , xI+1}
y ∈ {y0, y1, . . . , yJ+1}
z ∈ {z0, z1, . . . , zK+1}







.

Any such mesh point we denote as xijk = (xi, yj , zk), and we define the mesh spacings as

hi = xi+1 − xi, hj = yj+1 − yj , hk = zk+1 − zk,

which are not required to be equal or uniform.
To each mesh point xijk = (xi, yj , zk), we associate the closed three-dimensional hexahedral region τ (ijk)

“centered” at xijk , defined by

x ∈
[

xi −
hi−1

2
, xi +

hi

2

]

, y ∈
[

yj −
hj−1

2
, yj +

hj

2

]

, z ∈
[

yk − hk−1

2
, zk +

hk

2

]

.

Integrating (2.34) over τ (ijk) for each mesh-point xijk and employing the divergence theorem as above yields:

∫

∂τ (ijk)

(ā∇u) · n ds +

∫

τ (ijk)

bu dx =

∫

τ (ijk)

f dx.

The volume integrals are now approximated with the quadrature rule:

∫

τ (ijk)

p dx ≈ pijk

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

.

Assuming that the tensor ā is diagonal, ā = diag(a(11), a(22), a(33)), the surface integral then reduces to:

∫

∂τ (ijk)

[

a(11)ux + a(22)uy + a(33)uz

]

· n ds.

This integral reduces further to six two-dimensional plane integrals on the six faces of the τ (ijk) , and are
approximated with the analogous two-dimensional rule, after approximating the partial derivatives with
centered differences. Introducing the notation pi−1/2,j,k = p(xi − hi−1/2, yj, zk), and pi+1/2,j,k = p(xi +
hi/2, yj , zk), the resulting discrete equations can be written as:

a
(11)
i−1/2,j,k

(

uijk − ui−1,j,k

hi−1

)

(hj−1 + hj)(hk−1 + hk)

4

+a
(11)
i+1/2,j,k

(

uijk − ui+1,j,k

hi

)

(hj−1 + hj)(hk−1 + hk)

4

+a
(22)
i,j−1/2,k

(

uijk − ui,j−1,k

hj−1

)

(hi−1 + hi)(hk−1 + hk)

4

+a
(22)
i,j+1/2,k

(

uijk − ui,j+1,k

hj

)

(hi−1 + hi)(hk−1 + hk)

4

+a
(33)
i,j,k−1/2

(

uijk − ui,j,k−1

hk−1

)

(hi−1 + hi)(hj−1 + hj)

4

+a
(33)
i,j,k+1/2

(

uijk − ui,j,k+1

hk

)

(hi−1 + hi)(hj−1 + hj)

4
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+ (bijkuijk)
(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8
= (fijk)

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8
.

Collecting the coefficients of the unknown nodes uijk yields:

[

a
(11)
i−1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi−1
+ a

(11)
i+1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi

+a
(22)
i,j−1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj−1
+ a

(22)
i,j+1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj

+a
(33)
i,j,k−1/2

(hi−1 + hi)(hj−1 + hj)

4hk−1
+ a

(33)
i,j,k+1/2

(hi−1 + hi)(hj−1 + hj)

4hk

+bijk
(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

uijk

+

[

−a
(11)
i−1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi−1

]

ui−1,j,k +

[

−a
(11)
i+1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi

]

ui+1,j,k

+

[

−a
(22)
i,j−1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj−1

]

ui,j−1,k +

[

−a
(22)
i,j+1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj

]

ui,j+1,k

+

[

−a
(33)
i,j,k−1/2

(hi−1 + hi)(hj−1 + hj)

4hk−1

]

ui,j,k−1 +

[

−a
(33)
i,j,k+1/2

(hi−1 + hi)(hj−1 + hj)

4hk

]

ui,j,k+1

=

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

fijk.

After employing the Dirichlet boundary conditions from (2.34), the above set of equations for the approx-
imations uijk to the solution values u(xijk) at the nodes xijk can be written together as the single matrix
equation:

Au = f. (2.37)

As a result of considering the non-uniform Cartesian mesh, if we order the unknowns uijk in the vector u in
the natural ordering, the matrix A will have seven-banded block-tridiagonal form.

In the case of the nonlinear equation (2.35), if we assume that the nonlinear term is autonomous in the
sense that b(x, u) = b(u), then the derivation is as above, and the resulting system of nonlinear algebraic
equations is:

[

a
(11)
i−1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi−1
+ a

(11)
i+1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi

+a
(22)
i,j−1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj−1
+ a

(22)
i,j+1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj

+a
(33)
i,j,k−1/2

(hi−1 + hi)(hj−1 + hj)

4hk−1
+ a

(33)
i,j,k+1/2

(hi−1 + hi)(hj−1 + hj)

4hk

]

uijk

+

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

bijk(uijk)

+

[

−a
(11)
i−1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi−1

]

ui−1,j,k +

[

−a
(11)
i+1/2,j,k

(hj−1 + hj)(hk−1 + hk)

4hi

]

ui+1,j,k

+

[

−a
(22)
i,j−1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj−1

]

ui,j−1,k +

[

−a
(22)
i,j+1/2,k

(hi−1 + hi)(hk−1 + hk)

4hj

]

ui,j+1,k

+

[

−a
(33)
i,j,k−1/2

(hi−1 + hi)(hj−1 + hj)

4hk−1

]

ui,j,k−1 +

[

−a
(33)
i,j,k+1/2

(hi−1 + hi)(hj−1 + hj)

4hk

]

ui,j,k+1

=

[

(hi−1 + hi)(hj−1 + hj)(hk−1 + hk)

8

]

fijk.
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Figure 2.1: Banded matrix structure produced by the box-method.

If the nonlinear term is not autonomous but is at least separable in the sense that:

b(x, u) = η(x)β(u),

then the derivation is the same, except that β(u) will replace b(u) above, and an averaging of η(x) will
multiply the nonlinear term β(u).

In either case, the above set of equations for the approximations at the nodes xijk can be written together
as the single nonlinear algebraic equation:

Au + N(u) = f, (2.38)

where again the matrix A representing the linear part of (2.38) is seven-banded and block-tridiagonal.

Remark 2.6. The banded structure in the case of non-uniform Cartesian meshes allows for very efficient
implementations of iterative methods for numerical solution of the discrete linear and nonlinear equations;
the seven-banded form is depicted in Figure 2.6 for a 3 × 3 × 3 non-uniform Cartesian mesh.

2.3.3 Linear and nonlinear algebraic equations

We wish to establish some properties of the linear and nonlinear algebraic equations

Au = f (2.39)

Au + N(u) = f (2.40)

arising from box-method discretizations of the linearized and nonlinear Poisson-Boltzmann equations, re-
spectively. First, we review some background material following [179] and [158].

Recall that an n × n matrix A is called reducible if it can be written as

PAP T =

[

A11 A12

0 A22

]

,
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where P is a permutation matrix. If there does not exist a matrix P such that the above holds, then the
matrix A is called irreducible. The reducibility of a matrix can be determined by examining its finite directed
graph, which is defined as follows. With the n× n matrix A is associated the n nodes Ni, i = 1, . . . n. If the
entry aij of A is nonzero, then the directed graph of A contains a directed path from Ni to Nj . If there exists
a directed path from any node i to any node j, then the graph is called strongly connected. The following
condition is useful.

Theorem 2.15 An n × n matrix A is irreducible if and only if its directed graph is strongly connected.

Proof. See Theorem 1.6 in [179].

Recall that the matrix A is diagonally dominant if

|aii| ≥
n
∑

j=1,j 6=i

|aij |, i = 1, . . . , n. (2.41)

Further, the matrix A is irreducibly diagonally dominant if A is diagonally dominant and irreducible, and
if inequality (2.41) holds in the strict sense for at least one i. The matrix A is strictly diagonally dominant
if (2.41) holds for all i in the strict sense. The following theorem follows easily from the Gerschgorin Circle
Theorem.

Theorem 2.16 If the n × n matrix A is either strictly or irreducibly diagonally dominant with positive
diagonal entries, then A is positive definite.

Proof. See the Corollary to Theorem 1.8 in [179].

Recall that a partial ordering of the space L(Rn, Rn) of linear operators mapping R
n into itself may

defined in the following way. Let A ∈ L(Rn, Rn) and B ∈ L(Rn, Rn). The ordering is defined as:

A ≤ B if and only if aij ≤ bij , ∀i, j.

In particular, we can now write expressions such as A > 0, meaning that all the entries of the matrix A are
positive.

There are two important classes of matrices which we now mention, which often arise from the dis-
cretization of partial differential equations. First, we note that if A is irreducibly diagonally dominant, with
positive diagonal entries and non-positive off-diagonal entries, it can be shown that A−1 > 0. Similarly, if
A is irreducible and symmetric, with nonpositive off-diagonal entries, then A−1 > 0 if and only if A is also
positive definite. Now, A is called a Stieltjes matrix if A is symmetric positive definite with non-positive
off-diagonal entries. Finally, if A is nonsingular, A−1 > 0, and if A has non-positive off-diagonal entries,
then A is called an M -matrix. Clearly, we have that if the matrix A is a Stieltjes matrix then A is also
an M -matrix; in fact, a Stieltjes matrix is simply a symmetric M -matrix. As a final remark, the following
result will be useful.

Theorem 2.17 If A is an M -matrix, and if D a non-negative diagonal matrix, then A+D is an M -matrix,
and (A + D)−1 ≤ A−1.

Proof. See Theorem 2.4.11 in [158].

Consider now the nonlinear algebraic equation

F (u) = Au + N(u) = f, (2.42)

where A ∈ L(Rn, Rn), and where N(u) : R
n 7→ R

n is a nonlinear operator. We will be interested in conditions
which guarantee that F is a homeomorphism of R

n onto R
n, meaning that the mapping F is one-to-one and

onto, and that both F and F−1 are continuous. If this is established for the mapping F , then clearly for
any function f , the equation (2.42) has a unique solution u which depends continuously on f .

We first introduce some notation and then state a useful theorem. A nonlinear operator N = (b1, . . . , bn)
is called diagonal if the i-th component function bi is a function only of ui, where u = (u1, . . . , un). The
composite function F is then called almost linear, if A is linear and N is diagonal.

The following theorem (Theorem 5.3.10 in [158]) gives an important sufficient condition for a nonlinear
operator to be a homeomorphism.
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Theorem 2.18 (The Hadamard Theorem) If F : R
n 7→ R

n is continuously differentiable on R
n and

‖F ′(x)−1‖ ≤ γ < +∞ ∀x ∈ R
n, then F is a homeomorphism of R

n onto R
n.

Proof. See Theorem 5.3.10 in [158].

2.3.4 Properties of the discrete linearized PBE operator

Various properties of systems generated with the box-method are discussed in Chapter 6 of [179] for one-
and two-dimensional problems. In the three-dimensional case, it is immediately clear from the form of the
discrete equations (2.37) that the resulting matrix is symmetric, with positive diagonal entries and non-
positive off-diagonal entries. It is also immediate from its directed graph in the case of a natural ordering
(which is simply the non-uniform Cartesian mesh itself) that the resulting matrix is irreducible. Finally, if at
least one Dirichlet point is specified, then strict inequality will hold in the definition of diagonal dominance
for at least one equation; hence, the matrix is irreducibly diagonally dominant. This gives the following
three-dimensional version of Theorem 6.4 in [179].

Theorem 2.19 If the matrix A represents the discrete equations (2.37) generated by a box-method discretiza-
tion, and at least one Dirichlet point is specified on the boundary, then A is symmetric, irreducibly diagonally
dominant, and has positive diagonal entries as well as non-positive off-diagonal entries. In addition, A is
positive definite, and is therefore a Stieltjes matrix.

Proof. See the discussion above.

Corollary 2.20 A box-method discretization of the linearized PBE, using non-uniform Cartesian hexahedral
elements, yields a matrix A which is a symmetric M-matrix.

Proof. The linearized Poisson-Boltzmann equation is a representative of the class (2.34) for which theo-
rem (2.19) applies.

Remark 2.7. In the case of uniform meshes, it is well-known that finite element, box, and finite difference
(Taylor series) methods are similar or even equivalent. However, it should be noted that a Taylor series
approach does not yield a symmetric matrix in the general case of non-uniform Cartesian meshes, as do box
and finite element methods. Additionally, if natural boundary conditions (Neumann conditions) are present,
a box or finite element discretization will always give rise to a symmetric matrix; this is not generally the
case with a Taylor series approach.

2.3.5 Existence and uniqueness of discrete nonlinear PBE solutions

We now consider the general nonlinear equation

Au + N(u) = f, (2.43)

arising from the box-method discretization of (2.35) as described earlier using hexahedral non-uniform Carte-
sian elements. The matrix A clearly has the properties described in Theorem 2.19 for the linear case. If
we make some simple assumptions about the nonlinear operator N(u), then we have the following result
(Theorem 5.4.1 in [158]), the short proof of which we include for completeness.

Theorem 2.21 If A is an M -matrix, if N(u) is continuously differentiable, and if N ′(u) is diagonal and
non-negative for all u ∈ R

n, then the composite operator F (u) = Au+N(u) is a homeomorphism of R
n onto

R
n.

Proof. Since N is continuously differentiable, so is the composite operator F , and F ′(u) = A + N ′(u). For
each u, since the linear operator N ′(u) is a non-negative diagonal matrix, we have by Theorem 2.17 that the
linear operator F ′(u) is an M -matrix, and that

0 < F ′(u)−1 ≤ A−1, ∀u ∈ R
n.

Thus, ‖F ′(u)−1‖ is bounded uniformly. The theorem then follows by the Hadamard Theorem.
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Corollary 2.22 A box-method discretization of the nonlinear PBE, using non-uniform Cartesian hexahedral
elements, yields a nonlinear algebraic operator F which is a homeomorphism from R

n onto R
n, so that the

discrete nonlinear Poisson-Boltzmann problem is well-posed.

Proof. First, it is clear from the previous section that the matrix A which arises from the discretization is a
symmetric M -matrix. Now consider the nonlinear term N(u) in the case of the nonlinear Poisson-Boltzmann
equation, which has the form:

κ̄2(x) sinh(u(x)).

While the function κ̄(x) is only piecewise continuous over the domain, we have that for each nodal point
xijk , the coefficient κ̄(xijk) is constant. Therefore, at each mesh point the component function

bijk(uijk) = κ̄2(xijk) sinh(uijk)

is a continuously differentiable function of uijk ∈ R, and the full function N(u) is then continuously differ-
entiable and diagonal. Further, since κ̄(x) is always non-negative, the derivative of the component function
is continuous and non-negative since

b′ijk(u) = κ̄2(xijk) cosh(u) ≥ 0, ∀u ∈ R.

Therefore, N ′(u) is non-negative and diagonal for all u ∈ R
n. The corollary then follows from Theorem 2.21.

Remark 2.8. In the course of this research, it became important to establish Corollary 2.22, because initial
numerical results appeared to yield non-physical situations. We note that Corollary 2.22 can also be shown
using either a discrete convex analysis approach or discrete monotone operator theory, or using M -function
theory (page 468 in [158]); an M -function is the nonlinear extension of an M -matrix.

2.4 Motivation for use of the box-method

In a recent paper [18], after recasting the box-method as a Petrov-Galerkin method with piecewise linear
trial functions and piecewise constant test functions, it was shown that in the two-dimensional case, the
box-method generates approximations comparable in accuracy to finite element methods with piecewise
linear basis functions. Their study was motivated by the observation that both methods often generate
exactly the same matrices in two-dimensions (this is always the case for the Laplacean operator on general
two-dimensional meshes).

The three-dimensional case has been considered in detail by Kerkhoven [122]; it is demonstrated that box
and finite element methods do not have the same equivalence properties in three dimensions that they have
in two. Error estimates are derived by considering the box-method to be a Petrov-Galerkin discretization,
using piecewise linear trial and test functions, of a closely associated “relaxed” problem. The relaxed method
is then analyzed, using a modification of Strang’s First Lemma (Theorem 4.1.1 in [36]), as a perturbation to
a standard Galerkin discretization. The error induced by moving to the relaxed problem is then analyzed. As
a result, error estimates comparable to Galerkin error estimates with piecewise linear trial and test functions
are obtained for the box-method.

Note that some elliptic regularity is required for finite element error analysis, and this requirement is
also imposed on the above box-method analysis, as it is based on the finite element case. Therefore, if one
has no elliptic regularity estimates (such as in the case of discontinuous coefficients), the standard error
analysis is not available. One can show, however, that the Galerkin method will still converge, although at
an undetermined rate (Theorem 3.2.3 in [36]).

In case of nonlinear equations of the type we have considered in this chapter, the discretized nonlinear
term produced by a finite element discretization is non-diagonal; this is also true in the linear case with a
Helmholtz-like term in the operator, which produces a non-diagonal mass matrix. The box-method produces
only diagonal terms from the Helmholtz-like or nonlinear terms; by mass lumping the elements of the mass
matrix onto the diagonal this property is regained for finite element methods. However, some of the nice
features of the finite element method are sacrificed, such as the variational conditions which we describe in
Chapter 3 and Chapter 4.
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We remark that our choice of the box-method for the linearized and nonlinear Poisson-Boltzmann equa-
tions was for both practical and theoretical considerations. From the practical side, there exists sophisticated
biophysical modeling software, designed specifically for three-dimensional non-uniform Cartesian meshes. In
particular, the UHBD and DELPHI programs discussed in Chapter 1 are specifically designed around an
underlying non-uniform Cartesian mesh, and the non-uniform Cartesian formulation is required for efficient
calculation of a posteriori quantities from the potential map produced by solving the Poisson-Boltzmann
equation. These quantities include forces for molecular and Brownian dynamics simulations, as well as en-
ergies, reaction rates, and many other quantities which lead to a better understanding of these biological
systems.

From the theoretical side is the following consideration: one of the most (perhaps the most) important
and useful features of the finite element method with regard to multilevel methods is that discretizations on
successively refined meshes automatically satisfy the so-called variational conditions:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T ,

where Ak is the matrix or operator on the fine mesh, Ak−1 is the matrix or operator on the coarse mesh,
and the operator Ik

k−1 is a prolongation operator which maps functions from the coarse space to the fine
space. Unfortunately, if discontinuities in the coefficients of the problem are only resolvable on the finest
mesh, meaning that they lie along element boundaries on the finest mesh but lie withing elements on coarser
meshes, then the variational conditions will be violated. This is due to the fact that these conditions can be
shown to hold theoretically (see Chapter 3) with exact evaluation of the integrals forming the components of
the stiffness matrices, but quadrature error will be large due to the presence of discontinuous functions within
elements; the only hope is to attempt to enforce these conditions algebraically on the coarse mesh problems,
given the fine mesh operator and the prolongation operators. If we must enforce the variational conditions
algebraically anyway, then we lose one of the most desirable features of the finite element method, from
the perspective of multilevel theory. The importance of imposing the variational conditions in multilevel
methods, either exactly or approximately, is easily demonstrated; we will give some simple examples in
Chapter 6. We will discuss the variational conditions in more detail in the following chapters.

Of course one solution would be to begin with a coarse mesh for which all discontinuities lie along element
boundaries, and then successively refine the mesh. Unfortunately, this is not always possible, especially in
the case of the Poisson-Boltzmann equation. Large and complex molecules have very complex surfaces, which
are only resolvable with a mesh size which already taxes the available computer resources. We mention, for
example, the use of a discretization with more than seven million unknowns for a large molecule in [100], and
in that particular case we would have preferred even more unknowns to more accurately resolve the surface
and approximate the boundary conditions. An alternate approach is to use an integral equation formulation
of the Poisson-Boltzmann equation and use surface tessellations of the molecule along with boundary finite
element methods; we do not discuss these techniques here.

Note that perhaps the greatest obstacle one faces when employing multilevel methods for a “real world”
application is the following: how does one define the coarse problems, when the real problem is really only
well-defined with a very fine mesh? The two multilevel approaches we investigate for dealing with this
difficulty here are: enforcement of the variational conditions exactly using algebraic means, an approach
which is somewhat costly; and approximate enforcement of the variational conditions by various coefficient
averaging strategies. We will discuss these techniques in more detail in the chapters to follow.



3. Linear Multilevel Methods

In this chapter, we summarize the main ideas behind linear multilevel methods, and present in detail the
methods we study in the remainder of the work. We first discuss classical linear methods, their convergence
properties, and conjugate gradient accelerations, motivating the discussion of linear multilevel methods.
Multilevel methods are defined using a recursive operator formulation, setting the stage for a discussion
in Chapter 5 of theoretical results which apply to these methods in certain situations. We also discuss
modifications of the methods for equations with problem coefficients such as the linearized Poisson-Boltzmann
equation. We finish the chapter with a short look at the complexity properties of various methods.

Our contributions here are as follows.

• We establish several simple but useful properties of the error propagator of an abstract linear method;
these properties have been exploited in the literature, but their short proofs seem hard to find.

• We derive recursive and product forms of the multilevel error propagator explicitly in terms of inter-
polation and restriction operators; these are generalizations of some abstract recursions which have
appeared in the finite element multilevel literature.

• We study two linear multilevel methods for interface problems, one based on coefficient averaging,
and the other based on algebraic enforcement of variational or Galerkin conditions.

• We show how variational conditions can be enforced algebraically in an efficient way using a stencil
calculus originally developed by R. Falgout, and we develop MAPLE and MATHEMATICA symbolic
stencil calculators for producing the Galerkin matrix stencil entries in one, two, and three dimensions.

• We establish some relationships between coefficient averaging methods and algebraic Galerkin methods
in certain cases in one and two dimensions which were not previously known.

3.1 Linear operator equations

In this section, we first review the theory of self-adjoint linear operators on a Hilbert space. The results
required for the analysis of linear methods, as well as conjugate gradient methods, are summarized. We
then develop carefully the theory of classical linear methods for operators equations. The conjugate gradient
method is then considered, and the relationship between the convergence rate of linear methods as precon-
ditioners and the convergence rate of the resulting preconditioned conjugate gradient method is explored in
some detail.

As a motivation, consider that if either the box-method or the finite element method is used to discretize
the second order linear elliptic partial differential equation Lu = f , a set of linear algebraic equations results,
which we denote as:

Akuk = fk. (3.1)

The subscript k denotes the discretization level, with larger k corresponding to a more refined mesh, and
with an associated mesh parameter hk representing the diameter of the largest element or volume in the
mesh Ωk. For a self-adjoint strongly elliptic partial differential operator, the matrix Ak produced by the box

42
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or finite element method is SPD. In this work, we are interested in linear iterations for solving the matrix
equation (3.1) which have the general form:

un+1
k = (I − BkAk)un

k + Bkfk, (3.2)

where Bk is an SPD matrix approximating A−1
k in some sense. The classical stationary linear methods fit

into this framework, as well as domain decomposition methods and multigrid methods.

3.1.1 Linear operators and spectral theory

In this section we compile some material on self-adjoint linear operators in finite-dimensional spaces which
will be used throughout the work.

Let H, H1, and H2 be a real finite-dimensional Hilbert spaces equipped with the inner-product (·, ·)
inducing the norm ‖ · ‖ = (·, ·)1/2. Since we are concerned only with finite-dimensional spaces, a Hilbert
space H can be thought of as the Euclidean space R

n; however, the preliminary material below and the
algorithms we develop are phrased in terms of the unspecified space H, so that the algorithms may be
interpreted directly in terms of finite element spaces as well. This is necessary to set the stage for our
discussion of multigrid and domain decomposition theory later in the work.

If the operator A : H1 7→ H2 is linear, we denote this as A ∈ L(H1,H2). The adjoint of a linear operator
A ∈ L(H,H) with respect to (·, ·) is the unique operator AT satisfying (Au, v) = (u, AT v) , ∀u, v ∈ H. An
operator A is called self-adjoint or symmetric if A = AT ; a self-adjoint operator A is called positive definite
or simply positive, if (Au, u) > 0 , ∀u ∈ H, u 6= 0.

If A is self-adjoint positive definite (SPD) with respect to (·, ·), then the bilinear form A(u, v) = (Au, v)
defines another inner-product on H, which we sometimes denote as (·, ·)A = A(·, ·) to emphasize the fact that
it is an inner-product rather than simply a bilinear form. The A-inner-product then induces the A-norm

‖ · ‖A = (·, ·)1/2
A . For each inner-product the Cauchy-Schwarz inequality holds:

|(u, v)| ≤ (u, u)1/2(v, v)1/2, |(u, v)A| ≤ (u, u)
1/2
A (v, v)

1/2
A , ∀u, v ∈ H.

The adjoint of an operator M with respect to (·, ·)A, the A-adjoint, is the unique operator M ∗ satisfying
(Mu, v)A = (u, M∗v)A , ∀u, v ∈ H. From this definition it follows that

M∗ = A−1MT A . (3.3)

An operator M is called A-self-adjoint if M = M ∗, and A-positive if (Mu, u)A > 0 , ∀u ∈ H, u 6= 0.
If N ∈ L(H1,H2), then the adjoint satisfies NT ∈ L(H2,H1), and relates the inner-products in H1 and

H2 as follows:
(Nu, v)H2 = (u, NT v)H1 , ∀u ∈ H1 , ∀v ∈ H2 .

Since it is usually clear from the arguments which inner-product is involved, we shall drop the subscripts on
inner-products (and norms) throughout the paper, except when necessary to avoid confusion.

For the operator M we denote the eigenvalues satisfying Mui = λiui for eigenfunctions ui 6= 0 as λi(M).
The spectral theory for self-adjoint linear operators states that the eigenvalues of the self-adjoint operator
M are real and lie in the closed interval [λmin(M), λmax(M)] defined by the Raleigh quotients:

λmin(M) = min
u6=0

(Mu, u)

(u, u)
, λmax(M) = max

u6=0

(Mu, u)

(u, u)
.

Similarly, if an operator M is A-self-adjoint, then the eigenvalues are real and lie in the interval defined by
the Raleigh quotients generated by the A-inner-product:

λmin(M) = min
u6=0

(Mu, u)A

(u, u)A
, λmax(M) = max

u6=0

(Mu, u)A

(u, u)A
.

We denote the set of eigenvalues as the spectrum σ(M) and the largest of these in absolute value as the
spectral radius as ρ(M) = max(|λmin(M)|, |λmax(M)|). For SPD (or A-SPD) operators M , the eigenvalues
of M are real and positive, and the powers M s for real s are well-defined through the spectral decomposition;
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see for example §79 and §82 in [90]. Finally, recall that a matrix representing the operator M with respect
to any basis for H has the same eigenvalues as the operator M .

Linear operators on finite-dimensional spaces are always bounded, and these bounds define the operator
norms induced by the norms ‖ · ‖ and ‖ · ‖A:

‖M‖ = max
u6=0

‖Mu‖
‖u‖ , ‖M‖A = max

u6=0

‖Mu‖A

‖u‖A
.

A well-known property is that if M is self-adjoint, then ρ(M) = ‖M‖. This property can also be shown
to hold for A-self-adjoint operators. The following lemma can be found in [5] (as Lemma 4.1), although the
proof there is for A-normal matrices rather than A-self-adjoint operators.

Lemma 3.1 If A is SPD and M is A-self-adjoint, then ‖M‖A = ρ(M).

Proof. We simply note that

‖M‖A = max
u6=0

‖Mu‖A

‖u‖A
= max

u6=0

(AMu, Mu)1/2

(Au, u)1/2
= max

u6=0

(AM∗Mu, u)1/2

(Au, u)1/2
= λ1/2

max(M
∗M),

since M∗M is always A-self-adjoint. Since by assumption M itself is A-self-adjoint, we have that M ∗ = M ,

which yields: ‖M‖A = λ
1/2
max(M∗M) = λ

1/2
max(M2) = (maxi[λ

2
i (M)])1/2 = max[|λmin(M)|, |λmax(M)|] =

ρ(M).

3.1.2 The basic linear method

In this section, we introduce the basic linear method which we study and use in the remainder of the work.
Assume we are faced with the operator equation Au = f , where A ∈ L(H,H) is SPD, and we desire

the unique solution u. Given a preconditioner (approximate inverse) B ≈ A−1, consider the equivalent
preconditioned system BAu = Bf . The operator B is chosen so that the simple linear iteration:

u1 = u0 − BAu0 + Bf = (I − BA)u0 + Bf,

which produces an improved approximation u1 to the true solution u given an initial approximation u0, has
some desired convergence properties. This yields the following basic linear iterative method which we study
in the remainder of this work:

Algorithm 3.1 (Basic Linear Method for solving Au = f)

un+1 = un + B(f − Aun) = (I − BA)un + Bf.

Subtracting the iteration equation from the identity u = u − BAu + Bf yields the equation for the error
en = u − un at each iteration:

en+1 = (I − BA)en = (I − BA)2en−1 = · · · = (I − BA)n+1e0. (3.4)

The convergence of Algorithm 3.1 is determined completely by the spectral radius of the error propagation
operator E = I − BA.

Theorem 3.2 The condition ρ(I − BA) < 1 is necessary and sufficient for convergence of Algorithm 3.1.

Proof. See for example Theorem 10.11 in [128] or Theorem 7.1.1 in [157].

Since |λ|‖u‖ = ‖λu‖ = ‖Mu‖ ≤ ‖M‖ ‖u‖ for any norm ‖·‖, it follows that ρ(M) ≤ ‖M‖ for all norms ‖·‖.
Therefore, ‖I−BA‖ < 1 and ‖I−BA‖A < 1 are both sufficient conditions for convergence of Algorithm 3.1.
In fact, it is the norm of the error propagation operator which will bound the reduction of the error at each
iteration, which follows from (3.4):

‖en+1‖A ≤ ‖I − BA‖A‖en‖A ≤ ‖I − BA‖n+1
A ‖e0‖A. (3.5)

The spectral radius ρ(E) of the error propagator E is called the convergence factor for Algorithm 3.1, whereas
the norm of the error propagator ‖E‖ is referred to as the contraction number (with respect to the particular
choice of norm ‖ · ‖).
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3.1.3 Properties of the error propagation operator

In this section, we establish some simple properties of the error propagation operator of an abstract linear
method. We note that several of these properties are commonly used, especially in the multigrid literature,
although the short proofs of the results seem difficult to locate. The particular framework we construct here
for analyzing linear methods is based on the recent work of Xu [185], on the recent papers on multigrid and
domain decomposition methods referenced therein, and on the text by Varga [179].

An alternate sufficient condition for convergence of the basic linear method is given in the following
lemma, which is similar to Stein’s Theorem (Theorem 7.1.8 in [157], or Theorem 6.1, page 80 in [187]).

Lemma 3.3 If E∗ is the A-adjoint of E, and I −E∗E is A-positive, then it holds that ρ(E) ≤ ‖E‖A < 1.

Proof. By hypothesis, (A(I − E∗E)u, u) > 0 ∀u ∈ H. This implies that (AE∗Eu, u) < (Au, u) ∀u ∈ H, or
(AEu, Eu) < (Au, u) ∀u ∈ H. But this last inequality implies that

ρ(E) ≤ ‖E‖A = max
u6=0

(AEu, Eu)

(Au, u)
< 1.

We now state three very simple lemmas that we use repeatedly in the following sections.

Lemma 3.4 If A is SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Simply note that: (ABAx, y) = (BAx, Ay) = (Ax, BT Ay) ∀x, y ∈ H. The lemma follows since
BA = BT A if and only if B = BT .

Lemma 3.5 If A is SPD, then I − BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Begin by noting that: (A(I −BA)x, y) = (Ax, y)− (ABAx, y) = (Ax, y)− (Ax, (BA)∗y) = (Ax, (I −
(BA)∗)y), ∀x, y ∈ H. Therefore, E∗ = I − (BA)∗ = I − BA = E if and only if BA = (BA)∗. But by
Lemma 3.4, this holds if and only if B is self-adjoint, so the result follows.

Lemma 3.6 If A and B are SPD, then BA is A-SPD.

Proof. By Lemma 3.4, BA is A-self-adjoint. Also, we have that:

(ABAu, u) = (BAu, Au) = (B1/2Au, B1/2Au) > 0 ∀u 6= 0, u ∈ H.

Therefore, BA is also A-positive, and the result follows.

We noted above that the property ρ(M) = ‖M‖ holds in the case that M is self-adjoint with respect to
the inner-product inducing the norm ‖ ·‖. If B is self-adjoint, the following theorem states that the resulting
error propagator E = I − BA has this property with respect to the A-norm.

Theorem 3.7 If A is SPD and B is self-adjoint, then ‖I − BA‖A = ρ(I − BA).

Proof. By Lemma 3.5, I − BA is A-self-adjoint, and by Lemma 3.1 the result follows.

The following simple lemma, similar to Lemma 3.3, will be very useful later in the work.

Lemma 3.8 If A and B are SPD, and E = I −BA is A-non-negative, then it holds that ρ(E) = ‖E‖A < 1.

Proof. By Lemma 3.5, E is A-self-adjoint, and by assumption E is A-non-negative, and so from §3.1.1 we
see that E must have real non-negative eigenvalues. By hypothesis, (A(I − BA)u, u) ≥ 0 ∀u ∈ H, which
implies that (ABAu, u) ≤ (Au, u) ∀u ∈ H. By Lemma 3.6, BA is A-SPD, and we have that

0 < (ABAu, u) ≤ (Au, u) ∀u ∈ H, u 6= 0,

which implies that 0 < λi(BA) ≤ 1 ∀λi ∈ σ(BA). Thus, since λi(E) = λi(I − BA) = 1 − λi(BA) ∀i, we
have that

ρ(E) = max
i

λi(E) = 1 − min
i

λi(BA) < 1.

Finally, by Theorem 3.7, we have ‖E‖A = ρ(E) < 1.



46 3. LINEAR MULTILEVEL METHODS

The following simple lemma relates the contraction number bound to two simple inequalities; it is a standard
result which follows directly from the spectral theory of self-adjoint linear operators.

Lemma 3.9 If A is SPD and B is self-adjoint, and E = I − BA is such that:

−C1(Au, u) ≤ (AEu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then ρ(E) = ‖E‖A ≤ max{C1, C2}.

Proof. By Lemma 3.5, E = I − BA is A-self-adjoint, and by the spectral theory outlined in §3.1.1, the
inequality above simply bounds the most negative and most positive eigenvalues of E with −C1 and C2,
respectively. The result then follows by Theorem 3.7.

Corollary 3.10 If A and B are SPD, then Lemma 3.9 holds for some C2 < 1.

Proof. By Lemma 3.6, BA is A-SPD, which implies that the eigenvalues of BA are real and positive by the
discussion in §3.1.1. By Lemma 3.5, E = I − BA is A-self-adjoint, and therefore has real eigenvalues. The
eigenvalues of E and BA are related by λi(E) = λi(I −BA) = 1− λi(BA) ∀i, and since λi(BA) > 0 ∀i, we
must have that λi(E) < 1 ∀i. Since C2 in Lemma 3.9 bounds the largest positive eigenvalue of E, we have
that C2 < 1.

We now define the A-condition number of an invertible operator M by extending the standard notion to
the A-inner-product:

κA(M) = ‖M‖A‖M−1‖A.

In the next section we show (Lemma 3.12) that if M is an A-self-adjoint operator, then in fact the following
simpler expression holds:

κA(M) =
λmax(M)

λmin(M)
.

The generalized condition number κA is employed in the following lemma, which states that there is an
optimal relaxation parameter for a basic linear method, and gives the best possible convergence estimate for
the method employing the optimal parameter. This lemma has appeared many times in the literature in one
form or another; cf. [159].

Lemma 3.11 If A and B are SPD, then

ρ(I − αBA) = ‖I − αBA‖A < 1.

if and only if α ∈ (0, 2/ρ(BA)). Convergence is optimal when α = 2/[λmin(BA) + λmax(BA)], giving

ρ(I − αBA) = ‖I − αBA‖A = 1 − 2

1 + κA(BA)
< 1.

Proof. Note that ρ(I −αBA) = maxλ |1−αλ(BA)|, so that ρ(I −αBA) < 1 if and only if α ∈ (0, 2/ρ(BA)),
proving the first part. Taking α = 2/[λmin(BA) + λmax(BA)], we have

ρ(I − αBA) = max
λ

|1 − αλ(BA)| = max
λ

(1 − αλ(BA))

= max
λ

(

1 − 2λ(BA)

λmin(BA) + λmax(BA)

)

= 1 − 2λmin(BA)

λmin(BA) + λmax(BA)
= 1 − 2

1 + λmax(BA)
λmin(BA)

.

Since BA is A-self-adjoint, by Lemma 3.12 we have that κA(BA) = λmax(BA)/λmin(BA), so that if α =
2/[λmin(BA) + λmax(BA)], then

ρ(I − αBA) = ‖I − αBA‖A = 1 − 2

1 + κA(BA)
.
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To show this is optimal, we must solve minα[maxλ |1−αλ|], where α ∈ (0, 2/λmax). Note that each α defines
a polynomial of degree zero in λ, namely Po(λ) = α. Therefore, we can rephrase the problem as

P opt
1 (λ) = min

Po

[

max
λ

|1 − λPo(λ)|
]

.

It is well-known that the scaled and shifted Chebyshev polynomials give the solution to this “mini-max”
problem:

P opt
1 (λ) = 1 − λP opt

o =
T1

(

λmax+λmin−2λ
λmax−λmin

)

T1

(

λmax+λmin

λmax−λmin

) .

Since T1(x) = x, we have simply that

P opt
1 (λ) =

λmax+λmin−2λ
λmax−λmin

λmax+λmin

λmax−λmin

= 1 − λ

(

2

λmin + λmax

)

,

showing that in fact αopt = 2/[λmin + λmax].

Remark 3.1. Theorem 3.7 will be exploited later since ρ(E) is usually much easier to compute numerically
than ‖E‖A, and since it is the energy norm ‖E‖A of the error propagator E which is typically bounded in
various convergence theories for iterative processes.

Note that if we wish to reduce the initial error ‖e0‖A by the factor ε, then equation (3.5) implies that
this will be guaranteed if

‖E‖n+1
A ≤ ε.

Taking natural logarithms of both sides and solving for n, we see that the maximum number of iterations
required to reach the desired tolerance, as a function of the contraction number, is given by:

n ≤ | ln ε|
| ln ‖E‖A|

. (3.6)

If the bound on the norm is of the form in Lemma 3.11, then to achieve a tolerance of ε after n iterations
will require:

n ≤ | ln ε|
∣

∣

∣
ln
(

1 − 2
1+κA(BA)

)∣

∣

∣

=
| ln ε|

∣

∣

∣
ln
(

κA(BA)−1
κA(BA)+1

)∣

∣

∣

. (3.7)

Using the approximation:

ln

(

a − 1

a + 1

)

= ln

(

1 + (−1/a)

1− (−1/a)

)

= 2

[

(−1

a

)

+
1

3

(−1

a

)3

+
1

5

(−1

a

)5

+ · · ·
]

<
−2

a
,

we have that | ln[(κA(BA) − 1)/(κA(BA) + 1)]| > 2/κA(BA), so that:

n ≤ 1

2
κA(BA)| ln ε| + 1.

We then have that the maximum number of iterations required to reach an error on the order of the tolerance
ε is:

n = O (κA(BA)| ln ε|) .

If a single iteration of the method costs O(N) arithmetic operators, then the overall complexity to solve
the problem is O(| ln ‖E‖A|−1N | ln ε|), or O(κA(BA)N | ln ε|). If the quantity ‖E‖A can be bounded less than
one independent of N , or if κA(BA) can be bounded independent of N , then the complexity is near optimal
O(N | ln ε|).

Note that if E is A-self-adjoint, then we can replace ‖E‖A by ρ(E) in the above discussion. Even when
this is not the case, ρ(E) is often used above in place of ‖E‖A to obtain an estimate, and the quantity



48 3. LINEAR MULTILEVEL METHODS

R∞(E) = − ln ρ(E) is referred to as the asymptotic convergence rate (see page 67 of [179], or page 88
of [187]).

In [179], the average convergence rate of m iterations is defined as R(Em) = − ln(‖Em‖1/m), the meaning
of which is intuitively clear from equation (3.5). As noted on page 95 in [179], since ρ(E) = limm→∞ ‖Em‖1/m

for all bounded linear operators E and norms ‖·‖ (Theorem 7.5-5 in [129]), it follows that limm→∞ R(Em) =
R∞(E).

While R∞(E) is considered the standard measure of convergence of linear iterations (it is called the
“convergence rate” in [187], page 88), this is really an asymptotic measure, and the convergence behavior
for the early iterations may be better monitored by using the norm of the propagator E directly in (3.6);
an example is given on page 67 of [179] for which R∞(E) gives a poor estimate of the number of iterations
required.

3.1.4 Conjugate gradient acceleration of linear methods

Consider now the linear equation Au = f in the space H. The conjugate gradient method was developed by
Hestenes and Stiefel [93] for linear systems with symmetric positive definite operators A. It is common to
precondition the linear system by the SPD preconditioning operator B ≈ A−1, in which case the generalized
or preconditioned conjugate gradient method [38] results. Our purpose in this section is to briefly examine
the algorithm, its contraction properties, and establish some simple relationships between the contraction
number of a basic linear preconditioner and that of the resulting preconditioned conjugate gradient algorithm.
These relationships are commonly used, but some of the short proofs seem unavailable.

In [7], a general class of conjugate gradient methods obeying three-term recursions is studied, and it is
shown that each instance of the class can be characterized by three operators: an inner product operator
X , a preconditioning operator Y , and the system operator Z. As such, these methods are denoted as
CG(X ,Y ,Z). We are interested in the special case that X = A, Y = B, and Z = A, when both B and A are
SPD. Choosing the Omin [7] algorithm to implement the method CG(A,B,A), the preconditioned conjugate
gradient method results:

Algorithm 3.2 (Preconditioned Conjugate Gradient Algorithm)

Let u0 ∈ H be given.
r0 = f − Au0, s0 = Br0, p0 = s0.
Do i = 0, 1, . . . until convergence:

αi = (ri, si)/(Api, pi)
ui+1 = ui + αip

i

ri+1 = ri − αiApi

si+1 = Bri+1

βi+1 = (ri+1, si+1)/(ri, si)
pi+1 = si+1 + βi+1p

i

End do.

If the dimension of H is n, then the algorithm can be shown to converge in n steps since the preconditioned
operator BA is A-SPD [7]. Note that if B = I , then this algorithm is exactly the Hestenes and Stiefel
algorithm.

Since we wish to understand a little about the convergence properties of the conjugate gradient method,
and how these will be effected by a linear method representing the preconditioner B, we will briefly review
a well-known conjugate gradient contraction bound. To begin, it is not difficult to see that the error at each
iteration of Algorithm 3.2 can be written as a polynomial in BA times the initial error:

ei+1 = [I − BApi(BA)]e0,

where pi ∈ Pi, the space of polynomials of degree i. At each step the energy norm of the error ‖ei+1‖A =
‖u− ui+1‖A is minimized over the Krylov subspace:

Vi+1(BA, Br0) = span {Br0, (BA)Br0, (BA)2Br0, . . . , (BA)iBr0}.
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Therefore, it must hold that:

‖ei+1‖A = min
pi∈Pi

‖[I − BApi(BA)]e0‖A.

Since BA is A-SPD, the eigenvalues λj ∈ σ(BA) of BA are real and positive, and the eigenvectors vj of BA
are A-orthonormal. By expanding e0 =

∑n
j=1 αjvj , we have:

‖[I − BApi(BA)]e0‖2
A = (A[I − BApi(BA)]e0, [I − BApi(BA)]e0)

= (A[I − BApi(BA)](

n
∑

j=1

αjvj), [I − BApi(BA)](

n
∑

j=1

αjvj))

= (

n
∑

j=1

[1 − λjpi(λj)]αjλjvj ,

n
∑

j=1

[1 − λjpi(λj)]αjvj) =

n
∑

j=1

[1 − λjpi(λj)]
2α2

jλj

≤ max
λj∈σ(BA)

[1 − λjpi(λj)]
2

n
∑

j=1

α2
jλj = max

λj∈σ(BA)
[1 − λjpi(λj)]

2
n
∑

j=1

(Aαjvj , αjvj)

= max
λj∈σ(BA)

[1 − λjpi(λj)]
2(A

n
∑

j=1

αjvj ,

n
∑

j=1

αjvj) = max
λj∈σ(BA)

[1 − λjpi(λj)]
2‖e0‖2

A.

Thus, we have that

‖ei+1‖A ≤
(

min
pi∈Pi

[

max
λj∈σ(BA)

|1 − λjpi(λj)|
])

‖e0‖A.

The scaled and shifted Chebyshev polynomials Ti+1(λ), extended outside the interval [−1, 1] as in the
Appendix A of [9], yield a solution to this mini-max problem. Using some simple well-known relationships
valid for Ti+1(·), the following contraction bound is easily derived:

‖ei+1‖A ≤ 2





√

λmax(BA)
λmin(BA) − 1

√

λmax(BA)
λmin(BA) + 1





i+1

‖e0‖A = 2 δi+1
cg ‖e0‖A. (3.8)

The ratio of the extreme eigenvalues of BA appearing in the bound is often mistakenly called the (spectral)
condition number κ(BA); in fact, since BA is not self-adjoint (it is A-self-adjoint), this ratio is not in general
equal to the condition number (this point is discussed in great detail in [5]). However, the ratio does yield
a condition number in a different norm. The following lemma is a special case of Corollary 4.2 in [5].

Lemma 3.12 If A and B are SPD, then

κA(BA) = ‖BA‖A‖(BA)−1‖A =
λmax(BA)

λmin(BA)
. (3.9)

Proof. For any A-SPD M , it is easy to show that M−1 is also A-SPD, so that from §3.1.1 both M and M−1

have real, positive eigenvalues. From Lemma 3.1 it then holds that:

‖M−1‖A = ρ(M−1) = max
u6=0

(AM−1u, u)

(Au, u)
= max

u6=0

(AM−1/2u, M−1/2u)

(AMM−1/2u, M−1/2u)

= max
v 6=0

(Av, v)

(AMv, v)
=

[

min
v 6=0

(AMv, v)

(Av, v)

]−1

= λmin(M)−1.

By Lemma 3.6, BA is A-SPD, which together with Lemma 3.1 implies that ‖BA‖A = ρ(BA) = λmax(BA).
From above we have that ‖(BA)−1‖A = λmin(BA)−1, implying that the A-condition number is given as the
ratio of the extreme eigenvalues of BA as in equation (3.9).



50 3. LINEAR MULTILEVEL METHODS

More generally, it can be shown that if the operator D is C-normal for some SPD inner-product operator C,
then the generalized condition number given by κC(D) = ‖D‖C‖D−1‖C is equal to the ratio of the extreme
eigenvalues of the operator D. A proof of this fact is given in Corollary 4.2 of [5], along with a detailed
discussion of this and other relationships for more general conjugate gradient methods. The conjugate
gradient contraction number δcg can now be written as:

δcg =

√

κA(BA) − 1
√

κA(BA) + 1
= 1 − 2

1 +
√

κA(BA)
.

The following lemma is used in the analysis of multigrid and other linear preconditioners (it appears for
example as Proposition 5.1 in [184]) to bound the condition number of the operator BA in terms of the
extreme eigenvalues of the linear preconditioner error propagator E = I −BA. We have given our own short
proof of this result for completeness.

Lemma 3.13 If A and B are SPD, and E = I − BA is such that:

−C1(Au, u) ≤ (AEu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then the above must hold with C2 < 1, and it follows that:

κA(BA) ≤ 1 + C1

1 − C2
.

Proof. First, since A and B are SPD, by Corollary 3.10 we have that C2 < 1. Since (AEu, u) = (A(I −
BA)u, u) = (Au, u) − (ABAu, u), ∀u ∈ H, it is immediately clear that

−C1(Au, u) − (Au, u) ≤ −(ABAu, u) ≤ C2(Au, u) − (Au, u), ∀u ∈ H.

After multiplying by -1, we have

(1 − C2)(Au, u) ≤ (ABAu, u) ≤ (1 + C1)(Au, u), ∀u ∈ H.

By Lemma 3.6, BA is A-SPD, and it follows from §3.1.1 that the eigenvalues of BA are real and positive,
and lie in the interval defined by the Raleigh quotients of §3.1.1, generated by the A-inner-product. From
above, we see that the interval is given by [(1 − C2), (1 + C1)], and by Lemma 3.12 the result follows.

The next corollary appears for example as Theorem 5.1 in [184].

Corollary 3.14 If A and B are SPD, and BA is such that:

C1(Au, u) ≤ (ABAu, u) ≤ C2(Au, u), ∀u ∈ H,

for C1 ≥ 0 and C2 ≥ 0, then the above must hold with C1 > 0, and it follows that:

κA(BA) ≤ C2

C1
.

Proof. This follows easily from the argument used in the proof of Lemma 3.13.

The following corollary, which relates the contraction property of a linear method to the condition number
of the operator BA, appears without proof as Proposition 2.2 in [185].

Corollary 3.15 If A and B are SPD, and ‖I − BA‖A ≤ δ < 1, then

κA(BA) ≤ 1 + δ

1 − δ
. (3.10)

Proof. This follows immediately from Lemma 3.13 with δ = max{C1, C2}.
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We comment briefly on an interesting implication of Lemma 3.13, which was apparently first noticed
in [184]. It seems that even if a linear method is not convergent, for example if C1 > 1 so that ρ(E) > 1,
it may still be a good preconditioner. For example, if A and B are SPD, then by Corollary 3.10 we always
have C2 < 1. If it is the case that C2 << 1, and if C1 > 1 does not become too large, then κA(BA)
will be small and the conjugate gradient method will converge rapidly. A multigrid method will often
diverge when applied to a problem with discontinuous coefficients unless special care is taken. Simply using
conjugate gradient acceleration in conjunction with the multigrid method often yields a convergent (even
rapidly convergent) method without employing any of the special techniques that have been developed for
these problems; Lemma 3.13 may be the explanation for this behavior.

The following result from [185] connects the contraction number of the linear method used as the pre-
conditioner to the contraction number of the resulting conjugate gradient method, and it shows that the
conjugate gradient method always accelerates a linear method.

Theorem 3.16 If A and B are SPD, and ‖I − BA‖A ≤ δ < 1, then δcg < δ.

Proof. An abbreviated proof appears in [185]; we fill in the details here for completeness. Assume that the
given linear method has contraction number bounded as ‖I − BA‖A < δ. Now, since the function:

√

κA(BA) − 1
√

κA(BA) + 1

is an increasing function of κA(BA), we can use the result of Lemma 3.13, namely κA(BA) ≤ (1+δ)/(1−δ),
to bound the contraction rate of preconditioned conjugate gradient method as follows:

δcg ≤
(

√

κA(BA) − 1
√

κA(BA) + 1

)

≤

√

1+δ
1−δ − 1

√

1+δ
1−δ + 1

·

√

1+δ
1−δ − 1

√

1+δ
1−δ − 1

=

1+δ
1−δ − 2

√

1+δ
1−δ + 1

1+δ
1−δ − 1

=
1 −

√
1 − δ2

δ
.

Note that this last term can be rewritten as:

δcg ≤ 1 −
√

1 − δ2

δ
= δ

(

1

δ2
[1 −

√

1 − δ2]

)

.

Now, since 0 < δ < 1, clearly 1 − δ2 < 1, so that 1 − δ2 > (1 − δ2)2. Thus,
√

1 − δ2 > 1 − δ2, or
−
√

1 − δ2 < δ2 − 1, or finally 1 −
√

1 − δ2 < δ2. Therefore, (1/δ2)
[

1 −
√

1 − δ2
]

< 1, or

δcg ≤ δ

(

1

δ2

[

1 −
√

1 − δ2
]

)

< δ.

A more direct proof follows by recalling from Lemma 3.11 that the best possible contraction of the linear
method, when provided with an optimal parameter, is given by:

δopt = 1 − 2

1 + κA(BA)
,

whereas the conjugate gradient contraction is

δcg = 1 − 2

1 +
√

κA(BA)
.

Assuming B 6= A−1, we always have κA(BA) > 1, so we must have that δcg < δopt ≤ δ.

Remark 3.2. This result implies that it always pays in terms of an improved contraction number to use
the conjugate gradient method to accelerate a linear method; the question remains of course whether the
additional computational labor involved will be amortized by the improvement. This is not clear from the
above analysis, and seems to be problem-dependent in practice.
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Remark 3.3. Note that if a given linear method requires a parameter α as in Lemma 3.11 in order to be
competitive, one can simply use the conjugate gradient method as an accelerator for the method without a
parameter, avoiding the possibly costly estimation of a good parameter α. Theorem 3.16 guarantees that
the resulting method will have superior contraction properties, without requiring the parameter estimation.
This is exactly why additive multigrid and domain decomposition methods (which we discuss in more detail
later) are used almost exclusively as preconditioners for conjugate gradient methods; in contrast to the
multiplicative variants, which can be used effectively without a parameter, the additive variants always
require a good parameter α to be effective, unless used as preconditioners.

To finish this section, we remark briefly on the complexity of Algorithm 3.2. If a tolerance of ε is required,
then the computational cost to reduce the energy norm of the error below the tolerance can be determined
from the expression above for δcg and from equation (3.8). To achieve a tolerance of ε after n iterations will
require:

2 δn+1
cg = 2

(

√

κA(BA) − 1
√

κA(BA) + 1

)n+1

< ε.

Dividing by 2 and taking natural logarithms yields:

n ≤
∣

∣ln ε
2

∣

∣

∣

∣

∣

∣

ln

(√
κA(BA)−1√
κA(BA)+1

)∣

∣

∣

∣

.

Using the approximation:

ln

(

a − 1

a + 1

)

= ln

(

1 + (−1/a)

1− (−1/a)

)

= 2

[

(−1

a

)

+
1

3

(−1

a

)3

+
1

5

(−1

a

)5

+ · · ·
]

<
−2

a
,

we have that | ln[(κ
1/2
A (BA) − 1)/(κ

1/2
A (BA) + 1)]| > 2/κ

1/2
A (BA), so that:

n ≤ 1

2
κ

1/2
A (BA)

∣

∣

∣
ln

ε

2

∣

∣

∣
+ 1.

We then have that the maximum number of iterations required to reach an error on the order of the tolerance
ε is:

n = O
(

κ
1/2
A (BA)

∣

∣

∣ln
ε

2

∣

∣

∣

)

.

If the cost of each iteration is O(N), which will hold in the case of the sparse matrices generated by standard
discretizations of elliptic partial differential equations, then the overall complexity to solve the problem is

O(κ
1/2
A (BA)N | ln[ε/2]|). If the preconditioner B is such that κ

1/2
A (BA) can be bounded independently of the

problem size N , then the complexity becomes (near) optimal order O(N | ln[ε/2]|).
We make some final remarks regarding the idea of spectral equivalence.

Definition 3.1 The SPD operators B ∈ L(H,H) and A ∈ L(H,H) are called spectrally equivalent if there
exists constants C1 > 0 and C2 > 0 such that:

C1(Au, u) ≤ (Bu, u) ≤ C2(Au, u), ∀u ∈ H.

In other words, B defines an inner-product which induces a norm equivalent to the norm induced by the
A-inner-product. If a given preconditioner B is spectrally equivalent to A−1, then the condition number of
the preconditioned operator BA is uniformly bounded.

Lemma 3.17 If the SPD operators B and A−1 are spectrally equivalent, then:

κA(BA) ≤ C2

C1
.
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Proof. By hypothesis, we have that C1(A
−1u, u) ≤ (Bu, u) ≤ C2(A

−1u, u), ∀u ∈ H. But this can be written
as: C1(A

−1/2u, A−1/2u) ≤ (A1/2BA1/2A−1/2u, A−1/2u) ≤ C2(A
−1/2u, A−1/2u), or:

C1(ũ, ũ) ≤ (A1/2BA1/2ũ, ũ) ≤ C2(ũ, ũ), ∀ũ ∈ H.

Now, since BA = A−1/2(A1/2BA1/2)A1/2, we have that BA is similar to the SPD operator A1/2BA1/2.
Therefore, the above inequality bounds the extreme eigenvalues of BA, and as a result the lemma follows
by Lemma 3.12.

Remark 3.4. Of course, since all norms on finite-dimensional spaces are equivalent (which follows from the
fact that all linear operators on finite-dimensional spaces are bounded), the idea of spectral equivalence
is only important in the case of infinite-dimensional spaces, or when one considers how the equivalence
constants behave as one increases the sizes of the spaces. This is exactly the issue in multigrid and domain
decomposition theory: as one decreases the mesh size (increases the size of the spaces involved), one would
like the quantity κA(BA) to remain nicely bounded (in other words, one would like the equivalence constants
to remain constant or grow only slowly). A discussion of these ideas appears in [159].

3.1.5 Discrete linear elliptic equations

Consider the second order linear elliptic partial differential equation:

−∇ · (ā∇u) + bu = f in Ω ⊂ R
d, u = g on Γ, (3.11)

where the coefficients are as described in Chapter 2, §2.2, so that the problem is uniquely solvable. The
equivalent weak form of the problem is:

Find u ∈ H1
0 (Ω) such that A(u, v) = F (v) ∀v ∈ H1

0 (Ω), (3.12)

where:

A(u, v) =

∫

Ω

(ā∇u · ∇v + buv) dx, F (v) =

∫

Ω

fv dx − A(w, v) = (f, v)L2(Ω) − A(w, v),

and where g = tr w. In this section, we briefly discuss box and finite element discretizations of this problem,
and some of the properties of the discrete equations and spaces which arise. We remark that such discretiza-
tions were examined in detail in Chapter 2; our purpose here is to summarize some information which will be
useful later, and to explain how the discrete equations which arise fit into the framework we are constructing
in this chapter.

The discretized domain is made up of the nk nodes Ωk = {x1
k, . . . ,xnk

k } and the lk elements (or volumes

or boxes) Tk = {τ1
k , . . . , τ lk

k }. The parameters {h1
k, . . . , hnk

k } represent the diameters of the circumscibing

spheres of the set of elements Tk, and {ρ1
k, . . . , ρlk

k } represent the diameters of the inscribed spheres. The
mesh parameter hk represents the diameter of the largest element or volume in Tk, or hk = maxi{hi

k}, and
ρk represents the smallest of the inscribing diameters, ρk = mini{ρi

k}. In the finite element case, there is
also an associated set of C0-piecewise linear basis functions {φ1

k, . . . , φnk

k } defined over the tessellation Tk.

The basis functions are taken to be Lagrangian (or nodal) in the sense that φi
k(xj

k) = δij .
We will be concerned with a sequence of refinements of the discretization Ωk and the tessellation Tk,

where k = 1 corresponds to the initial or coarsest mesh, and k = J corresponds to the final or most highly
refined mesh. Typically, the following shape-regular (Assumption H1, page 132 of [36]) and quasi-uniform
(the “inverse” assumption, page 140 of [36]) assumptions are made on the elements comprising Tk at each
level k:

hi
k

ρi
k

≤ σ ∀i, k = 1, 2, . . . , J (3.13)

hk

hi
k

≤ ν ∀i, k = 1, 2, . . . , J (3.14)

where the constants σ and ν are independent of i and k. The first condition (3.13), which is a natural
condition to impose, states that the elements in the mesh do not become too skewed or degenerate at any
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discretization level. The ratio hk/ρk appears directly in error estimates for the finite element method (page
111 in [36]), although when (3.13) is satisfied, the error estimates can be written completely in terms of
the maximal diameter hk (Theorem 3.2.2, page 134 in [36]). The second condition (3.14) is also natural,
and simply states that the elements at any particular level remain comparable in size asymptotically. When
these conditions are satisfied, on each level k the number of nodes is related to the size of the elements as

hk = O(n
−1/d
k ), or nk = O(h−d

k ).
When problem (3.11) is discretized at level k with either the box or finite element method, the following

matrix problem is generated:
Find uk ∈ Uk such that Akuk = fk, (3.15)

where Ak is an SPD matrix, and where the solution space Uk is defined as:

Uk = {uk ∈ R
nk : uk(xi

k) ∈ R, ∀xi
k ∈ Ωk}.

The space Uk represents the space of grid functions uk = (uk(x1
k), . . . , uk(xnk

k ))T with values of each of the
nodes {xi

k}. The space Uk (which is simply R
nk ) is a finite-dimensional Hilbert space when equipped with

the inner-product and norm:

(uk, vk)k = hd
k

nk
∑

i=1

uk(xi
k)vk(xi

k), ‖uk‖k = (uk, uk)
1/2
k , ∀uk, vk ∈ Uk. (3.16)

The Ak-inner-product and Ak-norm in Uk are defined by:

(uk, vk)Ak
= (Akuk, vk)k, ‖uk‖Ak

= (uk, uk)
1/2
Ak

, ∀uk, vk ∈ Uk. (3.17)

It is well-known that for either a box or finite element discretization satisfying assumptions (3.13) and (3.14),
the eigenvalues and condition number of the matrix which arises can be bounded by:

λmin(Ak) ≥ C1h
d
k, λmax(Ak) ≤ C2h

d−2
k , κ(Ak) =

λmax(Ak)

λmin(Ak)
≤
(

C2

C1

)

h−2
k , (3.18)

where a division or multiplication of the matrix (and hence the eigenvalue bounds above) by various powers
of hk is common. For the derivation of these bounds, see for example Theorem 5.1 in [174] or page 236 of [9]
for the finite element case, or the discussion of the box-method for a model problem below in §3.1.6.

In the case of the finite element method, the discrete problem can also be interpreted abstractly, which is
required for the recent multilevel theories. To begin, the finite element space of C0-piecewise linear functions
defined over the tessellation Tk at level k is denoted:

Mk = {uk ∈ H1
0 (Ω) : uk|τ i

k
∈ P1(τ

i
k), ∀τ i

k ∈ Tk},

where P1(τ) is the space of polynomials of degree one over τ . The space Mk is a finite-dimensional Hilbert
space when equipped with the inner-product and norm in H1

0 (Ω). If uk ∈ Mk, and ũk ∈ Uk such that
uk =

∑nk

i=1 ũk(xi
k)φi

k for Lagrangian {φi
k}, then it can be shown (see Assumption 3.2 of [23]) that the

discrete norm defined in equation (3.16) is equivalent to the L2-norm in Mk in the sense:

C1‖uk‖L2(Ω) ≤ ‖ũk‖k ≤ C2‖uk‖L2(Ω), ∀uk =

nk
∑

i=1

ũk(xi
k)φi

k ∈ Mk, ũk ∈ Uk.

The finite element approximation to the solution of the partial differential equation (3.12) has the form:

Find uk ∈ Mk such that A(uk, vk) = (f, vk)L2(Ω) − A(wk , vk) ∀vk ∈ Mk. (3.19)

Since A(·, ·) is a bilinear form on the finite-dimensional space Mk, there exists a bounded linear operator
Ak : Mk 7→ Mk such that (Akuk, vk)L2(Ω) = A(uk, vk) ∀uk, vk ∈ Mk (Theorem 1 page 38 of [89]). If
we denote the L2-projector onto Mk as Qk : L2(Ω) 7→ Mk such that (Qkf, vk)L2(Ω) = (f, vk)L2(Ω), ∀f ∈
L2(Ω), vk ∈ Mk, then problem (3.19) is equivalent to the abstract problem:

Find uk ∈ Mk such that Akuk = fk, where fk = Qkf − Akwk . (3.20)
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The operator Ak is an abstract (SPD) operator on Mk, and its representation with respect to the set of
finite element basis functions {φi

k} is the stiffness matrix [Kk]ij = A(φi
k, φj

k).
Bounds for the maximum and minimum eigenvalues of the abstract operator Ak can be derived, analogous

to those in equation (3.18) for the matrices arising in box or finite element discretizations, using a well-known
inverse inequality available in the finite element literature. To begin, we first note that if the elements
Tk satisfy the shape-regular and quasi-uniform assumptions (3.13) and (3.14), then the following inverse
inequality can be derived for the resulting space Mk (see inequality 3.2.37, page 142 in [36]):

‖uk‖H1(Ω) ≤ γh−1
k ‖uk‖L2(Ω), ∀uk ∈ Mk. (3.21)

This inequality can be combined with the usual boundedness and coerciveness conditions on the underlying
bilinear form to prove the next result; the bound for λmax is given in [23], and a more careful derivation of
both upper and lower bounds on each eigenvalue is given in [184].

Theorem 3.18 The following bounds hold for the abstract discrete operator Ak:

λmin(Ak) ≥ C1, λmax(Ak) ≤ C2h
−2
k , κ(Ak) ≤

(

C2

C1

)

h−2
k .

Proof. Given the usual boundedness condition on the bilinear form defined by Ak:

A(uk, vk) = (Akuk, vk)L2(Ω) ≤ M‖uk‖H1(Ω)‖vk‖H1(Ω), ∀uk, vk ∈ Mk,

we can combine this with the inverse inequality (3.21) to bound the largest eigenvalue of the operator Ak:

λmax(Ak) = max
uk 6=0

(Akuk, uk)L2(Ω)

(uk, uk)L2(Ω)
≤ max

uk 6=0

M‖uk‖2
H1(Ω)

‖uk‖2
L2(Ω)

≤ max
uk 6=0

Mγ2h−2
k ‖uk‖2

L2(Ω)

‖uk‖2
L2(Ω)

≤ Mγ2h−2
k = C2h

−2
k .

Similarly, the usual coerciveness condition on the bilinear form defined by Ak is given as:

A(uk, uk) = (Akuk, uk)L2(Ω) ≥ m‖uk‖2
H1(Ω), ∀uk ∈ Mk,

which can be used directly to yield a bound on the smallest eigenvalue of Ak:

λmin(Ak) = min
uk 6=0

(Akuk, uk)L2(Ω)

(uk, uk)L2(Ω)
≥ min

uk 6=0

m‖uk‖2
H1(Ω)

‖uk‖2
L2(Ω)

= min
uk 6=0

m(‖uk‖2
L2(Ω) + |uk|2H1(Ω))

‖uk‖2
L2(Ω)

≥ min
uk 6=0

m‖uk‖2
L2(Ω)

‖uk‖2
L2(Ω)

≥ m = C1.

The final result follows immediately since

κ(Ak) =
λmax(Ak)

λmin(Ak)
≤
(

C2

C1

)

h−2
k .

To conclude, we see that the discrete approximation to the problem (3.11) can be characterized as the
solution to the operator equation:

Find uk ∈ Hk such that Akuk = fk, (3.22)

for some SPD Ak ∈ L(Hk,Hk), where Hk can be interpreted as the grid function space Uk, in which case this
is a matrix equation generated by a box or finite element discretization of (3.11), or Hk may be interpreted
as the space Mk, in which case this is an abstract operator equation. In either case, we have seen above
that with appropriate assumptions (3.13) and (3.14) on the underlying mesh Tk, we can relate the maximal
and minimal eigenvalues of the resulting matrix or abstract operator Ak to the mesh parameter hk.
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3.1.6 Convergence and complexity of classical linear methods

We mention now some classical linear iterations for discrete elliptic equations Au = f on the space U (leaving
off the subscript k here and below since only one space is involved), where A is an SPD matrix. Our purpose
is to explain briefly the motivation for considering multilevel methods as alternatives to the classical methods.

Since A is SPD, we may write A = D − L − LT , and where D is a diagonal matrix and L a strictly
lower-triangular matrix. The Richardson variation of Algorithm 3.1 takes λ−1 as the approximate inverse
B ≈ A−1 of A, where λ is a bound on the largest eigenvalue of A:

un+1 = (I − λ−1A)un + λ−1f. (3.23)

The Jacobi variation of Algorithm 3.1 takes D−1 as the approximate inverse B:

un+1 = (I − D−1A)un + D−1f. (3.24)

In the Gauss-Seidel variant, the approximate inverse is taken to be (D − L)−1, giving:

un+1 = (I − (D − L)−1A)un + (D − L)−1f. (3.25)

The SOR variant takes the approximate inverse as ω(D − ωL)−1, giving:

un+1 = (I − ω(D − ωL)−1A)un + ω(D − ωL)−1f. (3.26)

In the case that the model problem of the Poisson equation on a uniform mesh is considered, then the
eigenvalues of both A and the error propagation matrix I −BA can be determined analytically. This allows
for an analysis of the convergence rates of the Richardson, Jacobi, and Gauss-Seidel iterations.

To give an example of the convergence results which are available for these classical methods, first recall
that for the real square matrix A, the splitting A = M − N is called a regular splitting (page 88 of [179]) of
A if N > 0, M is nonsingular, and M−1 ≥ 0. Note that an alternative construction of the Jacobi and Gauss-
Seidel methods is through matrix splittings. For example, given the splitting A = M − N = D − (L + U)
which corresponds to the Jacobi iteration, the resulting iteration can be writing in terms of M and N as
follows:

un+1 = (I − D−1A)un + D−1f = (I − M−1(M − N))un + M−1f = M−1Nun + M−1f.

Therefore, for a splitting A = M −N , the convergence of the resulting linear method is governed completely
by the spectral radius of the error propagation matrix, ρ(M−1N). The following standard theorem gives a
sufficient condition for converge of the Jacobi and Gauss-Seidel iterations, which can be considered to be
regular splittings of A.

Theorem 3.19 If A is an M -matrix, and M is obtained from A by setting off-diagonal elements of A to
zero, then the splitting A = M − N is regular and the corresponding linear iteration defined by the splitting
is convergent; i.e., ρ(M−1N) < 1.

Proof. See page 90, Theorem 3.14 in [179].

Given that λ is the largest eigenvalue (or an upper bound on the largest eigenvalue) of A, we remark
that Richardson’s method is always trivially convergent since each eigenvalue λi(E) of E is bounded by one:

λi(E) = λi(I − BA) = λi(I − λ−1A) = 1 − λ−1λi(A) < 1.

However, the following difficulty makes these classical linear methods impractical for large problems.
Consider the case of the three-dimensional Poisson’s equation on the unit square with zero Dirichlet boundary
conditions, discretized with the box-method on a uniform mesh with m mesh-points in each mesh direction
(n = m3) and mesh spacing h = 1/(m + 1). It is well-known that the eigenvalues of the resulting matrix A
can be expressed in closed form:

λi = λ{p,q,r} = 6 − 2 cos(pπh) − 2 cos(qπh) − 2 cos(rπh), p, q, r = 1, . . . , m.
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Clearly, the largest eigenvalue of A is λ = 6(1− cos(mπh)), and the smallest is λ1 = 6(1− cos(πh)). It is not
difficult to show (see pages 201-205 in [179], or pages 127-132 in [187] for the two-dimensional case) that the
largest eigenvalue of the Jacobi error propagation matrix I −D−1A is in this case equal to cos(πh). It is also
well-known that for consistently ordered matrices with Property A (page 42 in [187]), the spectral radius of
the Gauss-Seidel error propagation matrix is the square of the Jacobi matrix spectral radius; more generally,
the relationship between the Jacobi and Gauss-Seidel spectral radii is given by the Stein-Rosenberg Theorem
(see Theorem 3.3, page 70 of [179], or the extended form appearing as Theorem 5.1 and Corollary 5.2, pages
120-122 of [187]). An expression for the spectral radius of the SOR error propagation matrix can also be
derived; the spectral radii for the classical methods are then:

• Richardson: ρ(E) = 1 − 6λ−1(1 − cos(πh)) ≈ 1 − 3λ−1π2h2 = 1 − O(h2)

• Jacobi: ρ(E) = cos(πh) ≈ 1 − 1
2π2h2 = 1 − O(h2)

• Gauss-Seidel: ρ(E) = cos2(πh) ≈ 1 − π2h2 = 1 − O(h2)

• SOR: ρ(E) ≈ 1 − O(h)

The same dependence on h is exhibited for one- and two-dimensional problems. Therein lies the problem:
as h → 0, then for the classical methods ρ(E) → 1, so that the methods converge more and more slowly as
the problem size is increased.

Remark 3.5. An alternative convergence proof for the Jacobi and Gauss-Seidel iterations follows simply by
noting that the matrix I −E∗E is A-positive for both the Jacobi and Gauss-Seidel error propagators E, and
by employing Lemma 3.3, or the related Stein’s Theorem. Stein’s Theorem is the basis for the proof of the
Ostrowski-Reich SOR convergence theorem (Theorem 7.1.10 in [157]).

3.2 Linear multilevel methods

Multilevel (or multigrid) methods are highly efficient numerical techniques for solving the algebraic equa-
tions arising from the discretization of partial differential equations. These methods were developed in direct
response to the deficiencies of the classical iterations discussed in the previous section. Some of the early
fundamental papers are [29, 84, 175], and a comprehensive analysis of the many different aspects of these
methods is given in [85]. The following derivation of two-level and multilevel methods in a recursive operator
framework is motivated by some very recent work on finite element-based multilevel and domain decom-
position methods, represented for example by [26, 58, 185]. Our notation follows the currently established
convention for these types of methods, represented for example by [185].

3.2.1 Linear equations in a nested sequence of spaces

In what follows, we will often be concerned with a nested sequence of spaces H1 ⊂ H2 ⊂ · · · ⊂ HJ ≡ H,
where HJ corresponds to the finest or largest space and H1 the coarsest or smallest. Each space Hk is
taken to be a Hilbert space, equipped with an inner-product (·, ·)k which induces the norm ‖ · ‖k. Regarding
notation, if A ∈ L(Hk ,Hk) then we denote the operator as Ak. Similarly, if A ∈ L(Hk ,Hi) then we denote
the operator as Ai

k. Finally, if A ∈ L(Hk ,Hk) but its operation concerns somehow a specific subspace
Hi ⊂ Hk, then we denote the operator as Ak;i. For quantities involving the finest space HJ , we will often
leave off the subscripts, without danger of confusion.

Now, given such a nested sequence of Hilbert spaces, we assume that associated with each space Hk

is an SPD operator Ak, which defines a second inner-product (·, ·)Ak
= (Ak ·, ·)k, inducing a second norm

‖·‖Ak
= (·, ·)1/2

Ak
. The spaces Hk are connected by prolongation operators Ik

k−1 ∈ L(Hk−1,Hk) and restriction

operators Ik−1
k ∈ L(Hk,Hk−1), where we assume that NULL(Ik

k−1) = {0}, and usually that Ik−1
k = (Ik

k−1)
T ,

where the adjoint is with respect to the inner products on the sequence of spaces Hk:

(uk, Ik
k−1vk−1)k = ((Ik

k−1)
T uk, vk−1)k−1, ∀uk ∈ Hk, ∀vk−1 ∈ Hk−1. (3.27)

We are given the operator equation Au = f in the finest space H ≡ HJ , where A ∈ L(H,H) is SPD,
and we are interested in iterative algorithms for determining the unique solution u which involve solving
problems in the coarser spaces Hk for 1 ≤ k < J . If the equation in H has arisen from a box or finite
element discretization of an elliptic partial differential equation, then operators Ak (and the associated coarse
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problems Akuk = fk) in coarser spaces Hk for k < J may be defined naturally with the same discretization
on a coarser mesh. Alternatively, it is convenient (for theoretical reasons which we will discuss later in the
chapter) to take the so-called variational approach of constructing the coarse operators, where the operators
Ak ∈ L(Hk,Hk) satisfy:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T . (3.28)

The first condition in (3.28) is sometimes referred to as the Galerkin condition, whereas the two condi-
tions (3.28) together are known as the variational conditions, due to the fact that both conditions are
satisfied naturally by variational or Galerkin (finite element) discretizations on successively refined meshes.
Note that if Ak is SPD, then Ak−1 produced by (3.28) will also be SPD.

In the case that Hk = Uk, the prolongation operator Ik
k−1 typically corresponds to d-dimensional inter-

polation of uk−1 to uk = Ik
k−1uk−1, where uk−1 and uk are interpreted as grid functions defined over two

successively refined (box or finite element) discretizations Ωk−1 and Ωk of the domain Ω ⊂ R
d. Since the

coarse grid function space has by definition lower dimension than the fine space, Ik
k−1 takes the form of a

rectangular matrix with more rows than columns. A constant c ∈ R will appear in the second condition
in (3.28), which will become Ik−1

k = c(Ik
k−1)

T , due to taking Ik−1
k to be the adjoint of Ik

k−1 with respect to
the inner-product (3.16), and since hk < hk−1.

In the case that Hk = Mk, the prolongation corresponds to the natural inclusion of a coarse space function
into the fine space, and the restriction corresponds to the L2-projection of a fine space function onto the coarse
space. The variational conditions (3.28) then hold for the abstract operators Ak on the spaces Mk, with
inclusion and L2-projection for the prolongation and restriction (see the proof of Note 3.6.6 in §3.6 of [85]).
In addition, the stiffness matrices representing the abstract operators Ak also satisfy the conditions (3.28),
where now the prolongation and restriction operators are as in the case of the space Uk. However, we
remark that this is true only with exact evaluation of the integrals forming the matrix components; the
conditions (3.28) are violated if quadrature is used, and are violated radically if the quadrature error is large
(see [74] for a discussion and analysis).

Recent results have been obtained for multilevel methods in the spaces Hk = Mk, which rely on certain
operator recursions (we point out in particular the papers [24, 26, 184, 185]). Some of these results [26, 185]
are “regularity-free” in the sense that they do not require the usual regularity or smoothness assumptions
on the solution to the problem, which is important since these are not valid for problems such as those with
discontinuous coefficients. Since our interest is exactly those problems with difficulties such as discontinuous
coefficients, our hope is to use these recent results as guidelines to develop and apply multilevel methods
which (1) provide optimal or near optimal complexity numerical solution of the problem, and (2) are supplied
with a rigorous convergence theory.

Unfortunately, we are in a situation in which it is impossible to satisfy all of the necessary assumptions to
apply even these recent results; however, we will see that some of the results can be adapted to our situation.
We will develop the multilevel algorithms here and in the next chapter in a recursive form in the abstract
spaces Hk. In Chapter 5, we will review the existing results for the case Hk = Mk. We will then attempt to
formulate an abstract theory in Hk, which will also apply in the case Hk = Uk, when the operators satisfy
some (but not all) of the relationships arising naturally in the case of Hk = Mk. Later in this chapter,
we will expand in some detail on how some of these relationships can be algebraically imposed on discrete
elliptic equations in a reasonably efficient way.

Some purely “algebraic” multilevel theories exist (see for example [30, 166]); however, we are interested
only in the specific case of discrete elliptic equations rather than general matrix equations, and we wish to
try to incorporate some of the recent results available from the finite element multilevel literature.

3.2.2 Two-level methods

As we noted earlier, the convergence rate of the classical methods deteriorate as the mesh size hk → 0.
However, using the same spectral analysis one can easily see that the components of the error corresponding
to the small eigenvalues of the error propagation operator are actually being decreased quite effectively even
as hk → 0; these are the rapidly varying or high frequency components in the error. This effect is illustrated
graphically in Figure 3.1 for Gauss-Seidel iteration applied to the two-dimensional Poisson’s equation on the
unit square. In the figure, the error in both physical and Fourier (or frequency) space is shown initially and
after one, two, and five iterations. In the Fourier space plots, the low-frequency components of the error
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Error in Physical Space Error in Fourier Space

Initial error                  

After one iteration            

After two iterations           

After five iterations          

Figure 3.1: The error-smoothing effect of Gauss-Seidel iteration.
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are found in the rear, whereas the high-frequency components are found to the far left, the far right, and in
the foreground. The source function for this example was constructed from a random field (to produce all
frequencies in the solution) and the initial guess was taken to be zero.

The observation that classical linear methods are very efficient at reducing the high frequency modes is
the motivation for the multilevel method: a classical linear method can be used to handle the high frequency
components of the error (or to smooth the error), and the low frequency components can be eliminated
efficiently on a coarser mesh with fewer unknowns, where the low frequency modes are well represented.

For the equation Akuk = fk on level k, the smoothing method takes the form of Algorithm 3.1 for some
operator Rk, the smoothing operator, as the approximate inverse of the operator Ak:

un+1
k = un

k + Rk(fk − Akun
k ). (3.29)

In the case of two spaces Hk and Hk−1, the error equation ek = A−1
k rk is solved approximately using the

coarse space, with the coarse level correction operator Ck = Ik
k−1A

−1
k−1I

k−1
k representing exact solution with

A−1
k−1 in the coarse level subspace Hk−1. The solution is then adjusted by the correction:

un+1
k = un

k + Ck(fk − Akun
k ). (3.30)

There are several ways in which these two procedures can be combined.
By viewing multilevel methods as compositions of the simple linear methods (3.29) and (3.30), a simple

yet complete framework for understanding these methods can be constructed. The most important concepts
can be discussed with regard to two-level methods, and then generalized to more than two levels using an
implicit recursive definition of an approximate coarse level inverse operator.

Consider the case of two nested spaces Hk−1 ⊂ Hk, and the following two-level method:

Algorithm 3.3 (Nonsymmetric Two-Level Method)

(1) Coarse level correction: vk = un
k + Ck(fk − Akun

k)
(2) Post-smoothing: un+1

k = vk + Rk(fk − Akvk).

The coarse level correction operator has the form Ck = Ik
k−1A

−1
k−1I

k−1
k , and the smoothing operator is one

of the classical iterations. This two-level iteration, a composition of two linear iterations of the form of
Algorithm 3.1, can itself be written in the form of Algorithm 3.1:

un+1
k = vk + Rk(fk − Akvk) = un

k + Ck(fk − Akun
k ) + Rkfk − RkAk(un

k + Ck(fk − Akun
k))

= un
k + Ckfk − CkAkun

k + Rkfk − RkAkun
k − RkAkCkfk + RkAkCkAkun

k

= (I − CkAk − RkAk + RkAkCkAk)un
k + (Ck + Rk − RkAkCk)fk

= (I − BkAk)un
k + Bkfk.

The two-level operator Bk, the approximate inverse of Ak which is implicitly defined by the nonsymmetric
two-level method, has the form:

Bk = Ck + Rk − RkAkCk. (3.31)

The error propagation operator for the two-level method has the usual form Ek = I −BkAk, which now can
be factored due to the above form for Bk:

Ek = I − BkAk = (I − RkAk)(I − CkAk). (3.32)

In the case that ν post-smoothing iterations are performed in step (2) instead of one, it is not difficult
to show that the error propagation operator takes the altered form:

I − BkAk = (I − RkAk)ν(I − CkAk).

Now consider a symmetric form of the above two-level method:

Algorithm 3.4 (Symmetric Two-Level Method)
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(1) Pre-smoothing: wk = un
k + RT

k (fk − Akun
k)

(2) Coarse level correction: vk = wk + Ck(fk − Akwk)
(3) Post-smoothing: un+1

k = vk + Rk(fk − Akvk).

As in the nonsymmetric case, it is a simple task to show that this two-level iteration can be written in the
form of Algorithm 3.1:

un+1
k = (I − BkAk)un

k + Bkfk,

where, after a simple expansion as for the nonsymmetric method above, the two-level operator Bk implicitly
defined by the symmetric method can be seen to be:

Bk = Rk + Ck + RT
k − RkAkCk − RkAkRT

k − CkAkRT
k + RkAkCkAkRT

k .

It is easily verified that the factored form of the resulting error propagator Es
k for the symmetric algorithm

is:
Es

k = I − BkAk = (I − RkAk)(I − CkAk)(I − RT
k Ak).

Note that the operator I−BkAk is Ak-self-adjoint, which by Lemma 3.5 is true if and only if Bk is symmetric,
implying the symmetry of Bk. The operator Bk constructed by the symmetric two-level iteration is always
symmetric if the smoothing operator Rk is symmetric; however, it is also true in the symmetric algorithm
above when general nonsymmetric smoothing operators Rk are used, because we use the adjoint RT

k of the
post-smoothing operator Rk as the pre-smoothing operator. The symmetry of Bk is important for use as a
preconditioner for the conjugate gradient method, which requires that Bk be symmetric for convergence.

Remark 3.6. Note that this alternating technique for producing symmetric operators Bk can be extended
to multiple nonsymmetric smoothing iterations, as suggested in [25]. Denote the variable nonsymmetric

smoothing operator R
(i)
k as:

R
(i)
k =

{

Rk, i odd
RT

k , i even

}

.

If ν pre-smoothings are performed, alternating between Rk and RT
k , and ν post-smoothings are performed

alternating in the opposite way, then a tedious computation shows that the error propagator has the factored
form:

I − BkAk =

(

ν
∏

i=1

(I − R
(i)
k Ak)

)

(I − CkAk)

(

ν
∏

i=1

(I − (R
(i)
k )T Ak)

)

,

where we take the convention that the highest indices in the products appear on the left. It is easy to verify
that I − BkAk is Ak-self-adjoint, so that Bk is symmetric.

3.2.3 The variational conditions and A-orthogonal projection

Up to this point, we have specified the approximate inverse corresponding to the coarse level subspace
correction only as Ck = Ik

k−1A
−1
k−1I

k−1
k , for some coarse level operator Ak−1. Consider the case that the

variational conditions (3.28) are satisfied. The error propagation operator for the coarse level correction then
takes the form:

I − CkAk = I − Ik
k−1A

−1
k−1I

k−1
k Ak = I − Ik

k−1[(I
k
k−1)

T AkIk
k−1]

−1(Ik
k−1)

T Ak.

This last expression is simply the Ak-orthogonal projector I − Pk;k−1 onto the complement of the coarse
level subspace, where the unique orthogonal and Ak-orthogonal projectors Qk;k−1 and Pk;k−1 projecting Hk

onto Ik
k−1Hk−1 can be written as:

Qk;k−1 = Ik
k−1[(I

k
k−1)

T Ik
k−1]

−1(Ik
k−1)

T , Pk;k−1 = CkAk = Ik
k−1[(I

k
k−1)

T AkIk
k−1]

−1(Ik
k−1)

T Ak.

In other words, if the variational conditions are satisfied, and the coarse level equations are solved exactly,
then the coarse level correction projects the error onto the Ak-orthogonal complement of the coarse level
subspace. It is now not surprising that successively refined finite element discretizations satisfy the variational
conditions naturally, since they are defined in terms of Ak-orthogonal projections.

Note the following interesting relationship between the symmetric and nonsymmetric two-level methods,
which is a consequence of the Ak-orthogonal projection property.



62 3. LINEAR MULTILEVEL METHODS

Lemma 3.20 If the variational conditions (3.28) hold, then the nonsymmetric and symmetric propagators
Ek and Es

k are related by:
‖Es

k‖Ak
= ‖Ek‖2

Ak
.

Proof. Since I − CkAk is a projector, we have (I − CkAk)2 = I − CkAk. It follows that:

Es
k = (I − RkAk)(I − CkAk)(I − RT

k Ak) = (I − RkAk)(I − CkAk)(I − CkAk)(I − RT
k Ak) = EkE∗

k ,

where E∗
k as the Ak-adjoint of Ek. Therefore, the convergence of the symmetric algorithm is related to that

of the nonsymmetric algorithm as:

‖Es
k‖Ak

= ‖EkE∗
k‖Ak

= ‖Ek‖2
Ak

.

Remark 3.7. The relationship between the symmetric and nonsymmetric error propagation operators in
Lemma 3.20 was first pointed out by McCormick in [144], and has been exploited in several recent pa-
pers [24, 185]. It allows one to use the symmetric form of the algorithm as may be necessary for use with
conjugate gradient methods, while exploiting the above relationship to work only with the nonsymmetric
error propagator Ek in analysis, which may be easier to analyze.

3.2.4 Multilevel methods

Consider now the full nested sequence of spaces H1 ⊂ H2 ⊂ · · · ⊂ HJ ≡ H. The idea of the multilevel
method is to begin with the two-level method, but rather than solve the course level equations exactly, yet
another two-level method is used to solve the coarse level equations approximately, beginning with an initial
approximation of zero on the coarse level. The idea is applied recursively, until the cost of solving the coarse
system is negligible, or until the coarsest possible level is reached.

The following is a recursively defined multilevel algorithm which corresponds to the form of the algorithm
commonly implemented on a computer. For the system Au = f , the algorithm returns the approximate
solution un+1 after one iteration of the method applied to the initial approximate un.

Algorithm 3.5 (Nonsymmetric Multilevel Method – Implementation Form)

un+1 = ML(J, un, f)

where the operation uNEW
k = ML(k, uOLD

k , fk) is defined recursively:

IF (k = 1) THEN:
(1) Solve directly: uNEW

1 = A−1
1 f1.

ELSE:

(1) Coarse level correction: vk = uOLD
k + Ik

k−1(ML(k − 1, 0, Ik−1
k (fk − AkuOLD

k )))
(2) Post-smoothing: uNEW

k = vk + Rk(fk − Akvk).
END.

As with the two-level Algorithm 3.3, it is a straightforward calculation to write the multilevel Algo-
rithm 3.5 in the standard form of Algorithm 3.1, where now the multilevel operator B ≡ BJ is defined
recursively. To begin, assume that the approximate inverse of Ak−1 at level k−1 implicitly defined by Algo-
rithm 3.5 has been explicitly identified and denoted as Bk−1. The coarse level correction step of Algorithm 3.5
at level k can then be written as:

vk = uOLD
k + Ik

k−1Bk−1I
k−1
k (fk − AkuOLD

k ).

At level k, Algorithm 3.5 can now be thought of as the two-level Algorithm 3.3, where the two-level operator
Ck = Ik

k−1A
−1
k−1I

k−1
k has been replaced by the approximation Ck = Ik

k−1Bk−1I
k−1
k . From (3.31), we see that

the expression for the multilevel operator Bk at level k in terms of the operator Bk−1 at level k − 1 is given
by:

Bk = Ik
k−1Bk−1I

k−1
k + Rk − RkAkIk

k−1Bk−1I
k−1
k . (3.33)

We can now state a second multilevel algorithm, which is mathematically equivalent to Algorithm 3.5,
but which is formulated explicitly in terms of the recursively defined multilevel operators Bk.
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Algorithm 3.6 (Nonsymmetric Multilevel Method – Operator Form)

un+1 = un + B(f − Aun)

where the multilevel operator B ≡ BJ is defined by the recursion:

(1) Let B1 = A−1
1 , and assume Bk−1 has been defined.

(2) Bk = Ik
k−1Bk−1I

k−1
k + Rk − RkAkIk

k−1Bk−1I
k−1
k , k = 2, . . . , J.

As was noted for the two-level case, the error propagator at level k can be factored as:

Ek = I − BkAk = (I − RkAk)(I − Ik
k−1Bk−1I

k−1
k Ak). (3.34)

Remark 3.8. The recursive definition of the multilevel operators Bk first appeared in [24], although operator
recursions for the error propagators Ek = I −BkAk had appeared earlier in [136]. Many of the recent results
on finite element-based multilevel methods depend on the recursive definition of the multilevel operators Bk;
see the next section and Chapter 5.

3.2.5 Recursive and product forms of the multilevel error propagator

Two useful results can be derived from (3.34). The two expressions we derive below are slight generalizations
of results appearing recently in the finite element multilevel literature [26, 184]; these results have been the
impetus for the most recent theoretical advances on finite element-based multilevel methods.

First, let us define the operator P̃ k−1
k :

P̃ k−1
k = A−1

k−1I
k−1
k Ak. (3.35)

Note that if the variational conditions (3.28) are satisfied, then this operator is related to the Ak-orthogonal
projector Pk;k−1 as:

Pk;k−1 = Ik
k−1[(I

k
k−1)

T AkIk
k−1]

−1(Ik
k−1)

T Ak = Ik
k−1A

−1
k−1I

k−1
k Ak = Ik

k−1P̃
k−1
k .

Using P̃ k−1
k and Pk;k−1, we can write the error propagator Ek in terms of Ek−1; the following lemma first

appeared (in a different notation) as Proposition 5 in [136], and it is used in many recent papers (see
equation (2.6) in [24], and Proposition 7.1 in [184]).

Lemma 3.21 The error propagators Ek of Algorithm 3.6 are generated by the recursion:

Ek = (I − RkAk)(I − Ik
k−1P̃

k−1
k + Ik

k−1Ek−1P̃
k−1
k ). (3.36)

If variational conditions (3.28) hold, this recursion becomes:

Ek = (I − RkAk)(I − Pk;k−1 + Ik
k−1Ek−1P̃

k−1
k ). (3.37)

Proof. The second term in equation (3.34) can be written as:

I − Ik
k−1Bk−1I

k−1
k Ak = I − Ik

k−1Bk−1Ak−1A
−1
k−1I

k−1
k Ak

= I − Ik
k−1Bk−1Ak−1P̃

k−1
k = I − Ik

k−1P̃
k−1
k + Ik

k−1P̃
k−1
k − Ik

k−1Bk−1Ak−1P̃
k−1
k

= I − Ik
k−1P̃

k−1
k + Ik

k−1(I − Bk−1Ak−1)P̃
k−1
k = I − Ik

k−1P̃
k−1
k + Ik

k−1Ek−1P̃
k−1
k .

Therefore, the error propagators Ek can be defined recursively:

Ek = (I − RkAk)(I − Ik
k−1Bk−1I

k−1
k Ak) = (I − RkAk)(I − Ik

k−1P̃
k−1
k + Ik

k−1Ek−1P̃
k−1
k ).

If the variational conditions (3.28) hold, then as noted above the Ak-orthogonal projector Pk;k−1 is related

to the operator P̃ k−1
k as Pk;k−1 = Ik

k−1P̃
k−1
k , so that the recursion becomes:

Ek = (I − RkAk)(I − Pk;k−1 + Ik
k−1Ek−1P̃

k−1
k ).
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The second result which can be derived from (3.34) involves a certain product formulation. We first
introduce the following notation for the composition of prolongations and restrictions:

Ik
k−i = Ik

k−1I
k−1
k−2 · · · Ik−i+2

k−i+1 Ik−i+1
k−i , Ik−i

k = Ik−i
k−i+1I

k−i+1
k−i+2 · · · Ik−2

k−1 Ik−1
k , Ik

k = I.

We will also use a simplified notation for composite prolongation operators to the finest space H:

IJ = I, Ik = IJ
J−1I

J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1.

A generalized product form is established in the following lemma, which in the special case of the finite
element spaces Hk = Mk reduces to the product form first derived in [26].

Lemma 3.22 If variational conditions (3.28) hold, the error propagator E of Algorithm 3.6 can be factored:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1), (3.38)

where
T1 = I1A

−1
1 IT

1 A, Tk = IkRkIT
k A, k = 2, . . . , J.

Proof. Let us begin by expanding the second term in (3.34) more fully and then factoring again:

I − Ik
k−1Bk−1I

k−1
k Ak = I − Ik

k−1(I
k−1
k−2 Bk−2I

k−2
k−1 + Rk−1 − Rk−1Ak−1I

k−1
k−2Bk−2I

k−2
k−1 )Ik−1

k Ak

= I − Ik
k−2Bk−2I

k−2
k Ak − Ik

k−1Rk−1I
k−1
k Ak + Ik

k−1Rk−1(I
k−1
k AkIk

k−1)I
k−1
k−2Bk−2I

k−2
k Ak

= I − Ik
k−2Bk−2I

k−2
k Ak − Ik

k−1Rk−1I
k−1
k Ak + (Ik

k−1Rk−1I
k−1
k Ak)(Ik

k−2Bk−2I
k−2
k Ak)

= (I − Ik
k−1Rk−1I

k−1
k Ak)(I − Ik

k−2Bk−2I
k−2
k Ak),

where we have assumed that the first part of the variational conditions (3.28) holds. In general, we have:

I − Ik
k−iBk−iI

k−i
k Ak = (I − Ik

k−iRk−iI
k−i
k Ak)(I − Ik

k−i−1Bk−i−1I
k−i−1
k Ak).

Using this result inductively, beginning with k = J , the error propagator E ≡ EJ takes the product form:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1).

The second part of the variational conditions (3.28) implies that the Tk are A-self-adjoint and have the form:

T1 = I1A
−1
1 IT

1 A, Tk = IkRkIT
k A, k = 2, . . . , J.

Remark 3.9. For J = 2, we recover the two-level error propagator (3.32) with both the recursive and product
forms above. We note that in the derivation of both of the above results, it was required that the variational
conditions (3.28) hold. In Chapter 5, we will show how (3.37) and (3.38) can be used to bound the norm of
the error propagator E.

The recursive form (3.37) was first exploited in [136], and has been used extensively in recent pa-
pers [24, 184]. A product form of the error propagator similar to (3.38) has been used in recent pa-
pers [26, 185], but a similar form was perhaps first noted in [147] for practical rather than theoretical
considerations. Error propagators which have product forms occur naturally in multiplicative Schwarz do-
main decomposition methods [58], and in fact it has been shown recently that both multiplicative domain
decomposition and multilevel methods can be viewed as particular instances of a general class of successive
subspace decomposition and correction methods [185].

Our presentation here is a slight generalization of existing results, in that we have derived both of
the forms (3.37) and (3.38) explicitly in terms of the prolongation and restriction operators that occur
in multigrid implementations; in other words, these expressions can be interpreted completely in terms of
matrices and the spaces Uk rather than operator recursions on the abstract spaces Hk or the finite element
spaces Mk. In the case of finite element spaces Mk, the prolongation and restriction operators correspond
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Figure 3.2: The V-cycle, the W-cycle, and nested iteration.

to the natural inclusion operation and the L2-projection, respectively; in this case, the expressions above
take on particularly simple forms which can be exploited to great advantage (see for example [185] for a
discussion, or Chapter 5).

The symmetric forms of Algorithm 3.5 and Algorithm 3.6 are easily defined using this framework by
inserting the pre-smoothing step as in the two-level case. It follows from the product form of the error
propagator (3.38) that if the adjoint of Rk is used as the pre-smoothing operator, and if the variational
conditions (3.28) are satisfied, then as in the two-level case we have that Es = EE∗, where Es is the error
propagator of the symmetric multilevel algorithm. Therefore, it suffices to analyze E, the error propagator
of the nonsymmetric multilevel algorithm. Again, this was first noted in [144].

3.2.6 The V-cycle, the W-cycle, and nested iteration

The methods we have just described are standard examples of multigrid or multilevel methods [85], where we
have introduced a few restrictions for convenience, such as equal numbers of pre- and post-smoothings, one
coarse space correction per iteration, and pre-smoothing with the adjoint of the post-smoothing operator.
These restrictions are unnecessary in practice, but are introduced to make the analysis of the methods
somewhat simpler, and to result in a symmetric preconditioner as required for combination with the conjugate
gradient method.

The procedure just outlined involving correcting with the coarse space once each iteration is referred
to as the V-cycle [29]. Another variation is termed the W-cycle, in which two coarse space corrections are
performed per level at each iteration. More generally, the p-cycle would involve p coarse space corrections per
level at each iteration for some integer p ≥ 1. The full multigrid method [29] or nested iteration technique [85]
begins with the coarse space, prolongates the solution to a finer space, performs a p-cycle, and repeats the
process, until a p-cycle is performed on the finest level. The methods can be depicted as in Figure 3.2.

3.2.7 Convergence and complexity of multilevel methods

Multilevel methods first appeared in the Russian literature in [64]. In his 1961 paper Fedorenko described a
two-level method for solving elliptic equations, and in a second paper from 1964 [65] proved convergence of
a multilevel method for Poisson’s equation on the square. Many theoretical results have been obtained since
these first two papers. In short, what can be proven for multilevel methods under reasonable conditions
is that the convergence rate or contraction number (usually the energy norm of the error propagator Es)
is bounded by a constant below one, independent of the meshsize and the number of levels, and hence the
number of unknowns:

‖Es‖A ≤ δJ < 1. (3.39)

In more general situations (such as problems with discontinuous coefficients), analysis yields contraction
numbers which decay as the number of levels employed in the method is increased; we will discuss these
situations in Chapter 5.
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If a tolerance of ε is required, then the computational cost to reduce the energy norm of the error below
the tolerance can be determined from (3.6) and (3.39):

i ≤ | ln ε|
| ln ‖Es‖A|

≤ | ln ε|
| ln δJ |

.

The discretization error of O(hs
J ) for some s > 0 yields a practical tolerance of ε = O(hs

J ). As remarked
in §3.1.5, for a shape-regular and quasi-uniform mesh, the meshsize hJ is related to the number of discrete
unknowns nJ through the dimension d of the spatial domain as nJ = O(h−d

J ). Assuming that δJ < 1
independently of J and hJ , we have that the maximum number of iterations i required to reach an error on
the order of discretization error is:

i ≤ | ln ε|
| ln δJ |

= O(| ln hJ |) = O(| ln n
−1/d
J |) = O(ln nJ). (3.40)

Consider now that the operation count oJ of a single (p-cycle) iteration of Algorithm 3.5 with J levels is
given by:

oJ = poJ−1 + CnJ = p(poJ−2 + CnJ−1) + CnJ = · · · = pJ−1o1 + C
J
∑

k=2

pJ−knk,

where we assume that the post-smoothing iteration has cost Cnk for some constant C independent of the
level k, and that the cost of a single coarse level correction is given by ok−1. Now, assuming that the cost
to solve the coarse problem o1 can be ignored, then it is not difficult to show from the above expression for
oJ that the computational cost of each multilevel iteration is O(nJ ) if (and only if) the dimensions of the
spaces Hk satisfy:

nk1 <
C1

pk2−k1
nk2 , ∀k1, k2, k1 < k2 ≤ J,

where C1 is independent of k. This implies both of the following:

nk <
C1

p
nk+1, nk <

C1

pJ−k
nJ , k = 1, . . . , J − 1.

Consider the case of non-uniform Cartesian meshes which are successively refined, so that hk1 = 2k2−k1hk2

for k1 < k2, and in particular hk−1 = 2hk. This gives

nk1 = C2h
−d
k1

= C2(2
k2−k1hk2)

−d = C22
−d(k2−k1)(C3n

−1/d
k2

)−d =
C2C

−d
3

(2d)k2−k1
nk2 .

Therefore, if 2d(k2−k1) > pk2−k1 , or if 2d > p, which is true in two dimensions (d = 2) for p ≤ 3, and in
three dimensions (d = 3) for p ≤ 7, then each multilevel iteration has complexity O(nJ ). In particular, one
V-cycle (p = 1) or W-cycle (p = 2) iteration has complexity O(nJ ) for non-uniform Cartesian meshes in two
and three dimensions.

If these conditions on the dimensions of the spaces are satisfied, so that each multilevel iteration has cost
O(nJ ), then combining this with equation (3.40) implies that the overall complexity to solve the problem
with a multilevel method is O(nJ ln nJ). By using the nested iteration, it is not difficult to show using
an inductive argument (see for example §5.3 of [85]) that the multilevel method improves to optimal order
O(nJ ) if δJ < 1 independent of J and hJ , meaning that the computational cost to solve to solve a problem
with nJ pieces of data is CnJ , for some constant C which does not depend on nJ . As we will discuss in
more detail in Chapter 5, the theoretical multilevel studies first appearing in the West in the late 1970’s and
continuing up through the present have focussed on extending the proofs of optimality (or near optimality)
to larger classes of problems.

3.3 Multilevel methods for discontinuous coefficients

In the case of elliptic problems with smooth coefficients, a red/black Gauss-Seidel smoothing method, transfer
operators corresponding to linear interpolation, box-method discretization on all levels, and direct or iterative
solution on the coarse level, combine to yield a very efficient method [104, 105].
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However, in the case of interface problems occurring in reservoir simulation and reactor physics as well
as in biophysics, the convergence rates of multilevel methods degrade drastically, and the methods may
not converge at all. Numerous studies have appeared addressing this problem, most notably the studies
by Alcouffe et al. [2], Dendy and Hyman [53], Dendy [48, 49, 50, 51, 52], and Behie and Forsythe [19, 20].
Numerical experiments indicate that forming the coarse equations by either the Galerkin approach (3.28) or a
coefficient averaging technique, and coupling either of these with transfer operators which enforce continuity
conditions across material interfaces (referred to as operator-based prolongation), leads to multilevel methods
which regain their usual good convergence rates. Our interest here is to study and employ effectively some
of these techniques for three-dimensional linear and nonlinear interface problems.

3.3.1 Interface problems: a one-dimensional example

Before discussing averaging, Galerkin, and operator-based prolongation methods, we first review the box-
method discretization for a simple one-dimensional interface problem. Consider the following example, which
will be used to explain each of these procedures:

− d

dx

(

a(x)
d

dx
u(x)

)

+ b(x)u(x) = f(x) in (c, d), u(c) = u(d) = 0. (3.41)

The functions a(x) and b(x) are positive for all x in [c, d], and a(x), b(x), and f(x) are continuously dif-
ferentiable everywhere, except that one or more of the three may be discontinuous at the interface point
x = ξ ∈ (c, d).

Define a discrete mesh c = x0 < x1 < . . . < xn+1 = d, with xi+1 = xi + hi for hi > 0, such that the
point of discontinuity coincides with some mesh point xi = ξ. Then the integral method (§6.2 in [179], also
called the box or finite volume method in two or three dimensions) provides a reasonably rigorous technique
for obtaining a discrete form of (3.41) at each mesh point xi, despite the presence of the discontinuities. One
considers the interval [xi −hi−1/2, xi +hi/2] containing the point xi, and integrates (3.41) over the interval.
Let us denote the half-mesh points as xi−1/2 = xi − hi−1/2 and xi+1/2 = xi + hi/2. After performing
the integration of the first term of (3.41) separately over the half-intervals [xi−1/2, xi] and [xi, xi+1/2], and
enforcing the continuity condition at the interface point xi = ξ

lim
x→xi−

a(x)
d

dx
u(x) = lim

x→xi+
a(x)

d

dx
u(x), (3.42)

the following expression is obtained, which is exact for the solution u(x) in the interval:

(

a(xi−1/2)
d

dx
u(xi−1/2)

)

−
(

a(xi+1/2)
d

dx
u(xi+1/2)

)

+

∫ xi+1/2

xi−1/2

b(x)u(x)dx =

∫ xi+1/2

xi−1/2

f(x)dx.

An algebraic expression is then obtained for an approximation uh(xi) to u(xi) by replacing the derivatives
with differences, and replacing the integrals with quadrature formulas separately over the half intervals.

Denoting the discretized functions as uh(xi), we can for example write down an O(h2) (if h = hi−1 = hi)
approximation using centered differences and the rectangle rule:

ah(xi−1/2)

(

uh(xi) − uh(xi−1)

hi−1

)

− ah(xi+1/2)

(

uh(xi+1) − uh(xi)

hi

)

+uh(xi)

(

hi−1bh(x−
i ) + hibh(x+

i )

2

)

=

(

hi−1fh(x−
i ) + hifh(x+

i )

2

)

. (3.43)

All approximations are performed over intervals where the functions are smooth; therefore, error estimates
from the difference and quadrature formulas are valid. The three-dimensional version of the box-method
was discussed in detail in Chapter 2.
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3.3.2 Coefficient averaging methods

From the previous discussion, it should be clear that if discontinuities in the equation coefficients lie along
mesh lines and planes on all coarse meshes, then the standard box or finite element method discretization on
all levels will produce accurate approximations. However, if the discontinuities are complex in shape, then
the discontinuities may necessarily lie within individual elements on coarse meshes, resulting in poor coarse
approximations and poor multilevel convergence rates.

One approach to handling this problem is to explicitly average the coefficients in the equation to produce
a new problem with smoother coefficients, essentially smearing the interfaces so that their effect may be
captured by discrete methods. The new problem is discretized on a coarser mesh, and the process is continued
to produce discrete equations on a sequence of coarser meshes. These techniques are discussed in the studies
of Alcouffe et al. [2] and Liu et al. [134] for two-dimensional problems.

For example, in our one-dimensional problem (3.41), the discrete equations (3.43) require that the function
a(x) be sampled at the half-mesh points xi−1/2 and xi+1/2. In multigrid implementations, coarse meshes
are often constructed to be subsets of the next finer mesh, referred to as successively refined meshes or
grids. In this situation, assume that the fine points xi−1 and xi+1 correspond to adjacent coarse points. For
discretization on the coarse level, the function a(x) must be sampled at the coarse level half-mesh point,
which will correspond to the fine point xi. Therefore, given the function values ah(xi−1/2) and ah(xi+1/2),
we wish to produce a value aH(xi) for use in the coarse discrete equations, such that aH(xi) in some sense
represents the discontinuity in a(x) at xi.

Using electrical network arguments and noting a connection to homogenization theory, Alcouffe et al. [2]
suggest various combinations of the harmonic and arithmetic averages

aH(xi) = HARM(ah(xi−1/2), ah(xi+1/2)), HARM(x, y) =
2xy

x + y
, ARITH(x, y) =

x + y

2
,

to represent the coefficients across interfaces. The sequence of graphs in Figure 3.3 shows the different
effects of four successive arithmetic and harmonic averagings of the coefficient a(x) on four successively
coarser meshes, where a(x) is piecewise constant and defined as:

a(x) =







1, if 0 < x < 1
10, if 1 ≤ x ≤ 2
1, if 2 < x < 3







.

The discontinuities at x = 1 and x = 2 lie on mesh lines only on the finest of the four meshes, taken to have
80 mesh points. The coarser meshes have 40, 20, 10, and 5 points each. The analogous averagings are shown
for two-dimensions in Figure 3.4 and Figure 3.5.

While the harmonic average appears to preserve more correctly the effect of the discontinuity in both
one and two dimensions, it is difficult to tell from these graphs which of the two approaches would be
more effective at producing equations with good coarse level approximation properties. We will justify
our preference for the harmonic average by showing its equivalence to the Galerkin approach in certain
situations below, and by showing its effectiveness for problems with discontinuities of the type occurring in
the linearized Poisson-Boltzmann equation with a series of numerical experiments in Chapter 6.

Consider now the two-dimensional problem:

−∇ · (ā(x)∇u(x)) + b(x)u(x) = f(x) in Ω ⊂ R
2, u(x) = 0 on Γ,

where now x = (x, y), and where the tensor ā : Ω 7→ L(R2, R2) has the diagonal form:

ā(x) =

(

a(11)(x) 0

0 a(22)(x)

)

.

A box-method discretization of this problem on a non-uniform Cartesian mesh (see Chapter 2) requires
evaluation of the coefficient a(11) on the fine mesh along y-mesh-lines, but midway between x-mesh-points;

we denote this discretized coefficient as a
(11)
h . Similarly, the coefficient a(22) requires evaluation on the fine

mesh along x-mesh-lines, but midway between y-mesh-points; we denote this discretized coefficient as a
(22)
h .
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Figure 3.3: Arithmetic and harmonic averaging in one dimension.

In [2], the averaging approach is discussed in detail for two-dimensional problems, where the harmonic average
across interfaces is combined with arithmetic averages in the second grid direction to produce coefficients

a
(11)
H and a

(22)
H for coarser levels; one of several possible schemes is depicted in Figure 3.6.

In Figure 3.6, the black circles represent the fine mesh points, the larger open circles represent the coarse

mesh points, the small open squares represent the half-mesh-points at which the fine mesh coefficients a
(22)
h

are located, the small open triangles represent the half-mesh-points at which the fine mesh coefficients a
(11)
h

are located, the large open squares are the new coarse mesh coefficients a
(22)
H , and the large open triangles

are the new coarse mesh coefficients a
(11)
H . The straight arrows indicate a harmonic average of two points,

and the curved arrows represent the arithmetic averaging of three values which were produced by harmonic
averaging. Discontinuities are assumed to lie along the mesh lines, so that the harmonic average is taken
across the possible discontinuity.

The numerical experiments in [2] for two-dimensional problems indicate that this technique is effective for
representing the effect of discontinuities on coarse meshes for many types of interface problems, and when
combined with the prolongation operators discussed below results in effective multilevel methods. This
approach is easily extended to three dimensions in the obvious way, and our experiments [107] indicate that
it is a very effective technique for the discontinuities that occur in the linearized Poisson-Boltzmann equation
and similar equations. We will present experiments with this approach in Chapter 6.

Note that this approach requires little extra computation over a standard discretization on coarse levels,
and in the three-dimensional case results in seven-point stencils on all coarse levels if a box-method on a
non-uniform Cartesian mesh is used. However, a serious flaw in this approach is that there are no proof
techniques available for analyzing the convergence properties of multilevel methods with coefficient averaging
of discontinuous coefficients (in fact, it is easy to construct a sample problem with large discontinuity jumps
for which this approach will lead to a divergent method). Analysis techniques (see for example [85] for a
discussion) which allow violation of the variational conditions (3.28) require elliptic regularity assumptions
which are not available for problems with discontinuous coefficients. We will discuss the regularity-free
techniques employing the variational conditions more fully in Chapter 5.

While we cannot analyze the averaging methods using the available theoretical tools, we will numerically
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Figure 3.4: Arithmetic averaging in two dimensions.

Unaveraged One Averaging
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Figure 3.5: Harmonic averaging in two dimensions.
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Figure 3.6: Combination of arithmetic and harmonic averaging in two dimensions.

investigate the effectiveness of these methods for three-dimensional linear and nonlinear interface problems
in Chapter 6 and Chapter 7 with a series of experiments.

3.3.3 Algebraic Galerkin methods

The Galerkin approach to forming the coarse level equations is the algebraic enforcement of the variational
conditions (3.28). This approach provides an algebraic mechanism in which the fine level equation coefficients
are averaged to produce the coarse level equation coefficients, where the averaging is performed by the
prolongation and restriction operators.

It should be noted that this approach is difficult to implement and computationally expensive in three
dimensions, since seven-point stencils produced by the box-method on a non-uniform Cartesian fine mesh
expand to twenty-seven point stencils on all coarser meshes when standard transfer operators are used (this
is easily shown using the stencil calculus which we outline below and in Appendix A). This results in more
extensive set-up computations, as well as more expensive coarse level computations during the iteration itself
due to the less sparse matrices on the coarse levels.

While it is more costly, this technique for improving the coarse level approximation properties may
be the preferred one in many situations for several reasons. First, it is non-heuristic, in that once the
prolongation operator is selected, the coarse mesh equations are constructed automatically without the need
to specify an averaging scheme. Second, it is known that this approach is always convergent (we present
our own proof in Chapter 5). The study by Dendy [51] presents a detailed empirical investigation of the
convergence properties of these methods for a set of very difficult test problems. This excellent study clearly
established the effectiveness of these methods for three-dimensional problems, as the earlier studies [2, 53]
had for two-dimensional problems. Unfortunately, to the author’s knowledge, there are no publicly available
three-dimensional multilevel codes using the Galerkin approach; in fact, it appears that no details have been
published on how to obtain the Galerkin coarse-level matrix expressions (at least in the three-dimensional
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case). Explicit expressions for the Galerkin coefficients have appeared in the literature only for the two-
dimensional case, and these expressions were only for symmetric matrices and a particular prolongation
operator (the expressions appeared in the Appendix of [19]).

Note that the variational conditions are satisfied naturally by successively refined finite element dis-
cretizations, but only with exact evaluation of the integrals forming the components of the stiffness matri-
ces. If quadrature is used to approximate the integrals, then the variational conditions will be violated.
Goldstein [74] has investigated the effect of numerical integration on multilevel convergence, and has given
conditions on the accuracy of the quadrature formula which will insure convergence. If discontinuities occur
within elements, several problems occur and the approach in [74] cannot be used. Therefore, even with a
finite element discretization on the fine mesh, if discontinuities occur within elements on coarser levels, then
the variational conditions must be imposed algebraically in order to guarantee convergence.

In order to explain clearly how the variational conditions (3.28) can be imposed algebraically in a rea-
sonably efficient manner for a certain class of problems, we will first introduce a stencil calculus for the
computation of general matrix-matrix products in an efficient way. This calculus was first developed by R.
Falgout, and he has outlined the calculus in detail for one- and two-dimensional problems in his thesis [63].
Although our notation below is somewhat different, our approach is based on his very clear presentation of
the one- and two-dimensional cases. One limitation of the calculus is that matrices must be representable as
stencils, implying that there must be an underlying, logically non-uniform Cartesian mesh. Note that this
is not really a restriction for many problems, as virtual points may be added to the set of unknowns with a
corresponding “identity” stencil for that mesh point.

3.3.4 Stencil calculus for computing the Galerkin equations

We will be concerned here only with the two-level case, and to avoid confusion with matrix entries which
will appear, we will denote fine and coarse level spaces, grids, matrices and functions with the subscripts
h and H , respectively, rather than k and k − 1. With this minor change in notation, we will use the grid
function space notation outlined in §3.1.5 for matrix equations arising from partial differential equations.

The main ideas in the stencil calculus for producing the Galerkin equations can be explained most clearly
by considering first the one-dimensional case with only two levels, and then extending the key ideas to
higher dimensions and more levels. Therefore, we once again consider the one-dimensional example (3.41),
and assume we have discretized the equation with the box-method producing the discrete equations (3.43)
for each mesh point uh(xi), i = 1, . . . , n. For simplicity, we will assume in the following discussion that the
coefficient b(x) in (3.41) is zero.

Recalling the standard approach of eliminating the Dirichlet boundary points from the set of unknowns,
we see that all of the equations are identical in form, except that the two equations which border the left and
right boundaries will be decoupled from the boundary points, with corresponding modifications to the right
hand side entries (in this case, with zero Dirichlet conditions, the right hand side entries remain unchanged).
Taking all of the equations (3.43) together for the special case that n = 7, and ordering the unknowns
uh(xi) from i = 1 to i = 7 consecutively, we produce the linear algebraic system Ahuh = fh, which has the
tridiagonal form:












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





C1 −E1

−W2 C2 −E2
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.

The equations in the above system represent equation (3.43) for each unknown grid function value; for
the single unknown value uh(xi), the equation is explicitly:

[

−ah(xi−1/2)

hi−1

(

ah(xi−1/2)

hi−1
+

ah(xi+1/2)

hi

)

− ah(xi+1/2)

hi

]





uh(xi−1)
uh(xi)

uh(xi+1)




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=

[

hi−1f̃h(x−
i ) + hif̃h(x+

i )

2

]

. (3.44)

If we establish the convention that a term in the above stencil expression is identically zero if its corresponding
index satisfies i ≤ 0 or i ≥ n + 1, meaning that the stencil touches or goes outside the boundary of the
discretized domain, then we can represent all of the equations with the above stencil representation of
equation (3.43). For simplicity, we will write this stencil equation symbolically as:

[

−Wi Ci −Ei

]h

h





uh(xi−1)
uh(xi)

uh(xi+1)



 = [fh(xi)] , (3.45)

where the subscript h on the stencil represents the “domain” of the stencil, and the superscript h represents
the “range” of the stencil. In this case, both simply the fine mesh function space Uh. We can represent
any tri-diagonal system of any dimension using the above stencil notation, although our discretization yields
two special properties, namely Wi = Ei−1 (symmetry), and Ci = Wi + Ei for all points not lying next to a
boundary point.

The functions uh ∈ Uh and fh ∈ Uh are interpreted as grid functions, and the matrix Ah is a grid function
operator which we represent using the stencil form:

Ah =
[

−Wi Ci −Ei

]h

h
.

The operation of Ah on a grid function uh is calculated by centering the stencil of Ah over each component
of the grid function uh and simply applying the stencil (multiplying each component of the stencil with
the corresponding component of the grid function, and adding the results). Therefore, we can compute the
action of the matrix Ah on the vector uh by considering the action of the stencil for Ah on uh interpreted as
a grid function.

Given the matrix Ah and its stencil representation, along with the prolongation matrix Ih
H and its

corresponding stencil, we are interested in computing the Galerkin coarse matrix AH = (Ih
H )T AhIh

H (or
equivalently its stencil representation). We will see shortly that the stencil for the coarse mesh system
matrix AH will have the form:

AH =
[

−W H
i CH

i −EH
i

]H

H
,

where the domain and range are the coarse mesh function space UH .
First we consider the form of the prolongation matrix. With the fine mesh Ωh = {x1, . . . , xn} where n is

odd, it is standard in both box-method-based and finite element-based multilevel methods to employ succes-
sively refined meshes, in which the points of the coarse mesh form a subset of the fine mesh points; in this case,
the coarse mesh points will consist of the even-numbered fine mesh points, or ΩH = {x2, . . . , x2i, . . . , xn−1}.
To prolongate a coarse mesh function uH = [uH(x2), . . . , uH(x2i), . . . , uH(xn−1)]

T ∈ UH to the fine mesh
function uh = [uH(x1), . . . , uH(xn)]T ∈ Uh, we will employ two separate rules:

uh(xi) =

{

i even : PCiuH(xi)
i odd : PEi−1uH(xi−1) + PWi+1uH(xi+1)

}

.

For the case of n = 7, this prolongation operation can be represented in matrix form as uh = Ih
HuH , or as:





















uh(x1)
uh(x2)
uh(x3)
uh(x4)
uh(x5)
uh(x6)
uh(x7)





















=





















PW2

PC2

PE2 PW4

PC4

PE4 PW6

PC6

PE6

























uH(x2)
uH(x4)
uH(x6)



 .

Since there are two special cases, we must represent the stencil for this operation in a slightly different
way than the simple case represented by Ah. The following is a modification of a notational convenience
introduced by R. Falgout [63] to represent these types of matrices as composite stencils:

Ih
H = [ PEi−1 0 PWi+1 ]hH(h) ∨ [ PCi ]hH(H).
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The operation of Ih
H on a grid function uh is calculated by centering the stencil of Ih

H over the coarse grid
function uH as seen on the fine mesh, i.e., to the fine mesh function constructed by injecting the coarse mesh
function into the zero fine mesh function, producing:

vh = [ 0 , uH(x2) , 0 , uH(x4) , 0 , . . . , 0 , uH(x2i) , 0 , . . . , 0 , uH(xn−1) , 0 ]T .

The stencil of Ih
H is centered over each component of vh, and the stencil is simply applied, taking into account

whether to apply rule one or rule two. If the stencil is centered over a coarse mesh point, then rule one is
applied (indicated by the subscript H(H)). If the stencil is centered over a fine mesh point not corresponding
to a coarse mesh point, then rule two is applied (indicated by the subscript H(h)).

The application of the restriction operator uH = IH
h uh, which we take to be the transpose of the prolon-

gation operator IH
h = (Ih

H )T , is for the special case of n = 7 as follows:





uH(x2)
uH(x4)
uH(x6)



 =





PW2 PC2 PE2

PW4 PC4 PE4

PW6 PC6 PE6

























uh(x1)
uh(x2)
uh(x3)
uh(x4)
uh(x5)
uh(x6)
uh(x7)





















.

We see that the restriction operator can be represented as the single stencil

IH
h =

[

PWi PCi PEi

]H

h(H)
,

if we take the convention that this stencil is only applied when centered over fine mesh points which coincide
with coarse mesh points (hence the use of the subscript h(H) to represent this stencil).

To summarize, the rules for the stencil calculus on two successively refined meshes are as follows:

(1) All stencils operate only on fine mesh functions.

(2) If coarse mesh functions are involved, they are first injected to the fine mesh.

(3) A fine mesh system matrix stencil operates on each entry of a fine mesh function.

(4) A prolongation matrix stencil operates on each entry of the fine mesh function (the injection of a
coarse mesh function), taking into account which rule to apply.

(5) A restriction matrix stencil operates only on the fine mesh function components which correspond to
a coarse mesh component.

Given the above rules, we are now in a position to compute the general product AH = (Ih
H )T AhIh

H using
only the stencil entries. To see how this is possible, consider the product AHeH = (Ih

H)T AhIh
HeH , were eH

is the unit grid function eH = [0, . . . , 0, 1, 0, . . . , 0]T having the value of unity at mesh point xi. The product
AHeH is simply the inner-product of all of the rows of AH with the vector eH , which will extract the i− th
column of the matrix AH . We can calculate the i-th column as a grid function, by applying the stencils for
each of the operators forming AH successively to the grid function eH . Since the result can be viewed as a
column stencil for AH , or a row stencil for AT

H , we can then compute the final row stencil for AH by applying
the row stencil of AT

H to the grid function eH .

For our one-dimensional example, the calculation proceeds as follows. We first collect the expressions for
the stencils together:

Ah =
[

−Wi Ci −Ei

]h

h
, IH

h =
[

PWi PCi PEi

]H

h(H)
, (3.46)

Ih
H = [ PEi−1 0 PWi+1 ]hH(h) ∨ [ PCi ]hH(H), i = 1, . . . , n.

Applying the prolongation stencil to the unit grid function yields:

Ih
HeH = [ 0 , . . . , 0 , PWi , PCi , PEi , 0 , . . . , 0 ]T ,
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which is simply a column of the interpolation operator, or a row of its transpose, which is the restriction
operator. Applying now the system matrix stencil yields:

AhIh
HeH =









































0
...
0

−Ei−2PWi

Ci−1PWi − Ei−1PCi

CiPCi − WiPWi − EiPEi

Ci+1PEi − Wi+1PCi

−Wi+2PEi

0
...
0









































.

Finally, applying the restriction operator gives a column of AH :

IH
h AhIh

HeH = [ 0 , . . . , 0 , − EH
i−2 , CH

i , − W H
i+2 , 0 , . . . , 0 ]T ,

where

CH
i = (PCi)

2Ci + (PWi)
2Ci−1 + (PEi)

2Ci+1

−PWiPCiEi − PEiPCiWi+1 − PWiWi − PEiEi,

−EH
i−2 = PEi−2PWiCi−1 − PCi−2PWiEi−2 − PCiPEi−2Ei−1,

−W H
i+2 = PWi+2PEiCi+1 − PCi+2PEiWi+2 − PCiPWi+2Wi+1.

Since this is a column of AH , the row stencil for AT
H is:

AT
H =

[

−EH
i−2 CH

i −W H
i+2

]H

H
.

Applying this stencil to the unit grid function eH yields the final expression for the row stencil of AH :

AH =
[

−W H
i CH

i −EH
i

]H

H
, i = 2, 4, 6, . . . , n − 1, (3.47)

where

CH
i = (PCi)

2Ci + (PWi)
2Ci−1 + (PEi)

2Ci+1

−PWiPCiEi−1 − PEiPCiWi+1 − PWiWi − PEiEi,

−EH
i = PEiPWi+2Ci+1 − PCiPWi+2Ei − PCi+2PEiEi+1,

−W H
i = PWiPEi−2Ci−1 − PCiPEi−2Wi − PCi−2PWiWi−1.

To verify this result, for the simple case n = 7 we can compute the product directly:

AH = IH
h AhIh

H = (Ih
H )T AhIh

H

=





CH
2 −EH

2

−W H
4 CH

4 −EH
4

−W H
6 CH

6



 =





PW2 PC2 PE2

PW4 PC4 PE4

PW6 PC6 PE6



 ·





















C1 −E1

−W2 C2 −E2

−W3 C3 −E3

−W4 C4 −E4

−W5 C5 −E5

−W6 C6 −E6

−W7 C7





















·





















PW2

PC2

PE2 PW4

PC4

PE4 PW6

PC6

PE6





















.
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It is easily verified that the entries of the resulting matrix are identical to those produced using the stencil
calculus in equation (3.47).

Note that this calculus extends to two and three dimensions easily, where we must now introduce the
restriction that the grid functions are defined over a logically non-uniform Cartesian mesh. However, the
expressions for the Galerkin coarse level operator stencil entries become extremely complex, even in the two-
dimensional case. To assist in the calculation of these expressions, we have written a set of MATHEMATICA
and MAPLE routines implementing the stencil calculus in two and three dimensions. These routines are
useful for computing the Galerkin coarse level matrix entries symbolically from the fine level matrix entries
and the prolongation matrix entries.

The symbolic manipulation routines were used to produce the expressions for the Galerkin coarse matrix
entries in our three-dimensional linear and nonlinear multilevel methods as an alternative to the coeffi-
cient averaging approach described in the previous section. Extensive numerical experiments with both the
Galerkin and coefficient averaging methods are presented in Chapter 6. In Appendix A, we have given the
explicit expressions for Galerkin coarse level matrix stencils for the one, two, and three-dimensional cases,
since these expressions do not appear to have been widely published (the two-dimensional expressions for a
special case have appeared in the Appendix of [19]).

3.3.5 Operator-based prolongation and stencil compression

These techniques were originally developed in [2] and used extensively in [19, 20, 48, 49, 50, 53], and more
recently in [51, 52]. They can be explained by considering again our example (3.41). With two successively
refined meshes, assume we are given a coarse level function at points which correspond to the fine level points
xi−1 and xi+1, and we wish to prolongate (or interpolate) the coarse level function to the fine mesh points
xi−1, xi, and xi+1.

For the fine points xi−1 and xi+1 which correspond to coarse points, we can take the values of the new
fine level function to be equal to the coarse level function, referred to as injection. To obtain the fine level
function value at the point xi not coincident with a coarse point, a standard linear interpolation can be used:

uh(xi) =

(

hi−1

hi−1 + hi

)

uh(xi−1) +

(

hi

hi−1 + hi

)

uh(xi+1).

In other words, we define the the prolongation operator as:

Ih
H = [ PEi−1 0 PWi+1 ]hH(h) ∨ [ PCi ]hH(H),

PCi = 1, PEi−1 =
hi−1

hi−1 + hi
, PWi+1 =

hi

hi−1 + hi
. (3.48)

On the other hand, in the case that the new point xi is an interface point, we would like to impose the
continuity condition (3.42). We can approximate this by imposing:

ah(xi−1/2)

(

uh(xi) − uh(xi−1)

hi−1

)

= ah(xi+1/2)

(

uh(xi+1) − uh(xi)

hi

)

.

Solving for uh(xi) gives the more general prolongation formula:

uh(xi) =

(

ah(xi−1/2)/hi−1

ah(xi−1/2)/hi−1 + ah(xi+1/2)/hi

)

uh(xi−1)

+

(

ah(xi+1/2)/hi

ah(xi−1/2)/hi−1 + ah(xi+1/2)/hi

)

uh(xi+1),

which reduces to (3.48) in the case that ah(xi−1/2) = ah(xi+1/2). In this case, with again PCi = 1, the
prolongation operator is defined as follows:

PEi−1 =
ah(xi−1/2)/hi−1

ah(xi−1/2)/hi−1 + ah(xi+1/2)/hi
, PWi+1 =

ah(xi+1/2)/hi

ah(xi−1/2)/hi−1 + ah(xi+1/2)/hi
.
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This type of prolongation can be extended to two and three dimensions in a number of ways [2, 85,
134]. First, note that from the definition of the fine grid matrix stencil (3.44) and (3.45), an equivalent
representation of this prolongation is as follows:

PCi = 1, PEi−1 =
Wi

Ci
, PWi+1 =

Ei

Ci
. (3.49)

In other words, an alternative procedure for producing the more general prolongation formula (3.49) is by
solving the ith equation of the system Akuk = 0. The coefficients in the prolongation rule then come from
the discrete stencil for the ith equation of Ak , which in the one-dimensional example became (3.49).

The difficulty with this approach in dimensions higher than one is that the resulting prolongation formula
for the center stencil point involves not only coarse points, but as yet undefined fine points as well, unless
the meshes are defined in a non-standard fashion (see [63, 85] for examples). This difficulty can be avoided
with standard successively refined meshes through stencil compression, an idea perhaps originating in [2].

We now describe this in three dimensions, essentially as employed in [51]. One must consider four fine
mesh point types in the prolongation procedure:

(1) Fine points coincident with coarse mesh points.

(2) Fine points lying on a coarse mesh line but not of Type (1).

(3) Fine points lying on a coarse mesh plane not of Type (1) or Type (2).

(4) Fine points points not on a coarse mesh line or plane.

Assume now that our stencil is a full twenty-seven point stencil. Injection is used for Type (1) points. For
Type (2) points, dependencies in the discrete stencil corresponding to directions not on the coarse mesh line
are removed by compressing the three-dimensional stencil to a one-dimensional stencil (by simply summing
the entries), producing a two-point prolongation formula, as in the one-dimensional case (3.49). An eight-
point prolongation formula for Type (3) points results by summing away dependencies (compressing) in the
direction not coincident with a coarse mesh plane. Type (4) points will require all twenty-six surrounding
points in the prolongation formula.

Note that if the prolongation is performed in the order Type (1) → Type (4), then all computations
involve only fine mesh quantities that have been previously computed by the preceding prolongation formu-
las. Alternatively, the prolongation weights can be pre-computed following the same procedure above, and
used exactly as a standard interpolation; this approach will be necessary for Galerkin methods where the
prolongation stencil entries must be available to compute the Galerkin coarse grid matrix. In Appendix A,
we give the complete expressions for pre-computed operator-based prolongation stencil weights in the one-,
two-, and three-dimensional cases, based on the idea of stencil compression as discussed above.

Even if the Galerkin approach is not used, it is common to take the restriction operator to be Ik−1
k =

(Ik
k−1)

T , the adjoint of the prolongation operator with respect to the inner-product (3.16), where d is the

dimension of the problem, and Ik
k−1 is the d-dimensional version of either the standard interpolation (3.48)

or the operator-based interpolation (3.49).
The effectiveness of operator-based prolongations through stencil compression, as compared to standard

linear prolongations, will be evaluated in detail numerically in Chapter 6.

3.3.6 Equivalence of averaging and algebraic Galerkin methods

Consider the stencils (3.46) and linear prolongation (3.48) on a uniform mesh:

Ah =
[

−Wi Ci −Ei

]h

h
, IH

h =
[

1
2 1 1

2

]H

h(H)
,

where we recall our box-method discretization stencil components:

−Wi = −ah(xi−1/2)

h
, − Ei = −ah(xi+1/2)

h
, Ci = Wi + Ei.

This combination yields as the Galerkin coarse matrix stencil (3.47):

AH =
[

−W H
i CH

i −EH
i

]H

H
,
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where

CH
i = Ci +

Ci−1

4
+

Ci+1

4
− Ei−1

2
− Wi+1

2
− Wi

2
− Ei

2
,

−EH
i =

Ci+1

4
− Ei

2
− Ei+1

2
,

−W H
i =

Ci−1

4
− Wi

2
− Wi−1

2
.

First, note that:

CH
i = (W H

i + EH
i ) − (W H

i + EH
i ) + Ci +

Ci−1

4
+

Ci+1

4
− Ei−1

2
− Wi+1

2
− Wi

2
− Ei

2

= (W H
i + EH

i ) + (
Ci−1

4
− Wi

2
− Wi−1

2
+

Ci+1

4
− Ei

2
− Ei+1

2
)

+Ci +
Ci−1

4
+

Ci+1

4
− Ei−1

2
− Wi+1

2
− Wi

2
− Ei

2

= (W H
i + EH

i ) + (Ci − Wi − Ei)

+(
Ci−1

4
+

Ci−1

4
− Wi−1

2
− Ei−1

2
) + (

Ci+1

4
+

Ci+1

4
− Wi+1

2
− Ei+1

2
)

= W H
i + EH

i ,

where we have employed the relationship Ci = Wi +Ei, which holds for the discretization producing the fine
mesh stencil as we remarked earlier. Therefore, if the fine mesh stencil has this property, then it is inherited
by the galerkin coarse stencil when linear prolongation is employed.

Let us now attempt to relate the Galerkin stencil components to the coefficients of the original differential
equation on the fine mesh. First, we have that:

−W H
i =

Ci−1

4
− Wi

2
− Wi−1

2
=

Wi−1

4
+

Ei−1

4
− Wi

2
− Wi−1

2

=
Ei−1

4
− Wi

2
− Wi−1

4
=

ah(xi−1/2)

4h
− ah(xi−1/2)

2h
− ah(xi−3/2)

4h

= −ah(xi−1/2)

4h
− ah(xi−3/2)

4h
= − 1

2h

(

ah(xi−3/2) + ah(xi−1/2)

2

)

.

Similarly,

−EH
i = − 1

2h

(

ah(xi+1/2) + ah(xi+3/2)

2

)

.

As we have just shown, CH
i = W H

i + EH
i , so that we have have the following proposition.

Proposition 3.23 In one dimension on a uniform mesh, arithmetic averaging of the discretized problem
coefficients in the problem (3.41) followed by a standard box-method discretization is equivalent to enforcing
the variational conditions with linear prolongation.

Proof. First, we remark that the coefficient b(x) in (3.41) must be zero for this result. Define the arithmeti-
cally averaged coefficients:

aH(xi) =
ah(xi−1/2) + ah(xi+1/2)

2
, i = 1, 3, 5, . . . , n.

On the coarse mesh, the mesh size will be twice the fine mesh size, H = 2h. A standard box-method
discretization, using the averaged coefficient on the coarse mesh will yield:

AH =
[

−W H
i CH

i −EH
i

]H

H
, i = 2, 4, 6, . . . , n − 1,
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where

−W H
i = −aH(xi−1)

H
, − EH

i = −aH(xi+1)

H
, CH

i = W H
i + EH

i .

These expressions are equivalent to the components of the Galerkin coarse matrix stencil above produced by
linear prolongation.

Consider now the stencils (3.46) and operator-based prolongation (3.49) on a uniform mesh:

Ah =
[

−Wi Ci −Ei

]h

h
, IH

h =
[

Ei−1

Ci−1
1 Wi+1

Ci+1

]H

h(H)
.

The corresponding Galerkin coarse matrix stencil components are directly from (3.47):

CH
i = Ci +

(

Ei−1

Ci−1

)2

Ci−1 +

(

Ei+1

Ci+1

)2

Ci+1

−Ei−1

Ci−1
Ei−1 −

Wi+1

Ci+1
Wi+1 −

Ei−1

Ci−1
Wi −

Wi+1

Ci+1
Ei,

−EH
i =

Wi+1

Ci+1

Ei+1

Ci+1
Ci+1 −

Ei+1

Ci+1
Ei −

Wi+1

Ci+1
Ei+1,

−W H
i =

Ei−1

Ci−1

Wi−1

Ci−1
Ci−1 −

Wi−1

Ci−1
Wi −

Ei−1

Ci−1
Wi−1.

It is not difficult to show that these expressions simplify to:

−W H
i = −Wi−1Wi

Ci−1
, − EH

i = −EiEi+1

Ci+1
, CH

i = W H
i + EH

i .

Let us now attempt to relate the Galerkin stencil components to the coefficients of the original differential
equation on the fine mesh. First, we have that:

−W H
i = − [ah(xi−3/2)/h] · [ah(xi−1/2)/h]

[ah(xi−3/2)/h] + [ah(xi−1/2)/h]
= − 1

2h

[

2 · ah(xi−3/2) · ah(xi−1/2)

ah(xi−3/2) + ah(xi−1/2)

]

.

Similarly,

−EH
i = − 1

2h

[

2 · ah(xi+1/2) · ah(xi+3/2)

ah(xi+1/2) + ah(xi+3/2)

]

.

This leads us to the following proposition.

Proposition 3.24 In one dimension on a uniform mesh, harmonic averaging of the discretized problem
coefficients in the problem (3.41) followed by a standard box-method discretization is equivalent to enforcing
the variational conditions with operator-based prolongation.

Proof. The coefficient b(x) in (3.41) must be zero for this result. Define the harmonically averaged coeffi-
cients:

aH(xi) = HARM(ah(xi−1/2), ah(xi+1/2)), i = 1, 3, 5, . . . , n, HARM(x, y) =
2xy

x + y
.

In other words, the coefficients on the coarse mesh are defined as:

aH(xi) =
2 · ah(xi−1/2) · ah(xi+1/2)

ah(xi−1/2) + ah(xi+1/2)
, i = 1, 3, 5, . . . , n.
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On the coarse mesh, the mesh size will be twice that of the fine mesh, H = 2h. A standard box-method
discretization, using the averaged coefficient on the coarse mesh will yield:

AH =
[

−W H
i CH

i −EH
i

]H

H
, i = 2, 4, 6, . . . , n − 1,

where

−W H
i = −aH(xi−1)

H
, − EH

i = −aH(xi+1)

H
, CH

i = W H
i + EH

i .

These expressions are equivalent to the components of the Galerkin coarse matrix stencil above produced by
operator-based prolongation.

We now consider the two-dimensional case; the stencil calculus for the two-dimensional case is outlined
in more detail in Appendix A. We have implemented the stencil calculus in MATHEMATICA and MAPLE,
since the Galerkin stencil calculations become extremely complex, even in two-dimensions. Therefore, we will
present essentially the same investigation of the relationship between coefficient averaging and the variational
conditions in the two-dimensional case, but will employ our stencil calculator to avoid writing out the details
of the calculations.

Consider now the two-dimensional problem:

−∇ · (ā(x)∇u(x)) = f(x) in Ω ⊂ R
2, u(x) = 0 on Γ, (3.50)

where now x = (x, y), and where the tensor ā : Ω 7→ L(R2, R2) has the diagonal form:

ā(x) =

(

a(11)(x) 0

0 a(22)(x)

)

.

The box-method discretization of the problem on a non-uniform Cartesian mesh (see Chapter 2) for mesh
points xij = (xi, yj) has the stencil form:

Ah =





0 −Nij 0
−Wij Cij −Eij

0 −Sij 0





h

h

,

where

Eij = a
(11)
h (xi+1/2,j)

(

hj−1 + hj

2hi

)

, Nij = a
(22)
h (xi,j+1/2)

(

hi−1 + hi

2hj

)

,

Wij = Ei−1,j , Sij = Ni,j−1, Cij = Nij + Sij + Eij + Wij .

In the case of a uniform mesh hi = hj = h, then the above expressions simplify to:

Eij = a
(11)
h (xi+1/2,j), Nij = a

(22)
h (xi,j+1/2),

where the fine mesh points are xij , i, j = 1, . . . , n, and the coarse mesh points are xij , i, j = 2, 4, 6, . . . , n− 1.
Therefore, a(11) is evaluated midway between two fine mesh i- or x-points, and the a(22) is evaluated midway

between two fine mesh j- or y-points; we denote these discretized coefficients as a
(11)
h and a

(22)
h .

On a uniform mesh, one representation of linear interpolation in two dimensions is the following (see
Appendix A), written in short form as its transpose, the corresponding restriction operator:

(Ih
H )T = IH

h =







0 1
2

1
2

1
2 1 1

2
1
2

1
2 0







H

h(H)

.

We now employ the symbolic MAPLE stencil calculator described in Appendix A, using the system matrix
stencil above together with the interpolation operator above (this computation is quite tedious by hand).



3.3. MULTILEVEL METHODS FOR DISCONTINUOUS COEFFICIENTS 81

After exploiting the known symmetries in the fine matrix stencil, the following Galerkin coarse matrix stencil
is produced:

AH =





0 −NH
ij 0

−W H
ij CH

ij −EH
ij

0 −SH
ij 0





h

h

,

where, after extensive simplification of the results, the following expressions for the Galerkin coarse matrix
stencil components result:

EH
ij =

1

4
(Ei,j−1 + Eij + Ei+1,j + Ei+1,j+1) , NH

ij =
1

4
(Ni−1,j + Nij + Ni,j+1 + Ni+1,j+1) ,

W H
ij = EH

i−1,j , SH
ij = NH

i,j−1, CH
ij = NH

ij + SH
ij + EH

ij + W H
ij .

Since Eij = a
(11)
h (xi+1/2,j) and Nij = a

(22)
h (xi,j+1/2), we can express the Galerkin matrix entries in terms of

the original problem coefficients on the fine mesh:

EH
ij =

1

4

(

a
(11)
h (xi+1/2,j−1) + a

(11)
h (xi+1/2,j) + a

(11)
h (xi+3/2,j) + a

(11)
h (xi+3/2,j+1)

)

,

NH
ij =

1

4

(

a
(22)
h (xi−1,j+1/2) + a

(22)
h (xi,j+1/2) + a

(22)
h (xi,j+3/2) + a

(22)
h (xi+1,j+3/2)

)

,

W H
ij = EH

i−1,j , SH
ij = NH

i,j−1, CH
ij = NH

ij + SH
ij + EH

ij + W H
ij .

This gives the following result.

Proposition 3.25 In two dimensions on a uniform mesh, a certain arithmetic averaging of the discretized
problem coefficients in the problem (3.50) followed by a standard box-method discretization is equivalent to
enforcing the variational conditions with linear prolongation. The arithmetic averaging is defined by:

a
(11)
H (xij) =

1

4

(

a
(11)
h (xi+1/2,j−1) + a

(11)
h (xi+1/2,j) + a

(11)
h (xi+3/2,j) + a

(11)
h (xi+3/2,j+1)

)

,

i = 1, 3, 5, . . . , n, j = 2, 4, 6, . . . , n − 1;

a
(22)
H (xij) =

1

4

(

a
(22)
h (xi−1,j+1/2) + a

(22)
h (xi,j+1/2) + a

(22)
h (xi,j+3/2) + a

(22)
h (xi+1,j+3/2)

)

,

i = 2, 4, 6, . . . , n − 1, j = 1, 3, 5, . . . , n.

Proof. This is immediately clear from the above discussion. Recall that the fine mesh points are xij , i, j =

1, . . . , n, and the coarse mesh points are xij , i, j = 2, 4, 6, . . . , n − 1. The new coarse mesh coefficient a
(11)
H

lies midway between two coarse mesh points in the i-direction, and the new coefficient a
(22)
H lies midway

between two coarse mesh points in the j-direction. The averaging scheme is depicted in Figure 3.7, where:
the black circles represent the fine mesh points, the larger open circles represent the coarse mesh points, the

small open squares represent the half-mesh-points at which the coefficients a
(22)
h are located, the small open

triangles represent the half-mesh-points at which the coefficients a
(11)
h are located, the large open squares are

the new coarse mesh coefficients a
(22)
H , and the large open triangles are the new coarse mesh coefficients a

(11)
H .

The arrows indicate which points are involved in the averaging to produce the coarse mesh coefficients.

Remark 3.10. We have established some simple relationships between coefficient averaging techniques and
the variational conditions. There is an analogous proposition relating two-dimensional Galerkin expressions
using operator-based prolongation and harmonically averaged coefficients; unfortunately, the averaging ex-
pressions are more complex than the direct Galerkin expressions (given in Appendix A). We have not written
them out here, since one objective was to derive a simple and more intuitive procedure for constructing the
coarse problem, without sacrificing the variational conditions. For the case we have presented above, com-
paring the above expressions to those appearing in Appendix A, it is easy to see that the averaging approach
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Figure 3.7: Two-dimensional averaging scheme enforcing variational conditions.

to enforcing the variational conditions is much less costly than the direct algebraic enforcement, when the
averaging approach can be used.

Unfortunately, our approach here for one- and two-dimensional problems does not extend easily to three
dimensions. The difficulty is that the stencil produced by the standard box-method in three dimensions
is seven-point; the Galerkin coarse matrix stencil will necessarily have more than seven nonzero compo-
nents, employing either linear or tri-linear interpolation as the prolongation operator (this is discussed in
Appendix A). It may be possible to use a non-standard box-method stencil, and relate the Galerkin coarse
matrix stencil entries to some averaging of the problem coefficients and a discretization with this non-standard
stencil.

We remark that the material in this section is not simply a restatement of the fact that finite element and
box-methods produce the same matrices in certain situations. The operator considered here in problem 3.50
is general, and the coefficients involved may be highly varying or even discontinuous within elements on all
but the finest mesh; as such, a finite element discretization will not automatically satisfy the variational
conditions, since quadrature error will clearly be large. This averaging approach is intuitive, it guarantees
that the variational conditions hold in cases where the finite element method would not guarantee this, and
it is computationally much less costly than the equivalent approach of enforcing the conditions by using the
full general algebraic Galerkin expressions given in Appendix A.

We wish to make a final comment on the generality of the two-dimensional result above. Assume that
we are given a symmetric positive definite matrix with the stencil representation:

Ah =





0 −Nij 0
−Wij Cij −Eij

0 −Sij 0





h

h

,



3.4. SUMMARY OF COMPLEXITY PROPERTIES OF STANDARD METHODS 83

where

Eij > 0, Nij > 0, Wij = Ei−1,j , Sij = Ni,j−1, Cij = Nij + Sij + Eij + Wij .

Box and finite element discretizations of (3.50) on logically (not necessarily physically) non-uniform Cartesian
meshes produce these types of matrices, although our interest here is only the general matrix problem above.
By our discussion above, if we form coarse grid equations as follows:

AH =





0 −NH
ij 0

−W H
ij CH

ij −EH
ij

0 −SH
ij 0





h

h

,

using the very simple and inexpensive averaging procedure:

EH
ij =

1

4
(Ei,j−1 + Eij + Ei+1,j + Ei+1,j+1) , NH

ij =
1

4
(Ni−1,j + Nij + Ni,j+1 + Ni+1,j+1) ,

W H
ij = EH

i−1,j , SH
ij = NH

i,j−1, CH
ij = NH

ij + SH
ij + EH

ij + W H
ij ,

then we are guaranteed that the variational conditions hold, where the prolongation operator corresponds
to:

(Ih
H )T = IH

h =







0 1
2

1
2

1
2 1 1

2
1
2

1
2 0







H

h(H)

.

This yields a very efficient technique for enforcing the variational conditions for general matrix equations
which have stencil representations. Efficient algebraic multilevel methods, using the coarse mesh equations
and interpolation operators above, can be based on this approach. The only restrictions are that the
original matrix be symmetric, five-point, and satisfy the row sum criterion: Cij = Nij + Sij + Eij + Wij .
Multilevel methods based on this approach should be more robust than standard methods which don’t enforce
variational conditions, and more efficient than general algebraic methods which do enforce the variational
conditions. Again, note that this approach guarantees that the variational conditions hold regardless of
how the original matrix was generated, and will therefore be effective for problems such as those with
discontinuous coefficients or other difficulties.

3.4 Summary of complexity properties of standard methods

In the case of a uniform m×m×m mesh and the standard box-method discretization of Poisson’s equation
on the unit square, the resulting algebraic system is of dimension N = m3. It is well-known that the
computational complexities of dense, banded, and sparse Gaussian elimination are O(N 3), O(N7/3), and
O(N2), respectively. In order to understand how the iterative methods we have discussed in this chapter will
compare to direct methods as well as to each other in terms of complexity, we must translate their respective
known convergence properties for the model problem into a complexity estimate.

Assume now that the discretization error is O(hs) for some s > 0, which yields a practical linear iteration
tolerance of ε = O(hs). As remarked earlier in §3.1.5, if the mesh is shape-regular and quasi-uniform, then
the meshsize h is related to the number of discrete unknowns N through the dimension d of the spatial
domain as h = O(N−1/d). Now, for the model problem, we showed earlier in §3.1.6 that the spectral radii
of the Richardson, Jacobi, and Gauss-Seidel behave as 1−O(h2). Since − ln(1− ch2) ≈ ch2 +O(h4), we can
estimate the number of iterations required to solve the problem to the level of discretization error from (3.6)
as follows:

n ≤ | ln ε|
| ln ρ(E)| =

| ln hs|
| ln(1 − ch2)| ≈

|s ln h|
h2

= O

( | ln N−1/d|
N−2/d

)

= O(N2/d ln N).

Assuming the cost of each iteration is O(N) due to the sparsity of the matrices produced by standard
discretization methods, we have that the total computational cost to solve the problem using any of the
three methods above for d = 3 is O(N 5/3 ln N). A similar model problem analysis can be done for other
methods.
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Table 3.1: Model problem complexities of various solvers.

Method 2D 3D

Dense Gaussian elimination O(N 3) O(N3)
Banded Gaussian elimination O(N 2) O(N2.33)
Sparse Gaussian elimination O(N 1.5) O(N2)
Richardson’s Method O(N2 ln N) O(N1.67 ln N)
Jacobi iteration O(N2 ln N) O(N1.67 ln N)
Gauss-Seidel iteration O(N2 ln N) O(N1.67 ln N)
SOR O(N1.5 ln N) O(N1.33 ln N)
Conjugate gradients (CG) O(N 1.5 ln N) O(N1.33 ln N)
Preconditioned CG O(N1.25 ln N) O(N1.17 ln N)
Multilevel methods O(N ln N) O(N ln N)
Nested Multilevel methods O(N) O(N)

In contrast, one multilevel iteration costs O(N) operations, and we have remarked that with nested
iteration the number of iterations required to reach discretization error remains constant as N increases. To
summarize, the complexities of the methods we have discussed in this chapter plus a few others are given in
Table 3.1. The complexities for the conjugate gradient methods applied to the model problem may be found
in [9]. This table states clearly the motivation for considering the use of multilevel and multigrid methods
for the numerical solution of elliptic partial differential equations.



4. Methods for Nonlinear Equations

We begin by reviewing some important concepts about nonlinear equations, nonlinear iterations, and con-
ditions for and types of convergence. Some of the classical nonlinear iterations and nonlinear conjugate
gradient methods are then discussed, along with their convergence properties. Newton-like methods are
then reviewed, including inexact variations and global convergence modifications. We then discuss damped-
inexact-Newton-multilevel methods, which involve the coupling of damped-Newton methods with linear
multilevel methods for approximate solution of the Jacobian systems. We attempt to combine the damping
parameter selection and linear iteration tolerance specification to insure global superlinear convergence. We
also present a nonlinear multilevel method similar to one proposed by Hackbusch, which does not involve an
outer Newton iteration. We conclude the chapter by introducing a nonlinear operator-based prolongation
procedure; this is a nonlinear extension of the stencil compression ideas of Chapter 3.

Our contributions here are as follows.

• We prove a simple result which yields a necessary and sufficient condition on the residual of the
Jacobian system for the inexact Newton direction to be a descent direction; a corollary to this result
is a simple sufficient condition for descent, which is easy to combine with superlinear convergence
tolerance strategies.

• We combine the (necessary and) sufficient descent condition(s) with inexact tolerance selection strate-
gies for superlinear convergence; this guarantees global, asymptotically superlinear convergence for a
damped-inexact-Newton-multilevel iteration which we present.

• We study a true nonlinear multilevel method not involving an outer Newton iteration. This method
requires the calculation of a damping parameter for global convergence by solving a one-dimensional
minimization problem, similar to that required in the nonlinear conjugate gradient method.

• We develop a nonlinear operator-based prolongation as a generalization of the idea of stencil com-
pression for linear problems.

4.1 Nonlinear operator equations

A discretization of the nonlinear elliptic equation N (u) = f will in general produce a set of nonlinear algebraic
equations Mk(uk) = fk, although for the particular problems we are considering here, the algebraic equations
have both a linear and nonlinear part:

Akuk + Nk(uk) = fk. (4.1)

As in Chapter 3, the subscript k denotes the discretization level, with larger k corresponding to a more
refined mesh, and hence a larger number of unknowns.

For certain classes of differential operators N (·), such as those with nonlinearities of the type occurring
in the nonlinear Poisson-Boltzmann equation, the differential equation N (u) = f is uniquely solvable (this
is discussed in Chapter 2). The algebraic equations produced by standard discretizations can also be shown
to inherit this property (this is also discussed in Chapter 2); throughout this chapter, we will assume that
both the original elliptic equation N (u) = f and the resulting algebraic equations (4.1) are always uniquely
solvable for all source functions f and fk.

85
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In this chapter, we are interested in nonlinear iterations for solving the algebraic equation (4.1) which
have the general form:

un+1
k = Gk(un

k ), (4.2)

where Gk(·) is a mapping which is constructed to have as its fixed-point the unique solution uk of (4.1).
The nonlinear extensions of the classical linear methods fit into this framework, as well as the Newton-like
methods. Our interest in improved convergence, efficiency, and robustness properties will lead us to damped-
inexact-Newton-multilevel methods and nonlinear multilevel methods. These methods will be studied in
detail numerically in Chapter 7.

4.1.1 Nonlinear operators, differentiation, and continuity

In this section we will compile some background material on nonlinear operators in finite-dimensional spaces
which is used throughout the chapter. We will use the notation from §3.1.1, and assume familiarity with the
material on linear operators presented there.

Let H1, H2, and H be real finite-dimensional Hilbert spaces, each with an associated inner-product (·, ·)
inducing a norm ‖ · ‖ = (·, ·)1/2. Since we are concerned only with finite-dimensional spaces, the spaces H,
H1, and H2 can be thought of as the Euclidean spaces R

n, R
n1 , and R

n2 ; however, following our approach
in the previous chapter, the preliminary material below and the algorithms we develop are phrased in terms
of the unspecified spaces H, so that the algorithms may be interpreted directly in terms of finite element
spaces as well. This is necessary to set the stage for our discussion of multilevel theory in Chapter 5.

Let F (·) be a nonlinear operator such that F : D ⊂ H1 7→ H2. If F (·) is both one-to-one and onto,
then it is called a bijection, in which case the inverse mapping F−1(·) exists. If both F (·) and F−1(·)
are continuous, then F (·) is called a homeomorphism. Concerning the solution of the operator equation
F (u) = v, it is important that F (·) be a homeomorphism for the problem to be well-posed in the Hadamard
sense.1

The notions of F-(Frechet) and G-(Gateaux) derivatives of an arbitrary function F : H1 7→ H2, for
arbitrary Hilbert spaces H1 and H2, are important here; these ideas were presented in detail in Chapter 2,
and familiarity with this material will be assumed here. In Chapter 2 we discussed the special functional
J : H 7→ R, defined in terms of a bounded linear operator A ∈ L(H,H) as follows

J(u) =
1

2
(Au, u), ∀u ∈ H.

This particular functional arises often in this chapter, and we remark that in Chapter 2 we discussed the
details of calculating its F-derivatives. In Chapter 2 we also considered the functional

J(u) =
1

2
‖F (u)‖ =

1

2
(F (u), F (u)), ∀u ∈ H,

and we presented as Lemma 2.7 the following result:

(J ′(u), v) = (F ′(u)T F (u), v), ∀u ∈ H,

which will be quite useful in this chapter.
The basic notions of continuity of functions were also discussed in Chapter 2. The following special notion

of continuity will be used later in this chapter.

Definition 4.1 The mapping F : D ⊂ H 7→ H is called Hölder-continuous on D with constant γ and
exponent p if there exists γ ≥ 0 and p ∈ (0, 1] such that

‖F (u) − F (v)‖ ≤ γ‖u− v‖p ∀u, v ∈ D ⊂ H.

If p = 1, then F is called uniformly Lipschitz-continuous on D, with Lipschitz constant γ.

1Well-posedness “in the sense of Hadamard” [124] refers to three criteria: existence of a solution, uniqueness of a solution,
and continuous dependence of the solution on the data of the problem.
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Remark 4.1. In the case that H1 = R
n and H2 = R

m, then the matrix of all directional derivatives of
F : D ⊂ R

n 7→ R
m taken in the coordinate directions is called the Jacobian matrix:

F ′(x) = ∇F (x)T =

[

∂Fi(x)

∂xj

]

,

where F (x) = (F1(x), . . . , Fm(x))T and x = (x1, . . . , xn)T . If H2 = R
1, so that F : D ⊂ R

n 7→ R is a
linear functional, then F ′(x) is the usual gradient vector. It is clear from the definitions that the existence
of the G-derivative implies the existence of the Jacobian matrix (the existence of all partial derivatives of
F ). In the case that the F-derivative exists, the Jacobian matrix is the representation of both the F- and
G-derivatives.

4.1.2 Notions of convergence and fixed-point theorems

Let u∗ ∈ H. There are several notions of convergence we will be concerned with regarding the sequence
{un}, un ∈ H. Recall that the sequence {un} is said to converge strongly to u∗ if limn→∞ ‖u∗ − un‖ = 0.
The sequence {un} is said to converge weakly to u∗ if limn→∞(u∗ − un, v) = 0 ∀v ∈ H. It can be shown
(page 76 in [37]) that strong convergence implies weak convergence.

Regarding strong convergence, there are several notions of the rate of convergence.

Definition 4.2 The sequence {un} is said to converge Q-linearly to u∗ if there exists c ∈ [0, 1) and n̄ ≥ 0
such that for n ≥ n̄,

‖u∗ − un+1‖ ≤ c‖u∗ − un‖.
Definition 4.3 The sequence {un} is said to converge Q-superlinearly to u∗ if there exists {cn} such that
cn → 0 and:

‖u∗ − un+1‖ ≤ cn‖u∗ − un‖.
Definition 4.4 The sequence {un} is said to converge to u∗ with rate Q-order(p) if there exists p > 1, c ≥ 0,
and n̄ ≥ 0 such that for n ≥ n̄,

‖u∗ − un+1‖ ≤ c‖u∗ − un‖p.

Definition 4.5 The sequence {un} is said to converge to u∗ with rate R-order(p) if ‖u∗ − un‖ is bounded
above by another sequence converging with rate Q-order(p).

As we mentioned at the beginning of the chapter, we are interested in fixed-point iterations of the form:

un+1 = G(un),

where the nonlinear mapping G(·) is the fixed-point mapping. If G(·) represents some iterative technique for
obtaining the solution to a problem, it is important to understand what are necessary or at least sufficient
conditions for this iteration to converge to a solution.

First, recall that a contraction operator is a mapping G : D ⊂ H 7→ D such that for some contraction
constant α ∈ [0, 1) it is true that

‖G(u) − G(v)‖ ≤ α‖u − v‖ ∀u, v ∈ D.

The following powerful theorem not only states that a fixed-point iteration will converge to a fixed-point,
but also that the fixed point is unique, the convergence rate is Q-linear, and that the error in an iterate may
be estimated by the contraction constant.

Theorem 4.1 (Contraction Mapping Theorem) Let G : D ⊂ H 7→ D, where D is closed. If G(·) is a
contraction with contraction constant α, then:

(1) There exists a unique u∗ ∈ D such that G(u∗) = u∗.
(2) For any u0 ∈ D, the sequence {un} generated by un+1 = G(un) converges to u∗.
(3) The convergence rate is Q-linear with constant α, and an error estimate is given by:

‖u∗ − un+1‖ ≤ α

1 − α
‖un+1 − un‖.

Proof. See for example [117] page 474.
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4.1.3 Gradient mappings, energy functionals, and convex analysis

In Chapter 2, we presented the main ideas behind formal calculus of variations involving functionals, gradient
mappings, F- and G-derivatives, the Euler or Euler-Lagrange equations, and some fundamental results from
convex analysis. The material in this chapter relies on these ideas, and therefore we will assume some
familiarity with the material in Chapter 2. However, since we are restricting ourselves to finite-dimensional
spaces in this chapter, we will present below a slightly simplified form of the convex analysis material,
applicable in the finite-dimensional case.

The three algorithms which we will consider in detail in this chapter, which are the nonlinear conjugate
gradient method, the damped-inexact-Newton-multilevel method, and the nonlinear multilevel method, all
rely on and exploit the connection between the zero-point problem F (u) = 0 and an associated functional
J(u) which is minimized at the solution to F (u) = 0. Therefore, we will give some background material here
regarding the connection between these two problems. Although the following discussion is again in terms
of the unspecified space H, it can be interpreted completely in terms of functionals J : R

n 7→ R.
Assume we are given the following nonlinear equation:

F (u) = Au + N(u) − f = 0,

where F (·) and N(·) are nonlinear operators mapping the finite-dimensional space H onto itself, and where
the operator A is SPD. Consider now the (energy) functional, J : H 7→ R, where:

J(u) =
1

2
(Au, u) + B(u) − (f, u).

A global minimizer of J(·) on H is a point u∗ ∈ H such that J(u∗) = minv∈H J(v). A local minimizer of J(·)
on H is a point u∗ ∈ H such that J(u∗) = minv∈V J(v), where V ⊂ H is an open neighborhood of u∗.

Given that A is SPD, and that N(u) = B′(u), it follows immediately from our discussions in §4.1.1 and
§2.1.7 that J ′ : H 7→ H is defined by:

J ′(u) = Au + B′(u) − f = Au + N(u) − f = F (u).

The second F-derivative of J(·) is then the first F-derivative of F (·):

J ′′(u) = F ′(u) = A + N ′(u).

This leads us to the important concept of a gradient mapping.

Definition 4.6 The mapping F : D ⊂ H 7→ H is called a gradient or potential mapping if for some G-
differentiable functional J : D ⊂ H 7→ R it holds that F (u) = J ′(u) ∀u ∈ D.

Regarding the functional J(·), the following are some minimal important concepts.

Definition 4.7 The functional J : D ⊂ H 7→ R is called convex on D if ∀u, v ∈ D and α ∈ (0, 1) it holds
that:

J(αu + (1 − α)v) ≤ αJ(u) + (1 − α)J(v).

The functional J(·) is called strictly convex if the inequality in Definition 4.7 is strict. If J(u) → +∞
when ‖u‖ → +∞, then J(·) is said to be coercive. The following stronger notion of convexity implies both
coerciveness and strict convexity.

Definition 4.8 The functional J : D ⊂ H 7→ R is called uniformly convex on D if ∀u, v ∈ D and α ∈ (0, 1)
there exists c > 0 such that:

cα(1 − α)‖x − y‖2 ≤ αJ(u) + (1 − α)J(v) − J(αu + (1 − α)v).

We are interested in the connection between the following two problems:

Problem 1: Find u ∈ H such that J(u) = minv∈H J(v).
Problem 2: Find u ∈ H such that F (u) = J ′(u) = 0.
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The Euler necessary condition for the existence of a local minimizer formalizes the idea of critical points of
functionals J(·) on H.

Theorem 4.2 (Euler Condition) If the functional J : H 7→ R is G-differentiable with F (u) = J ′(u) ∀u ∈ H,
and if u∗ is a local minimizer of J(·), then the F (u∗) = 0.

Proof. See Corollary 8.3.1 in [44].

The following theorem gives sufficient conditions for Problem 1 to be uniquely solvable.

Theorem 4.3 (Ekland-Temam Theorem) If J : H 7→ R is a strictly convex, continuous, and coercive
functional, then J(·) has a unique global minimizer u∗.

Proof. See the proof of Proposition 1.2 in [62], Theorems 4.3.4 and 4.3.7 of [158], or Theorem 26.8 of [68].

We finish the section with a theorem that connects Problems 1 and 2 more fully than the Euler condition,
and which gives a simple condition on the F-derivative of a gradient mapping F (·) which will guarantee that
it is a homeomorphism.

Theorem 4.4 If F : H 7→ H is a gradient mapping of an associated functional J(·), if F (·) is continuously
differentiable on H, and if there exists c > 0 such that

(F ′(u)v, v) ≥ c(v, v), ∀u, v ∈ H, (4.3)

then F (·) is a homeomorphism from H onto H, and J(·) has a unique global minimizer. Moreover, the
unique solution to Problem 1 above is also the unique solution to Problem 2.

Proof. A proof (see for example Theorem 26.11 in [68] or Theorem 4.3.10 in [158]) can be constructed by
showing condition (4.3) implies that the associated functional J(·) is uniformly convex, and hence has a
unique global minimizer u∗ by Theorem 4.3. Theorem 4.2 then states that F (u∗) = 0. To show that u∗

is the unique solution to F (u) = 0 involves showing that (4.3) implies that F (·) is a uniformly monotone
operator (Theorem 5.4.3 in [158]), which implies that F (·) is a homeomorphism (Theorem 5.4.5 in [158]).

Remark 4.2. The coerciveness condition (4.3) along with the natural symmetry of J ′′(·) (Theorem 4.1.6
in [158]) imply that the linear operator F ′(·) is SPD with smallest eigenvalue c > 0.

The gradient mapping approach can be used to give an existence and uniqueness proof for solutions of
the discretized nonlinear Poisson-Boltzmann equation, as an alternative to the proof presented in Chapter 2
which was based on M-function-like arguments. If one can show that a nonlinear operator F (·) is a gra-
dient mapping, then simply bounding the smallest eigenvalue of the Jacobian matrix F ′(·) away from zero
guarantees that F (·) is a homeomorphism.

We remark that if F (·) is continuously differentiable, then the condition (4.3) alone, without existence of
J(·) or even symmetry of F ′(·), implies that F (·) is a uniformly monotone operator (Theorem 5.4.3 in [158]),
which can be used to show that F (·) is a homeomorphism (Theorem 5.4.5 in [158]).

4.1.4 Discrete nonlinear elliptic equations

We are interested in the nonlinear equations which arise from discretizations of nonlinear elliptic partial
differential equations of the type discussed in Chapter 2 (such as the Poisson-Boltzmann equation), and so
we will use the notation of §3.1.5 and §3.2.1. In particular, we are interested in equations of the form:

Akuk + Nk(uk) = fk, (4.4)

where these equations correspond to a box or finite element discretization of a nonlinear (semi-linear) elliptic
partial differential equation as discussed in detail in §3.1.5. The space of grid functions uk with values at
the nodes of the mesh is denoted as Uk, and equation (4.4) may be interpreted as a nonlinear algebraic
equation in the space Uk. Equation (4.4) may also be interpreted as an abstract operator equation in the
finite element space Mk, as discussed in detail in §3.1.5. In either case, the operator Ak is necessarily SPD
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for the problems and discretization methods we consider, while the form and properties of the nonlinear
term Nk(·) depend on the particular problem.

To discuss iterative algorithms for (4.4), and in particular multilevel algorithms, we will require a nested
sequence of finite-dimensional spaces H1 ⊂ H2 ⊂ · · ·HJ ≡ H, which are connected by prolongation and
restriction operators, as discussed in detail in §3.2.1. We are given the abstract nonlinear problem in the
finest space H:

Find u ∈ H such that Au + N(u) = f, (4.5)

where A ∈ L(H,H) is SPD and N(·) : H 7→ H is a nonlinearity which yields a uniquely solvable problem (see
Chapter 2 and the next section), and we are interested in iterative algorithms for determining the unique
solution u which involve solving problems of the form:

Find uk ∈ Hk such that Akuk + Nk(uk) = fk, (4.6)

in the coarser spaces Hk for 1 ≤ k < J . When only the finest space H is employed, we will leave off the
subscripts from the functions, operators, and spaces to simplify the notation.

4.2 Standard nonlinear methods

In this section, we briefly review the nonlinear extensions of the classical linear methods, nonlinear conjugate
gradient methods, and Newton-like methods. We expand at some length on a couple of topics, including: the
one-dimensional line search required in the Fletcher-Reeves nonlinear conjugate gradient method, which we
will use later for computing a global convergence damping parameter in our nonlinear multilevel methods;
and the idea of inexactness and damping in a Newton iteration, which we will use later in our damped-
inexact-Newton-multilevel methods.

4.2.1 Nonlinear extensions of the classical iterations

The classical linear methods discussed in Chapter 3, such as Jacobi and Gauss-Seidel, can be extended in
the obvious way to nonlinear algebraic equations of the form (4.4). In each case, the method can be viewed
as a fixed-point iteration:

un+1 = G(un).

Of course, implementation of these methods, which we refer to as nonlinear Jacobi and nonlinear Gauss-
Seidel methods, now requires the solution of a sequence of one-dimensional nonlinear problems for each
unknown in one step of the method. A variation that works well, even compared to newer methods, is the
nonlinear SOR method.

The convergence properties of these types of methods, as well as a myriad of variations and related
methods, are discussed in detail in [158]. Note, however, that the same difficulty arising in the linear case
also arises here: as the problem size is increased (the mesh size is reduced), these methods converge more
and more slowly. As a result, we will consider alternative methods, such as nonlinear conjugate gradient
methods, Newton-like methods, and nonlinear multilevel methods.

Remark 4.3. Since the one-dimensional problems arising in the nonlinear Jacobi and nonlinear Gauss-Seidel
methods are often solved with Newton’s method, the methods are also referred to as Jacobi-Newton and
Gauss-Seidel-Newton methods, meaning that the Jacobi or Gauss-Seidel iteration is the main or outer itera-
tion, whereas the inner iteration is performed by Newton’s method. We will consider momentarily the other
situation; namely, the use of Newton’s method as the outer iteration, and a linear iterative method such as
multigrid for solution of the linear Jacobian system at each outer Newton iteration. We will refer to this
method as a Newton-multilevel method.

4.2.2 Nonlinear conjugate gradient methods

As we have seen, the following minimization problem:

Find u ∈ H such that J(u) = min
v∈H

J(v), where J(u) =
1

2
(Au, u) + B(u) − (f, u)
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is equivalent to the associated zero-point problem:

Find u ∈ H such that F (u) = Au + N(u) − f = 0,

where N(u) = B′(u). We assume here that both problems are uniquely solvable. An effective approach
for solving the zero-point problem, by exploiting the connection with the minimization problem, is the
Fletcher-Reeves version [66] of the nonlinear conjugate gradient method, which takes the form:

Algorithm 4.1 (Fletcher-Reeves Nonlinear CG Method)

Let u0 ∈ H be given.
r0 = f − N(u0) − Au0, p0 = r0.
Do i = 0, 1, . . . until convergence:

αi = (see below)
ui+1 = ui + αip

i

ri+1 = ri + N(ui) − N(ui+1) − αiApi

βi+1 = (ri+1, ri+1)/(ri, ri)
pi+1 = ri+1 + βi+1p

i

End do.

The directions pi are computed from the previous direction and the new residual, and the steplength αi is
chosen to minimize the associated functional J(·) in the direction pi. In other words, αi is chosen to minimize
J(ui + αip

i), which is equivalent to solving the one-dimensional zero-point problem:

dJ(ui + αip
i)

dαi
= 0.

Given the form of J(·) above, we have that

J(ui + αip
i) =

1

2
(A(ui + αip

i), ui + αip
i) + B(ui + αip

i) − (f, ui + αip
i)

A simple differentiation with respect to αi (and some simplification) gives:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi) + (N(ui + αip

i) − N(ui), pi),

where ri = f −N(ui)−Aui is the nonlinear residual. The second derivative with respect to αi will be useful
also, which is easily seen to be:

d2J(ui + αip
i)

dα2
i

= (Api, pi) + (N ′(ui + αip
i)pi, pi).

Now, Newton’s method for solving the zero-point problem for αi takes the form:

αm+1
i = αm

i − δm

where

δm =
dJ(ui + αm

i pi)/dαi

d2J(ui + αm
i pi)/dα2

i

=
αm

i (Api, pi) − (ri, pi) + (N(ui + αm
i pi) − N(ui), pi)

(Api, pi) + (N ′(ui + αm
i pi)pi, pi)

.

The quantities (Api, pi) and (ri, pi) can be computed once at the start of each line search for αi, each
requiring an inner-product (Api is available from the CG iteration). Each Newton iteration for the new
αm+1

i then requires evaluation of the nonlinear term N(ui + αm
i pi) and inner-product with pi, as well as

evaluation of the derivative mapping N ′(ui + αip
i), application to pi, followed by inner-product with pi.

In the case that N(·) arises from the discretization of a nonlinear partial differential equation and is
of diagonal form, meaning that the j-th component function of the vector N(·) is a function of only the
j-th component of the vector of nodal values u, or Nj(u) = Nj(uj), then the resulting Jacobian matrix
N ′(·) of N(·) is a diagonal matrix. This situation occurs with box-method discretizations of the nonlinear
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Poisson-Boltzmann equation and similar equations. As a result, computing the term (N ′(ui + αip
i)pi, pi)

can be performed with fewer operations than two inner-products.
The total cost for each Newton iteration (beyond the first) is then evaluation of N(·) and N ′(·), and

something less than three inner-products. Therefore, the line search can be performed fairly inexpensively
in certain situations. If alternative methods are used to solve the one-dimensional problem defining αi, then
evaluation of the Jacobian matrix can be avoided altogether, although as we remarked earlier, the Jacobian
matrix is cheaply computable in the particular applications we are interested in here.

Remark 4.4. Note that if the nonlinear term N(·) is absent, then the zero-point problem is linear and the
associated energy functional is quadratic:

F (u) = Au − f = 0, J(u) =
1

2
(Au, u) − (f, u).

In this case, the Fletcher-Reeves CG algorithm reduces to exactly the Hestenes-Stiefel [93] linear conjugate
gradient algorithm (Algorithm 3.2 of Chapter 3, with the preconditioner B = I). The exact solution to
the linear problem Au = f , as well as to the associated minimization problem, can be reached in no more
than nk steps, where nk is the dimension of the space H (see Theorem 8.6.1 in [158]). The calculation of
the steplength αi no longer requires the iterative solution of a one-dimensional minimization problem with
Newton’s method, since:

dJ(ui + αip
i)

dαi
= αi(Api, pi) − (ri, pi) = 0

yields an explicit expression for the αi which minimizes the functional J in the direction pi:

αi =
(ri, pi)

(Api, pi)
.

4.2.3 Newton’s method and inexact/quasi/truncated variants

Given the nonlinear operator F : D ⊂ H 7→ H for some finite-dimensional space H, a generalization of the
classical Newton’s method for solving the problem F (u) = 0 is as follows:

F ′(un)vn = −F (un)

un+1 = un + vn.

In other words, the Newton iteration is simply the fixed-point iteration:

un+1 = G(un) = un − F ′(un)−1F (un). (4.7)

By viewing the Newton iteration as a fixed-point iteration, a very general convergence theorem can be proven
in the abstract space H.

Theorem 4.5 (Newton-Kantorovich Theorem) Given u0 ∈ D where D is convex, assume that F : D ⊂
H 7→ H is differentiable on D. If α = γβη < 1

2 , where:

(1) F ′(u) is uniformly Lipschitz-continuous in D with Lipschitz constant γ,

(2) F ′(u0) is nonsingular, with ‖F ′(u0)−1‖ ≤ β,

(3) ‖u1 − u0‖ = ‖F ′(u0)−1F (u0)‖ ≤ η,

then the Newton iteration (4.7) converges to a unique u∗ ∈ D.

Proof. See for example Theorem 8.2.6 in [157].

There are several variations of the standard Newton iteration (4.7) commonly used for nonlinear algebraic
equations which we mention briefly. A quasi-Newton method refers to a method which uses an approximation
to the true Jacobian matrix for solving the Newton equations. A truncated-Newton method uses the true
Jacobian matrix in the Newton iteration, but solves the Jacobian system only approximately, using an
iterative linear solver in which the iteration is stopped early or truncated. Inexact- or approximate-Newton
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methods refers to all of these types of methods collectively, where in the most general case an approximate
Newton direction is produced in some unspecified fashion. It can be shown that the convergence behavior
of these inexact-Newton methods is similar to the standard Newton’s method, and theorems similar to (4.5)
can be established (see Chapter 18 of [117], and the discussions below).

For our purposes here, the inexact-Newton approach will be of interest, for the following reasons. First,
in the case of partial differential equations such as the Poisson-Boltzmann equation which consist of a leading
linear term plus a nonlinear term which does not depend on derivatives of the solution, the nonlinear algebraic
equations generated often have the form:

F (u) = Au + N(u) − f = 0.

The matrix A is SPD, and the nonlinear term N(·) is often simple, and in fact is often of diagonal form,
meaning that the j-th component of the vector function N(u) is a function of only the j-th entry of the
vector u, or Nj(u) = Nj(uj); this occurs for example in the case of a box-method discretization of the
Poisson-Boltzmann equation and similar equations. Further, it is often the case that the derivative N ′(·) of
the nonlinear term N(·), which will be a diagonal matrix due to the fact that N(·) is of diagonal form, can
be computed (and applied to a vector) at low expense. If this is the case, then the true Jacobian matrix is
available at low cost:

F ′(u) = A + N ′(u).

A second reason for our interest in the inexact-Newton approach is that the efficient multilevel methods
developed in Chapter 3 for the linearized Poisson-Boltzmann equation and similar equations can be used
effectively for the Jacobian systems; this is because the Jacobian F ′(u) is essentially the linearized Poisson-
Boltzmann operator, where only the diagonal Helmholtz-like term N ′(·) changes from one Newton iteration
to the next. Our fast linear multilevel methods should be effective as inexact Jacobian system solvers, and
this is demonstrated numerically in Chapter 6.

Remark 4.5. Regarding the assumptions on the function F (·) and the Jacobian F ′(·) appearing in The-
orem 4.5, although they may seem unnatural at first glance, they are essentially the minimal conditions
necessary to show that the Newton iteration, viewed as a fixed-point iteration, is a contraction, so that a
contraction argument may be employed (cf. page 286 in [37]). Since a contraction argument is used, no
assumptions on the existence or uniqueness of a solution are required. A disadvantage of proving Newton
convergence through the Contraction Mapping Theorem is that only Q-linear convergence is shown. If addi-
tional assumptions are made, such as the existence of a unique solution, then Q-quadratic convergence can
be shown; examples can be found in [111, 120, 157].

4.2.4 Global Newton convergence through damping

As noted in the previous section, Newton-like methods converge if the initial approximation is “close” to the
solution; different convergence theorems require different notions of closeness. If the initial approximation is
close enough to the solution, then superlinear or Q-order(p) convergence occurs. However, the fact that these
theorems require a good initial approximation is also indicated in practice: it is well known that Newton’s
method will converge slowly or fail to converge at all if the initial approximation is not good enough.

On the other hand, methods such as those used for unconstrained minimization can be considered to be
“globally” convergent methods, although their convergence rates are often extremely poor. One approach to
improving the robustness of a Newton iteration without loosing the favorable convergence properties close to
the solution is to combine the iteration with a global minimization method. In other words, we can attempt
to force global convergence of Newton’s method by requiring that:

‖F (un+1)‖ < ‖F (un)‖,

meaning that we require a decrease in the value of the function at each iteration. But this is exactly what
global minimization methods, such as the nonlinear conjugate gradient method, attempt to achieve: progress
toward the solution at each step.

More formally, we wish to define a minimization problem, such that the solution of the zero-point problem
we are interested in also solves the associated minimization problem. Let us define the following two problems:
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Problem 1: Find u ∈ H such that F (u) = 0.
Problem 2: Find u ∈ H such that J(u) = minv∈H J(v).

We assume that Problem 2 has been defined so that the unique solution to Problem 1 is also the unique
solution to Problem 2; note that in general, there may not exist a natural functional J(·) for a given F (·),
although we will see in a moment that it is always possible to construct an appropriate functional J(·).

A descent direction for the functional J(·) at the point u is any direction v such that the directional
derivative of J(·) at u in the direction v is negative, or J ′(u)(v) = (J ′(u), v) < 0. If v is a descent direction,
then it is not difficult to show (Theorem 8.2.1 in [158]) that there exists some λ > 0 such that:

J(u + λv) < J(u). (4.8)

This follows from a generalized Taylor expansion (cf. page 255 in [124]), since

J(u + λv) = J(u) + λ(J ′(u), v) + O(λ2).

If λ is sufficiently small and (J ′(u), v) < 0 holds (v is a descent direction), then clearly J(u + λv) < J(u).
In other words, if a descent direction can be found at the current solution un, then an improved solution
un+1 can be found for some steplength in the descent direction v; i.e., by performing a one-dimensional line
search for λ until (4.8) is satisfied.

Therefore, if we can show that the Newton direction is a descent direction, then performing a one-
dimensional line search in the Newton direction will always guarantee progress toward the solution. In the
case that we define the functional as:

J(u) =
1

2
‖F (u)‖2 =

1

2
(F (u), F (u)),

we can show that the Newton direction is a descent direction. While the following result is easy to show for
H = R

n, we showed in Lemma 2.7 that it is also true in the general case when ‖ · ‖ = (·, ·)1/2:

J ′(u) = F ′(u)T F (u).

Now, the Newton direction at u is simply v = −F ′(u)−1F (u), so if F (u) 6= 0, then:

(J ′(u), v) = −(F ′(u)T F (u), F ′(u)−1F (u)) = −(F (u), F (u)) < 0.

Therefore, the Newton direction is always a descent direction for this particular choice of J(·), and by the
introduction of the damping parameter λ, the Newton iteration can be made globally convergent in the
above sense.

4.3 Damped-inexact-Newton-multilevel methods

Given the problem of nk nonlinear algebraic equations and nk unknowns:

F (u) = Au + N(u) − f = 0,

for which we desire the solution u, the “holy grail” for this problem is an algorithm which (1) always
converges, and (2) has optimal complexity, which in this case means O(nk).

As we have just seen, Newton’s method can be made essentially globally convergent with the introduction
of a damping parameter. In addition, close to the root, Newton’s method has at least superlinear convergence
properties. If a method with linear convergence properties is used to solve the Jacobian systems at each
Newton iteration, and the complexity of the linear solver is the dominant cost of each Newton iteration,
then the complexity properties of the linear method will determine the complexity of the resulting Newton
iteration asymptotically.

We have discussed in detail in Chapter 3 the convergence and complexity properties of multilevel methods;
in many situations they can be shown to have optimal complexity, and in many others this behavior can be
demonstrated empirically. With an efficient inexact solver such as a multilevel method for the early damped
iterations, employing a more stringent tolerance for the later iterations as the root is approached, a very
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efficient yet robust nonlinear iteration should result. The idea here, motivated by the work in [16, 17], is to
combine the robust damped Newton methods with the fast linear multilevel solvers developed in Chapter 3
for the inexact Jacobian system solves.

The conditions for linear solve tolerance to insure superlinear convergence have been given in [47, 54, 55].
Guidelines for choosing damping parameters to ensure global convergence, and yet allow for superlinear
convergence, have been established in [16]. Combination with linear multilevel iterative methods for the
semiconductor problem has been considered in [17], along with questions of complexity. We outline the basic
algorithm below, specializing it to the particular form of our nonlinear problems. We then give some results
on damping and inexactness tolerance selection strategies.

4.3.1 Newton-multilevel iteration

We will restrict our discussion here to the following nonlinear problem, which has arisen for example from
the discretization of a nonlinear elliptic problem:

F (u) = Au + N(u) − f = 0.

The derivative has the form:
F ′(u) = A + N ′(u).

The damped-inexact-Newton iteration for this problem takes the form:

Algorithm 4.2 (Damped-Inexact-Newton Method)

(1) Inexact Jacobian system solve: [A + N ′(un)] vn = f − Aun − N(un)
(2) Correction of the solution: un+1 = un + λnvn.

We employ the linear multilevel methods of Chapter 3 in Step (1) of Algorithm 4.2. A convergence analysis
of the undamped method is given in [85]. A detailed convergence analysis of the damped method is given
in [17]. Below, we outline what guidelines exists for selection of the damping parameters and the linear
iteration tolerance.

Remark 4.6. Note that due to the special form of the nonlinear operator, the damping step can be imple-
mented in a surprisingly efficient manner. During the one-dimensional line search for the parameter λn, we
continually check for satisfaction of the inequality:

‖F (un + λnvn)‖ < ‖F (un)‖.

The term on the right is available from the previous Newton iteration. The term on the left, although it
might appear to involve computing the full nonlinear residual, in fact can avoid the operator-vector product
contributed by the linear term. Simply note that

F (un + λnvn) = A[un + λnvn] + N(un + λnvn) − f = [Aun − f ] + λn[Avn] + N(un + λnvn).

The term [Aun − f ] is available from the previous Newton iteration, and [Avn] need be computed only once
at each Newton step. Computing F (un + λnvn) for each damping step beyond the first requires only the
“saxpy” operation [Aun − f ] + λn[Avn] for the new damping parameter λn, and evaluation of the nonlinear
term at the new damped solution, N(un + λnvn).

4.3.2 Linear iteration tolerance for local superlinear convergence

Quasi-Newton methods are studied in [54], and a “characterization” theorem is established for the sequence
of approximate Jacobian systems. This theorem establishes sufficient conditions on the sequence {Bi},
where Bi ≈ F ′, to ensure superlinear convergence of a quasi-Newton method. An interesting result which
they obtained is that the “consistency” condition is not required, meaning that the sequence {Bi} need not
converge to the true Jacobian F ′(·) at the root of the equation F (u) = 0, and superlinear convergence can
still be obtained.
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In the review paper [55], the characterization theorem of [54] is rephrased in a geometric form, showing
essentially that the full or true Newton step must be approached, asymptotically, in both length and direction,
to attain superlinear convergence in a quasi-Newton iteration.

Inexact-Newton methods are studied directly in [47]. Their motivation is the use of iterative solution
methods for approximate solution of the true Jacobian systems. They establish conditions on the accuracy
of the inexact Jacobian solves at each Newton iteration which will ensure superlinear convergence. The
inexact-Newton method is analyzed in the form:

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖ ≤ ηn,

un+1 = un + vn.

In other words, the quantity rn, which is simply the residual of the Jacobian linear system, indicates the
inexactness allowed in the approximate linear solve, and is exactly what one would monitor in a linear
iterative solver. It is established that if the forcing sequence ηn < 1 for all n, then the above method is
locally convergent. Their main result is the following theorem.

Theorem 4.6 (Dembo-Eisenstat-Steihaug) Assume that there exists a unique u∗ such that F (u∗) = 0, that
F (·) is continuously differentiable in a neighborhood of u∗, that F ′(u∗) is nonsingular, and that the inexact-
Newton iterates {un} converge to u∗. Then:

(1) The convergence rate is superlinear if: limn→∞ ηn = 0.

(2) The convergence rate is Q-order at least 1 + p if F ′(u∗) is Hölder continuous with exponent p, and

ηn = O(‖F (un)‖p), as n → ∞.

(3) The convergence rate is R-order at least 1 + p if F ′(u∗) is Hölder continuous with exponent p, and if
{ηn} → 0 with R-order at least 1 + p.

Proof. See [47].

As a result of this theorem, they suggest the tolerance rule:

ηn = min

{

1

2
, C‖F (un)‖p

}

, 0 < p ≤ 1, (4.9)

which guarantees Q-order convergence of at least 1 + p. In [149], the alternative criterion is suggested:

ηn = min

{

1

n
, ‖F (un)‖p

}

, 0 < p ≤ 1. (4.10)

4.3.3 Necessary and sufficient conditions for inexact descent

Note the following subtle point regarding the combination of inexact Newton methods and damping pro-
cedures for obtaining global convergence properties: only the exact Newton direction is guaranteed to be
a descent direction. Once inexactness is introduced into the Newton direction, there is no guarantee that
damping will achieve global convergence in the sense outlined above. However, the following simple result
gives a necessary and sufficient condition on the tolerance of the Jacobian system solve for the inexact
Newton direction to be a descent direction.

Theorem 4.7 The inexact Newton method (Algorithm 4.2) for F (u) = 0 yields a descent direction v at the
point u if and only if the residual of the Jacobian system r = F ′(u)v + F (u) satisfies:

(F (u), r) < (F (u), F (u)).

Proof. We remarked earlier that an equivalent minimization problem (appropriate for Newton’s method) to
associate with the zero point problem F (u) = 0 is given by minu∈H J(u), where J(u) = (F (u), F (u))/2.
We also noted that the derivative of J(u) can be written as J ′(u) = F ′(u)T F (u). Now, the direction v is a
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descent direction for J(u) if and only if (J ′(u), v) < 0. The exact Newton direction is v = −F ′(u)−1F (u),
and as shown earlier is always a descent direction. Consider now the inexact direction satisfying:

F ′(u)v = −F (u) + r, or v = F ′(u)−1[r − F (u)].

This inexact direction is a descent direction if and only if:

(J ′(u), v) = (F ′(u)T F (u), F ′(u)−1[r − F (u)])

= (F (u), r − F (u))

= (F (u), r) − (F (u), F (u))

< 0,

which is true if and only if the residual of the Jacobian system r satisfies:

(F (u), r) < (F (u), F (u)).

This leads to the following very simple sufficient condition for descent.

Corollary 4.8 The inexact Newton method (Algorithm 4.2) for F (u) = 0 yields a descent direction v at the
point u if the residual of the Jacobian system r = F ′(u)v + F (u) satisfies:

‖r‖ < ‖F (u)‖.

Proof. From the proof of Theorem 4.7 we have:

(J ′(u), v) = (F (u), r) − (F (u), F (u)) ≤ ‖F (u)‖‖r‖ − ‖F (u)‖2,

where we have employed the Cauchy-Schwarz inequality. Therefore, if ‖r‖ < ‖F (u)‖, then the rightmost
term is clearly negative (unless F (u) = 0), so that v is a descent direction.

Remark 4.7. The sufficient condition presented as Corollary 4.8 also appears as a lemma in [61]. Note that
most stopping criteria for the Newton iteration involve evaluating F (·) at the previous Newton iterate un.
The quantity F (un) will have been computed during the computation of the previous Newton iterate un, and
the tolerance for un+1 which guarantees descent requires (F (un), r) < (F (un), F (un)) by Theorem 4.7. This
involves only the inner-product of r and F (un), so that enforcing this tolerance requires only an additional
inner-product during the Jacobian linear system solve, which for nk unknowns introduces an additional
nk multiplies and nk additions. In fact, a scheme may be employed in which only a residual tolerance
requirement for superlinear convergence is checked until an iteration is reached in which it is satisfied. At
this point, the descent direction tolerance requirement can be checked, and additional iterations will proceed
with this descent stopping criterion until it too is satisfied. If the linear solver reduces the norm of the
residual monotonically (such as any of the linear methods of Chapter 3), then the first stopping criterion
need not be checked again.

In other words, this adaptive Jacobian system stopping criterion, enforcing a tolerance on the residual for
local superlinear convergence and ensuring a descent direction at each Newton iteration, can be implemented
at the same computational cost as a simple check on the norm of the residual of the Jacobian system.

Alternatively, the sufficient condition given in Corollary 4.8 may be employed at no additional cost,
since only the norm of the residual need be computed, which is also what is required to insure superlinear
convergence using Theorem 4.6.

4.3.4 Global superlinear convergence

In [16], an analysis of inexact-Newton methods is performed, where a damping parameter has been intro-
duced. Their goal was to establish selection strategies for both the linear solve tolerance and the damping
parameters at each Newton iteration, in an attempt to achieve global superlinear convergence of the damped-
inexact Newton iteration. It was established, similar to the result in [55], that the Jacobian system solve
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tolerance must converge to zero (exact solve in the limit), and the damping parameters must converge to one
(the full Newton step in the limit), for superlinear convergence to be achieved. There are several technical
assumptions on the function F (·) and the Jacobian F ′(·) in their paper; we will summarize one of their main
results in the following theorem, as it applies to the inexact-Newton framework we have constructed in this
chapter.

Theorem 4.9 (Bank and Rose) Suppose F : D ⊂ H 7→ H is a homeomorphism on H. Assume also that
F (·) is differentiable on closed bounded sets D, that F ′(u) is nonsingular and uniformly Lipschitz continuous
on such sets D, and that closed level set

So = {u | ‖F (u)‖ ≤ ‖F (u0)‖}

is a bounded set. Suppose now that the forcing and damping parameters ηn and λn satisfy:

ηn ≤ C‖F (xn)‖p, ηn ≤ η0, η0 ∈ (0, 1),

λn =
1

1 + Kn‖F (xn)‖ , 0 ≤ Kn ≤ K0, so that λn ≤ 1.

Then, there exists u∗ ∈ H such that F (u∗) = 0, and with any u0 ∈ H, the sequence generated by the
damped-inexact-Newton method:

F ′(un)vn = −F (un) + rn,
‖rn‖

‖F (un)‖ ≤ ηn, (4.11)

un+1 = un + λnvn (4.12)

converges to u∗ ∈ S0 ⊂ H. In addition, on the set S0, the sequence {un} converges to u∗ at rate Q-order at
least 1 + p.

Proof. See [17].

Note that by forcing ηn ≤ η0 < 1, it happens that the residual of the Jacobian system in Theorem 4.9
satisfies ‖rn‖ ≤ ηn‖F (un)‖ ≤ ‖F (un)‖, which by Corollary 4.8 always ensures that the inexact Newton
direction produced by their algorithm is a descent direction. The sequence {Kn} is then selected so that
each parameter is larger than a certain quantity (inequality 2.14 in [17]), which is a guarantee that an
appropriate steplength for actual descent is achieved, without line search. We remark that there is also a
weaker convergence result in [17] which essentially states that the convergence rate of the damped-inexact-
Newton method above is R-linear or Q-order(1 + p) on certain sets which are slightly more general than
the set S0. The parameter selection strategy suggested in [17] based on the above theorem is referred to
as Algorithm Global, which appears on page 287 in [17]. The idea of the algorithm is to avoid the typical
searching strategies required for other global methods by employing the sequence Kn above.

We now propose an alternative globally convergent inexact-Newton algorithm which is somewhat easier to
understand and implement, motivated by the simple necessary and sufficient descent conditions established
in the previous section.

Algorithm 4.3 (Damped-Inexact-Newton method)

(1) Inexact Jacobian system solve: F ′(un)vn = −F (un) + rn, TEST (rn) = TRUE,
(2) Correction of the solution: un+1 = un + λnvn,

where the damping parameters λn and procedure TEST (rn) are defined by:

(1) TEST (rn) guarantees both global descent and local Q-order(1 + p) convergence:
IF: ‖rn‖ ≤ C‖F (un)‖p+1, C > 0, p > 0, (local Q-order(1 + p) convergence)
AND: (F (un), rn) < (F (un), F (un)) (guaranteed descent for step n)
THEN: TEST ≡ TRUE; ELSE: TEST ≡ FALSE.

(2) The damping parameters λn satisfy: ‖F (un + λnvn)‖ ≤ ‖F (un)‖,
using any line search method; this is always possible if TEST (rn) = TRUE.
The full inexact-Newton step λ = 1 is always tried first.
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An alternative less expensive procedure TEST (rn) is as follows:

(1’) TEST (rn) guarantees both global descent and local Q-order(1 + p) convergence:
IF: ‖rn‖ ≤ C‖F (un)‖p+1, C > 0, p > 0, (local Q-order(1 + p) convergence)
AND: ‖rn‖ < ‖F (un)‖ (guaranteed descent for step n)
THEN: TEST ≡ TRUE; ELSE: TEST ≡ FALSE.

In Algorithm 4.3, the second condition in (1) is the necessary and sufficient condition for the inexact-
Newton direction to be a descent direction, established in Theorem 4.7. The second condition in (1’) of
Algorithm 4.3 is the weaker sufficient condition established in Corollary 4.8. Note that, in early iterations
when Q-order(1+p) for p > 0 is not to be expected, just satisfying one of the descent conditions is (necessary
and) sufficient for progress toward the solution. The condition ηn < 1 in Theorem 4.9 implies that the inexact-
Newton directions produced by their algorithm are, by Corollary 4.8, descent directions. Algorithm 4.3
decouples the descent and superlinear convergence conditions, and would allow for the use of only the
weakest possible test of (F (un), rn) < (F (un), F (un)) far from the solution, ensuring progress toward the
solution with the least amount of work per Newton step.

Note also that the Q-order(1 + p) condition

‖rn‖ ≤ C‖F (un)‖p+1

does not guarantee a descent direction, so that it is indeed important to satisfy the descent condition
separately. The Q-order(1 + p) condition will impose descent if

C‖F (un)‖p+1 < ‖F (un)‖,

which does not always hold. If one is close to the solution, so that ‖F (un)‖ < 1, and if C ≤ 1, then the
Q-order(1 + p) condition will imply descent. By this last comment, we see that if ‖F (un)‖ < 1 and C ≤ 1,
then the full inexact-Newton step is a descent direction, and since we attempt this step first, we see that our
algorithm reduces to the algorithm studied in [47] near the solution; therefore, Theorem 4.6 above applies
to Algorithm 4.3 near the solution without modification.

4.3.5 Stopping criteria for Newton and other nonlinear iterations

As in a linear iteration, there are several quantities which can be monitored during a nonlinear iteration to
determine whether a sufficiently accurate approximation un+1 to the true solution u∗ has been obtained.
Possible choices, with respect to any norm ‖ · ‖, include:

(1) Nonlinear residual: ‖F (un+1)‖ ≤ FTOL
(2) Relative residual: ‖F (un+1)‖/‖F (u0)‖ ≤ RFTOL
(3) Iterate change: ‖un+1 − un‖ ≤ UTOL
(4) Relative change: ‖un+1 − un‖/‖un+1‖ ≤ RUTOL
(5) Contraction estimate: ‖un+1 − un‖/‖un − un−1‖ ≤ CTOL.

We also mention a sixth option, which attempts to obtain an error estimate from the Contraction Mapping
Theorem 4.1 by estimating the contraction constant α of the nonlinear fixed-point mapping G(·) associated
with the iteration. The constant is estimated as follows:

α =
‖un+1 − un‖
‖un − un−1‖ =

‖G(un) − G(un−1)‖
‖un − un−1‖ ,

and the Contraction Mapping Theorem gives the error estimate-based criterion:

(6) Error estimate : ‖u∗ − un+1‖ ≤ α

1 − α
‖un+1 − un‖ ≤ ETOL.

There are certain difficulties with employing any of these conditions alone. For example, if the iteration
has temporarily stalled, then criteria (3) and (4) would prematurely halt the iteration. On the other hand,
if the scaling of the function F (·) is such that ‖F (·)‖ is always very small, then criterion (1) could halt the
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iteration early. Criterion (2) attempts to alleviate this problem in much the same way as a relative stopping
criteria in the linear case. However, if the initial approximation u0 is such that ‖F (u0)‖ is extremely large,
then (3) could falsely indicate that a good approximation has been reached. Criterion (5) cannot be used
to halt the iteration alone, as it gives no information about the quality of the approximation; it would be
useful in a Newton iteration to detect when the region of fast convergence has been entered.

Criterion (6) may be the most reliable stand-alone criteria, although it depends on the accuracy of
the contraction number estimate. If the contraction number is constant (linear convergence) over many
iterations or goes to zero monotonically (superlinear convergence), then this should be reliable; otherwise,
the contraction estimate may have no bearing on the true contraction constant for the mapping G(·), and
the error estimate may be poor.

Several dual criteria have been proposed in the literature. For example, the combination of (4) and (5)
was suggested in [15], since (4) attempts to detect convergence has been reached, whereas (5) attempts to
ensure that (4) has not been satisfied simply due to stalling of the iteration. In [56], the combination of (4)
and (1) is suggested, where (1) attempts to prevent halting on (4) due to stalling. The idea of scaling the
components of un+1 in (1) and F (un+1) in (2) is also recommended in [56], along with use of the maximum
norm ‖ ·‖∞. In [71], other combinations are suggested (with an optimization orientation, some combinations
involving the associated functional J(·)).

In the implementations of our nonlinear methods, including our implementations of the classical nonlinear
methods, the nonlinear conjugate gradient method, the damped-inexact-Newton-multilevel methods, and the
nonlinear multilevel methods discussed below, we provide all of (1) through (4) as options separately, using
the maximum norm ‖ · ‖∞. In addition, we provide the combination of (1) and (4) as suggested in [56] as
a fifth option, and (6) as a stand alone sixth option. In practice, for the Poisson-Boltzmann problem and
similar problems, employing either (1) alone, or (1) and (4) together, seems to be reliable.

4.4 Nonlinear multilevel methods

Nonlinear multilevel methods were developed originally in [29, 80]. These methods attempt to avoid Newton-
linearization by accelerating nonlinear relaxation methods with multiple coarse problems. We are again
concerned with the problem:

F (u) = Au + N(u) − f = 0.

Let us introduce the notation M(·) = A + N(·), which yields the equivalent problem:

M(u) = f.

While there is no direct analogue of the linear error equation in the case of a nonlinear operator M(·), a
modified equation for en can be used. Given an approximation un to the true solution u at iteration n, the
equations:

rn = f − M(un), M(u) = M(un + en) = f,

where rn and en are the residual and error, give rise to the expressions:

un = M−1(f − rn), en = M−1(f) − un,

which together give an expression for the error:

en = (un + en) − un = M−1(f) − M−1(f − rn).

This expression can be used to develop two- and multiple-level methods as in the linear case.

4.4.1 A nonlinear two-level method

Consider now the case of two nested finite-dimensional spaces Hk−1 ⊂ Hk, where Hk is the fine space and
Hk−1 is a lower-dimensional coarse space, connected by a prolongation operator Ik

k−1 : Hk−1 7→ Hk and

a restriction operator Ik−1
k : Hk 7→ Hk−1. These spaces may, for example, correspond to either the finite

element spaces Mk or the grid function spaces Uk arising from the discretization of a nonlinear elliptic
problem on two successively refined meshes as discussed in §4.1.4.
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Assuming that the error can be smoothed efficiently as in the linear case, then the error equation can
be solved in the coarser space. If the solution is transferred to the coarse space as un

k−1 = Ik−1
k un

k , then
the coarse space source function can be formed as fk−1 = Mk−1(u

n
k−1). Transferring the residual rk to the

coarse space as rn
k−1 = Ik−1

k rn
k , the error equation can then be solved in the coarse space as:

en
k−1 = Ik−1

k un
k − M−1

k−1(Mk−1(I
k−1
k un

k ) − Ik−1
k rn

k ).

The solution is corrected as:

un+1
k = un

k + Ik
k−1e

n
k−1

= un
k + Ik

k−1[I
k−1
k un

k − M−1
k−1(Mk−1(I

k−1
k un

k ) − Ik−1
k [fk − Mk(un

k )])]

= Kk(un
k , fk).

Therefore, the nonlinear coarse space correction can be viewed as a fixed-point iteration.

The algorithm implementing the nonlinear error equation is known as the full approximation scheme [29]
or the nonlinear multigrid method [85]. The two-level version of this iteration can be formulated as:

Algorithm 4.4 (Nonlinear Two-level Method)

(1) Coarse level correction: vk = Kk(un
k , fk)

(2) Post-smoothing: un+1
k = Sk(vk , fk).

Algorithm 4.4 will require a nonlinear relaxation operator Sk(·) in Step (2), and restriction and prolonga-
tion operators as in the linear case, as well as the solution of the nonlinear coarse space equations, to apply
the mapping Kk(·) in Step (1).

4.4.2 Nonlinear multilevel methods

We consider now a nested sequence of finite-dimensional spaces H1 ⊂ H2 ⊂ · · · ⊂ HJ ≡ H, where HJ is
the finest space and H1 the coarsest space, each space being connected to the others via prolongation and
restriction operators, as discussed in §4.1.4.

The multi-level version of Algorithm 4.4 would employ another two-level method to solve the coarse space
problem in Step (1), and can be described recursively as follows:

Algorithm 4.5 (Nonlinear Multilevel Method)

un+1 = NML(J, un, f)

where the operation uNEW
k = NML(k, uOLD

k , fk) is defined recursively:

IF (k = 1) THEN:
(1) Solve directly: uNEW

1 = M−1
1 (f1).

ELSE:

(1) Restrict residual and solution: rk−1 = Ik−1
k (fk − Mk(uOLD

k )), uk−1 = Ik−1
k uOLD

k

(2) Form coarse source term: fk−1 = Mk−1(uk−1) − rk−1

(3) Solve coarse problem: wk−1 = uk−1 − NML(k − 1, uk−1, fk−1)
(4) Prolongate correction: wk = Ik

k−1wk−1

(5) Find damping parameter: λ = (see below)
(6) Coarse level correction: vk = uOLD

k + λwk

(7) Post-smoothing: uNEW
k = Sk(vk, fk).

END.

The practical aspects of this algorithm and variations are discussed in [29]. A convergence theory has been
discussed in [85], and more recently in the sequence of papers [87, 88, 163, 164].
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4.4.3 The damping parameter

Note that we have introduced a damping parameter λ in the coarse space correction step of Algorithm 4.5,
analogous to the damped-inexact-Newton-multilevel method discussed earlier. In fact, without this damping
parameter, the algorithm fails for difficult problems such as those with exponential or rapid nonlinearities
(this is also true for the Newton iteration without damping).

To explain how the damping parameter is chosen, we refer back to our discussion of nonlinear conjugate
gradient methods. We begin with the following energy functional:

Jk(uk) =
1

2
(Akuk, uk)k + Bk(uk) − (fk, uk)k.

As we have seen, the resulting minimization problem:

Find uk ∈ Hk such that Jk(uk) = min
vk∈Hk

Jk(vk)

is equivalent to the associated zero-point problem:

Find uk ∈ Hk such that Fk(uk) = Akuk + Nk(uk) − fk = 0,

where Nk(uk) = B′
k(uk). In other words, Fk(·) is a gradient mapping of the associated energy functional

Jk(·), where we assume that both problems above are uniquely solvable.
In [88], it is shown (with suitable conditions on the nonlinear term Bk(·) and satisfaction of a nonlinear

form of the variational conditions) that the prolongated coarse space correction wk = Ik
k−1wk−1 is a descent

direction for the functional Jk(·). Therefore, there exists some λ > 0 such that

Jk(uk + λwk) < Jk(uk).

Minimization of Jk(·) along the descent direction wk is equivalent to solving the following one-dimensional
problem:

dJ(uk + λwk)

dλ
= 0.

As in the discussion of the nonlinear conjugate gradient method, the one-dimensional problem can be solved
with Newton’s method:

λm+1 = λm − λm(Akwk, wk)k − (rk , wk)k + (Nk(uk + λmwk) − Nk(uk), wk)k

(Akwk , wk)k + (N ′
k(uk + λmwk)wk , wk)k

.

Now, recall that the “direction” from the coarse space correction has the form: wk = Ik
k−1wk−1. The

Newton correction for λ then takes the form:

λm(AkIk
k−1wk−1, I

k
k−1wk−1)k − (rk , Ik

k−1wk−1)k + (Nk(uk + λmIk
k−1wk−1) − Nk(uk), Ik

k−1wk−1)k

(AkIk
k−1wk−1, Ik

k−1wk−1)k + (N ′
k(uk + λmIk

k−1wk−1)Ik
k−1wk−1, Ik

k−1wk−1)k
.

If the linear variational conditions are satisfied:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T , (4.13)

then this expression becomes:

λm(Ak−1wk−1, wk−1)k−1 − (rk−1, wk−1)k−1 + (Ik−1
k (Nk(uk + λmIk

k−1wk−1) − Nk(uk)), wk−1)k−1

(Ak−1wk−1, wk−1)k−1 + (Ik−1
k N ′

k(uk + λmIk
k−1wk−1)Ik

k−1wk−1, wk−1)k−1

.

It can be shown [88] that as in the linear case, a conforming finite element discretization of the nonlinear
elliptic problem we are considering, on two successively refined meshes, satisfies the following so-called
nonlinear variational conditions:

Ak−1 + Nk−1(·) = Ik−1
k AkIk

k−1 + Ik−1
k Nk(Ik

k−1·), Ik−1
k = (Ik

k−1)
T . (4.14)
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As in the linear case, these conditions are usually required [87, 88] to show theoretical convergence results
about nonlinear multilevel methods. Unfortunately, unlike the linear case, there does not appear to be a way
to enforce these conditions algebraically (at least for the strictly nonlinear term Nk(·)) in an efficient way.
Therefore, if we employ discretization methods other than finite element methods, or cannot approximate
the integrals accurately (such as if discontinuities occur within elements on coarser levels) for assembling
the discrete nonlinear system, then the variational conditions will be violated. With our algebraic approach,
we will have to be satisfied with violation of the nonlinear variational conditions, at least for the strictly
nonlinear term Nk(·), in the case of the nonlinear multilevel method.

Our comments earlier with regard to the computational details of this one-dimensional minimization are
also valid here. In short, in the case that the a discretization of a nonlinear elliptic partial differential equation
gives rise to a nonlinear term N(·) is of diagonal form, meaning that the j-th component is a function of
only the j-th component of vector of nodal values u, or Nj(u) = Nj(uj), then the Jacobian matrix N ′(·)
is diagonal. The computation of the Newton correction for λm+1 then requires the equivalent of less than
three inner-products plus function evaluations (and two inner-products for initialization). Therefore, this
calculation is reasonably cheap if few iterations are required.

In [87, 88], an expression is given for λ in an attempt to avoid solving the one-dimensional minimization
problem. Certain norm estimates are required in their expression for λ, which depends on the particular
nonlinearity; therefore, the full line search approach may be more robust, although more costly.

Remark 4.8. There is an interesting recent result regarding the damping parameter in the linear case, first
noticed in [87]. If the nonlinear term N(·) is absent, the zero-point problem is linear and the associated
energy functional is quadratic:

Fk(uk) = Akuk − fk = 0, Jk(uk) =
1

2
(Akuk, uk)k − (fk, uk)k.

As in the conjugate gradient algorithm, the calculation of the steplength λ no longer requires the iterative
solution of a one-dimensional minimization problem with Newton’s method, since:

dJ(uk + λwk)

dλ
= λ(Akwk, wk)k − (rk, wk)k = 0

yields an explicit expression for λ which minimizes the functional Jk(·) in the direction wk :

λ =
(rk, wk)k

(Akwk , wk)k
.

Since wk = Ik
k−1wk−1, we have that:

λ =
(rk , wk)k

(Akwk , wk)k
=

(rk, Ik
k−1wk−1)k

(AkIk
k−1wk−1, Ik

k−1wk−1)k
=

((Ik
k−1)

T rk , wk−1)k−1

((Ik
k−1)

T AkIk
k−1wk−1, wk−1)k−1

.

Therefore, if the variational conditions (4.13) are satisfied, the damping parameter can be computed cheaply
with only coarse space quantities:

λ =
(Ik−1

k rk, wk−1)k−1

(Ik−1
k AkIk

k−1wk−1, wk−1)k−1

=
(rk−1, wk−1)k−1

(Ak−1wk−1, wk−1)k−1
.

Note that in the two-level case, wk−1 = A−1
k−1rk−1, so that always λ = 1. Otherwise, numerical experi-

ments show that λ ≥ 1, and it is argued [87] that this is always the case. Adding the parameter λ to the
linear multilevel algorithms of Chapter 3 guarantees that the associated functional Jk(·) is minimized along
the direction defined by the coarse space correction. A simple numerical example in [87] illustrates that in
fact the convergence rate of the linear algorithm can be improved to a surprising degree by employing the
damping parameter. Our experience bears this out, and we have incorporated the damping parameter into
our linear algorithms as well.
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4.5 Nonlinear operator-based prolongation

To explain this attempt at improving on the usual linear prolongation in the case of problems with coefficient
discontinuities and rapid nonlinearities, we will use a one-dimensional example as in Chapter 3, where we
now consider the nonlinear case:

− d

dx

(

a(x)
d

dx
u(x)

)

+ b(x, u(x)) = f(x) in (c, d), u(c) = u(d) = 0. (4.15)

The functions a(x) and b(x, ·) are positive for all x in [c, d], and a(x), b(x, ·), and f(x) are continuously
differentiable everywhere, except that one or more of the three may be discontinuous at the interface point
x = ξ ∈ (c, d).

Define a discrete mesh c = x0 < x1 < . . . < xn+1 = d, with xi+1 = xi + hi for hi > 0, such that the point
of discontinuity coincides with some mesh point xi = ξ. For a box-method discretization, we consider the
interval [xi − hi−1/2, xi + hi/2] containing the point xi and integrate (4.15) over the interval. Let us denote
the half-mesh points as xi−1/2 = xi −hi−1/2 and xi+1/2 = xi +hi/2. After performing the integration of the
first term of (4.15) separately over the half-intervals [xi−1/2, xi] and [xi, xi+1/2], and enforcing the continuity
condition at the interface point xi = ξ

lim
x→xi−

a(x)
d

dx
u(x) = lim

x→xi+
a(x)

d

dx
u(x), (4.16)

the following expression is obtained, which is exact for the solution u(x) in the interval:

(

a(xi−1/2)
d

dx
u(xi−1/2)

)

−
(

a(xi+1/2)
d

dx
u(xi+1/2)

)

+

∫ xi+1/2

xi−1/2

b(x, u(x))dx =

∫ xi+1/2

xi−1/2

f(x)dx.

An algebraic expression is then obtained for an approximation uh(xi) to u(xi) by replacing the derivatives
with differences, and replacing the integrals with quadrature formulas separately over the half intervals.
Denoting the discretized functions as uh(xi), we can for example use centered differences and the rectangle
rule:

ah(xi−1/2)

(

uh(xi) − uh(xi−1)

hi−1

)

− ah(xi+1/2)

(

uh(xi+1) − uh(xi)

hi

)

+

(

hi−1bh(x−
i , uh(xi)) + hibh(x+

i , uh(xi))

2

)

=

(

hi−1fh(x−
i ) + hifh(x+

i )

2

)

. (4.17)

If we assume that the nonlinear term b(·, ·) is separable in the sense that:

b(x, u(x)) = η(x)β(u(x)),

such as in the case of the Poisson-Boltzmann equation, then the discrete equations can be written as:

ah(xi−1/2)

(

uh(xi) − uh(xi−1)

hi−1

)

− ah(xi+1/2)

(

uh(xi+1) − uh(xi)

hi

)

+

(

hi−1ηh(x−
i ) + hiηh(x+

i )

2

)

βh(uh(xi)) =

(

hi−1fh(x−
i ) + hifh(x+

i )

2

)

. (4.18)

In the stencil form of Chapter 3, this can be written as:

[

−Wi Ci −Ei

]h

h





uh(xi−1)
uh(xi)

uh(xi+1)



+ [Di]βh(uh(xi)) =
[

f̃h(xi)
]

. (4.19)

In the linear case (Di = 0), the operator-based prolongation was derived in Chapter 3 by attempting to
enforce flux conservation at box boundaries when a coarse mesh function was prolongated to a fine mesh.
Alternatively, we also noted that this prolongation could be derived by solving (4.19) for a new fine mesh
point uh(xi), where uh(xi−1) and uh(xi+1) correspond to coarse mesh points (having first been injected to
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the fine mesh). If the correction from the coarse mesh is being prolongated then a zero source function should
be used, as this can be interpreted as requiring that the prolongated correction not contribute to increasing
the residual of the linear system on the fine mesh. Otherwise, if the solution on the coarse mesh is being
prolongated, as during a nested iteration, then the true source function should be used.

Using the stencil notation of Chapter 3, the linear prolongation has the form:

Ih
H = [ PEi−1 0 PWi+1 ]hH(h) ∨ [ PCi ]hH(H),

where:

PCi = 1, PEi−1 =
Wi

Ci
, PWi+1 =

Ei

Ci
.

In the nonlinear case, we cannot simply solve directly for the interpolated fine mesh point uh(xi), and instead
must solve the following one-dimensional nonlinear problem for uh(xi):

Ciuh(xi) + Diβh(uh(xi)) = Fi + Wiuh(xi−1) + Eiuh(xi+1),

where Fi = f̃h(xi). We can write this in stencil form by abusing the notation from Chapter 3 a little:

Ih
H (uh) = [ PNi(uh) ]hH(h) ∨ [ PCi ]hH(H),

where:
PCi = 1,

PNi(uh) = uh(xi) +
Di

Ci
βh(uh(xi)) −

Wi

Ci
uh(xi−1) −

Ei

Ci
uh(xi+1) −

Fi

Ci
= 0.

To apply the stencil, all coarse mesh points coincident with fine mesh points are first injected, and then for
all fine mesh points xi not lying on a coarse mesh, the one-dimensional zero-point problem PNi(uh) = 0
must be solved for uh(xi). If Di = 0, then the one-dimensional problem is linear, and the prolongation
reduces to the linear case.

Remark 4.9. The extensions to two and three dimensions are immediate, by employing the stencil com-
pression ideas of Chapter 3. Since a box-method discretization produces diagonal-type nonlinearities for
problems such as the Poisson-Boltzmann equation, the nonlinear problems which must be solved for the
prolongation remain one-dimensional; the stencil compression involves only the linear terms.



5. Multilevel Convergence Theory

In this chapter, we examine briefly how multilevel methods are analyzed theoretically. We summarize the
thirty year progression of multilevel convergence theory, beginning with the paper of Federenko in 1961, and
finishing with the recent work of Bramble, Pasciak, Wang, and Xu in 1991 (the BPWX theory). We review
some of the early approaches, identify the two fundamental assumptions used in most of the contemporary
theories, and examine when these assumptions are valid. We prove weak two- and multilevel regularity-free
results using algebraic generalizations of the existing two- and multilevel theories from the finite element
setting, and indicate some possible stronger results for the multilevel case, motivated by some numerical
evidence presented later in Chapter 6. We then outline a generalization of the most recently developed finite
element-based Schwarz method theories, which we refer to as product and sum splitting theory, or algebraic
Schwarz theory. This theory is an algebraic subspace splitting theory for additive and multiplicative Schwarz
methods, representatives of which include both algebraic multilevel and domain decomposition methods.

This chapter provides an overview of multilevel theory, and outlines an adaptation of some results found
in the current literature, so as to provide a theory for the algebraic Galerkin methods described in Chapter 3.
In particular, what we have done here is the following.1

• We develop an operator-based framework for multilevel methods, employing the generalized recursive
and product forms of the multilevel error propagation operator derived earlier, applying to both
algebraic and finite element-based multilevel methods.

• We give (weak) algebraic two- and multilevel convergence proofs based on this framework. These
proofs are equivalent to some existing results for algebraic multilevel methods.

• We outline an algebraic product and sum splitting theory for multiplicative and additive Schwarz meth-
ods, derived from the Schwarz theory arising in the finite element setting. This theory requires few
assumptions, and the convergence results are reasonably good in the algebraic domain decomposition
case. The theory can also be used to design effective algebraic multigrid methods.

In addition to the references cited directly in the text below, the material in this chapter owes much to the
following sources: [14, 24, 26, 141, 142, 143, 184, 185].

5.1 Classical and modern convergence theories

The modern multilevel convergence theories involve the separation of the partial differential equation from
an abstract algorithm in a Hilbert space. A regularity and approximation assumption then underlies most
theories, which ties the partial differential equation and the abstract algorithm together through a regularity
assumption on the solution to the partial differential equation. The verification of this assumption uses dual-
ity arguments originating in the finite element literature; these duality arguments require elliptic regularity
assumptions (smoothness assumptions) on the solution of the partial differential equation. Unfortunately,
solutions to problems such as the Poisson-Boltzmann equation often do not satisfy these regularity assump-
tions, hence the usual multilevel theories are not valid for these problems. It is only quite recently that a

1This material appears in expanded form in [98].
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partial theory has emerged for linear equations with discontinuous coefficients and other irregularities.
In this first section, we will review some of the early approaches to multilevel convergence theory, briefly

summarize some of the results obtained in the last ten years, discuss in detail the two assumptions which
are fundamental to most of these multilevel theories, and then look in detail at a new regularity-free theory
which has appeared only very recently. For an explanation of the notation we will use here for multilevel
methods, refer to the detailed discussion in Chapter 3.

5.1.1 Variational conditions and regularity-approximation assumptions

Most modern multilevel theories require the so-called variational conditions:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T . (5.1)

As we noted in Chapter 3, the variational conditions imply that correction on the coarsest level corresponds to
A-orthogonal projection of the error onto the complement of the coarse level space. The variational conditions
are satisfied naturally with nested finite element discretizations, and many proofs rely either explicitly on
the variational conditions by stating them as assumptions [84, 136, 146], or implicitly by performing the
analysis in nested finite element spaces [14, 153].

The linear multilevel framework we constructed in Chapter 3 does not rely on these conditions; however,
both the recursive and product forms of the error propagation operator which we derived require that the
variational conditions hold. In [85], a convergence theory is given which allows for the violation of (5.1) by
a small perturbation, which then appears in the analysis (equation 6.3.27, and pages 147-149, in [85]).

Finally, we remark that even in the case of nested finite element discretizations, the variational condi-
tions (5.1) will hold for the resulting algebraic equations only with exact evaluation of the integrals which
must be evaluated for the components of the stiffness matrices; see [74] for a detailed and discussion of how
quadrature effects multilevel convergence theory.

Most multilevel convergence theories require the so-called regularity and approximation assumption,
which in our notation can be written in the form:

(Ak(I − Pk;k−1)uk, uk)k ≤ C1

(

λ−1
k ‖Akuk‖2

k

)α
(Akuk, uk)1−α, ∀uk ∈ Hk, (5.2)

where α ∈ (0, 1], and where λk is the maximal eigenvalue of Ak. The case of α = 1 is called the full regularity
and approximation assumption:

(Ak(I − Pk;k−1)uk, uk)k ≤ C1λ
−1
k ‖Akuk‖2

k, ∀uk ∈ Hk. (5.3)

The proofs that these assumptions are valid for elliptic partial differential equations hinge on certain
duality arguments originating in the finite element literature; refer for example to [36] for a discussion of
the Aubin-Nitsche trick, also called L2-lifting. These duality arguments require certain elliptic regularity
assumptions which we discussed briefly in Chapter 2, as well as assumptions involving the approximation
properties of the (finite element) subspaces involved. As discussed in Chapter 2, these elliptic regularity
assumptions take the form: there exists a constant C and some α ∈ (0, 1] such that

‖u‖H1+α(Ω) ≤ C‖f‖Hα−1(Ω), (5.4)

where ‖ · ‖Hs(Ω) denotes the usual Sobolev norm of order s ∈ R. In several papers, in particular [14, 24, 46],
the regularity and approximation assumptions have been analyzed in detail, and it is shown that in certain
situations, the assumption (5.4) implies assumption (5.2).

To prove that the regularity assumption (5.4) implies the regularity and approximation assumption (5.2)
requires a certain discrete norm equivalence result, first given as Lemma 1 in [14], which can be shown
for finite element spaces based on quasi-uniform meshes. By combining this norm equivalence result with
the standard approximation properties of finite element spaces, and using duality arguments similar to the
Aubin-Nitsche trick, it can be shown (cf. Proposition 5.1 in [24]) that (5.4) implies (5.2) for the same α.
We note that also in [24], examples are given which imply that the two results are strongly related, in that
if (5.4) is violated, then so is (5.2).
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Until recently, all multilevel theories required assumption (5.2) for p-cycle results, and the full regularity
and approximation assumption (5.3) for v-cycle results. Unfortunately, in the case of problems with dis-
continuous coefficients such as the Poisson-Boltzmann equation, the elliptic regularity inequalities like (5.4)
either do not hold at all, or hold only with extremely large constants C. If it is known only that u ∈ H 1(Ω),
then the proof techniques relying on the regularity estimates cannot be used. Note that it can be demon-
strated numerically that even in the case of discontinuous coefficients, multilevel methods can often be
made to yield optimal order behavior, or nearly so. Therefore, it has long been debated whether the reg-
ularity assumption is really required to prove optimal multigrid convergence results [46, 141]. We remark
that two-level convergence theories, not requiring elliptic regularity assumptions, have been known for some
time [30, 85, 138, 166]; we will outline a two-level theory using the framework of Chapter 3 later in this
chapter.

Recently, a new theory (the BPWX theory) of multilevel methods has appeared in [26], avoiding the use
of elliptic regularity assumptions by requiring only approximation assumptions. To apply the theory to a
multigrid algorithm for an elliptic equation, one must establish the existence of certain projection operators
relating the finite element subspaces MJ , which satisfy two simple properties. The key to this theory is a
certain product form of the multilevel error propagation operator, which is a special case of the generalized
product form we derived in Chapter 3, arising when the prolongation and restriction operators are taken to
be the natural inclusion and orthogonal projection, respectively.

As we will discuss in more detail shortly, in the case of elliptic equations with discontinuous coefficients
with discontinuities lying along element boundaries of a finite element mesh, it can be shown that there
exists operators which satisfy these two properties, and hence the convergence theory is applicable. The
resulting convergence property that can be proven has the following form:

‖Es‖A ≤ δJ = 1 − C

Jν
< 1,

where Es is the symmetric multilevel error propagator, J is the number of levels in the algorithm, and ν = 1
for simple discontinuities, or more generally ν = 2. Thus, the contraction number decays with J , which gives
rise to a logarithmic factor in the complexity estimates.

5.1.2 Brief summary of early approaches

The formulation of a multilevel method appeared first in the Russian literature in [64], although block
relaxation methods which are similar in some respects are described earlier in the west [173, 180]. In his
1961 paper Fedorenko described a two-level method for solving elliptic equations, and in a second paper from
1964 [65] proved convergence of a multilevel method for Poisson’s equation on the square. In a paper from
1966 [11], Bakhvalov extended these results to more general elliptic operators on rectangles, and showed
that the resulting methods were of optimal order. Astrakhantsev was the first to consider the multilevel
method in a variational setting in 1971 [8], and showed convergence for more general elliptic operators on
fairly general domains with a finite element discretization.

After 1975, papers on multilevel methods began appearing in Europe and the United States. In 1977,
Nicolaides [153] gave another convergence proof for a finite element discretization, but was unaware of the
work of Astrakhantsev. Brandt began to use the methods in the context of fluid dynamics applications in
1972 [28], and published the first comprehensive paper on multilevel methods in 1977 [29]. In 1980, Bank and
Dupont gave convergence proofs of two different multilevel methods using finite element discretizations [13,
14]. Hackbusch began a series of papers on convergence theory in 1976 [78, 79], and continued with various
generalizations [23, 81, 82, 83, 84], which culminated with the publication of his comprehensive book in
1985 [85].

For model problems such as Poisson’s equation on the unit square, a discrete Fourier analysis can be
used to construct a similarity transformation which block-diagonalizes the multilevel error propagator Ek =
I−BkAk; the size of the diagonal blocks reflect the dimension of invariant subspaces under multiplication by
Ek. The convergence rate can then be computed directly from the diagonal blocks. The early convergence
proofs were generally of this form [11, 65, 78, 175], and as a result were restricted to model problems.

Since 1980, many multilevel convergence proofs have been published (an incomplete list numbers over
forty). The earliest approaches for more general problems [8, 14, 57, 84, 136, 143, 146, 153, 182] were for
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the p-cycle only (p > 1), and convergence was shown only for “sufficiently many” smoothings per iteration.
The proof techniques involved analyzing the two-level scheme and deriving multilevel estimates indirectly
from two-level estimates. The p-cycle proofs typically require only the weaker regularity and approximation
assumption (5.2) for some α > 0.

The first v-cycle proof for any number of smoothings per iteration was [23], and involved a direct analysis
of the multilevel method rather than the extension of two-level results. More recent v-cycle proofs for any
positive number of smoothings per iteration include [12, 23, 24, 137, 142, 144, 145, 188]. The v-cycle proofs
typically require the full regularity and approximation assumption (5.3).

5.1.3 Modern approaches based on product error propagators

In this section, we outline a simple abstract operator-based approach, based on the product multilevel
operator framework constructed in Chapter 3. This framework was derived as a generalization of the BPWX-
theory discussed at the end of the chapter. Implicit in this approach are the variational conditions (5.1);
these conditions are essentially the only assumptions, so that the theory applies to the algebraic Galerkin
two-level and multilevel methods of Chapter 3, as well as to finite element-based multilevel methods.

Recall the operator-form of the multilevel algorithm for solving the operator equation Au = f in the finest
space of a nested sequence of spaces H1 ⊂ H2 ⊂ · · · ⊂ HJ ≡ H, presented as Algorithm 3.6 in Chapter 3.
We repeat the algorithm here for reference; in this chapter, we will generally leave off the subscripts J for
quantities in the finest space H ≡ HJ , without danger of confusion.

Algorithm 5.1 (Nonsymmetric Multilevel Method – Operator Form)

un+1 = un + B(f − Aun)

where the multilevel operator B ≡ BJ is defined by the recursion:

(1) Let B1 = A−1
1 , and assume Bk−1 has been defined.

(2) Bk = Ik
k−1Bk−1I

k−1
k + Rk − RkAkIk

k−1Bk−1I
k−1
k .

In the algorithm, the operator Rk is the smoothing operator, Ik
k−1 and Ik−1

k are the prolongation and
restriction operators, and Bk is the approximate inverse of the operator Ak which is implicitly defined by
the multilevel algorithm; for details, refer to the discussion and derivation in Chapter 3.

From this algorithm, we derived in Lemma 3.21 of Chapter 3 (based on [26]) the generalized recursive
form of the multilevel error propagator at each level k, which is:

Ek = I − BkAk = (I − RkAk)(I − Pk;k−1 + Ik
k−1Ek−1P̃

k−1
k ), (5.5)

where the operator Pk;k−1 is the Ak-orthogonal projector from Hk onto Ik
k−1Hk−1, and the operator P̃ k−1

k

is a related operator, given by Pk;k−1 = Ik
k−1P̃

k−1
k .

We also derived in Lemma 3.22 of Chapter 3 the generalized product form for the multilevel error
propagator:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1), (5.6)

where
IJ = I, Ik = IJ

J−1I
J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1,

T1 = I1A
−1
1 IT

1 A, Tk = IkRkIT
k A, k = 2, . . . , J.

Note that in the derivations of the forms in equations (5.5) and (5.6), it was required that the variational
conditions (5.1) hold. We remarked in Chapter 3 that the error propagator of the symmetric multilevel
algorithm Es can be written as Es = EE∗, where E∗ is the A-adjoint of E.

Many of the simple results we showed in Chapter 3 which related the properties of Ak and Bk to those
of the error propagator Ek = I − BkAk required not only that Ak be SPD, but that Bk be SPD as well.
Therefore, we wish to establish a simple condition on the smoothing operator Rk that will ensure that the
multilevel operators Bk be SPD. The following result was given in [184], along with an abbreviated proof;
the proof we give below is original.
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Lemma 5.1 If the smoothing operator Rk corresponds to any convergent linear method, then the symmetric
multilevel operator Bk is also positive.

Proof. Consider the symmetric two-level error propagator from Chapter 3:

Es
k = I − BkAk = (I − RkAk)(I − CkAk)(I − RT

k Ak),

for some approximate coarse level inverse operator Ck. In the multilevel case, following our discussion in
Chapter 3 for the nonsymmetric case, the symmetric multilevel error propagator is defined in terms of the
sequence of recursively defined multilevel operators Bk:

Es
k = I − BkAk = (I − RkAk)(I − Ik

k−1Bk−1I
k−1
k Ak)(I − RT

k Ak). (5.7)

Now, for arbitrary vk 6= 0, consider:

(AkEs
kvk, vk)k = (Ak(I − BkAk)vk, vk)k = (Akvk , vk)k − (BkAkvk, Akvk)k.

Using this result, and employing the product expression (5.7) for Es
k, we have:

(BkAkvk, Akvk)k = (Akvk, vk)k − (AkEs
kvk, vk)k

= (Akvk, vk)k − (Ak(I − RkAk)(I − Ik
k−1Bk−1I

k−1
k Ak)(I − RT

k Ak)vk, vk)k

= (Akvk, vk)k − (Ak(I − Ik
k−1Bk−1I

k−1
k Ak)(I − RT

k Ak)vk, (I − RT
k Ak)vk)k

= (Akvk , vk)k − (Ak(I − RT
k Ak)vk , (I − RT

k Ak)vk)k + (Ik
k−1Bk−1I

k−1
k Akwk, Akwk)k

= (Akvk , vk)k − (AkS∗
kvk, S∗

kvk)k + (Bk−1I
k−1
k Akwk, Ik−1

k Akwk)k−1,

where Sk = I −RkAk, and wk = (I −RT
k Ak)vk, and where we have assumed the variational conditions with

the restriction Ik−1
k equal to the adjoint of the prolongation Ik

k−1, taken with respect to the inner-products
(·, ·)k as discussed in Chapter 3. Now, if Rk corresponds to a convergent linear method with error propagator
Sk = I −RkAk, we have that ρ(Sk) < 1. For simplicity, we assume the stronger sufficient condition as well,
‖Sk‖Ak

= ‖S∗
k‖Ak

< 1. This implies that:

(AkS∗
kvk, S∗

kvk)k < (Akvk, vk)k, ∀vk ∈ Hk, vk 6= 0.

From above we then have:

(BkAkvk, Akvk)k > (Bk−1vk−1, vk−1)k−1, ∀vk ∈ Hk,

where vk−1 = Ik−1
k Ak(I−RT

k Ak)vk . Since Ak is SPD, A−1
k is as well, and the proof now follows by induction

on Bk, since B1 = A−1
1 is SPD.

5.1.4 A two-level convergence theorem

We outline a two-level theory which does not require regularity assumptions. Although our notation is
somewhat different, this result for a nonsymmetric two-level method was derived from a result in [184] for
symmetric two-level methods. Both results are equivalent to results that have appeared in [30, 126, 139, 140,
166].

To begin, we assume that the variational conditions (5.1) hold. Let Sk = I − RkAk, where Rk is the
smoothing operator. The following two assumptions are required:

Assumption 5.1 (Approximation assumption) There exists C1 > 0 such that:

inf
wk−1∈Hk−1

‖vk − Ik
k−1wk−1‖2

k ≤ C1λ
−1
k ‖vk‖2

Ak
, ∀vk ∈ Hk.

Assumption 5.2 (Smoothing assumption) There exists C2 > 0 such that:

C2‖Akvk‖2
k ≤ λk(Ak(I − S∗

kSk)vk, vk)k, ∀vk ∈ Hk.
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Assumption 5.2 can be verified for Richardson’s iteration and other classical smoothing operators for finite
element and box-method discretizations of elliptic equations; see for example [25, 26] for detailed discussions.
Assumption 5.1 can be verified in the case that Ak has “1-regularity” as described in [85]; this will always be
true for a two-level method and a discretization on the fine mesh. However, it is unreasonable to expect this
condition to hold, independent of the number of levels, in a general variational definition of the operators
Ak. The discussions in this section are therefore limited to two levels.

Now, recall the nonsymmetric two-level error propagation operator:

Ek = I − BkAk = (I − RkAk)(I − CkAk) = Sk(I − Pk;k−1),

where Sk = I − RkAk, and where Pk;k−1 is the Ak-orthogonal projector from the fine space Hk onto the
coarse space Ik

k−1Hk−1. To establish the two-level result, we must employ the following simple lemma,
which is found in [184]. This result establishes an inequality similar to the full regularity and approximation
assumption (5.3) using only the weak (approximation) Assumption 6.1 above. Note that the inequality
below differs from (5.3) in that the right hand side is restricted to the Ak-orthogonal projected component
(I − Pk;k−1)uk rather than uk defined over the whole space Hk.

Lemma 5.2 Under Assumption 5.1, it holds that:

(Ak(I − Pk;k−1)uk, uk)k ≤ C1λ
−1
k ‖Ak(I − Pk;k−1)uk‖2

k, ∀uk ∈ Hk.

Proof. First, note that by the Cauchy-Schwarz inequality, we have:

(Ak(I − Pk;k−1)uk, uk)k = (Ak(I − Pk;k−1)uk, (I − Pk;k−1)uk)k

= (Ak(I − Pk;k−1)uk, (I − Pk;k−1)uk − Ik
k−1wk−1)k

≤ ‖Ak(I − Pk;k−1)uk‖k‖(I − Pk;k−1)uk − Ik
k−1wk−1‖k.

Now, by Assumption 5.1 we have that

(Ak(I − Pk;k−1)uk, uk)k ≤ ‖Ak(I − Pk;k−1)uk‖k[C1λ
−1
k (Ak(I − Pk;k−1)uk, (I − Pk;k−1)uk)k]1/2

= C
1/2
1 λ

−1/2
k ‖Ak(I − Pk;k−1)uk‖k(Ak(I − Pk;k−1)uk, uk)

1/2
k ,

which, after division and a squaring of both sides, yields:

(Ak(I − Pk;k−1)uk, uk)k ≤ C1λ
−1
k ‖Ak(I − Pk;k−1)uk‖2

k.

A convergence result for the nonsymmetric two-level method is stated in the following theorem. Again,
although our notation is somewhat different, this result is derived directly from a two-level result in [184]
for symmetric two-level methods.

Theorem 5.3 Under Assumption 5.1 and Assumption 5.2, the error propagator of the nonsymmetric two-
level algorithm (Algorithm 5.1 for J = k = 2) satisfies:

‖Ek‖2
Ak

≤ δk = 1 − C2

C1
< 1.

Proof. Since we must have that

‖Ek‖2
Ak

= max
06=vk∈Hk

‖Ekvk‖2
Ak

‖vk‖2
Ak

≤ δ,

it suffices to show that
‖Ekvk‖2

Ak
≤ δk‖vk‖2

Ak
, ∀vk ∈ Hk,

or equivalently,
(AkEkvk , Ekvk)k ≤ δk(Akvk, vk)k, ∀vk ∈ Hk.
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We begin by noting that:
(AkEkvk, Ekvk)k = (AkE∗

kEkvk, vk)k

= (Ak(I − Pk;k−1)S
∗
kSk(I − Pk;k−1)vk, vk)k = (AkS∗

kSk(I − Pk;k−1)vk, (I − Pk;k−1)vk)k

= (Ak(I − Pk;k−1)vk, (I − Pk;k−1)vk)k − (Ak(I − S∗
kSk)(I − Pk;k−1)vk, (I − Pk;k−1)vk)k

= (Ak(I − Pk;k−1)vk, vk)k − (Ak(I − S∗
kSk)(I − Pk;k−1)vk , (I − Pk;k−1)vk)k.

By Assumption 5.2, the above result implies that

(AkEkvk, Ekvk)k ≤ (Ak(I − Pk;k−1)vk , vk)k − C2λ
−1
k ‖Ak(I − Pk;k−1)vk‖2

k.

By Lemma 5.2 (which employed only Assumption 5.1),

‖Ak(I − Pk;k−1)uk‖2
k ≥ λk

C1
(Ak(I − Pk;k−1)uk, uk)k ,

so that

(AkEkvk, Ekvk)k ≤ (Ak(I − Pk;k−1)vk, vk)k − C2

C1
(Ak(I − Pk;k−1)vk, vk)k

=

(

1 − C2

C1

)

(Ak(I − Pk;k−1)vk , vk)k.

Since I − Pk;k−1 is the Ak-orthogonal projector, ‖I − Pk;k−1‖Ak
= 1, so that

‖I − Pk;k−1‖Ak
= max

vk 6=0

(Ak(I − Pk;k−1)vk , (I − Pk;k−1)vk)k

(Akvk, vk)k
= 1.

But this implies that

(Ak(I − Pk;k−1)vk, vk)k = (Ak(I − Pk;k−1)vk, (I − Pk;k−1)vk)k ≤ (Akvk, vk)k, ∀vk ∈ Hk,

which gives

(AkEkvk, Ekvk)k ≤
(

1 − C2

C1

)

(Akvk, vk)k, ∀vk ∈ Hk,

which is what we needed to show.

5.1.5 A multilevel convergence theorem

We can show the following multilevel result, and although it gives no indication of the rate of convergence,
it shows the robustness which is gained by enforcing the variational conditions. The simple proof relies on
the general product form of the multilevel error propagator, and on Lemma 3.8 from Chapter 3. Similar
conclusions are reached in [166, 184] by different approaches.

Theorem 5.4 If variational conditions (5.1) hold and the smoothing iteration is convergent, then the error
propagator of the nonsymmetric multilevel algorithm (Algorithm 5.1 for J ≥ 2) satisfies:

‖E‖2
A < 1.

Proof. Since the variational conditions hold, the coarse level product term is the A- orthogonal projector as
in the two-level case:

I − T1 = I − I1A
−1
1 IT

1 A = I − P1.

Therefore, I − T1 = (I − T1)
2 = (I − T1)(I − T1)

∗, and:

Es = (I − TJ) · · · (I − T2)(I − T1)(I − T2)
∗ · · · (I − TJ)∗

= (I − TJ) · · · (I − T2)(I − T1)(I − T1)
∗(I − T2)

∗ · · · (I − TJ)∗

= EE∗.
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Since Es = EE∗, and since A is SPD, we have that:

(AEsv, v) = (AE∗v, E∗v) = (Aw, w) ≥ 0 ∀w ∈ H,

which implies that Es = I − BA is A-non-negative. Since Rk corresponds to a convergent linear method
with Sk = I − RkAk, by Lemma 5.1 the recursively defined B is SPD, and so by Lemma 3.8 of Chapter 3
the A-non-negativity of Es implies that ‖Es‖A < 1. Finally, we have that

‖E‖2
A = ‖EE∗‖A = ‖Es‖A < 1.

Remark 5.1. It is shown in [184] that E is A-positive under the same assumptions as above; however the
sufficiency of this condition for convergence through the use of a result as in Lemma 3.8 was not mentioned.

In §5.1.6, we will discuss the BPWX theory developed in [26], which can be seen as a special case of
the recursive multilevel operator approach discussed in the previous sections. The BPWX theory yields
contraction number bounds of the form:

‖E‖2
A ≤ δJ = 1 − C

Jν
, (5.8)

for some constant C, where J is the number of levels in the multilevel algorithm, and ν = 1 if the dis-
continuities are somewhat simple, or in the worst case ν = 2. This gives convergence rates that decay as
the number of levels increases, which implies a logarithmic term in the overall complexity of the algorithm,
since the number of levels J is related to the number of unknowns nJ through J = O(ln nJ). The compu-
tational evidence in [26] suggests that this type of a bound is of the correct form for finite element-based
multilevel methods applied to problems with discontinuous coefficients, the only restriction being that the
discontinuities lie along element boundaries on all coarse meshes.

In this work, we have been concerned with algorithms for problems with discontinuous coefficients, and we
are faced with the situation that discontinuities may not lie along element boundaries on coarse meshes. We
described in detail in Chapter 3, as well as in Appendix A, how the variational conditions (5.1) can be enforced
algebraically in an efficient way for matrices arising from box-method or finite element method discretization
of second order elliptic problems on non-uniform Cartesian meshes in one-, two-, and three-dimensional
meshes. Unfortunately, while our multilevel algorithms therefore satisfy the variational conditions (5.1), the
coarse level spaces do not in general satisfy the approximation assumptions required for the BPWX theory
of the next section.

However, the computational evidence we will present later in Chapter 6 for a difficult jump discontinuity
test problem suggests that even in the case that discontinuities do not lie along element boundaries on coarse
meshes, our algorithms in fact also demonstrate the same type of contraction number decay given in (5.8),
for some ν ≤ 1.

Therefore, we suspect that it should be possible to show a similar result for a completely algebraic multi-
level approach, in which only the variational conditions hold, along with weak smoothing and approximation
assumptions similar to Assumptions 6.1 and 6.2.

5.1.6 Bramble-Pasciak-Wang-Xu regularity-free theory

We outline the main ideas and assumptions in the theory, and give the main convergence result appearing
in [26].

The framework which we constructed in Chapter 3 was based on that developed in [26], with a general-
ization regarding the restriction and prolongation operators. By selecting the restriction and prolongation
operators to be orthogonal projection and inclusion, respectively, the BPWX theory results. By choosing
the restriction as the orthogonal projection:

IT
k ≡ Qk,

it is not difficult to show that that: QkA = AkPk. The product form then becomes:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1),
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where
T1 = P1, Tk = RkAkPk, k = 2, . . . , J.

With this form of the product operator, a very general result can be shown.
The convergence result requires three assumptions on the operators appearing above. The first two

assumptions are on the orthogonal projectors Qk, k = 1, . . . , J , and are as follows.

‖(Qk − Qk−1)u‖2
k ≤ C1λ

−1
k (Au, u), ∀u ∈ H, (5.9)

(AkQku, Qku)k ≤ C2(Au, u), ∀u ∈ H. (5.10)

The third assumption is on the smoothing operators Rk, k = 1, . . . , J .

‖uk‖2
k ≤ λkC3(Rkuk, uk)k, ∀uk ∈ Vk ⊆ Hk. (5.11)

The main convergence result is given in the following theorem.

Theorem 5.5 (Bramble-Pasciak-Wang-Xu) Assume (5.9), (5.10), and (5.11) hold; then

‖E‖2
A ≤ δJ = 1 − C

Jν
< 1,

where C = [1 + C
1/2
2 + (C3C1)

1/2]−2, and where ν ≥ 1.

Proof. See Theorem 1, page 29 in [26].

To apply the theorem to finite element-based multilevel methods, allowing for discontinuous coefficients,
the existence of projection operators Qk satisfying assumptions (5.9) and (5.10) must be established. In the
case that the coefficient discontinuities lie only along element boundaries, the following result can be shown;
it is stated in [26], and a proof is given in [184].

Lemma 5.6 (Bramble-Pasciak-Wang-Xu) Assume Hk = Mk, the finite element spaces. If all coeffi-
cient discontinuities lie along element boundaries on all levels, then there exists L2-like projectors Qk for
which (5.9) and (5.10) hold.

Proof. See Lemma 6.1, page 40 in [26].

Finally, the third assumption (5.11) on the smoothing operators Rk can be shown very generally for many
of the classical linear iterations, as discussed in detail in [25].

Lemma 5.7 (Bramble-Pasciak-Wang-Xu) Assume Hk = Mk, the finite element spaces. The classical iter-
ations Richardson, weighted Jacobi, and Gauss-Seidel as smoothing operators are such that (5.11) holds.

Proof. See [25].

5.1.7 An algebraic Schwarz (product/sum-splitting) theory

For the remainder of the chapter, we discuss the general theory of additive and multiplicative Schwarz
methods for self-adjoint positive linear operator equations, representative methods of particular interest
here being multigrid and domain decomposition. We examine closely one of the most useful and elegant
modern convergence theories for these methods, following closely the recent work of Dryja and Widlund,
Xu, and their colleagues. Our motivation is to fully understand this theory, and then to develop a variation
of the theory in a slightly more general setting, which will be useful in the analysis of algebraic multigrid
and domain decomposition methods, when little or no finite element structure is available. Using this
approach we can show some convergence results for a very broad class of fully algebraic domain decomposition
methods, without regularity assumptions about the continuous problem. Although we cannot at this time
use the theory to provide a “good” convergence theory for algebraic multigrid methods, we believe that with
additional analysis it may be possible to do so using this framework, as well as to use the framework to guide
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the design of the coarse problems. The language we employ throughout is algebraic, and can be interpreted
abstractly in terms of operators on Hilbert spaces, or in terms of matrix operators.

Our approach in the following sections is quite similar (and owes much) to [185], with the following
exceptions. We first develop a separate and complete theory for products and sums of operators, without
reference to subspaces, and then use this theory to formulate a Schwarz theory based on subspaces. In
addition, we develop the Schwarz theory allowing for completely general prolongation and restriction oper-
ators, so that the theory is not restricted to the use of inclusion and projection as the transfer operators
(a similar Schwarz framework with general transfer operators was constructed recently by Hackbusch [86]).
The resulting theoretical framework is useful for analyzing specific algebraic methods, such as algebraic
multigrid and algebraic domain decomposition, without requiring the use of finite element spaces (and their
associated transfer operators of inclusions and projection). The framework may also be useful for analyzing
methods based on transforms to other spaces not naturally thought of as subspaces, such as methods based
on successive wavelet or other transforms. Finally, we show quite clearly how the basic product/sum and
Schwarz theories must be modified and refined to analyze the effects of using a global operator, or of using
additional nested spaces as in the case of multigrid-type methods. We also present (adding somewhat to the
length of an already lengthy discussion) a number of (albeit simple but useful) results in the product/sum
and Schwarz theory frameworks which are commonly used in the literature, the proofs of which are often
difficult to locate. The result is a consistent and self-contained theoretical framework for analyzing abstract
linear methods for self-adjoint positive linear operator equations, based on subspace-decomposition ideas.

Outline of the remainder of the chapter

We now give a more detailed outline of the material which follows. We will use the notation from §3.1, and
assume familiarity with the material on linear operators, linear methods, and conjugate gradient methods
presented there.

In §5.2, we present a unified approach for bounding the norms and condition numbers of products and
sums of self-adjoint operators on a Hilbert space, derived from work due to Dryja and Widlund [59], Bramble
et al. [27], and Xu [185]. Our particular approach is quite general in that we establish the main norm and
condition number bounds without reference to subspaces; each of the three required assumptions for the
theory involve only the operators on the original Hilbert space. Therefore, this product/sum operator
theory may find use in other applications without natural subspace decompositions. Later, we will apply
the product and sum operator theory to the case when the operators correspond to corrections in subspaces
of the original space, as in multigrid and domain decomposition methods.

In §5.3, we consider abstract Schwarz methods based on subspaces, and apply the general product
and sum operator theory to these methods. The resulting theory, which is a variation of that presented
in [185] and [59], rests on the notion of a stable subspace splitting of the original Hilbert space (cf. [159,
165]). Although our derivation here is presented in a somewhat different, algebraic language, many of the
intermediate results we use have appeared previously in the literature in other forms (we provide references
at the appropriate points). In contrast to earlier approaches, we develop the entire theory employing general
prolongation and restriction operators; the use of inclusion and projection as prolongation and restriction
are represented in our approach as a special case.

In §5.4 and §5.5, we apply the theory derived earlier to domain decomposition methods and to multigrid
methods, and in particular to their algebraic forms. Since our theoretical framework allows for general
prolongation and restriction operators, the theory is applicable to methods for general algebraic equations
(coming from finite difference or finite volume discretization of elliptic equations) for which strong theories are
currently lacking. For algebraic domain decomposition, we are able to derive useful (although not optimal)
convergence estimates. Although the algebraic multigrid results are not as interesting, the theory does
provide yet another proof of the robustness of the algebraic multigrid approach. We also indicate how the
convergence estimates for multigrid and domain decomposition methods may be improved (giving optimal
estimates), following the recent work of Dryja and Widlund, Bramble et al., and Xu, which requires some of
the additional structure provided in the finite element setting.

In addition to the references cited directly in the text below, the material here owes much to the following
sources: [14, 24, 26, 58, 59, 86, 141, 142, 143, 184, 185].
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5.2 The theory of products and sums of operators

In this section, we present an approach for bounding the norms and condition numbers of products and sums
of self-adjoint operators on a Hilbert space, derived from work due to Dryja and Widlund [59], Bramble et
al. [27], and Xu [185]. This particular approach is quite general in that we establish the main norm and
condition number bounds without reference to subspaces; each of the three required assumptions for the
theory involve only the operators on the original Hilbert space. Therefore, this product/sum operator
theory may find use in other applications without natural subspace decompositions. Later in the paper, the
product and sum operator theory is applied to the case when the operators correspond to corrections in
subspaces of the original space, as in multigrid and domain decomposition methods.

5.2.1 Basic product and sum operator theory

Let H be a real Hilbert space equipped with the inner-product (·, ·) inducing the norm ‖ · ‖ = (·, ·)1/2. Let
there be given an SPD operator A ∈ L(H,H) defining another inner-product on H, which we denote as

(·, ·)A = (A·, ·). This second inner-product also induces a norm ‖ · ‖A = (·, ·)1/2
A . We are interested in general

product and sum operators of the form

E = (I − TJ)(I − TJ−1) · · · (I − T1), (5.12)

P = T1 + T2 + · · · + TJ , (5.13)

for some A-self-adjoint operators Tk ∈ L(H,H). If E is the error propagation operator of some linear
method, then the convergence rate of this linear method will be governed by the norm of E. Similarly, if a
preconditioned linear operator has the form of P , then the convergence rate of a conjugate gradient method
employing this system operator will be governed by the condition number of P .

The A-norm is convenient here, as it is not difficult to see that P is A-self-adjoint, as well as Es = EE∗.
Therefore, we will be interested in deriving bounds of the form:

‖E‖2
A ≤ δ < 1, κA(P ) =

λmax(P )

λmin(P )
≤ γ. (5.14)

The remainder of this section is devoted to establishing some minimal assumptions on the operators Tk

in order to derive bounds of the form in equation (5.14). If we define Ek = (I − Tk)(I − Tk−1) · · · (I − T1),
and define E0 = I and EJ = E, then we have the following relationships.

Lemma 5.8 The following relationships hold for k = 1, . . . , J :

(1) Ek = (I − Tk)Ek−1

(2) Ek−1 − Ek = TkEk−1

(3) I − Ek =
∑k

i=1 TiEi−1

Proof. The first relationship is obvious from the definition of Ek, and the second follows easily from the first.
Taking E0 = I , and summing the second relationship from i = 1 to i = k gives the third.

Regarding the operators Tk, we make the following assumption:

Assumption 5.3 The operators Tk ∈ L(H,H) are A-self-adjoint, A-non-negative, and

ρ(Tk) = ‖Tk‖A ≤ ω < 2, k = 1, . . . , J.

Note that this implies that 0 ≤ λi(Tk) ≤ ω < 2, k = 1, . . . , J .
The following simple lemma, first appearing in [27], will often be useful at various points in the analysis

of the product and sum operators.

Lemma 5.9 Under Assumption 5.3, it holds that

(ATku, Tku) ≤ ω(ATku, u), ∀u ∈ H.
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Proof. Since Tk is A-self-adjoint, we know that ρ(Tk) = ‖Tk‖A, so that

ρ(Tk) = max
v 6=0

(ATkv, v)

(Av, v)
≤ ω < 2,

so that (ATkv, v) ≤ ω(Av, v), ∀v ∈ H. But this gives (ATku, Tku) = (AT
1/2
k Tku, T

1/2
k u) = (ATkT

1/2
k u, T

1/2
k u)

= (ATkv, v) ≤ ω(Av, v) = ω(AT
1/2
k u, T

1/2
k u) = ω(ATku, u), ∀u ∈ H.

The next lemma, also appearing first in [27], will be a key tool in the analysis of the product operator.

Lemma 5.10 Under Assumption 5.3, it holds that

(2 − ω)

J
∑

k=1

(ATkEk−1v, Ek−1v) ≤ ‖v‖2
A − ‖EJv‖2

A.

Proof. Employing the relationships in Lemma 5.8, we can rewrite the following difference as

‖Ek−1v‖2
A − ‖Ekv‖2

A = (AEk−1v, Ek−1v) − (AEkv, Ekv)

= (AEk−1v, Ek−1v) − (A[I − Tk]Ek−1v, [I − Tk]Ek−1v)

= 2(ATkEk−1v, Ek−1v) − (ATkEk−1v, TkEk−1v)

By Lemma 5.9 we have (ATkEk−1v, TkEk−1v) ≤ ω(ATkEk−1v, Ek−1v), so that

‖Ek−1v‖2
A − ‖Ekv‖2

A ≥ (2 − ω)(ATkEk−1v, Ek−1v).

With E0 = I , by summing from k = 1 to k = J we have:

‖v‖2
A − ‖EJv‖2

A ≥ (2 − ω)

J
∑

k=1

(ATkEk−1v, Ek−1v).

We now state four simple assumptions which will, along with Assumption 5.3, allow us to give norm and
condition number bounds by employing the previous lemmas. These four assumptions form the basis for the
product and sum theory, and the remainder of our work will chiefly involve establishing conditions under
which these assumptions are satisfied.

Assumption 5.4 (Splitting assumption) There exists C0 > 0 such that

‖v‖2
A ≤ C0

J
∑

k=1

(ATkv, v), ∀v ∈ H.

Assumption 5.5 (Composite assumption) There exists C1 > 0 such that

‖v‖2
A ≤ C1

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Assumption 5.6 (Product assumption) There exists C2 > 0 such that

J
∑

k=1

(ATkv, v) ≤ C2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Assumption 5.7 (Sum assumption) There exists C3 > 0 such that

J
∑

k=1

(ATkv, v) ≤ C3‖v‖2
A, ∀v ∈ H.
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Lemma 5.11 Under Assumptions 5.4 and 5.6, Assumption 5.5 holds with C1 = C0C2.

Proof. This is immediate, since

‖v‖2
A ≤ C0

J
∑

k=1

(ATkv, v) ≤ C0C2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

Remark 5.2. In what follows, it will be necessary to satisfy Assumption 5.5 for some constant C1. Lemma 5.11
provides a technique for verifying Assumption 5.5 by verifying Assumptions 5.4 and 5.6 separately. In certain
cases it will still be necessary to verify Assumption 5.5 directly.

The following theorems provide a fundamental framework for analyzing product and sum operators,
employing only the five assumptions previously stated. A version of the product theorem similar to the one
below first appeared in [27]. Theorems for sum operators were established early by Dryja and Widlund [58]
and Björstad and Mandel [22].

Theorem 5.12 Under Assumptions 5.3 and 5.5, the product operator (5.12) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C1
.

Proof. To prove the result, it suffices to show that

‖Ev‖2
A ≤

(

1 − 2 − ω

C1

)

‖v‖2
A, ∀v ∈ H,

or that

‖v‖2
A ≤ C1

2 − ω

(

‖v‖2
A − ‖Ev‖2

A

)

, ∀v ∈ H.

By Lemma 5.10 (which required only Assumption 5.3), it is enough to show

‖v‖2
A ≤ C1

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

But, by Assumption 5.5 this result holds, and the theorem follows.

Corollary 5.13 Under Assumptions 5.3, 5.4, and 5.6, the product operator (5.12) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C0C2
.

Proof. This follows from Theorem 5.12 and Lemma 5.11.

Theorem 5.14 Under Assumptions 5.3, 5.4, and 5.7, the sum operator (5.13) satisfies:

κA(P ) ≤ C0C3.

Proof. This result follows immediately from Assumptions 5.4 and 5.7, since P =
∑J

k=1 Tk is A-self-adjoint
by Assumption 5.3, and since

1

C0
(Av, v) ≤

J
∑

k=1

(ATkv, v) = (APv, v) ≤ C3(Av, v), ∀v ∈ H.

This implies that C−1
0 ≤ λi(P ) ≤ C3, and by Lemma 3.12 it holds that κA(P ) ≤ C0C3.
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The constants C0 and C1 in Assumptions 5.4 and 5.5 will depend on the specific application; we will
discuss estimates for C0 and C1 in the following sections. The constants C2 and C3 in Assumptions 5.6
and 5.7 will also depend on the specific application; however, we can derive bounds which grow with the
number of operators J , which will always hold without additional assumptions. Both of these default or
worst case results appear essentially in [27]. First, we recall the Cauchy-Schwarz inequality in R

n, and state
a useful corollary.

Lemma 5.15 If ak, bk ∈ R, k = 1, . . . , n, then it holds that

(

n
∑

k=1

akbk

)2

≤
(

n
∑

k=1

a2
k

)(

n
∑

k=1

b2
k

)

.

Proof. See for example [125].

Corollary 5.16 If ak ∈ R, k = 1, . . . , n, then it holds that

(

n
∑

k=1

ak

)2

≤ n

n
∑

k=1

a2
k.

Proof. This follows easily from Lemma 5.15 by taking bk = 1 for all k.

Lemma 5.17 Under only Assumption 5.3, we have that Assumption 5.6 holds, where:

C2 = 2 + ω2J(J − 1).

Proof. We must show that

J
∑

k=1

(ATkv, v) ≤ [2 + ω2J(J − 1)]

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H.

By Lemma 5.8, we have that

(ATkv, v) = (ATkv, Ek−1v) + (ATkv, [I − Ek−1]v) = (ATkv, Ek−1v) +

k−1
∑

i=1

(ATkv, TiEi−1v)

≤ (ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2 +

k−1
∑

i=1

(ATkv, Tkv)1/2(ATiEi−1v, TiEi−1v)1/2.

By Lemma 5.9, we have

(ATkv, v) ≤ (ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2 + ω(ATkv, v)1/2
k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2,

or finally

(ATkv, v) ≤
[

(ATkEk−1v, Ek−1v)1/2 + ω
k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2

]2

. (5.15)

Employing Corollary 5.16 for the two explicit terms in the inequality (5.15) yields:

(ATkv, v) ≤ 2



(ATkEk−1v, Ek−1v) + ω2

[

k−1
∑

i=1

(ATiEi−1v, Ei−1v)1/2

]2


 .

Employing Corollary 5.16 again for the k − 1 terms in the sum yields

(ATkv, v) ≤ 2

[

(ATkEk−1v, Ek−1v) + ω2(k − 1)

k−1
∑

i=1

(ATiEi−1v, Ei−1v)

]

.
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Summing the terms, and using the fact that the Tk are A-non-negative, we have

J
∑

k=1

(ATkv, v) ≤ 2

[

J
∑

k=1

{

(ATkEk−1v, Ek−1v) + ω2(k − 1)

k−1
∑

i=1

(ATiEi−1v, Ei−1v)

}]

≤ 2

[

1 + ω2
J
∑

i=1

(i − 1)

]

J
∑

k=1

(ATkEk−1v, Ek−1v).

Since
∑J

i=1 i = (J + 1)J/2, we have that the lemma follows.

Lemma 5.18 Under only Assumption 5.3, we have that Assumption 5.7 holds, where:

C3 = ωJ.

Proof. By Assumption 5.3, we have

J
∑

k=1

(ATkv, v) ≤
J
∑

k=1

(ATkv, Tkv)1/2(Av, v)1/2 ≤
J
∑

k=1

ω(Av, v) = ωJ‖v‖2
A,

so that C3 = ωJ .

Remark 5.3. Note that since Lemmas 5.17 and 5.18 provide default (worst case) estimates for C2 and C3 in
Assumptions 5.6 and 5.7, due to Lemma 5.11 it suffices to estimate only C0 in Assumption 5.4 in order to
employ the general product and sum operator theorems (namely Corollary 5.13 and Theorem 5.14).

5.2.2 The interaction hypothesis

We now consider an additional assumption, which will be natural in multigrid and domain decomposition
applications, regarding the “interaction” of the operators Tk. This assumption brings together more closely
the theory for the product and sum operators. The constants C2 and C3 in Assumptions 5.6 and 5.7 can
both be estimated in terms of the constants C4 and C5 appearing below, which will be determined by
the interaction properties of the operators Tk. We will further investigate the interaction properties more
precisely in a moment. This approach to quantifying the interaction of the operators Tk is similar to that
taken in [185].

Assumption 5.8 (Interaction assumption - weak) There exists C4 > 0 such that

J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤ C4

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Assumption 5.9 (Interaction assumption - strong) There exists C5 > 0 such that

J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤ C5

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Remark 5.4. We introduce the terminology “weak” and “strong” because in the weak interaction assumption
above, the interaction constant C4 is defined by considering the interaction of a particular operator Tk only
with operators Ti with i < k; note that this implies an ordering of the operators Tk, and different orderings
may produce different values for C4. In the strong interaction assumption above, the interaction constant
C5 is defined by considering the interaction of a particular operator Tk with all operators Ti (the ordering
of the operators Tk is now unimportant).

The interaction assumptions can be used to bound the constants C2 and C3 in Assumptions 5.6 and 5.7.
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Lemma 5.19 Under Assumptions 5.3 and 5.8, we have that Assumption 5.6 holds, where:

C2 = (1 + C4)
2.

Proof. Consider
J
∑

k=1

(ATkv, v) =
J
∑

k=1

{(ATkv, Ek−1v) + (ATkv, [I − Ek−1]v)} (5.16)

=

J
∑

k=1

(ATkv, Ek−1v) +

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v).

For the first term, the Cauchy-Schwarz inequalities give

J
∑

k=1

(ATkv, Ek−1v) ≤
J
∑

k=1

(ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2

≤
(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

For the second term, we have by Assumption 5.8 that

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) ≤ C4

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

Thus, together we have

J
∑

k=1

(ATkv, v) ≤ (1 + C4)

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

,

which yields
J
∑

k=1

(ATkv, v) ≤ (1 + C4)
2

J
∑

k=1

(ATkEk−1v, Ek−1v).

Lemma 5.20 Under Assumptions 5.3 and 5.9, we have that Assumption 5.7 holds, where:

C3 = C5.

Proof. Consider first that ∀v ∈ H, Assumption 5.9 implies

‖
J
∑

k=1

Tkv‖2
A =

J
∑

k=1

J
∑

i=1

(ATkv, Tiv) ≤ C5

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

i=1

(ATiv, v)

)1/2

= C5

J
∑

k=1

(ATkv, v).

If P =
∑J

k=1 Tk, then we have shown that (APv, Pv) ≤ C5(APv, v), ∀v ∈ H, so that

(APv, v) ≤ (APv, Pv)1/2(Av, v)1/2 ≤ C
1/2
5 (APv, v)1/2(Av, v)1/2, ∀v ∈ H.

This implies that (APv, v) ≤ C5‖v‖2
A, ∀v ∈ H, which proves the lemma.
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The constants C4 and C5 can be further estimated, in terms of the following two interaction matrices.
An early approach employing an interaction matrix appears in [27]; the form appearing below is most closely
related to that used in [86] and [185]. The idea of employing a strictly upper-triangular interaction matrix
to improve the bound for the weak interaction property is due to Hackbusch [86]. The default bound for the
strictly upper-triangular matrix is also due to Hackbusch [86].

Definition 5.1 Let Ξ be the strictly upper-triangular part of the interaction matrix Θ ∈ L(RJ , RJ), which
is defined to have as entries Θij the smallest constants satisfying:

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J, ∀u, v ∈ H.

The matrix Θ is symmetric, and 0 ≤ Θij ≤ 1, ∀i, j. Also, we have that Θ = I + Ξ + ΞT .

Lemma 5.21 It holds that ‖Ξ‖2 ≤ ρ(Θ). Also, ‖Ξ‖2 ≤
√

J(J − 1)/2 and 1 ≤ ρ(Θ) ≤ J .

Proof. Since Θ is symmetric, we know that ρ(Θ) = ‖Θ‖2 = maxx6=0 ‖Θx‖2/‖x‖2. Now, given any x ∈ R
J ,

define x̄ ∈ R
J such that x̄i = |xi|. Note that ‖x‖2

2 =
∑J

i=1 |xi|2 = ‖x̄‖2
2, and since 0 ≤ Θij ≤ 1, we have that

‖Θx‖2
2 =

J
∑

i=1





J
∑

j=1

Θijxj





2

≤
J
∑

i=1





J
∑

j=1

Θij |xj |





2

= ‖Θx̄‖2
2.

Therefore, it suffices to consider only x ∈ R
J with xi ≥ 0. For such an x ∈ R

J , it is clear that ‖Ξx‖2 ≤ ‖Θx‖2,
so we must have that

‖Ξ‖2 = max
x6=0

‖Ξx‖2

‖x‖2
≤ max

x6=0

‖Θx‖2

‖x‖2
= ‖Θ‖2 = ρ(Θ).

The worst case estimate ‖Ξ‖2 ≤
√

J(J − 1)/2 follows easily, since 0 ≤ Ξij ≤ 1, and since:

[ΞT Ξ]ij =
J
∑

k=1

[ΞT ]ikΞkj =
J
∑

k=1

ΞkiΞkj =

min{i−1,j−1}
∑

k=1

ΞkiΞkj ≤ min{i − 1, j − 1}.

Thus, we have that

‖Ξ‖2
2 = ρ(ΞT Ξ) ≤ ‖ΞT Ξ‖1 = max

j

{

J
∑

i=1

| [ΞT Ξ]ij |
}

≤
J
∑

i=1

(i − 1) =
J(J − 1)

2
.

It remains to show that 1 ≤ ρ(Θ) ≤ J . The upper bound follows easily since we know that 0 ≤ Θij ≤ 1,
and so that ρ(Θ) ≤ ‖Θ‖1 = maxj{

∑

i |Θij |} ≤ J . Regarding the lower bound, recall that the trace of a
matrix is equal to the sum of it’s eigenvalues. Since all diagonal entries of Θ are unity, the trace is simply
equal to J . If all the eigenvalues of Θ are unity, we are done. If we suppose there is at least one eigenvalue
λi < 1 (possibly negative), then in order for the J eigenvalues of Θ to sum to J , there must be a corresponding
eigenvalue λj > 1. Therefore, ρ(Θ) ≥ 1.

We now have the following lemmas.

Lemma 5.22 Under Assumption 5.3 we have that Assumption 5.8 holds, where:

C4 ≤ ω‖Ξ‖2.

Proof. Consider
J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤
J
∑

k=1

J
∑

i=1

Ξik‖Tkuk‖A‖Tivi‖A = (Ξx,y)2,

where x,y ∈ R
J , xk = ‖Tkuk‖A, yi = ‖Tivi‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J . Now,
we have that

(Ξx,y)2 ≤ ‖Ξ‖2‖x‖2‖y‖2 = ‖Ξ‖2

(

J
∑

k=1

(ATkuk, Tkuk)

)1/2( J
∑

i=1

(ATivi, Tivi)

)1/2
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≤ ω‖Ξ‖2

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

.

Finally, this gives

J
∑

k=1

k−1
∑

i=1

(ATkuk, Tivi) ≤ ω‖Ξ‖2

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

Lemma 5.23 Under Assumption 5.3 we have that Assumption 5.9 holds, where:

C5 ≤ ωρ(Θ).

Proof. Consider
J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤
J
∑

k=1

J
∑

i=1

Θik‖Tkuk‖A‖Tivi‖A = (Θx,y)2,

where x,y ∈ R
J , xk = ‖Tkuk‖A, yi = ‖Tivi‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J . Now,
since Θ is symmetric, we have that

(Θx,y)2 ≤ ρ(Θ)‖x‖2‖y‖2 = ρ(Θ)

(

J
∑

k=1

(ATkuk, Tkuk)

)1/2( J
∑

i=1

(ATivi, Tivi)

)1/2

≤ ωρ(Θ)

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

.

Finally, this gives

J
∑

k=1

J
∑

i=1

(ATkuk, Tivi) ≤ ωρ(Θ)

(

J
∑

k=1

(ATkuk, uk)

)1/2( J
∑

i=1

(ATivi, vi)

)1/2

, ∀uk, vi ∈ H.

This leads us finally to

Lemma 5.24 Under Assumption 5.3 we have that Assumption 5.6 holds, where:

C2 = (1 + ω‖Ξ‖2)
2.

Proof. This follows from Lemmas 5.19 and 5.22.

Lemma 5.25 Under Assumption 5.3 we have that Assumption 5.7 holds, where:

C3 = ωρ(Θ).

Proof. This follows from Lemmas 5.20 and 5.23.

Remark 5.5. Note that Lemmas 5.24 and 5.21 reproduce the worst case estimate for C2 given in Lemma 5.17,
since:

C2 = (1 + ω‖Ξ‖2)
2 ≤ 2(1 + ω2‖Ξ‖2

2) ≤ 2 + ω2J(J − 1).

In addition, Lemmas 5.25 and 5.21 reproduce the worst case estimate of C3 = ωρ(Θ) ≤ ωJ given in
Lemma 5.18.
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5.2.3 Allowing for a global operator

Consider the product and sum operators

E = (I − TJ)(I − TJ−1) · · · (I − T0), (5.17)

P = T0 + T1 + · · · + TJ , (5.18)

where we now include a special operator T0, which we assume may interact with all of the other operators. For
example, T0 might later represent some “global” coarse space operator in a domain decomposition method.
Note that if such a global operator is included directly in the analysis of the previous section, then the bounds
on ‖Ξ‖2 and ρ(Θ) necessarily depend on the number of operators; thus, to develop an optimal theory, we
must exclude T0 from the interaction hypothesis. This was recognized early in the domain decomposition
community, and the modification of the theory in the previous sections to allow for such a global operator
has been achieved mainly by Widlund and his co-workers. We will follow essentially their approach in this
section.

In the following, we will use many of the results and assumptions from the previous section, where we now
explicitly require that the k = 0 term always be included; the only exception to this will be the interaction
assumption, which will still involve only the k 6= 0 terms. Regarding the minor changes to the results of the
previous sections, note that we must now define E−1 = I , which modifies Lemma 5.8 in that

I − Ek =

k
∑

i=0

TiEi−1,

the sum beginning at k = 0. We make the usual Assumption 5.3 on the operators Tk (now including T0

also), and we then have the results from Lemmas 5.9 and 5.10. The main assumptions for the theory are as
in Assumptions 5.4, 5.6, and 5.7, with the additional term k = 0 included in each assumption. The two main
results in Theorems 5.12 and 5.14 are unchanged. The default bounds for C2 and C3 given in Lemmas 5.17
and 5.18 now must take into account the additional operator T0:

C2 = 2 + ω2J(J + 1), C3 = ω(J + 1).

The remaining analysis becomes now somewhat different from the case when T0 is not present. First, we
will quantify the interaction properties of the remaining operators Tk for k 6= 0 exactly as was done earlier,
except that we must now employ the strong interaction assumption (Assumption 5.9) for both the product
and sum theories. (In the previous section, we were able to use only the weak interaction assumption for the
product operator.) This leads us to the following two lemmas.

Lemma 5.26 Under Assumptions 5.3 (including T0), 5.8 (excluding T0), and 5.9 (excluding T0), we have
that Assumption 5.6 (including T0) holds, where:

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Proof. Beginning with Lemma 5.8 we have that

J
∑

k=0

(ATkv, v) = (AT0v, v) +

J
∑

k=1

{(ATkv, Ek−1v) + (ATkv, [I − Ek−1]v)}

=

J
∑

k=0

(ATkv, Ek−1v) +

J
∑

k=1

k−1
∑

i=0

(ATkv, TiEi−1v)

=

J
∑

k=0

(ATkv, Ek−1v) +

J
∑

k=1

(ATkv, T0v) +

J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) = S1 + S2 + S3. (5.19)

We now estimate S1, S2, and S3 separately. For S1, we employ the Cauchy-Schwarz inequality to obtain

S1 =

J
∑

k=0

(ATkv, Ek−1v) ≤
J
∑

k=0

(ATkv, v)1/2(ATkEk−1v, Ek−1v)1/2
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≤
(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

To bound S2, we employ Assumption 5.9 as follows:

S2 =

J
∑

k=1

(ATkv, T0v) ≤ ‖
J
∑

k=1

Tkv‖A‖T0v‖A =

(

J
∑

k=1

J
∑

i=1

(ATkv, Tiv)

)1/2

(AT0v, T0v)1/2

≤ ω1/2C
1/2
5

(

J
∑

k=1

(ATkv, v)

)1/2

(AT0v, v)1/2

≤ ω1/2C
1/2
5

(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

We now bound S3, employing Assumption 5.8 as

S3 =
J
∑

k=1

k−1
∑

i=1

(ATkv, TiEi−1v) ≤ C4

(

J
∑

k=1

(ATkv, v)

)1/2( J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

≤ C4

(

J
∑

k=0

(ATkv, v)

)1/2( J
∑

k=0

(ATkEk−1v, Ek−1v)

)1/2

.

Putting the bounds for S1, S2, and S3 together, dividing (5.19) by
∑J

k=1(ATkv, v) and squaring, yields

J
∑

k=0

(ATkv, v) ≤ [1 + ω1/2C
1/2
5 + C4]

2
J
∑

k=0

(ATkEk−1v, Ek−1v).

Therefore, Assumption 5.6 holds, where:

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Results similar to the next lemma are used in several recent papers on domain decomposition [59]; the
proof is quite simple once the proof of Lemma 5.20 is available.

Lemma 5.27 Under Assumptions 5.3 (including T0) and 5.9 (excluding T0), we have that Assumption 5.7
(including T0) holds, where:

C3 = ω + C5.

Proof. The proof of Lemma 5.20 gives immediately
∑J

k=1(ATkv, v) ≤ C5‖v‖2
A. Now, since (AT0v, v) ≤

ω‖v‖2
A, we simply add in the k = 0 term, yielding

J
∑

k=0

(ATkv, v) ≤ (ω + C5)‖v‖2
A.

We finish the section by relating the constants C2 and C3 (required for Corollary 5.13 and Theorem 5.14)
to the interaction matrices. The constants C4 and C5 are estimated by using the interaction matrices exactly
as before, since the interaction conditions still involve only the operators Tk for k 6= 0.
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Lemma 5.28 Under Assumption 5.3 we have that Assumption 5.6 holds, where:

C2 ≤ 6[1 + ω2ρ(Θ)2].

Proof. From Lemma 5.26 we have that

C2 = [1 + ω1/2C
1/2
5 + C4]

2.

Now, from Lemmas 5.22 and 5.23, and since ω < 2, it follows that

C2 = [1 + ω1/2C
1/2
5 + C4]

2 ≤ [1 +
√

2(ωρ(Θ))1/2 + ω‖Ξ‖2]
2.

Employing first Lemma 5.21 and then Corollary 5.16 twice, we have

C2 ≤ [1 +
√

2(ωρ(Θ))1/2 + ωρ(Θ)]2 ≤ 3[1 + 2ωρ(Θ) + ω2ρ(Θ)2]

= 3[1 + ωρ(Θ)]2 ≤ 6[1 + ω2ρ(Θ)2].

Lemma 5.29 Under Assumption 5.3 we have that Assumption 5.7 holds, where:

C3 ≤ ω(ρ(Θ) + 1).

Proof. From Lemmas 5.27 and 5.23 it follows that

C3 = ω + C5 ≤ ω + ωρ(Θ) = ω(ρ(Θ) + 1).

Remark 5.6. It is apparently possible to establish a sharper bound [34, 59] than the one given above in
Lemma 5.28, the improved bound having the form

C2 = 1 + 2ω2ρ(Θ)2.

This result is stated and used in several recent papers on domain decomposition, e.g., in [59], but the proof
of the result has apparently not been published. A proof of a similar result is established for some related
nonsymmetric problems in [34].

5.2.4 Main results of the theory

The main theory may be summarized in the following way. We are interested in norm and condition number
bounds of the product and sum operators:

E = (I − TJ)(I − TJ−1) · · · (I − T0), (5.20)

P = T0 + T1 + · · · + TJ . (5.21)

The necessary assumptions for the theory are as follows.

Assumption 5.10 (Operator norms) The operators Tk ∈ L(H,H) are A-self-adjoint, A-non-negative, and

ρ(Tk) = ‖Tk‖A ≤ ω < 2, k = 0, . . . , J.

Assumption 5.11 (Splitting constant) There exists C0 > 0 such that

‖v‖2
A ≤ C0

J
∑

k=0

(ATkv, v), ∀v ∈ H.
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Definition 5.2 (Interaction matrices) Let Ξ be the strictly upper-triangular part of the interaction matrix
Θ ∈ L(RJ , RJ), which is defined to have as entries Θij the smallest constants satisfying:

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J.

The main theorems are as follows.

Theorem 5.30 (Product operator) Under Assumptions 5.10 and 5.11, the product operator (5.20) satisfies:

‖E‖2
A ≤ 1− 2 − ω

C0(6 + 6ω2ρ(Θ)2)
.

Proof. Assumptions 5.10 and 5.11 are clearly equivalent to Assumptions 5.3 and 5.4, and by Lemma 5.28 we
know that Assumption 5.6 must hold with C2 = [6 + 6ω2ρ(Θ)2]. The theorem then follows by application of
Corollary 5.13.

Theorem 5.31 (Sum operator) Under Assumptions 5.10 and 5.11, the sum operator (5.21) satisfies:

κA(P ) ≤ C0ω(ρ(Θ) + 1).

Proof. Assumptions 5.10 and 5.11 are clearly equivalent to Assumptions 5.3 and 5.4, and by Lemma 5.29
we know that Assumption 5.7 must hold with C3 = ω(1 + ρ(Θ)). The theorem then follows by application
of Theorem 5.14.

For the case when there is not a global operator T0 present, set T0 ≡ 0 in the above definitions and
assumptions. Note that this implies that all k = 0 terms in the assumptions and definitions are ignored.
The main theorems are now modified as follows.

Theorem 5.32 (Product operator) If T0 ≡ 0, then under Assumptions 5.10 and 5.11, the product opera-
tor (5.20) satisfies:

‖E‖2
A ≤ 1 − 2 − ω

C0(1 + ω‖Ξ‖2)2
.

Proof. Assumptions 5.10 and 5.11 are clearly equivalent to Assumptions 5.3 and 5.4, and by Lemma 5.24
we know that Assumption 5.6 must hold with C2 = (1 + ω‖Ξ‖)2. The theorem then follows by application
of Corollary 5.13.

Theorem 5.33 (Sum operator) If T0 ≡ 0, then under Assumptions 5.10 and 5.11, the sum operator (5.21)
satisfies:

κA(P ) ≤ C0ωρ(Θ).

Proof. Assumptions 5.10 and 5.11 are clearly equivalent to Assumptions 5.3 and 5.4, and by Lemma 5.25
we know that Assumption 5.7 must hold with C3 = ωρ(Θ). The theorem then follows by application of
Theorem 5.14.

Remark 5.7. We see that the product and sum operator theory now rests completely on the estimation of
the constant C0 in Assumption 5.11 and the bounds on the interaction matrices. (The bound involving
ω in Assumption 5.10 always holds for any reasonable method based on product and sum operators.) We
will further reduce the estimate of C0 to simply the estimate of a “splitting” constant, depending on the
particular splitting of the main space H into subspaces Hk, and to an estimate of the effectiveness of the
approximate solver in the subspaces.

Remark 5.8. Note that if we cannot estimate ‖Ξ‖2 or ρ(Θ), then we can still use the above theory since we
have worst case estimates from Lemmas 5.22 and 5.23, namely:

‖Ξ‖2 ≤
√

J(J − 1)/2 < J, ρ(Θ) ≤ J.

In the case of the nested spaces in multigrid methods, it may be possible to analyze ‖Ξ‖2 through the
use of strengthened Cauchy-Schwarz inequalities, showing in fact that ‖Ξ‖2 = O(1). In the case of domain
decomposition methods, it will always be possible to show that ‖Ξ‖2 = O(1) and ρ(Θ) = O(1), due to the
local nature of the domain decomposition projection operators.
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5.3 Abstract Schwarz theory

In this section, we consider abstract Schwarz methods based on subspaces, and apply the general product
and sum operator theory to these methods. The resulting theory, which is a variation of that presented
in [185] and [59], rests on the notion of a stable subspace splitting of the original Hilbert space (cf. [159,
165]). Although the derivation here is presented in a somewhat different, algebraic language, many of the
intermediate results we use have appeared previously in the literature in other forms (we provide references
at the appropriate points). In contrast to earlier approaches, we develop the entire theory employing general
prolongation and restriction operators; the use of inclusion and projection as prolongation and restriction
are represented in this approach as a special case.

5.3.1 The Schwarz methods

Consider now a Hilbert space H, equipped with an inner-product (·, ·) inducing a norm ‖ · ‖ = (·, ·)1/2.
Let there be given an SPD operator A ∈ L(H,H) defining another inner-product on H, which we denote

as (·, ·)A = (A·, ·). This second inner-product also induces a norm ‖ · ‖A = (·, ·)1/2
A . We are also given an

associated set of spaces

H1,H2, . . . ,HJ , dim(Hk) ≤ dim(H), IkHk ⊆ H, H =

J
∑

k=1

IkHk,

for some operators Ik : Hk 7→ H, where we assume that null(Ik) = {0}. This defines a splitting of H into
the subspaces IkHk, although the spaces Hk alone may not relate to the largest space H in any natural way
without the operator Ik. No requirements are made on the associated spaces Hk beyond the above, so that
they are not necessarily nested, disjoint, or overlapping.

Associated with each space Hk is an inner-product (·, ·)k inducing a norm ‖ · ‖k = (·, ·)1/2
k , and an SPD

operator Ak ∈ L(Hk ,Hk), defining a second inner-product (·, ·)Ak
= (Ak ·, ·)k and norm ‖ · ‖Ak

= (·, ·)1/2
Ak

.
The spaces Hk are related to the finest space H through the prolongation Ik defined above, and also through
the restriction operator, defined as the adjoint of Ik relating the inner-products in H and Hk:

(Ikvk, v) = (vk, IT
k v)k, IT

k : H 7→ Hk.

It will always be completely clear from the arguments of the inner-product (or norm) which particular inner-
product (or norm) is implied; i.e., if the arguments lie in H then either (·, ·) or (A·, ·) is to be used, whereas
if the arguments lie in Hk, then either (·, ·)k or (Ak ·, ·)k is to be used. Therefore, we will leave off the
implied subscript k from the inner-products and norms in all of the following discussions, without danger of
confusion. Finally, we assume the existence of SPD linear operators Rk ∈ L(Hk,Hk), such that Rk ≈ A−1

k .

Definition 5.3 The operator Ak ∈ L(Hk,Hk) is called variational with respect to A ∈ L(H,H) if, for a
fixed operator Ik ∈ L(Hk,H), it holds that:

Ak = IT
k AIk .

If the operators Ak are each variational with A, then the operator Ak in space Hk is in some sense a
representation of the operator A in the space Hk. For example, in a multigrid or domain decomposition
algorithm, the operator IT

k may correspond to an orthogonal projector, and Ik to the natural inclusion of a
subspace into the whole space.

Regarding the operators Rk, a natural condition to impose is that they correspond to some convergent
linear methods in the associated spaces, the necessary and sufficient condition for which would be (by
Theorem 3.7):

ρ(I − RkAk) = ‖I − RkAk‖A < 1, k = 1, · · · , J.

Note that if Rk = A−1
k , this is trivially satisfied. More generally, Rk ≈ A−1

k , corresponding to some classical
linear smoothing method (in the case of multigrid), or some other linear solver.

An abstract multiplicative Schwarz method, employing associated space corrections in the spaces Hk,
has the form:



5.3. ABSTRACT SCHWARZ THEORY 129

Algorithm 5.2 (Abstract Multiplicative Schwarz Method – Implementation Form)

un+1 = MS(un, f)

where the operation uNEW = MS(uOLD, f) is defined as:

Do k = 1, . . . , J
rk = IT

k (f − AuOLD)
ek = Rkrk

uNEW = uOLD + Ikek

uOLD = uNEW

End do.

Note that the first step through the loop in MS(·, ·) gives:

uNEW = uOLD + I1e1 = uOLD + I1R1I
T
1 (f − AuOLD) = (I − I1R1I

T
1 A)uOLD + I1R1I

T
1 f.

Continuing in this fashion, and by defining Tk = IkRkIT
k A, we see that after the full loop in MS(·, ·) the

solution transforms according to:

un+1 = (I − TJ)(I − TJ−1) · · · (I − T1)u
n + Bf,

where B is a quite complicated combination of the operators Rk, Ik , IT
k , and A. By defining Ek = (I−Tk)(I−

Tk−1) · · · (I − T1), we see that Ek = (I − Tk)Ek−1. Therefore, since Ek−1 = I −Bk−1A for some (implicitly
defined) Bk−1, we can identify the operators Bk through the recursion Ek = I−BkA = (I −Tk)Ek−1, giving

BkA = I − (I − Tk)Ek−1 = I − (I − Bk−1A) + Tk(I − Bk−1A) = Bk−1A + Tk − TkBk−1A

= Bk−1A + IkRkIT
k A − IkRkIT

k ABk−1A =
[

Bk−1 + IkRkIT
k − IkRkIT

k ABk−1

]

A,

so that Bk = Bk−1 + IkRkIT
k − IkRkIT

k ABk−1. But this means the above algorithm is equivalent to:

Algorithm 5.3 (Abstract Multiplicative Schwarz Method – Operator Form)

un+1 = un + B(f − Aun) = (I − BA)un + Bf

where the multiplicative Schwarz error propagator E is defined by:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1), Tk = IkRkIT
k A, k = 1, . . . , J.

The operator B ≡ BJ is defined implicitly, and obeys the recursion:

B1 = I1R1I
T
1 , Bk = Bk−1 + IkRkIT

k − IkRkIT
k ABk−1, k = 2, . . . , J.

An abstract additive Schwarz method, employing corrections in the spaces Hk, has the form:

Algorithm 5.4 (Abstract Additive Schwarz Method – Implementation Form)

un+1 = MS(un, f)

where the operation uNEW = MS(uOLD, f) is defined as:

r = f − AuOLD

Do k = 1, . . . , J
rk = IT

k r
ek = Rkrk

uNEW = uOLD + Ikek

End do.
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Since each loop iteration depends only on the original approximation uOLD, we see that the full correction
to the solution can be written as the sum:

un+1 = un + B(f − Aun) = un +

J
∑

k=1

IkRkIT
k (f − Aun),

where the preconditioner B has the form B =
∑J

k=1 IkRkIT
k , and the error propagator is E = I − BA.

Therefore, the above algorithm is equivalent to:

Algorithm 5.5 (Abstract Additive Schwarz Method – Operator Form)

un+1 = un + B(f − Aun) = (I − BA)un + Bf

where the additive Schwarz error propagator E is defined by:

E = I − BA = I −
J
∑

k=1

Tk, Tk = IkRkIT
k A, k = 1, . . . , J.

The operator B is defined explicitly as B =
∑J

k=1 IkRkIT
k .

5.3.2 Subspace splitting theory

We now consider the framework of §5.3.1, employing the abstract results of §5.2.4. First, we prove some
simple results about projectors, and the relationships between the operators Rk on the spaces Hk and the
resulting operators Tk = IkRkIT

k A on the space H. We then consider the “splitting” of the space H into
subspaces IkHk, and the verification of the assumptions required to apply the abstract theory of §5.2.4 is
reduced to deriving an estimate of the “splitting constant”.

Recall that an orthogonal projector is an operator P ∈ L(H,H) having a closed subspace V ⊆ H as its
range (on which P acts as the identity), and having the orthogonal complement of V , denoted as V⊥ ⊆ H,
as its null space. By this definition, the operator I − P is also clearly a projector, but having the subspace
V⊥ as range and V as null space. In other words, a projector P splits a Hilbert space H into a direct sum
of a closed subspace and its orthogonal complement as follows:

H = V ⊕ V⊥ = PH⊕ (I − P )H.

The following lemma gives a useful characterization of a projection operator; note that this characterization
is often used as an equivalent alternative definition of a projection operator.

Lemma 5.34 Let A ∈ L(H,H) be SPD. Then the operator P ∈ L(H,H) is an A-orthogonal projector if
and only if P is A-self-adjoint and idempotent (P 2 = P ).

Proof. See [129], Theorem 9.5-1, page 481.

Lemma 5.35 Assume dim(Hk) ≤ dim(H), Ik : Hk 7→ H, null(Ik) = {0}, and that A is SPD. Then

Qk = Ik(IT
k Ik)−1IT

k , Pk = Ik(IT
k AIk)−1IT

k A,

are the unique orthogonal and A-orthogonal projectors onto IkHk.

Proof. By assuming that null(Ik) = {0}, we guarantee that both null(IT
k Ik) = {0} and null(IT

k AIk) = {0},
so that both Qk and Pk are well-defined. It is easily verified that Qk is self-adjoint and Pk is A-self-adjoint,
and it is immediate that Q2

k = Qk and that P 2
k = Pk . Clearly, Qk : H 7→ IkHk, and Pk : H 7→ IkHk, so that

by Lemma 5.34 these operators are orthogonal and A-orthogonal projectors onto IkHk. All that remains is
to show that these operators are unique. By definition, a projector onto a subspace IkHk acts as the identity
on IkHk, and as the zero operator on (IkHk)⊥. Therefore, any two projectors Pk and P̃k onto IkHk must
act identically on the entire space H = IkHk ⊕ (IkHk)⊥, and therefore Pk = P̃k. Similarly, Qk is unique.
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We now make the following natural assumption regarding the operators Rk ≈ A−1
k .

Assumption 5.12 The operators Rk ∈ L(Hk,Hk) are SPD. Further, there exists a subspace Vk ⊆ Hk, and
parameters 0 < ω0 ≤ ω1 < 2, such that

(a) ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk ⊆ Hk, k = 1, . . . , J ,
(b) (AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J .

This implies that on the subspace Vk ⊆ Hk, it holds that 0 < ω0 ≤ λi(RkAk), k = 1, . . . , J , whereas on the
entire space Hk, it holds that λi(RkAk) ≤ ω1 < 2, k = 1, . . . , J .

There are several consequences of the above assumption which will be useful later.

Lemma 5.36 Assumption 5.12(b) implies that 0 < λi(RkAk) ≤ ω1, and ρ(I −RkAk) = ‖I −RkAk‖Ak
< 1.

Proof. Since R and A are SPD by assumption, we have by Lemma 3.6 that RA is A-SPD. By Assump-
tion 5.12(b), the Rayleigh quotients are bounded above by ω1, so that

0 < λi(RA) ≤ ω1.

Thus,
ρ(I − RA) = max

i
|λi(I − RA)| = max

i
|1 − λi(RA)|.

Clearly then ρ(I − RA) < 1 since 0 < ω1 < 2.

Lemma 5.37 Assumption 5.12(b) implies that (Akvk, vk) ≤ ω1(R
−1
k vk, vk), ∀vk ∈ Hk.

Proof. We drop the subscripts for ease of exposition. By Assumption 5.12(b), (ARAv, v) ≤ ω1(Av, v), so
that ω1 bounds the Raleigh quotients generated by RA. Since RA is similar to R1/2AR1/2, we must also
have that

(R1/2AR1/2v, v) ≤ ω1(v, v).

But this implies
(AR1/2v, R1/2v) ≤ ω1(R

−1R1/2v, R1/2v),

or (Aw, w) ≤ ω1(R
−1w, w), ∀w ∈ H.

Lemma 5.38 Assumption 5.12(b) implies that Tk = IkRkIT
k A is A-self-adjoint and A-non-negative, and

ρ(Tk) = ‖Tk‖A ≤ ω1 < 2.

Proof. That Tk = IkRkIT
k A is A-self-adjoint and A-non-negative follows immediately from the symmetry of

Rk and Ak. To show the last result, we employ Lemma 5.37 to obtain

(ATkv, Tkv) = (AIkRkIT
k Av, IkRkIT

k Av) = (IT
k AIkRkIT

k Av, RkIT
k Av)

= (AkRkIT
k Av, RkIT

k Av) ≤ ω1(R
−1
k RkIT

k Av, RkIT
k Av) = ω1(I

T
k Av, RkIT

k Av)

= ω1(AIkRkIT
k Av, v) = ω1(ATkv, v).

Now, from the Schwarz inequality, we have

(ATkv, Tkv) ≤ ω1(ATkv, v) ≤ ω1(ATkv, Tkv)1/2(Av, v)1/2,

or that
(ATkv, Tkv)1/2 ≤ ω1(Av, v)1/2,

which implies that ‖Tk‖A ≤ ω1 < 2.

The key idea in all of the following theory involves the splitting of the original Hilbert space H into a
collection of subspaces IkVk ⊆ IkHk ⊆ H. It will be important for the splitting to be stable in a certain
sense, which we state as the following assumption.
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Assumption 5.13 Given any v ∈ H =
∑J

k=1 IkHk, IkHk ⊆ H, there exists subspaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk, and a particular splitting v =
∑J

k=1 Ikvk, vk ∈ Vk, such that

J
∑

k=1

‖Ikvk‖2
A ≤ S0‖v‖2

A,

for some splitting constant S0 > 0.

The following key lemma (in the case of inclusion and projection as prolongation and restriction) is
sometimes referred to as Lions’ Lemma [133], although the multiple-subspace case is essentially due to
Widlund [183].

Lemma 5.39 Under Assumption 5.13 it holds that

(

1

S0

)

‖v‖2
A ≤

J
∑

k=1

(APkv, v), ∀v ∈ H.

Proof. Given any v ∈ H, we employ the splitting of Assumption 5.13 to obtain

‖v‖2
A =

J
∑

k=1

(Av, Ikvk) =

J
∑

k=1

(IT
k Av, vk) =

J
∑

k=1

(IT
k A(Ik(IT

k AIk)−1IT
k A)v, vk) =

J
∑

k=1

(APkv, Ikvk).

Now, let P̃k = (IT
k AIk)−1IT

k A, so that Pk = IkP̃k. Then

‖v‖2
A =

J
∑

k=1

(IT
k AIkP̃kv, vk) =

J
∑

k=1

(AkP̃kv, vk) ≤
J
∑

k=1

(Akvk, vk)1/2(AkP̃kv, P̃kv)1/2

≤
(

J
∑

k=1

(Akvk, vk)

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

=

(

J
∑

k=1

(AIkvk, Ikvk)

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

=

(

J
∑

k=1

‖Ikvk‖2
A

)1/2( J
∑

k=1

(AkP̃kv, P̃kv)

)1/2

≤ S
1/2
0 ‖v‖A

(

J
∑

k=1

(AIkP̃kv, IkP̃kv)

)1/2

= S
1/2
0 ‖v‖A

(

J
∑

k=1

(APkv, Pkv)

)1/2

, ∀v ∈ H.

Since (APkv, Pkv) = (APkv, v), dividing the above by ‖v‖A and squaring yields the result.

The next intermediate result will be useful in the case that the subspace solver Rk is effective on only
the part of the subspace Hk, namely Vk ⊆ Hk.

Lemma 5.40 Under Assumptions 5.12(a) and 5.13 (for the same subspaces IkVk ⊆ IkHk) it holds that

J
∑

k=1

(R−1
k vk, vk) ≤

(

S0

ω0

)

‖v‖2
A, ∀v =

J
∑

k=1

Ikvk ∈ H, vk ∈ Vk ⊆ Hk.

Proof. With v =
∑J

k=1 Ikvk, where we employ the splitting in Assumption 5.13, we have

J
∑

k=1

(R−1
k vk , vk) =

J
∑

k=1

(AkA−1
k R−1

k vk, vk) =

J
∑

k=1

(Akvk, vk)
(AkA−1

k R−1
k vk, vk)

(Akvk, vk)

≤
J
∑

k=1

(Akvk, vk) max
vk 6=0

(AkA−1
k R−1

k vk, vk)

(Akvk, vk)
≤

J
∑

k=1

ω−1
0 (Akvk, vk)

=

J
∑

k=1

ω−1
0 (AIkvk, Ikvk) =

J
∑

k=1

ω−1
0 ‖Ikvk‖2

A ≤
(

S0

ω0

)

‖v‖2
A,

which proves the lemma.
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The following lemma relates the constant appearing in the “splitting” Assumption 5.11 of the product
and sum operator theory to the subspace splitting constant appearing in Assumption 5.13 above.

Lemma 5.41 Under Assumptions 5.12(a) and 5.13 (for the same subspaces IkVk ⊆ IkHk) it holds that

‖v‖2
A ≤

(

S0

ω0

) J
∑

k=1

(ATkv, v), ∀v ∈ H.

Proof. Given any v ∈ H, we begin with the splitting in Assumption 5.13 as follows

‖v‖2
A = (Av, v) =

J
∑

k=1

(Av, Ikvk) =

J
∑

k=1

(IT
k Av, vk) =

J
∑

k=1

(RkIT
k Av, R−1

k vk).

We employ now the Cauchy-Schwarz inequality in the Rk inner-product, yielding

‖v‖2
A ≤

(

J
∑

k=1

(RkR−1
k vk , R−1

k vk)

)1/2( J
∑

k=1

(RkIT
k Av, IT

k Av)

)1/2

≤
(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(AIkRkIT
k Av, Av)

)1/2

=

(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(ATkv, v)

)1/2

,

where we have employed Lemma 5.40 for the last inequality. Dividing the inequality above by ‖v‖A and
squaring yields the lemma.

In order to employ the product and sum theory, we must quantify the interaction of the operators Tk. As
the Tk involve corrections in subspaces, we will see that the operator interaction properties will be determined
completely by the interaction of the subspaces. Therefore, we introduce the following notions to quantify
the interaction of the subspaces involved.

Definition 5.4 (Strong interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ) is defined to have as
entries Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .

Definition 5.5 (Weak interaction matrix) The strictly upper-triangular interaction matrix Ξ ∈ L(RJ , RJ )
is defined to have as entries Ξij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

The following lemma relates the interaction properties of the subspaces specified by the strong interaction
matrix to the interaction properties of the associated subspace correction operators Tk = IkRkIT

k A.

Lemma 5.42 For the strong interaction matrix Θ given in Definition 5.4, it holds that

|(ATiu, Tjv)| ≤ Θij(ATiu, Tiu)1/2(ATjv, Tjv)1/2, 1 ≤ i, j ≤ J, ∀u, v ∈ H.

Proof. Since Tku = IkRkIT
k Au = Ikuk, where uk = RkIT

k Au, the lemma follows simply from the definition
of Θ in Definition 5.4 above.

Remark 5.9. Note that the weak interaction matrix in Definition 5.5 involves a subspace Vk ⊆ Hk, which
will be necessary in the analysis of multigrid-like methods. Unfortunately, this will preclude the simple
application of the product operator theory of the previous sections. In particular, we cannot estimate the
constant C2 required for the use of Corollary 5.13, because we cannot show Lemma 5.22 for arbitrary Tk. In
order to prove Lemma 5.22, we would need to employ the upper-triangular portion of the strong interaction
matrix Θ in Definition 5.4, involving the entire space Hk, which is now different from the upper-triangular
weak interaction matrix Ξ (employing only the subspace Vk) defined as above in Definition 5.5. There was no
such distinction between the weak and strong interaction matrices in the product and sum operator theory
of the previous sections; the weak interaction matrix was defined simply as the strictly upper-triangular
portion of the strong interaction matrix.
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We can, however, employ the original Theorem 5.12 by attempting to estimate C1 directly, rather than
employing Corollary 5.13 and estimating C1 indirectly through C0 and C2. The following result will allow
us to do this, and still employ the weak interaction property above in Definition 5.5.

Lemma 5.43 Under Assumptions 5.12 and 5.13 (for the same subspaces IkVk ⊆ IkHk), it holds that

‖v‖2
A ≤

(

S0

ω0

)

[1 + ω1‖Ξ‖2]
2

J
∑

k=1

(ATkEk−1v, Ek−1v), ∀v ∈ H,

where Ξ is the weak interaction matrix of Definition 5.5.

Proof. We employ the splitting of Assumption 5.13, namely v =
∑J

k=1 Ikvk, vk ∈ Vk ⊆ Hk, as follows:

‖v‖2
A =

J
∑

k=1

(Av, Ikvk) =

J
∑

k=1

(AEk−1v, Ikvk) +

J
∑

k=1

(A[I − Ek−1]v, Ikvk)

=
J
∑

k=1

(AEk−1v, Ikvk) +
J
∑

k=1

k−1
∑

i=1

(ATiEi−1v, Ikvk) = S1 + S2.

We now estimate S1 and S2 separately. For the first term, we have:

S1 =

J
∑

k=1

(AEk−1v, Ikvk) =

J
∑

k=1

(IT
k AEk−1v, vk) =

J
∑

k=1

(RkIT
k AEk−1v, R−1

k vk)

≤
J
∑

k=1

(RkIT
k AEk−1v, IT

k AEk−1v)1/2(R−1
k vk , vk)1/2 =

J
∑

k=1

(ATkEk−1v, Ek−1v)1/2(R−1
k vk, vk)1/2

≤
(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(R−1
k vk, vk)

)1/2

.

where we have employed the Cauchy-Schwarz inequality in the Rk inner-product for the first inequality and
in R

J for the second. Employing now Lemma 5.40 (requiring Assumptions 5.12 and 5.13) to bound the
right-most term, we have

S1 ≤
(

S0

ω0

)1/2

‖v‖A

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

We now bound the term S2, employing the weak interaction matrix given in Definition 5.5 above, as
follows:

S2 =

J
∑

k=1

k−1
∑

i=1

(ATiEi−1v, Ikvk) =

J
∑

k=1

k−1
∑

i=1

(AIi[RiI
T
i AEi−1v], Ikvk)

≤
J
∑

k=1

J
∑

i=1

Ξik‖Ii[RiI
T
i AEi−1v]‖A‖Ikvk‖A =

J
∑

k=1

J
∑

i=1

Ξik‖TiEi−1v‖A‖Ikvk‖A = (Ξx,y)2,

where x,y ∈ R
J , xk = ‖Ikvk‖A, yi = ‖TiEi−1v‖A, and (·, ·)2 is the usual Euclidean inner-product in R

J .
Now, we have that

S2 ≤ (Ξx,y)2 ≤ ‖Ξ‖2‖x‖2‖y‖2 = ‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, TkEk−1v)

)1/2( J
∑

k=1

(AIkvk, Ikvk)

)1/2

≤ ω
1/2
1 ‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(Akvk, vk)

)1/2

,
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since Ak = IT
k AIk , and by Lemma 5.9, which may be applied because of Lemma 5.38. By Lemma 5.37, we

have (Akvk, vk) ≤ ω1(R
−1
k vk, vk), and employing this result along with Lemma 5.40 gives

S2 ≤ ω1‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2( J
∑

k=1

(R−1
k vk, vk)

)1/2

≤
(

S0

ω0

)1/2

‖v‖Aω1‖Ξ‖2

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

.

Combining the two results gives finally

‖v‖2
A ≤ S1 + S2 ≤

(

S0

ω0

)1/2

‖v‖A [1 + ω1‖Ξ‖2]

(

J
∑

k=1

(ATkEk−1v, Ek−1v)

)1/2

, ∀v ∈ H.

Dividing by ‖v‖A and squaring yieldings the result.

Remark 5.10. Although our language and notation is quite different, the proof we have given above for
Lemma 5.43 is similar to results in [189] and [86]. Similar ideas and results appear [181]. The main ideas
and techniques underlying proofs of this type were originally developed in [26, 27, 185].

5.3.3 Product and sum splitting theory for non-nested Schwarz methods

The main theory for Schwarz methods based on non-nested subspaces, as in the case of overlapping domain
decomposition-like methods, may be summarized in the following way. We still consider an abstract method,
but we assume it satisfies certain assumptions common to real overlapping Schwarz domain decomposition
methods. In particular, due to the local nature of the operators Tk for k 6= 0 arising from subspaces
associated with overlapping subdomains, it will be important to allow for a special global operator T0 for
global communication of information (the need for T0 will be demonstrated later). Therefore, we use the
analysis framework of the previous sections which includes the use of a special global operator T0. Note
that the local nature of the remaining Tk will imply that ρ(Θ) ≤ Nc, where Nc is the number of maximum
number of subdomains which overlap any subdomain in the region.

The analysis of domain decomposition-type algorithms is in most respects a straightforward application of
the theory of products and sums of operators, as presented earlier. The theory for multigrid-type algorithms
is more subtle; we will discuss this in the next section.

Let the operators E and P be defined as:

E = (I − TJ)(I − TJ−1) · · · (I − T0), (5.22)

P = T0 + T1 + · · · + TJ , (5.23)

where the operators Tk ∈ L(H,H) are defined in terms of the approximate corrections in the spaces Hk as:

Tk = IkRkIT
k A, k = 0, . . . , J, (5.24)

where

Ik : Hk 7→ H, null(Ik) = {0}, IkHk ⊆ H, H =

J
∑

k=1

IkHk.

The following assumptions are required; note that the following theory employs many of the assumptions
and lemmas of the previous sections, for the case that Vk ≡ Hk.

Assumption 5.14 (Subspace solvers) The operators Rk ∈ L(Hk,Hk) are SPD. Further, there exists pa-
rameters 0 < ω0 ≤ ω1 < 2, such that

ω0(Akvk, vk) ≤ (AkRkAkvk , vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 0, . . . , J.
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Assumption 5.15 (Splitting constant) Given any v ∈ H, there exists S0 > 0 and a particular splitting

v =
∑J

k=0 Ikvk, vk ∈ Hk, such that
J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A.

Definition 5.6 (Interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ) is defined to have as entries
Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .

Theorem 5.44 (Multiplicative method) Under Assumptions 5.14 and 5.15, it holds that

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(6 + 6ω2
1ρ(Θ)2)

.

Proof. By Lemma 5.38, Assumption 5.14 implies that Assumption 5.10 holds, with ω = ω1. By Lemma 5.41,
we know that Assumptions 5.14 and 5.15 imply that Assumption 5.11 holds, with C0 = S0/ω0. By
Lemma 5.42, we know that Definition 5.6 is equivalent to Definition 5.2 for Θ. Therefore, the theorem
follows by application of Theorem 5.30.

Theorem 5.45 (Additive method) Under Assumptions 5.14 and 5.15, it holds that

κA(P ) ≤ S0(ρ(Θ) + 1)ω1

ω0
.

Proof. By Lemma 5.38, Assumption 5.14 implies that Assumption 5.10 holds, with ω = ω1. By Lemma 5.41,
we know that Assumptions 5.14 and 5.15 imply that Assumption 5.11 holds, with C0 = S0/ω0. By
Lemma 5.42, we know that Definition 5.6 is equivalent to Definition 5.2 for Θ. Therefore, the theorem
follows by application of Theorem 5.31.

Remark 5.11. Note that Assumption 5.14 is equivalent to

κA(RkAk) ≤ ω1

ω0
, k = 0, . . . , J,

or maxk{κA(RkAk)} ≤ ω1/ω0. Thus, the result in Theorem 5.45 can be written as:

κA(P ) ≤ S0(ρ(Θ) + 1) max
k

{κA(RkAk)}.

Therefore, the global condition number is completely determined by the local condition numbers, the splitting
constant, and the interaction property.

Remark 5.12. We have the default estimate for ρ(Θ):

ρ(Θ) ≤ J.

For use of the theory above, we must also estimate the splitting constant S0, and the subspace solver spectral
bounds ω0 and ω1, for each particular application.

Remark 5.13. Note that if a coarse space operator T0 is not present, then the alternate bounds from the
previous sections could have been employed. However, the advantage of the above approach is that the
additional space H0 does not adversely effect the bounds, while it provides an additional space to help
satisfy the splitting assumption. In fact, in the finite element case, it is exactly this coarse space which
allows one to show that S0 does not depend on the number of subspaces, yielding optimal algorithms when
a coarse space is involved.

Remark 5.14. The theory in this section was derived mainly from work in the domain decomposition com-
munity, due chiefly to Widlund and his co-workers. In particular, our presentation owes much to [185]
and [59].
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5.3.4 Product and sum splitting theory for nested Schwarz methods

The main theory for Schwarz methods based on nested subspaces, as in the case of multigrid-like methods,
is summarized in this section. By “nested” subspaces, we mean here that there are additional subspaces
Vk ⊆ Hk of importance, and we refine the analysis to consider these addition nested subspaces Vk. Of course,
we must still assume that

∑J
k=1 IkVk = H. Later, when analyzing multigrid methods, we will consider in fact

a nested sequence I1H1 ⊆ I2H2 ⊆ · · · ⊆ HJ ≡ H, with Vk ⊆ Hk, although this assumption is not necessary
here. We will however assume here that one space H1 automatically performs the role of a “global” space,
and hence it will not be necessary to include a special global space H0 as in the non-nested case. Therefore,
we will employ the analysis framework of the previous sections which does not specifically include a special
global operator T0. (By working with the subspaces Vk rather than the Hk we will be able to avoid the
problems encountered with a global operator interacting with all other operators, as in the previous sections.)

The analysis of multigrid-type algorithms is more subtle than analysis for overlapping domain decompo-
sition methods, in that the efficiency of the method comes from the effectiveness of simple linear methods
(e.g., Gauss-Seidel iteration) at reducing the error in a certain sub-subspace Vk of the “current” space Hk.
The overall effect on the error is not important; just the effectiveness of the linear method on error subspace
Vk. The error in the remaining space Hk\Vk is handled by subspace solvers in the other subspaces, since we

assume that H =
∑J

k=1 IkVk. Therefore, in the analysis of the nested space methods to follow, the spaces
Vk ⊆ Hk introduced earlier will play a key role. This is in contrast to the non-nested theory of the previous
section, where it was taken to be the case that Vk ≡ Hk. Roughly speaking, nested space algorithms “split”
the error into components in Vk, and if the subspace solvers in each space Hk are good at reducing the error
in Vk, then the overall method will be good.

Let the operators E and P be defined as:

E = (I − TJ)(I − TJ−1) · · · (I − T1), (5.25)

P = T1 + T2 + · · · + TJ , (5.26)

where the operators Tk ∈ L(H,H) are defined in terms of the approximate corrections in the spaces Hk as:

Tk = IkRkIT
k A, k = 1, . . . , J, (5.27)

where

Ik : Hk 7→ H, null(Ik) = {0}, IkHk ⊆ H, H =

J
∑

k=1

IkHk.

The following assumptions are required.

Assumption 5.16 (Subspace solvers) The operators Rk ∈ L(Hk ,Hk) are SPD. Further, there exists sub-

spaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk, and parameters 0 < ω0 ≤ ω1 < 2, such that

ω0(Akvk, vk) ≤ (AkRkAkvk , vk), ∀vk ∈ Vk ⊆ Hk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

Assumption 5.17 (Splitting constant) Given any v ∈ H, there exists subspaces IkVk ⊆ IkHk ⊆ H =
∑J

k=1 IkVk (the same subspaces Vk as in Assumption 5.16 above) and a particular splitting v =
∑J

k=1 Ikvk,
vk ∈ Vk, such that

J
∑

k=1

‖Ikvk‖2
A ≤ S0‖v‖2

A, ∀v ∈ H,

for some splitting constant S0 > 0.

Definition 5.7 (Strong interaction matrix) The interaction matrix Θ ∈ L(RJ , RJ) is defined to have as
entries Θij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Θij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i, j ≤ J, ui ∈ Hi, vj ∈ Hj .
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Definition 5.8 (Weak interaction matrix) The strictly upper-triangular interaction matrix Ξ ∈ L(RJ , RJ )
is defined to have as entries Ξij the smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

Theorem 5.46 (Multiplicative method) Under Assumptions 5.16 and 5.17, it holds that

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(1 + ω1‖Ξ‖2)2
.

Proof. The proof of this result is more subtle than the additive method, and requires more work than
a simple application of the product operator theory. This is due to the fact that the weak interaction
matrix of Definition 5.8 specifically involves the subspace Vk ⊆ Hk. Therefore, rather than employing
Theorem 5.32, which employs Corollary 5.13 indirectly, we must do a more detailed analysis, and employ
the original Theorem 5.12 directly. (See the remarks preceding Lemma 5.43.)

By Lemma 5.38, Assumption 5.16 implies that Assumption 5.3 holds, with ω = ω1. Now, to employ
Theorem 5.12, it suffices to realize that Assumption 5.5 holds with with C1 = S0(1 + ω1‖Ξ‖2)

2/ω0. This
follows from Lemma 5.43.

Theorem 5.47 (Additive method) Under Assumptions 5.16 and 5.17, it holds that

κA(P ) ≤ S0ρ(Θ)ω1

ω0
.

Proof. By Lemma 5.38, Assumption 5.16 implies that Assumption 5.10 holds, with ω = ω1. By Lemma 5.41,
we know that Assumptions 5.16 and 5.17 imply that Assumption 5.11 holds, with C0 = S0/ω0. By
Lemma 5.42, we know that Definition 5.7 is equivalent to Definition 5.2 for Θ. Therefore, the theorem
follows by application of Theorem 5.33.

Remark 5.15. We have the default estimates for ‖Ξ‖2 and ρ(Θ):

‖Ξ‖2 ≤
√

J(J − 1)/2 < J, ρ(Θ) ≤ J.

For use of the theory above, we must also estimate the splitting constant S0, and the subspace solver spectral
bounds ω0 and ω1, for each particular application.

Remark 5.16. The theory in this section was derived from several sources; in particular, our presentation
owes much to [185], [86], and to [189].

5.4 Applications to domain decomposition

Domain decomposition methods were first proposed by H.A. Schwarz as a theoretical tool for studying elliptic
problems on complicated domains, constructed as the union of simple domains. An interesting early reference
not often mentioned is [118], containing both analysis and numerical examples, and references to the original
work by Schwarz. In this section, we briefly describe the fundamental overlapping domain decomposition
methods, and apply the theory of the previous sections to give convergence rate bounds.

5.4.1 Variational formulation and subdomain-based subspaces

Given a domain Ω and coarse triangulation by J regions {Ωk} of mesh size Hk, we refine (several times) to
obtain a fine mesh of size hk. The regions defined by the initial triangulation Ωk are then extended by δk to
form the “overlapping subdomains” Ω′

k. Now, let V and V0 denote the finite element spaces associated with
the hk and Hk triangulation of Ω, respectively. The variational problem in V has the form:

Find u ∈ V such that a(u, v) = f(v), ∀v ∈ V.
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The form a(·, ·) is bilinear, symmetric, coercive, and bounded, whereas f(·) is linear and bounded. Therefore,
through the Riesz representation theorem we can associate with the above problem an abstract operator
equation Au = f , where A is SPD.

Domain decomposition methods can be seen as iterative methods for solving the above operator equa-
tion, involving approximate projections of the error onto subspaces of V associated with the overlapping
subdomains Ω′

k. To be more specific, let Vk = H1
0 (Ω′

k) ∩ V , k = 1, . . . , J ; it is not difficult to show that
V = V1 + · · · + VJ , where the coarse space V0 may also be included in the sum.

5.4.2 The multiplicative and additive Schwarz methods

We denote as Ak the restriction of the operator A to the space Vk , corresponding to (any) discretization
of the original problem restricted to the subdomain Ω′

k. Algebraically, it can be shown that Ak = IT
k AIk ,

where Ik is the natural inclusion in H and IT
k is the corresponding projection. The property that Ik is

the natural inclusion and IT
k is the corresponding projection holds if either Vk is a finite element space or

the Euclidean space R
nk (in the case of multigrid, Ik and IT

k are inclusion and projection only in the finite
element space case). In other words, domain decomposition methods automatically satisfy the variational
condition, Definition 5.3, in the subspaces Vk, k 6= 0, for any discretization method.

Now, if Rk ≈ A−1
k , we can define the approximate A-orthogonal projector from V onto Vk as Tk =

IkRkIT
k A. An overlapping domain decomposition method can be written as the basic linear method, Algo-

rithm 3.1, where the multiplicative Schwarz error propagator E is:

E = (I − TJ)(I − TJ−1) · · · (I − T0).

The additive Schwarz preconditioned system operator P is:

P = T0 + T1 + · · · + TJ .

Therefore, the overlapping multiplicative and additive domain decomposition methods fit exactly into the
framework of abstract multiplicative and additive Schwarz methods discussed in the previous sections.

5.4.3 Algebraic domain decomposition methods

As remarked above, for domain decomposition methods it automatically holds that Ak = IT
k AIk, where Ik is

the natural inclusion, IT
k is the corresponding projection, and Vk is either a finite element space or R

nk . While
this variational condition holds for multigrid methods only in the case of finite element discretizations, or
when directly enforced as in algebraic multigrid methods (see the next section), the condition holds naturally
and automatically for domain decomposition methods employing any discretization technique.

We see that the Schwarz method framework then applies equally well to domain decomposition methods
based on other discretization techniques (box-method or finite differences), or to algebraic equations having
a block-structure which can be viewed as being associated with the discretization of an elliptic equation
over a domain. The Schwarz framework can be used to provide a convergence analysis even in the algebraic
case, although the results may be suboptimal compared to the finite element case when more information is
available about the continuous problem.

5.4.4 Convergence theory for the algebraic case

For domain decomposition methods, the local nature of the projection operators will allow for a simple
analysis of the interaction properties required for the Schwarz theory. To quantify the local nature of the
projection operators, assume that we are given H =

∑J
k=0 IkHk along with the subspaces IkHk ⊆ H, and

denote as Pk the A-orthogonal projector onto IkHk. We now make the following definition.

Definition 5.9 For each operator Pk, 1 ≤ k ≤ J , define N
(k)
c to be the number of operators Pi such that

PkPi 6= 0, 1 ≤ i ≤ J , and let Nc = max1≤k≤J{N (k)
c }.

Remark 5.17. This is a natural condition for domain decomposition methods, where N
(k)
c represents the

number of subdomains which overlap a given domain associated with Pk , excluding a possible coarse space
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I0H0. By treating the projector P0 separately in the analysis, we allow for a global space H0 which may
in fact interact with all of the other spaces. Note that Nc ≤ J in general with Schwarz methods; with
domain decomposition, we can show that Nc = O(1). Our use of the notation Nc comes from the idea that
Nc represents essentially the minimum number of colors required to color the subdomains so that no two
subdomains sharing interior mesh points have the same color. (If the domains were non-overlapping, then
this would be a case of the four-color problem, so that in two dimensions it would always hold that Nc ≤ 4.)

The following splitting is the basis for applying the theory of the previous sections. Note that this
splitting is well-defined in a completely algebraic setting without further assumptions.

Lemma 5.48 Given any v ∈ H =
∑J

k=0 IkHk, IkHk ⊆ H, there exists a particular splitting v =
∑J

k=0 Ikvk,
vk ∈ Hk, such that

J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A,

for the splitting constant S0 =
∑J

k=0 ‖Qk‖2
A.

Proof. Let Qk ∈ L(H,Hk) be the orthgonal projectors onto the subspaces Hk. We have that Hk = QkH,
and any v ∈ H can be represented uniquely as

v =

J
∑

k=0

Qkv =

J
∑

k=0

Ikvk, vk ∈ Hk.

We have then that
J
∑

k=0

‖Ikvk‖2
A =

J
∑

k=0

‖Qkv‖2
A ≤

J
∑

k=0

‖Qk‖2
A‖v‖2

A = S0‖v‖2
A,

where S0 =
∑J

k=0 ‖Qk‖2
A.

Lemma 5.49 It holds that ρ(Θ) ≤ Nc.

Proof. This follows easily, since ρ(Θ) ≤ ‖Θ‖1 = maxj{
∑

i |Θij |} ≤ Nc.

We make the following assumption on the subspace solvers.

Assumption 5.18 Assume there exists SPD operators Rk ∈ L(Hk ,Hk) and parameters 0 < ω0 ≤ ω1 < 2,
such that

ω0(Akvk, vk) ≤ (AkRkAkvk , vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

Theorem 5.50 Under Assumption 5.18, the multiplicative Schwarz domain decomposition method has an
error propagator which satisfies:

‖E‖2
A ≤ 1 − ω0(2 − ω1)

S0(6 + 6ω2
1N

2
c )

.

Proof. By Assumption 5.18, we have that Assumption 5.14 holds. By Lemma 5.48, we have that Assump-
tion 5.15 holds, with S0 =

∑J
k=0 ‖Qk‖2

A. By Lemma 5.49, we have that for Θ as in Definition 5.6, it holds
that ρ(Θ) ≤ Nc. The proof now follows from Theorem 5.44.

Theorem 5.51 Under Assumption 5.18, the additive Schwarz domain decomposition method as a precon-
ditioner gives a condition number bounded by:

κA(P ) ≤ S0(1 + Nc)
ω1

ω0
.

Proof. By Assumption 5.18, we have that Assumption 5.14 holds. By Lemma 5.48, we have that Assump-
tion 5.15 holds, with S0 =

∑J
k=0 ‖Qk‖2

A. By Lemma 5.49, we have that for Θ as in Definition 5.6, it holds
that ρ(Θ) ≤ Nc. The proof now follows from Theorem 5.45.
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5.4.5 Improved results through finite element theory

If a coarse space is employed, and the overlap of the subdomains δk is on the order of the subdomain size
Hk, i.e., δk = cHk, then one can bound the splitting constant S0 to be independent of the mesh size and the
number of subdomains J . Required to prove such a result is some elliptic regularity or smoothness on the
solution to the original continuous problem:

Find u ∈ H1
0 (Ω) such that a(u, v) = (f, v), ∀v ∈ H1

0 (Ω).

The regularity assumption is stated as an apriori estimate or regularity inequality of the following form: The
solution to the continuous problem satisfies u ∈ H1+α(Ω) for some real number α > 0, and there exists a
constant C such that

‖u‖H1+α(Ω) ≤ C‖f‖Hα−1(Ω).

If this regularity inequality holds for the continuous solution, one can show the following result by employing
some results from interpolation theory and finite element approximation theory.

Lemma 5.52 There exists a splitting v =
∑J

k=0 Ikvk, vk ∈ Hk such that

J
∑

k=0

‖Ikvk‖2
A ≤ S0‖v‖2

A, ∀v ∈ H,

where S0 is independent of J (and hk and Hk).

Proof. Refer for example to the proof in [185] and the references therein to related results.

5.5 Applications to multigrid

Multigrid methods were first developed by Federenko in the early 1960’s, and have been extensively studied
and developed since they became widely known in the late 1970’s. In this section, we briefly describe
the linear multigrid method as a Schwarz method, and apply the theory of the previous sections to give
convergence rate bounds.

5.5.1 Recursive multigrid and nested subspaces

Consider a set of finite-dimensional Hilbert spaces Hk of increasing dimension:

dim(H1) < dim(H2) < · · · < dim(HJ ).

The spaces Hk, which may for example be finite element function spaces, or simply Rnk (where nk =
dim(Hk)), are assumed to be connected by prolongation operators Ik

k−1 ∈ L(Hk−1,Hk), and restriction

operators Ik−1
k ∈ L(Hk ,Hk−1). We can use these various operators to define mappings Ik that provide a

nesting structure for the set of spaces Hk as follows:

I1H1 ⊂ I2H2 ⊂ · · · ⊂ IJHJ ≡ H,

where
IJ = I, Ik = IJ

J−1I
J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1.

We assume that each space Hk is equipped with an inner-product (·, ·)k inducing the norm ‖·‖k = (·, ·)1/2
k .

Also associated with each Hk is an operator Ak, assumed to be SPD with respect to (·, ·)k. It is assumed
that the operators satisfy variational conditions:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T . (5.28)

These conditions hold naturally in the finite element setting, and are imposed directly in algebraic multigrid
methods.

Given B ≈ A−1 in the space H, the basic linear method constructed from the preconditioned system
BAu = Bf has the form:

un+1 = un − BAun + Bf = (I − BA)un + Bf. (5.29)

Now, given some B, or some procedure for applying B, we can either formulate a linear method using
E = I − BA, or employ a CG method for BAu = Bf if B is SPD.
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5.5.2 Variational multigrid as a multiplicative Schwarz method

The recursive formulation of multigrid methods has been well-known for more than fifteen years; mathe-
matically equivalent forms of the method involving product error propagators have been recognized and
exploited theoretically only very recently. In particular, it can be shown [26, 94, 147] that if the variational
conditions (5.28) hold, then the multigrid error propagator can be factored as:

E = I − BA = (I − TJ)(I − TJ−1) · · · (I − T1), (5.30)

where:
IJ = I, Ik = IJ

J−1I
J−1
J−2 · · · Ik+2

k+1 Ik+1
k , k = 1, . . . , J − 1, (5.31)

T1 = I1A
−1
1 IT

1 A, Tk = IkRkIT
k A, k = 2, . . . , J, (5.32)

where Rk ≈ A−1
k is the “smoothing” operator employed in each space Hk. It is not difficult to show that

with the definition of Ik in equation (5.31), the variational conditions (5.28) imply that additional variational
conditions hold between the finest space and each of the subspaces separately, as required for the Schwarz
theory:

Ak = IT
k AIk . (5.33)

5.5.3 Algebraic multigrid methods

Equations arising in various application areas often contain complicated discontinuous coefficients, the shapes
of which may not be resolvable on all coarse mesh element boundaries as required for accurate finite element
approximation (and as required for validity of finite element error estimates). Multigrid methods typically
perform badly, and even the regularity-free multigrid convergence theory [26] is invalid.

Possible approaches include coefficient averaging methods (cf. [2]) and the explicit enforcement of the
conditions (5.28) (cf. [2, 51, 166]). By introducing a symbolic stencil calculus and employing MAPLE or
MATHEMATICA, the conditions (5.28) can be enforced algebraically in an efficient way for certain types of
sparse matrices; details may be found for example in the appendix of [94].

If one imposes the variational conditions (5.28) algebraically, then from our comments in the previous
section we know that algebraic multigrid methods can be viewed as multiplicative Schwarz methods, and
we can attempt to analyze the convergence rate of algebraic multigrid methods using the Schwarz theory
framework.

5.5.4 Convergence theory for the algebraic case

The following splitting is the basis for applying the theory of the previous sections. Note that this splitting
is well-defined in a completely algebraic setting without further assumptions.

Lemma 5.53 Given any v ∈ H =
∑J

k=0 IkHk, Ik−1Hk−1 ⊆ IkHk ⊆ H, there exists subspaces IkVk ⊆
IkHk ⊆ H =

∑J
k=1 IkVk, and a particular splitting v =

∑J
k=0 Ikvk, vk ∈ Vk, such that

J
∑

k=0

‖Ikvk‖2
A ≡ ‖v‖2

A.

The subspaces are IkVk = (Pk − Pk−1)H, and the splitting is v =
∑J

k=1(Pk − Pk−1)v.

Proof. We have the projectors Pk : H 7→ IkHk as defined in Lemma 5.35, where we take the convention that
PJ = I , and that P0 = 0. Since Ik−1Hk−1 ⊂ IkHk, we know that PkPk−1 = Pk−1Pk = Pk−1. Now, let us
define:

P̂1 = P1, P̂k = Pk − Pk−1, k = 2, . . . , J.

By Theorem 9.6-2 in [129] we have that each P̂k is a projection. (It is easily verified that P̂k is idempotent
and A-self-adjoint.) Define now

IkVk = P̂kH = (Pk − Pk−1)H = (IkA−1
k IT

k A − Ik−1A
−1
k−1I

T
k−1A)H
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= Ik(A−1
k − Ik

k−1A
−1
k−1(I

k
k−1)

T )IT
k AH, k = 1, . . . , J,

where we have used the fact that two forms of variational conditions hold, namely those of equation (5.28)
and equation (5.33). Note that

P̂kP̂j = (Pk − Pk−1)(Pj − Pj−1) = PkPj − PkPj−1 − Pk−1Pj + Pk−1Pj−1.

Thus, if k > j, then
P̂kP̂j = Pj − Pj−1 − Pj + Pj−1 = 0.

Similarly, if k < j, then
P̂kP̂j = Pk − Pk − Pk−1 + Pk−1 = 0.

Thus,
H = I1V1 ⊕ I2V2 ⊕ · · · ⊕ IJVJ = P̂1H⊕ P̂2H⊕ · · · ⊕ P̂JH,

and P =
∑J

k=1 P̂k = I defines a splitting (an A-orthogonal splitting) of H. We then have that

‖v‖2
A = (APv, v) =

J
∑

k=1

(AP̂kv, v) =

J
∑

k=1

(AP̂kv, P̂kv) =

J
∑

k=1

‖P̂kv‖2
A =

J
∑

k=1

‖Ikvk‖2
A.

For the particular splitting employed above, the weak interaction property is quite simple.

Lemma 5.54 The (strictly upper-triangular) interaction matrix Ξ ∈ L(RJ , RJ), having entries Ξij as the
smallest constants satisfying:

|(AIiui, Ijvj)| ≤ Ξij(AIiui, Iiui)
1/2(AIjvj , Ijvj)

1/2, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj ,

satisfies Ξ ≡ 0 for the subspace splitting IkVk = P̂kH = (Pk − Pk−1)H.

Proof. Since P̂jPi = (Pj − Pj−1)Pi = PjPi − Pj−1Pi = Pi − Pi = 0 for i < j, we have that IjVj = P̂jH is
orthogonal to IiHi = PiH, for i < j. Thus, it holds that

(AIiui, Ijvj) = 0, 1 ≤ i < j ≤ J, ui ∈ Hi, vj ∈ Vj ⊆ Hj .

The most difficult assumption to verify will be the following one.

Assumption 5.19 There exists SPD operators Rk and parameters 0 < ω0 ≤ ω1 < 2 such that

ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk, IkVk = (Pk − Pk−1)H ⊆ IkHk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

With this single assumption, we can state the main theorem.

Theorem 5.55 Under Assumption 5.19, the multigrid method has an error propagator which satisfies:

‖E‖2
A ≤ 1 − ω0(2 − ω1).

Proof. By Assumption 5.19, Assumption 5.16 holds. The splitting in Lemma 5.53 shows that Assump-
tion 5.17 holds, with S0 = 1. Lemma 5.54 shows that for Ξ as in Definition 5.8, it holds that Ξ ≡ 0. The
theorem now follows by Theorem 5.46.

Remark 5.18. In order to analyze the convergence rate of an algebraic multigrid method, we now see that
we must be able to estimate the two parameters ω0 and ω1 in Assumption 5.19. However, in an algebraic
multigrid method, we are free to choose the prolongation operator Ik, which of course also influences Ak =
IT
k AIk . Thus, we can attempt to select the prolongation operator Ik and the subspace solver Rk together,

so that Assumption 5.19 will hold, independent of the number of levels J employed. In other words, the
Schwarz theory framework can be used to help design an effective algebraic multigrid method. Whether it
will be possible to select Rk and Ik satisfying the above requirements is the subject of future work.
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5.5.5 Improved results through finite element theory

It can be shown that Assumption 5.19 holds for parameters ω0 and ω1 independent of the mesh size and
number of levels J , if one assumes some elliptic regularity or smoothness on the solution to the original
continuous problem:

Find u ∈ H1
0 (Ω) such that a(u, v) = (f, v), ∀v ∈ H1

0 (Ω).

This regularity assumption is stated as an apriori estimate or regularity inequality of the following form:
The solution to the continuous problem satisfies u ∈ H1+α(Ω) for some real number α > 0, and there exists
a constant C such that

‖u‖H1+α(Ω) ≤ C‖f‖Hα−1(Ω).

If this regularity inequality holds with α = 1 for the continuous solution, one can show the following result
by employing some results from interpolation theory and finite element approximation theory.

Lemma 5.56 There exists SPD operators Rk and parameters 0 < ω0 ≤ ω1 < 2 such that

ω0(Akvk, vk) ≤ (AkRkAkvk, vk), ∀vk ∈ Vk, IkVk = (Pk − Pk−1)H ⊆ IkHk, k = 1, . . . , J,

(AkRkAkvk, vk) ≤ ω1(Akvk, vk), ∀vk ∈ Hk, k = 1, . . . , J.

Proof. See for example the proof in [189].

More generally, assume only that u ∈ H1(Ω) (so that the regularity inequality holds only with α = 0), and
that there exists L2(Ω)-like orthogonal projectors Qk onto the finite element spaces Mk, where we take the
convention that QJ = I and Q0 = 0. This defines the splitting

v =
J
∑

k=1

(Qk − Qk−1)v,

which is central to the BPWX theory [26]. Employing this splitting along with results from finite element
approximation theory, it is shown in [26], using a similar Schwarz theory framework, that

‖E‖2
A ≤ 1 − C

J1+ν
, ν ∈ {0, 1}.

This result holds even in the presence of coefficient discontinuities (the constants being independent of the
jumps in the coefficients). The restriction is that all discontinuities lie along all element boundaries on all
levels. The constant ν depends on whether coefficient discontinuity “cross-points” are present.



6. Application to the Linearized PBE

Numerical experiments are performed to investigate the effectiveness of the linear multilevel methods when
applied to the linearized Poisson-Boltzmann equation with several test molecules and to a test problem with
very large jump discontinuities in the coefficients. A detailed comparison to other methods is presented,
including comparisons to diagonally scaled CG, ICCG, vectorized ICCG and MICCG, and to SOR provided
with an optimal relaxation parameter. For a broad range of molecule sizes and types it is shown that the
multilevel methods are superior to the other methods, and this superiority grows with the problem size. We
perform numerical experiments to investigate the relationship between the multilevel convergence rates and
various parameters, including the number of levels, and the magnitude of the coefficient discontinuities in
the interface problem. We attempt to determine empirically the overall complexity of the algorithms.1

6.1 Three linearized PBE methods

Of recent investigations into numerical solution of linearized PBE, the two most efficient methods appear
to be the adaptive SOR procedure described by Nicholls and Honig [152], and the incomplete Cholesky
preconditioned conjugate gradient method of Davis and McCammon [42]. Consequently, we will focus on
these two methods for the comparisons with multilevel methods to follow. We first briefly describe what
results were obtained with these methods, and then describe the multilevel method we have developed.

6.1.1 Successive Over-Relaxation

In [152], an adaptive SOR procedure is developed for the linearized Poisson-Boltzmann equation, employing
a power method to estimate the largest eigenvalue of the Jacobi iteration matrix, which enables estimation
of the optimal relaxation parameter for SOR using Young’s formula (page 110 in [179]). The eigenvalue
estimation technique employed is similar to the power method approach discussed on page 284 in [179].
In the implementation of the method in the computer program DELPHI, several additional techniques are
employed to increase the efficiency of the method. In particular, a red/black ordering is employed allowing
for vectorization, and array-oriented data structures (as opposed to three-dimensional grid data structures)
are employed to maximize vector lengths. The implementation is also specialized to the linearized Poisson-
Boltzmann equation, with constants hard-coded into the loops rather than loaded as vectors to reduce vector
loads.

In our comparisons with the multilevel methods, we use an SOR method provided with the optimal
relaxation parameter, implemented with a red/black ordering and array oriented data structures, yielding
maximal vector lengths and, as will be apparent, very high performance on both the Convex C240 and the
Cray Y-MP. We will also remark on the exceptional efficiency of the DELPHI implementation, and compare
it to our implementations.

1The material in this chapter also appears in [106, 107].
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6.1.2 (Modified) Incomplete Cholesky conjugate gradient methods

The application of conjugate gradient methods to the Poisson-Boltzmann equation is discussed by Davis and
McCammon [42], including comparisons with some classical iterative methods such as SOR. The conclusions
of their study were that the conjugate gradient methods were substantially more efficient than relaxation
methods including SOR, and that incomplete factorizations were effective preconditioning techniques for the
linearized Poisson-Boltzmann equation. We will see below that in fact for the problem sizes typically con-
sidered, the advantage of conjugate gradient methods over SOR is not so clear if an efficient SOR procedure
is implemented, and if a near optimal parameter is available. Of course, if larger problem sizes are consider,
then the superior complexity properties of the conjugate gradient methods (as summarized at the end of
Chapter 3) will eventually yield a more efficient technique than SOR.

We will also consider below several more advanced preconditioners than considered in [42]. Among
the most effective preconditioners for linear systems arising from the discretization of partial differential
equations are the incomplete factorizations, as considered in [42]; unfortunately, the very implicitness which
gives these preconditioners their effectiveness also makes them difficult to vectorize on vector computers.
However, the incomplete Cholesky factorizations for symmetric problems on non-uniform Cartesian meshes
developed by van der Vorst and others [178] employ special orderings to improve vectorization during the
back substitutions.

We present experiments with a preconditioned conjugate gradient method (implemented so as to yield
maximal vector lengths and high performance), provided with four different preconditioners: (1) diagonal
scaling; (2) an incomplete Cholesky factorization (the method for which Davis and McCammon present
results [42]); (3) the same factorization but with a plane-diagonal-wise ordering [178] allowing for some
vectorization of the backsolves; and (4) a vectorized modified incomplete Cholesky factorization [178] with
modification parameter α = 0.95, which has an improved convergence rate over standard ICCG.

6.1.3 A multilevel method for the Linearized PBE

We present results for the linearized Poisson-Boltzmann equation for a single multilevel method, which was
selected from several multilevel methods as the most efficient for these types of problems. We will compare
several different multilevel methods for the jump discontinuity test problem in a section which follows later
in the chapter.

The particular multilevel method we have chosen for the linearized Poisson-Boltzmann equation is con-
structed from the following components which we have discussed in previous chapters (we have also presented
this method in [107]). The harmonic averaging technique as described in Chapter 3 is used to create coeffi-
cients for the coarser mesh problems, and a standard box method is used to discretize the problem on the
coarse mesh using the averaged coefficients. Operator-based prolongation is also employed, using the stencil
compression ideas of Chapter 3. The full expressions for the prolongation operator stencil components are
given in Appendix A. We use as the restriction operator the adjoint of trilinear interpolation as described
in Appendix A; since we are not using the Galerkin expressions for this method, it is not essential to take
the restriction to be the adjoint of the prolongation operator, and numerical experiments indicated that the
adjoint of trilinear interpolation was superior for this particular method. It will be important for experiments
later in the chapter to take the restriction to be the adjoint of the prolongation.

The pre- and post-smoothing operators employed correspond to red/black Gauss-Seidel iterations, where
each smoothing step consisting of ν sweeps, with each sweep consisting of one sub-sweep with the red points
followed by one sub-sweep with the black points. A variable v-cycle [24] approach to accelerating multilevel
convergence is employed, so that the number of pre- and post-smoothing sweeps changes on each level; in
our implementation, the number of pre- and post-smoothing sweeps at level k is given by ν = 2J−k, so that
one pre- and post-smoothing is performed on the finest level k = J , and ν = 2J−1 sweeps on the coarsest
level k = 1, with the number increasing geometrically on coarser levels. The coarse problem is solved with
the conjugate gradient method.

We have also performed experiments with the linear damping parameter as described in Chapter 4; it
appears to improve the contraction properties of a v-cycle method to the same degree that the variable
v-cycle approach accelerates the method, at roughly the same cost. However, using the two techniques
together does not seem to improve the contraction properties further, and the cost is increased. Therefore,
the method presented in this section employs only the variable v-cycle acceleration.
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6.2 Some test problems

We describe the Poisson-Boltzmann problems which we use to numerically evaluate and compare the SOR,
preconditioned conjugate gradient methods, and multilevel methods. We also describe a test problem which
has very large jump discontinuities in the coefficients, which will be used to evaluate some of the multilevel
techniques.

6.2.1 The linearized Poisson-Boltzmann equation

Consider a very broad range of temperatures T ∈ [200K, 400K], a broad range of ionic strengths Is ∈ [0, 10],
and the following representative polygonal domain:

Ω = [xmin

o

A,xmax

o

A] × [ymin

o

A,ymax

o

A] × [zmin

o

A, zmax

o

A].

We assume that the set of discrete charges {x1, . . . ,xNm} representing the molecule lie well within the
domain, and hence far from the boundary Γ of Ω. The linearized Poisson-Boltzmann equation for the
dimensionless potential u(x) then has the form:

−∇ · (ā(x)∇u(x)) + b(x)u(x) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ. (6.1)

From the discussion in Chapter 1, the problem coefficients are of the following forms, and satisfy the following
bounds for the given temperature and ionic strength ranges:

(1) ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 2 ≤ ε(x) ≤ 80, ∀x ∈ Ω.

(2) b : Ω 7→ R, b(x) = κ̄2(x), 0 ≤ κ̄2(x) ≤ 127.0, ∀x ∈ Ω.

(3) f : Ω 7→ R, f(x) = C ·∑Nm

i=1 ziδ(x − xi), 5249.0 ≤ C ≤ 10500.0, − 1 ≤ zi ≤ 1, ∀x ∈ Ω.

(4) g : Γ 7→ R, g(x) = [C/(4πεw)] ·∑Nm

i=1[zie
−κ̄(x)|x−xi|/

√
εw ]/|x − xi|, εw = 80, ∀x ∈ Γ.

The linearized Poisson-Boltzmann problem will then be completely defined by specifying the following quan-
tities:

• xmin, xmax, ymin, ymax, zmin, zmax; the domain geometry.

• ε(x); the electrostatic surface of the molecule.

• κ̄(x); defined by the ionic strength Is and the exclusion layer around the molecule.

• C; a constant which depends only on the temperature T .

• {x1, . . . ,xNm}; charge locations, and associated fractional charges {z1, . . . , zNm}.
For all of our molecule test problems, we use T = 298 which determines the constant C; this is a common

parameter setting for these types of problems. The domain geometry will be defined by the particular
molecule, as well as the parameters ε(x) and κ̄(x), although we must specify also the ionic strength Is to
completely determine κ̄(x). The charge locations and corresponding fractional charges will also be determined
by the particular molecule.

6.2.2 The Brookhaven Protein Databank and existing biophysics software

We have connected the software implementations of our methods to both the DELPHI and UHBD electro-
statics programs, and we will use data provided by these packages. These codes are designed to begin with
a protein data bank (pdb) file description of the protein or enzyme in question, obtained from the protein
data bank at Brookhaven National Laboratory. The pdb files contain the coordinates of all of the atoms
in a particular structure, obtained from X-ray crystallography pictures of the structure. The UHBD and
DELPHI programs begin with the atom coordinates, and then construct both the electrostatic surface and
the exclusion layer by moving a probe around the molecule which has the radius of a representative ion. We
remark that quite sophisticated algorithms are now being employed for surfacing [151].

Both UHBD and DELPHI are designed around Cartesian meshes (both implementations are actually
restricted to uniform Cartesian meshes), and the electrostatic surface and exclusion layer information are
represented as three-dimensional discrete grid functions εh(x) and κ̄h(x). The mesh function κ̄h(x) is pro-
duced at the same mesh-points where the unknowns uh(x) are located, whereas the mesh function εh(x) is
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produced at half-mesh-points in each coordinate direction as needed for a box-method discretization (em-
ployed in both UHBD and DELPHI). The atoms themselves, which will most likely not lie on a uniform
Cartesian mesh, must be mapped to the uniform Cartesian coordinates, and their corresponding charges dis-
tributed to the neighboring mesh points. Several approaches are possible; a trilinear interpolation approach
is taken in both packages.

Note that the selection of the domain completely determines the boundary conditions for a given problem,
as we have specified the boundary function g(x) above. Several different approaches have been proposed to
approximate g(x), since it is clear that to evaluate g(x) at each boundary point of the three-dimensional
domain will require all pair-wise interactions of the charges and the boundary points; efficient versions are
offered as options for example in UHBD, all of which appear to give similarly good approximations of the
true boundary condition u(∞) = 0 (when the molecule is taken to lie well within the domain Ω). In both
UHBD and DELPHI, the problem domain Ω is constructed around the selected molecule so that no more
than thirty percent of Ω in each coordinate direction is taken up by the molecule, which is centered in the
domain. This appears to give very good approximation of the true boundary conditions in most situations.

The elliptic solver component of our software, which has been connected to the biophysics software, is
designed to solve general problems of the form (6.1) on arbitrary logically non-uniform Cartesian, three-
dimensional meshes; the nonlinear capabilities of the software are discussed in Chapter 7 and Appendix B.
The available methods in the solver include the multilevel and conjugate gradient methods discussed in
Chapter 3, plus a few more. The domain geometry is specified by the user with the coordinates xmin, xmax,
ymin, ymax, zmin, and zmax, and the non-uniform Cartesian mesh which tessellates the domain is also specified
by the user, allowing for arbitrary mesh spacings in any direction. There is only the restriction that the
mesh be logically non-uniform Cartesian, or axi-parallel, so that the algebraic Galerkin multilevel methods
(described in Chapter 3) are well-defined; these methods work only with matrices representable as stencils.
The problem coefficients b(x) and f(x), which are allowed to be wildly discontinuous at arbitrary points, are
specified in arrays at the non-uniform Cartesian mesh points coinciding with the mesh provided by the user,
whereas the coefficient ā(x), also allowed to have extremely large jump discontinuities at arbitrary points,
is provided at half-mesh-points as required for a box method discretization. The boundary coefficient g(x)
is specified by the user in arrays which match the dimensions of the six surrounding discretized faces of the
domain Ω. The parameter settings for the various methods are provided by the user in a single array of
flags.

A more complete description of the software may be found in Appendix B.

6.2.3 A collection of molecule test problems

We will focus on three test molecules, at varying ionic strengths, which represent a wide range of difficulty
and size. The first two data sets were obtained from DELPHI, and the third from UHBD.

• Acetamide (CH3CONH2) at 0.1 molar, a small molecule (few angstroms in diameter).

• Lysozyme at 0.1 molar, often used as a test problem for the linearized PBE.

• SOD at 0.1 molar, a problem we study in Chapter 7 as well.

6.2.4 A test problem with large jump discontinuities

The following test problem, which is essentially a three-dimensional version of the two-dimensional test
problem appearing on page 42 in [26], will be used to explore the convergence behavior of the methods as a
function of the difficulty of the problem, represented by the problem size as well as the magnitudes of the
jump discontinuities in the coefficients. The domain is the unit cube:

Ω = [0, 1] × [0, 1]× [0, 1].

The linear equation has the form:

−∇ · (ā(x)∇u(x)) + b(x)u(x) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ. (6.2)

where the coefficients in equation (6.2) are taken to be:

(1) ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 1 ≤ ε(x) ≤ 1.0× 108, ∀x ∈ Ω.
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Table 6.1: Linearized Poisson-Boltzmann equation methods.

Method Description

MH Multilevel (Harmonic ave., op-prolongation, red/black GS, var. v-cycle)
OSOR successive over-relaxation method with optimal relaxation parameter ω
DSCG diagonally scaled conjugate gradient method
ICCG1 incomplete Cholesky preconditioned conjugate gradient method
ICCG2 same as ICCG1 but with plane-diagonal-wise ordering during backsolves
MICCG same as ICCG2 but with a modification parameter α = 0.95

(2) b : Ω 7→ R, b(x) = 0, ∀x ∈ Ω.

(3) f : Ω 7→ R, − 1 ≤ f(x) ≤ 1, ∀x ∈ Ω.

(4) g : Γ 7→ R, g(x) = 0, ∀x ∈ Γ.

We will construct ε(x) to be piecewise constant, taking one value in a subdomain Ω1 ⊂ Ω, and a second
value in the region Ω\Ω1, so that ε(x) is defined as follows:

ε(x) =

{

1 ≤ ε1 ≤ 1.0× 108 if x ∈ Ω1,
1 ≤ ε2 ≤ 1.0× 108 if x ∈ Ω\Ω1.

}

We will let ε1 and ε2 vary for different test runs so that their ratio:

D =
ε1
ε2

can be as large as 108 or as small as 10−8 for a particular run, and we will then observe the resulting
convergence behavior of the multilevel methods. We define the subdomain Ω1 ⊂ Ω to consist of the following
two smaller cubes:

Ω1 = [0.25, 0.50]× [0.25, 0.50]× [0.25, 0.50]
⋃

[0.50, 0.75]× [0.50, 0.50]× [0.50, 0.75].

For this simple problem, it would of course be possible to construct all coarse meshes as needed for
the multilevel methods to align with Ω1; this would not be possible with problems such as the linearized
Poisson-Boltzmann equation and a complex molecule. Therefore, since we wish to simulate the case that
the discontinuities in ε(x) cannot be resolved on coarser meshes, the multiple levels of tessellations of Ω into
discrete meshes Ωk are constructed so that the discontinuities in ε(x) lie along mesh lines only on the finest
mesh.

Note that if ε1 = ε2 ≡ 1, then problem (6.2) with the above coefficients is Poisson’s equation on the unit
cube.

6.3 Numerical results for the Linearized PBE

Table 6.1 provides a key to the plots and tables to follow.
Unless otherwise indicated, all data in the plots and tables to follow include the pre-processing costs

incurred by the various methods. In other words, the multilevel method times include the additional time
required to set up the problem on coarse grids, and the times for the conjugate gradient methods employing
incomplete factorizations include the initial costs of performing the factorizations. This gives a complete
and fair assessment of the total time required to reach the solution.

An initial approximation of zero was taken to start each method, and each method used a relative residual
stopping criterion:

‖rn
k‖

‖fk‖
=

‖fk − Akun
k‖

‖fk‖
< TOL = 1.0e − 6,

where un
k represents the nth iterate. Normally, ‖rn

k ‖ is not available in the preconditioned conjugate gradient
iteration (the quantity < Crn

k , rn
k >1/2 is available, where C is the preconditioner), and must be computed
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Table 6.2: Megaflops with [without] matrix construction and factorization setup.

Machine Method
(1 Processor) MH MICCG OSOR ICCG2 DSCG ICCG1

Convex C240 12.3 [12.7] 13.1 [13.6] 18.9 [20.4] 13.6 [14.1] 18.1 [18.5] 7.24 [7.05]
Cray Y-MP 118 [120] 135 [158] 215 [220] 142 [158] 215 [218] 36.8 [35.5]

Table 6.3: Total time to reach TOL=1.0e-6 with 65× 65 × 65 grid (CPU seconds).

Machine Method
(1 Processor) MH MICCG OSOR ICCG2 DSCG ICCG1

Convex C240 13.2 23.1 35.9 35.7 56.8 69.9
Cray Y-MP 1.40 2.45 3.22 3.62 4.76 13.8

at extra cost; however, this additional cost was not included in the conjugate gradient method timings in
order to avoid unfairly penalizing the conjugate gradient methods.

Timings, operation counts, and megaflops (one million floating point operations per second) figures on
the Cray Y-MP were obtained from the performance monitoring hardware accessed through perftrace and
perfview. Timing figures on the Convex C240 were obtained from the system timing routine getrusage, and
megaflop rates were computed from the exact operation counts provided earlier by the Cray.

Table 6.2 gives the performance in megaflops for each method when applied to any of the test molecules,
where we have listed the performance statistics with and without pre-processing costs such as matrix con-
struction and Cholesky factorizations. A more detailed performance analysis on several more sequential as
well as some parallel machines can be found in Chapter 8.

6.3.1 Results for acetamide

Figure 6.1 gives the reduction in the relative residual per CPU second for each method on the Convex
C240. Figure 6.2 gives the corresponding information on the Cray Y-MP. In Table 6.3, the information from
Figures 6.1 and 6.2 is translated into a single number for each method, representing the total time required
to reach the acetamide solution on a given architecture.

These graphs and tables show that multilevel method is nearly two times faster than the next best
method, MICCG. It is interesting to note from Table 6.3 that optimal SOR is in fact equal or superior
to all of the conjugate gradient methods for this problem, except for MICCG. Table 6.2 indicates that our
implementation of the optimal SOR method is exceptionally efficient, operating at near the peak rate available
from FORTRAN of matrix-vector operations on the Cray Y-MP. In addition, the vectorized incomplete
Cholesky preconditioned conjugate gradient methods execute with very high rates, consistent with the earlier
reports [178] for these methods on the Cray X-MP.

We remark that while we have presented the results above for a 65×65×65 mesh, the multilevel method
becomes more and more efficient compared to the other methods as the problem size is increased; we will
demonstrate this later in the chapter.

6.3.2 Results for lysozyme

Figure 6.3 gives the reduction in the relative residual per time work unit for each method on the Convex
C240, when the molecule is taken to be the larger lysozyme molecule.

This graph shows that the multilevel method is even more efficient (approximately three times faster)
than the next best method for this more complicated problem. The conjecture here would be that multilevel
methods are more effectively at moving global information around, and the less homogeneous the problem
is, the more advantage a multilevel method will have. Again, the separation between the multilevel method
and the other methods increases as the problem size is increased.
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Figure 6.1: Comparison of various methods for the linear acetamide problem.
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Figure 6.2: Comparison of various methods for the linear acetamide problem.
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Figure 6.3: Comparison of various methods for the linear lysozyme problem.
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Figure 6.4: Comparison of various methods for the linear SOD problem.
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6.3.3 Results for SOD

Figure 6.4 gives the reduction in the relative residual per time work unit for each method on the Convex C3,
when the molecule is taken to be the large SOD molecule. We remark that only three methods appear on
the plot because only these three linear methods have been connected to the UHBD software at this time.
We have used a 127×127×127 mesh, and for this larger problem size, the advantage of the multilevel solver
becomes more clear. The multilevel method appears to be about fifteen more efficient than the diagonally
scaled conjugate gradient method, compared to a factor of three to five for the 65× 65× 65 mesh in the case
of acetamide and lysozyme.

Remark 6.1. Our results are consistent with an earlier study by Dendy and Hyman [53], who compared
multigrid methods to non-vectorized forms of ICCG and MICCG for two-dimensional interface problems,
including the multi-group neutron diffusion problem. Their conclusions for the two-dimensional case were
that the multigrid method developed by Alcouffe et al. [2] was superior to both ICCG and MICCG. One
observation they made, which we did not take advantage of in this study, was the following: multigrid
reaches discretization error accuracy very rapidly – with far fewer iterations than that required to reach a
small residual tolerance. One cannot usually make this statement for other methods.

While the implementations presented here may also be used for general second order problems in three
dimensions, in the case of the Poisson-Boltzmann equation special techniques may be used to increase solver
efficiency. In particular, the highly optimized SOR method of Nicholls and Honig [152], using a technique
referred to as stripping, along with a novel procedure for determining the optimal relaxation parameter
adaptively, achieves a factor of two improvement over our “unstripped” optimal SOR method (35.9 CPU
seconds, from Table 6.3 for the acetamide problem). Their code solves the acetamide problem on the Convex
C240 in 17.3 CPU seconds, compared to 13.2 CPU seconds for our implementation of the multilevel method.

It should be stressed that their optimization techniques may be used to equal advantage with the mul-
tilevel method presented here, as it is based on a red/black Gauss-Seidel smoothing iteration; therefore, we
would expect a similar (factor of two) improvement in the efficiency of the multilevel method. However, it is
unclear how to take advantage of their stripping technique in the preconditioning phases of the incomplete
Cholesky conjugate gradients methods, which in our experiments made up more than sixty percent of the
total execution times of these methods (more than eighty-five percent in the non-vectorized ICCG case).

A final remark is that for higher ionic strengths, which results in a larger “Helmholtz-like” term κ̄(r)
in the linearized PBE, the resulting discrete linear systems are better conditioned, and the preconditioned
conjugate gradient methods in particular do appear to benefit in these situations by requiring fewer iterations.

6.4 Multilevel behavior for the jump discontinuity problem

The pre-smoothing operator employed here is a standard point Gauss-Seidel iteration, where the pre-
smoothing step consists of ν sweeps. Note that for the multilevel methods not employing the Galerkin
coarse problem formulation, the matrices on each level have seven point stencils, allowing for a red/black
coloring of the unknowns and the use of efficient vectorizable red/black Gauss-Seidel pre- and post-smoothing.
This is also the case on the finest mesh for the Galerkin methods, so that a vectorizable red-black smoothing
may be employed on at least the finest mesh. On coarser meshes, either point Gauss-Seidel or vectorizable
weighted Jacobi smoothing may be used for the Galerkin methods. The post-smoothing step we employ here
is as the pre-smoothing step, where the order of the sweeps is reversed so that the resulting post-smoothing
operator is the adjoint of the pre-smoothing operator, to yield a symmetric multilevel operator as discussed
in detail in Chapter 3. A variable v-cycle [24] is employed, so that the number of pre- and post-smoothing
sweeps changes on each level; in our implementation, the number of pre- and post-smoothing sweeps at level
k is given by ν = 2J−k, so that one pre- and post-smoothing is performed on the finest level, with the
number increasing geometrically on coarser levels. A linear damping parameter was employed in each of the
multilevel methods to improve their convergence behavior, exactly as described in Chapter 4. The coarse
problem is solved with banded LINPACK.

Table 6.4 provides a key to the plots and tables to follow.
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Table 6.4: Three-dimensional elliptic equation methods.

Method Description

MV vanilla multigrid (linear-prolongation, red/black GS)
MH multilevel (harmonic ave., operator-prolongation, red/black GS)
MG multilevel (Galerkin expressions, linear-prolongation, red/black GS)
MVCG MV accelerated with the conjugate gradient method
MHCG MH accelerated with the conjugate gradient method
MGCG MG accelerated with the conjugate gradient method
CG vanilla conjugate gradient method
MICCG incomplete Cholesky PCG, plane-diagonal-wise ordering, α = 0.95

6.4.1 Convergence vs. the discontinuity size and the number of levels

We now present a series of plots giving the convergence behavior of the methods in Table 6.4 as the discon-
tinuity ratio

D =
ε1
ε2

is varied from D = 1.0 × 10−8 to D = 1.0 × 108. Recall that ε1 represents the value of the constant inside
the inner domain Ω1 ⊂ Ω, and ε2 represents the constant outside the inner domain, in the region Ω\Ω1. We
begin with just Poisson’s equation (D = 1) in Figure 6.5.

Figure 6.6 through Figure 6.11 shows the behavior of each method in Table 6.4 as the discontinuity ratio
is taken from D = 1.0e−1 to D = 1.0e−8; this is the same type of discontinuity appearing in the PBE, with
the interior dielectric smaller than the exterior dielectric. For this type of discontinuity, the methods based
on coefficient averaging are quite effective, and are the most efficient methods for these types of problems.

Figure 6.12 through Figure 6.17 shows the behavior of each method in Table 6.4 as the discontinuity
ratio is taken from D = 1.0e + 1 to D = 1.0e + 8. For this type of discontinuity, the methods based on
coefficient averaging are only slightly more effective than the standard multigrid approach; they eventually
break down as the discontinuity becomes large. Note that the methods based on enforcing the variational
conditions, MG and MGCG, remain effective for all ranges of discontinuity, and in fact the convergence
behavior appears to be almost independent of the discontinuity.

We now present some experiments which investigate the convergence behavior of the method MG in a
little more detail. The method MG employed is exactly as described earlier, except that a variable V-cycle
is not used; a single pre- and post-smoothing iteration is employed on all levels. In addition, we have not
employed the linear damping parameter here for improving the convergence rate of the method. As a result,
by constructing the method MG to employ the adjoint of the pre-smoothing operator as the post-smoothing
operator, and by imposing the variational conditions exactly, it is clear that the framework constructed in
Chapter 3 applies to the resulting method. In particular, by Theorem 3.7 of Chapter 3, we know that

‖Es‖A = ‖I − BA‖A = ρ(I − BA),

where Es = I − BA is the symmetric multilevel error propagator for this method. Therefore, while it
may be difficult to compute the quantity ‖Es‖A numerically, which is the quantity bounded in the theory
described in Chapter 5, we can easily compute the largest eigenvalue with the standard power method,
which is equivalent. Further, for this method we have that ‖Es‖A < 1 for any SPD operator A defining the
problem, which holds by Theorem 5.4 of Chapter 5.

Tables 6.5 and 6.6 contain the numerically computed spectral radii of the multilevel error propagator
for the MG method described above, applied to the jump discontinuity problem; the smoothing operator
employed is Gauss-Seidel, again with the adjoint of the pre-smoothing operator taken as the post-smoothing
operator. This set of experiments was modeled after §7, Table 7.2, in [26]. It was our intention to attempt
to determine numerically, as in [26], exactly what type of contraction number deterioration occurs as the
number of levels is increased, and as the discontinuity becomes more severe.
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Figure 6.5: Behavior for Poisson’s equation.

Table 6.5: Spectral radii behavior for the Gauss-Seidel-based MG method.

J(n
1/3
J ) D = 1 D = 101 D = 102 D = 103 D = 104 D = 108 1 − .52/J .75

2(17) .30 .43 .62 .68 .69 .69 .69
3(33) .32 .55 .72 .76 .78 .79 .77
4(65) .33 .57 .76 .79 .80 .83 .82
5(129) .34 .59 .78 .83 .83 .84 .84

The last column of each table shows the values of a function which has been fitted to the data, for
D = 108 and D = 10−8. The motivation for this form of the fitted function was the BPWX-based theory
discussed in Chapter 5. In particular, in the special case that a finite element discretization is employed, with
the coefficient discontinuity lying along element boundaries on all coarse meshes, then the BPWX Theory
discussed in Chapter 5 would yield a contraction bound decaying as

‖Es‖A ≤ δJ = 1 − C

Jν
,

with ν = 1 with simple discontinuities, or with ν = 2 in the presence of cross points. In our particular case
of the completely algebraic method MG, without any further structure such as discontinuities lying along
element boundaries on all coarse meshes, the method still demonstrates contraction numbers which decay
only with ν = 0.75 and ν = 0.39. This would seem to indicate that it might be possible to show a similar
bound on the contraction number for the completely algebraic method MG.

Tables 6.7 and 6.8 contain the same set of experiments, the computed spectral radii of the multilevel
error propagator for method MG, but now the smoothing operator is taken to be weighted Jacobi, with the
weight ω = 0.8. Again, the last column of each table shows the values of a function which has been fitted
to the data, for D = 108 and D = 10−8. In this case, while the contraction numbers decay worse than
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Figure 6.6: The jump discontinuity problem with D=1.0e-1.
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Figure 6.7: The jump discontinuity problem with D=1.0e-2.
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Figure 6.8: The jump discontinuity problem with D=1.0e-3.
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Figure 6.9: The jump discontinuity problem with D=1.0e-4.
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Figure 6.10: The jump discontinuity problem with D=1.0e-6.
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Figure 6.11: The jump discontinuity problem with D=1.0e-8.
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Figure 6.12: The jump discontinuity problem with D=1.0e+1.
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Figure 6.13: The jump discontinuity problem with D=1.0e+2.
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Figure 6.14: The jump discontinuity problem with D=1.0e+3.
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Figure 6.15: The jump discontinuity problem with D=1.0e+4.
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Figure 6.16: The jump discontinuity problem with D=1.0e+6.
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Figure 6.17: The jump discontinuity problem with D=1.0e+8.
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Table 6.6: Spectral radii behavior for the Gauss-Seidel-based MG method.

J(n
1/3
J ) D = 1 D = 10−1 D = 10−2 D = 10−3 D = 10−4 D = 10−8 1 − .63/J .39

2(17) .30 .41 .50 .52 .52 .52 .52
3(33) .32 .48 .59 .60 .61 .61 .59
4(65) .33 .52 .62 .64 .64 .64 .63
5(129) .34 .54 .64 .66 .66 .66 .66

Table 6.7: Spectral radii behavior for the weighted Jacobi-based MG method.

J(n
1/3
J ) D = 1 D = 101 D = 102 D = 103 D = 104 D = 108 1 − .32/J .9

2(17) .52 .66 .78 .82 .83 .83 .83
3(33) .55 .71 .84 .87 .88 .89 .88
4(65) .56 .73 .86 .89 .90 .91 .91
5(129) .56 .74 .87 .90 .90 .92 .92

the Gauss-Seidel-based MG method, they are still better than the bound given by the BPWX theory, with
ν = 0.8 and ν = 0.44.

6.4.2 Convergence as a function of the problem size

Multilevel methods are provably optimal order for a broad class of problems, meaning that the cost to solve
a problem with N unknowns is proportional to N . Unfortunately, as we have outlined in detail in Chapter 5,
the discontinuities of ε(r) in the linearized PBE preclude the use of much of the existing theory, which requires
strong smoothness assumptions on the problem coefficients. The most recent BPWX theory discussed in
Chapter 5 applies in the case of discontinuous coeficients, but requires that coefficient discontinuities lie
along element boundaries on all coarse meshes, a condition which must be violated for problems such as the
Poisson-Boltzmann equation.

Note that in the previous section, we showed numerically that the contraction numbers of the algebraic
methods decay with the number of levels raised to some power, and an analysis of the resulting complexity (as
in Chapter 3) would yield a logarithmic term in the complexity bounds. In the case of smaller discontinuities,
as in the Poisson-Boltzmann equation, a glance at tables 6.5 through 6.8 shows that the decay is less strong,
and the resulting complexity is nearly optimal. We now demonstrate this explicitly with some experiments.

Figure 6.18 gives the cost of each method to solve the jump discontinuity test problem with D = ε1/ε2 =
2/80 (similar to the Poisson-Boltzmann discontinuity type and magnitude), in time work units on the Convex
C240, as the problem size is increased by a factor of two beginning with a 17 × 17 × 17 grid, and ending
with a 129 × 129 × 129 grid. Note that in this figure, the time per unknown is being plotted as a function
of the problem size. The fact that the multilevel method curve is virtually horizontal reflects the optimal
order behavior of multilevel methods. In particular, we can see that the superiority of the multilevel method
increases as we move to larger grids. This behavior can often be demonstrated for the multilevel method
even when the existing theory is no longer applicable.

6.5 Storage requirements

We make a few remarks about the storage required for the multilevel methods as well as some of the other
methods appearing in the chapter. We are faced with the discrete problem of the form:

Au = f,

where A is an N × N SPD matrix, u is the N × 1 vector of unknowns, and f is the N × 1 vector of source
function values. The number of unknowns N is related to the original discrete mesh as N = I · J · K,
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Table 6.8: Spectral radii behavior for the weighted Jacobi-based MG method.

J(n
1/3
J ) D = 1 D = 10−1 D = 10−2 D = 10−3 D = 10−4 D = 10−8 1 − .38/J .44

2(17) .52 .62 .70 .72 .72 .72 .72
3(33) .55 .69 .76 .78 .78 .78 .77
4(65) .56 .72 .79 .80 .80 .81 .80
5(129) .56 .73 .80 .81 .81 .81 .81
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Figure 6.18: Cost per unknown as a function of the grid size.

where I , J , and K are the number of mesh-points in each direction of the non-uniform Cartesian mesh.
Employing the box-method on the non-uniform Cartesian mesh, the matrix A can be represented by seven
diagonals, only four of which need be stored in arrays of length N , due to the symmetry of A. Therefore,
simply to store the matrix problem on the finest desired non-uniform Cartesian mesh requires approximately
4N +1N +1N = 6N . The iterative algorithms we have considered here require various amounts of additional
storage for implementation.

With regard to multilevel methods, since the number of unknowns drops by a factor of eight as one
moves to a coarser mesh in three dimensions if standard successively refined non-uniform Cartesian meshes
are used, we see that the storage required to represent on all meshes a vector having length N on the finest
mesh is:

NA = N +
N

8
+

N

64
+ · · · = N ·

(

1

8
+

1

64
+ · · ·

)

≤ 8

7
· N = N +

N

7
.

We will assume that with the multilevel methods, enough levels are always used so that not only is the
coarse problem computational cost negligible, but also the storage requirement (including possibly direct
factorization of the matrix) is negligible due to the size of the coarse problem.

Table 6.9 gives the required storage for a selection of methods. We remark that these reflect the storage
requirements in our implementations; in particular, while the SOR and CG storage requirements are minimal
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Table 6.9: Storage required by various linear elliptic solvers.

Method Storage Requirements
Name A u f Ik

k−1 WORK TOTAL

OSOR 4N 1N 1N 0N 1N 7N
(DS)CG 4N 1N 1N 0N 3N 9N
(M)ICCG 4N 1N 1N 0N 4N 10N
MV 4N + 4

7N 1N + 1
7N 1N + 1

7N 0N 4N + 4
7N ≈ 11.4N

MH 4N + 4
7N 1N + 1

7N 1N + 1
7N 27

7 N 4N + 4
7N ≈ 15.3N

MG 4N + 14
7 N 1N + 1

7N 1N + 1
7N 27

7 N 4N + 4
7N ≈ 16.7N

MVCG 4N + 4
7N 1N + 1

7N 1N + 1
7N 0N 7N + 7

7N ≈ 14.8N
MHCG 4N + 4

7N 1N + 1
7N 1N + 1

7N 27
7 N 7N + 7

7N ≈ 18.7N
MGCG 4N + 14

7 N 1N + 1
7N 1N + 1

7N 27
7 N 7N + 7

7N ≈ 20.1N

or close to minimal, the storage requirements for our multilevel methods could probably be reduced some-
what. However, to maintain a modular structure in the implementation, which enables using the modules
together in a straightforward fashion, we have allowed some redundant storage in the implementations. For
example, in the methods MH and MHCG, it is possible to implement the operator-based prolongation Ik

k−1

completely in terms of the matrix A, without requiring explicit storage of Ik
k−1. This can save 27N/7 ≈ 4N ,

which makes these methods almost equivalent to the (M)ICCG methods in terms of storage requirements,
with MH and MHCG requiring the same storage as for MV and MVCG, which is approximately 11.4N and
14.8N , respectively. In addition, if standard linear or trilinear prolongations are used with the methods
MG and MGCG, which as we have seen in the experiments earlier in this chapter can be very robust for
discontinuous coefficient problems such as the PBE, the same savings of approximately 4N can be seen for
both MG and MGCG, bringing their storage requirements down to approximately 12.8N and 16.2N .

Therefore, not only do the multilevel methods discussed here demonstrate superior complexity properties,
we see that they can be implemented with very efficient memory use, requiring the same or only slightly
more storage than that required for competing methods, such as preconditioned conjugate gradient methods.

6.6 Pre-processing costs

In this final section, we wish to quantify the cost of some of the multilevel components. In particular, the
setup cost to form the algebraic Galerkin coarse level matrices is not trivial, and we would like to make a
statement as to its cost in relation to the setup costs of standard multilevel methods and other methods. To
begin, we will assume that all methods begin with a box-method discretization of the following problem on
the finest mesh:

−∇ · (ā(x)∇u(x)) + b(x)u(x) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ,

where x = (x, y, z), and where the tensor ā : Ω 7→ L(R3, R3) has the diagonal form:

ā(x) =





a(11)(x) 0 0
0 a(22)(x) 0

0 0 a(22)(x)



 .

This yields a seven-point stencil operator. Our implementation of a general three-dimensional box-method
discretization on a non-uniform Cartesian mesh, employing vectorizable MIN0 statements combined with
multiplies rather than IF statements for the boundary condition cases, requires approximately 60N multiplies
and 32N additions for a mesh with N mesh points.

Since the methods MV and MVCG employ a standard box-method discretization on coarser meshes, along
with standard trilinear prolongation, the only additional setup costs for these methods is the discretization
on coarser meshes. From our discussion earlier in this chapter, these costs are approximately:

MULTS ≈ 60N +
60N

7
, ADDS ≈ 32N +

32N

7
.
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Table 6.10: Setup costs for various methods.

Method Fine Setup Coarse Setup, Form Preconditioner, Etc. SETUP
Name Mults Adds Mults Adds TOTAL

OSOR 60N 32N 0N 0N 92N
(DS)CG 60N 32N 5N 0N 97N
(M)ICCG 60N 32N 18N 9N 119N
MV(CG) 60N 32N (60/7)N (32/7)N ≈ 105N
MH(CG) 60N 32N ([60 + 51]/7)N ([32 + 27]/7)N ≈ 116N
MG(CG) 60N 32N ([581 + 1455/7]/8)N ([416 + 1256/7]/8)N ≈ 265N

Methods MH and MHCG incur some additional setup costs, since the coarse problem requires first an
averaging of the coefficients before discretization, and then calculation of the prolongation operators once the
coarse level matrices are formed. The methods MH and MHCG average the coefficients a(ii) by combining
the arithmetic and harmonic average as discussed in Chapter 3, where the harmonic average is defined as
H(x, y) = 2xy/(x + y). For example, the coefficient a(11) is averaged as:

a
(11)
h (xijk) =

1

2
H
(

a
(11)
h (xi−1/2,j,k), a

(11)
h (xi+1/2,j,k)

)

+
1

8

[

H
(

a
(11)
h (xi−1/2,j−1,k), a

(11)
h (xi+1/2,j−1,k)

)

+ H
(

a
(11)
h (xi−1/2,j+1,k), a

(11)
h (xi+1/2,j+1,k)

)

+H
(

a
(11)
h (xi−1/2,j,k−1), a

(11)
h (xi+1/2,j,k−1)

)

+ H
(

a
(11)
h (xi−1/2,j,k+1), a

(11)
h (xi+1/2,j,k+1)

)]

.

Since each application of the harmonic average costs 1 addition and 3 multiplies, the total cost to form the

average of the coefficient a
(11)
h at one coarse mesh point is clearly 2 multiplies and 4 additions, plus the

cost of five harmonic averagings, for a total of 17 multiplies and 9 additions. Each of the three coefficients
a(ii), i = 1, 2, 3 is averaged at approximately N/8 points. Therefore, the cost of forming the coefficients on
all of the coarser meshes is 3(17N)/7 = 51N/7 multiplies and 3(9N)/7 = 27N/7 additions, where N is the
number of mesh points on the finest mesh.

For the Galerkin methods, a simple count of the multiplies and additions required to form the twenty-
seven-point Galerkin coarse level operator from a seven-point fine level operator and a general twenty-seven-
point prolongation operator is 581N/8 multiplies and 416N/8 additions (symmetry is exploited, so only
fourteen coefficients are computed). This is approximately 125N total floating point operations; the cost
of our implementation is slightly higher than the 116N quoted in [51] for the same type of method. This
is probably due to the fact that our implementation breaks long sequences of continuation lines into the
calculation of temporary quantities which are later combined. This is necessary for transportability across
machines having compilers with continuation line limitations, since some of the longer Galerkin expressions
require approximately four-hundred continuation lines unless temporary quantities are employed.

To form a twenty-seven-point Galerkin coarse level operator from a twenty-seven-point fine level operator
and a general twenty-seven-point prolongation operator costs 1455N/8 multiplies and 1256N/8 additions in
our implementation (again, only fourteen coefficients are computed due to symmetry). This is approximately
339N total floating point operations (the implementation in [51] requires 309N , where the additional cost
of our implementation is again probably due to the use of temporary quantities).

Table 6.10 summarizes the setup cost information for the methods considered in this chapter. The cost
of estimating the optimal relaxation parameter for SOR using some type of power method was not included.
The setup cost for DSCG is the scaling of the matrix and source function by a diagonal matrix, and the cost
for (M)ICCG applies to the implementation we obtained from NETLIB, which includes the cost of diagonal
scaling.

Note that while the setup cost of the method MH is comparable to (M)ICCG in terms of operation
count, in fact the actual setup time required for MH is typically much less than that for (M)ICCG, since
the averaging and discretization procedures vectorize and parallelize quite readily, whereas the incomplete
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factorization setup for (M)ICCG does not. This difference is illustrated quite graphically on a vector-
processor machine such as the Cray Y-MP; see Figure 6.2.

If a matrix-vector operation (such as applying a smoothing operator) costs approximately 7N multiplies
and 6N additions, and prolongation and restriction cost roughly 27/8N ≈ 3.4N multiplies and the same
number of additions each, then it is not difficult to see that a single iteration of a multilevel method,
employing a V-cycle with one pre- and post-smoothing, is approximately 8(13 + 13 + 6.8 + 6.8)N/7 ≈ 45N
floating point operations. Therefore, the additional setup costs of 265N − 105N = 160N floating point
operations for MG compared to MV is equivalent to approximately three multilevel iterations. Referring to
Figure 6.5, we see that this does appear to be the case in practice, as both MV and MH complete three
iterations in about the same time that MG completes its first iteration.

In the case that nested iteration is employed, it is often claimed [29] that a single nested iteration
culminating with one V-cycle on the finest mesh is enough to solve the problem to discretization error
accuracy. If this is the case, then we see that the methods MV and MH should solve the problem in less time
than required to simply set up the problem for method MG. Unfortunately, for the more difficult problems
having discontinuous coefficients, the method MG is the only reliable approach, and the additional setup
costs must be incurred. It should be noted, however, that forming the Galerkin equations is a logically
uniform and highly vectorizable/parallelizable computation.

For some of the Poisson-Boltzmann test problems we considered earlier, for which the method MH was
very effective, if the same argument applies regarding solving the problem to truncation error with a single
V-cycle on the finest mesh, then the method MH solves the problem with fewer operations than that required
for setup for the method MG.

6.7 Conclusions

We have shown numerically that the linear multilevel methods discussed in this work are generally more
efficient and robust than existing methods for the linearized PBE for a range of test molecules, as well as for a
very degenerate test problem with huge coefficient discontinuities. Storage requirements and pre-processing
costs were also considered, and the multilevel-based methods are comparable to more traditional methods
in each category, with the exception of the Galerkin expression-based method MG which is somewhat more
expensive in both setup and storage. However, it was observed that for the more difficult test problems, the
additional overhead of MG was easily amortized by improved robustness.

We also presented an in-depth study of the convergence behavior of the Galerkin method MG, motivated
by the discussions in Chapter 5. In particular, we observed the convergence rate decay as the number of
levels in the method was increased, and as the magnitude of the coefficient discontinuity was increased. The
decay rate was seen to behave as a function of the number of levels J in each case, where the function took
the form of the bound arising in the BPWX theory for finite element-based multilevel methods discussed
in Chapter 5. The decay was better than the worst case predicted by the BPWX theory for each situation
considered, which would seem to suggest that it might be possible to show a similar bound on the contraction
number for the completely algebraic method MG.



7. Application to the Nonlinear PBE

The two nonlinear multilevel methods presented earlier are investigated numerically when applied to the
nonlinear Poisson-Boltzmann equation and to a nonlinear test problem with large jump discontinuities in
the coefficients and exponential nonlinearity. A detailed comparison to other methods is presented, includ-
ing comparisons to nonlinear relaxation methods and to the Fletcher-Reeves nonlinear conjugate gradient
method. Our results indicate that the two multilevel methods are superior to the relaxation and conjugate
gradient methods, and that the advantage of the multilevel methods grows with the problem size. In ad-
dition, experiments indicate that the inexact Newton-multilevel approach is the most efficient and robust
method for the test problems.1

7.1 Three nonlinear Poisson-Boltzmann methods

Investigations into numerical solution of nonlinear PBE have employed nonlinear Gauss-Seidel [3], nonlinear
SOR [152], and a nonlinear conjugate gradient method [135]. Therefore, we will focus on these methods
for the comparisons to multilevel methods in following sections. We first briefly describe what results were
obtained with these methods, and then describe the nonlinear multilevel implementations based on the
material presented earlier in Chapter 4.

7.1.1 Nonlinear Gauss-Seidel and SOR

In Chapter 4 we briefly discussed nonlinear extensions of the classical iterations. These methods are used
in [3], where a nonlinear Gauss-Seidel procedure is developed for the full nonlinear Poisson-Boltzmann
equation, employing a continuation method to handle the numerical difficulties created by the exponen-
tial nonlinearity. Polynomial approximations of the exponential function are employed, and the degree of
the polynomial is continued from degree one (linearized PBE) to degree nineteen. At each continuation
step, the nonlinear Poisson-Boltzmann equation employing the weaker nonlinearity is solved with nonlinear
Gauss-Seidel iteration. The final degree nineteen solution is then used as an initial approximation for the
full exponential nonlinearity PBE, and nonlinear Gauss-Seidel is used to resolve the final solution. This
procedure, while perhaps one of the first numerical solutions produced for the full nonlinear problem, is
extremely time-consuming.

An improvement is, as in the linear case, to employ a nonlinear SOR iteration. The procedure works very
well in many situations and is extremely efficient [152]; unfortunately, there are cases where the iteration
diverges [151, 152]. In particular, it is noted on page 443 of [152] that if the potential in the solvent (where
the exponential term is evaluated) passes a threshold value of seven or eight, then the nonlinear SOR method
they propose diverges. We will present some experiments with a nonlinear SOR iteration, provided with an
experimentally determined near optimal relaxation parameter, and implemented with a red/black ordering
and array oriented data structures for high performance.

1The material in this chapter also appears in [100].
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7.1.2 A nonlinear conjugate gradient method

In a very recent paper [135], a nonlinear conjugate gradient method is applied to the nonlinear Poisson-
Boltzmann equation. The conclusions of their study were that the Fletcher-Reeves variant of the nonlinear
conjugate gradient method, which is the natural extension of the Hestenes-Steifel algorithm they had em-
ployed for the linearized PBE in an earlier study [42], was an effective technique for the nonlinear PBE. We
note that it is remarked on page 1117 of [135] that solution time for the nonlinear conjugate gradient method
on the full nonlinear problem is five times greater than for the linear method applied to the linearized prob-
lem. We will present experiments with the standard Fletcher-Reeves nonlinear conjugate gradient method
which they employed; we described this algorithm in detail in Chapter 4. Our implementation is aggressively
optimized for high performance.

7.1.3 Newton-multilevel and nonlinear multilevel methods

We present results for the nonlinear Poisson-Boltzmann equation using two nonlinear multilevel methods;
these were selected from several as the most efficient for these types of problems. We compare several
different multilevel methods for the nonlinear jump discontinuity test problem in a section which follows
later in the chapter.

The first method we employ is the damped inexact-Newton method we presented as Algorithm 4.3 in
Chapter 4. We have designed the tolerance and damping strategies to guarantee both global convergence
and local superlinear convergence; this is discussed in detail in Chapter 4. The Jacobian system is solved
inexactly at each step to the residual tolerance specified in Algorithm 4.3 by employing the linear multilevel
we designed for the linearized Poisson-Boltzmann equation, as described in Chapter 3. Refer to §6.1.3 for a
detailed description of this method. We take p = 1 and C = 1.0 × 10−2 in the algorithm TEST .

The second method we employ is the nonlinear multilevel method presented as Algorithm 4.5 in Chap-
ter 4. All components required for this nonlinear method are as in the linear method described in §6.1.3 of
Chapter 6, except for the following required modifications. The pre- and post-smoothing iterations corre-
spond to nonlinear Gauss-Seidel, where each smoothing step consisting of ν sweeps; as in the linear case, we
employ a variable v-cycle so that ν increases as coarser levels are reached. Nonlinear operator-based pro-
longation is also employed for nested iteration, as described in Chapter 4; otherwise, linear operator-based
prolongation is used. The coarse problem is solved with the nonlinear conjugate gradient method.

For the nonlinear multilevel method, the damping parameter as described in Chapter 4 is required;
otherwise, the method is not robust, and does not converge for rapid nonlinearities such as those present in
the nonlinear PBE.

7.2 Some test problems

We describe briefly the nonlinear PBE test problems which we use to numerically evaluate and compare
the methods which have been proposed for the nonlinear PBE. We also describe a test problem which has
a rapid nonlinearity and very large jump discontinuities in the coefficients, which will be used to evaluate
some of the multilevel techniques.

7.2.1 The nonlinear Poisson-Boltzmann equation

Consider a very broad range of temperatures T ∈ [200K, 400K], a broad range of ionic strengths Is ∈ [0, 10],
and the following representative polygonal domain:

Ω = [xmin

o

A,xmax

o

A] × [ymin

o

A,ymax

o

A] × [zmin

o

A, zmax

o

A].

We assume that the set of discrete charges {x1, . . . ,xNm} representing the molecule lie well within the domain,
and hence far from the boundary Γ of Ω. The nonlinear Poisson-Boltzmann equation for the dimensionless
potential u(x) then has the form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ. (7.1)

From the discussion in Chapter 1, the problem coefficients are of the following forms, and satisfy the following
bounds for the given temperature and ionic strength ranges:
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(1) ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 2 ≤ ε(x) ≤ 80, ∀x ∈ Ω.

(2) b : Ω × R 7→ R, b(x, u(x)) = κ̄2(x) sinh(x)), 0 ≤ κ̄2(x) ≤ 127.0, ∀x ∈ Ω.

(3) f : Ω 7→ R, f(x) = C ·∑Nm

i=1 ziδ(x − xi), 5249.0 ≤ C ≤ 10500.0, − 1 ≤ zi ≤ 1, ∀x ∈ Ω.

(4) g : Γ 7→ R, g(x) = [C/(4πεw)] ·∑Nm

i=1[zie
−κ̄(x)|x−xi|/

√
εw ]/|x − xi|, εw = 80, ∀x ∈ Γ.

The nonlinear Poisson-Boltzmann problem will then be completely defined by specifying the following quan-
tities:

• xmin, xmax, ymin, ymax, zmin, zmax; the domain geometry.

• ε(x); the electrostatic surface of the molecule.

• κ̄(x); defined by the ionic strength Is and the exclusion layer around the molecule.

• C; a constant which depends only on the temperature T .

• {x1, . . . ,xNm}; charge locations, and associated fractional charges {z1, . . . , zNm}.
For all of our molecule test problems, we use T = 298 which determines the constant C; this is a common

parameter setting for these types of problems. The domain geometry will be defined by the particular
molecule, as well as the parameters ε(x) and κ̄(x), although we must specify also the ionic strength Is to
completely determine κ̄(x). The charge locations and corresponding fractional charges will also be determined
by the particular molecule.

7.2.2 A collection of molecule test problems

The test data is taken from the DELPHI and UHBD programs; refer to §6.2.2 of Chapter 6 for details of
how these software packages function, and how our software is connected to these codes.

The test molecules chosen for our study of the nonlinear PBE are the following:

• Acetamide (CH3CONH2) at 1.0 molar, a small molecule (few angstroms in diameter).

• Crambin at 0.001 molar, a medium size molecule.

• tRNA at 0.2 molar, a large highly charged molecular creating numerical difficulties.

• SOD at 0.1 molar, a large enzyme being intensively studied in biophysics.

7.2.3 Polynomial approximations to the PBE nonlinearity

It has been common in the literature to use low-degree polynomial approximations to the hyperbolic sine
function, avoiding the difficulties which occur with the exponential terms in the true sinh function. For
example, in [112], three term polynomials are used. However, Figure 7.1 illustrates how poor such approxi-
mations are in situations (which frequently occur) when the argument becomes on the order of 10 or more.
Note that the units on the vertical axis are 1×1012. In the figure, the true hyperbolic function is plotted with
the dotted line; polynomial approximations of degree five and twenty-five are plotted with the solid lines. It
seems clear that the full exponential terms must be included in the nonlinear equation in these situations,
which occur even in the case of lysozyme [151]. In some sense it is a mute point, since our multilevel methods
control the numerical problems of the exponential nonlinearity well, and for implementation reasons (the
intrinsic exponential functions are much faster than a loop which evaluates a polynomial) the polynomial
nonlinearity solution actually takes longer to compute numerically with our methods (and other methods,
when they converge for the exponential case) than the full exponential case. Therefore, we will consider only
the more correct exponential model.

7.2.4 A nonlinear elliptic equation with large jump discontinuities

The following test problem will be used to explore the convergence behavior of the multilevel methods. The
domain is the unit cube:

Ω = [0, 1] × [0, 1]× [0, 1].

The nonlinear equation has the form:

−∇ · (ā(x)∇u(x)) + b(x, u(x)) = f(x) in Ω ⊂ R
3, u(x) = g(x) on Γ. (7.2)

where the coefficients in equation (7.2) are taken to be:
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Figure 7.1: Accuracy of polynomial approximations to the hyperbolic sine function.

(1) ā : Ω 7→ L(R3, R3), aij(x) = δijε(x), 1 ≤ ε(x) ≤ 1.0× 108, ∀x ∈ Ω.

(2) b : Ω × R 7→ R, b(x, u(x)) = λeu(x), ∀x ∈ Ω.

(3) f : Ω 7→ R, − 1 ≤ f(x) ≤ 1, ∀x ∈ Ω.

(4) g : Γ 7→ R, g(x) = 0, ∀x ∈ Γ.

We will construct ε(x) to be piecewise constant, taking one value in a subdomain Ω1 ⊂ Ω, and a second
value in the region Ω\Ω1, so that ε(x) is defined as follows:

ε(x) =

{

1 ≤ ε1 ≤ 1.0× 108 if x ∈ Ω1,
1 ≤ ε2 ≤ 1.0× 108 if x ∈ Ω\Ω1.

}

We will take ε1 and ε2 to be quite different in magnitude, so that their ratio:

D =
ε1
ε2

can be as large as 108 or as small as 10−8 for a particular run, and we will observe the resulting convergence
behavior of the multilevel methods. We define the subdomain Ω1 ⊂ Ω to consist of the following two smaller
cubes:

Ω1 = [0.25, 0.50]× [0.25, 0.50]× [0.25, 0.50]
⋃

[0.50, 0.75]× [0.50, 0.50]× [0.50, 0.75].

For this simple problem, it would of course be possible to construct all coarse meshes as needed for
the multilevel methods to align with Ω1; this would not possible with problems such as the nonlinear
Poisson-Boltzmann equation and a complex molecule. Therefore, since we wish to simulate the case that
the discontinuities in ε(x) cannot be resolved on coarser meshes, the multiple levels of tessellations of Ω into
discrete meshes Ωk are constructed so that the discontinuities in ε(x) lie along mesh lines only on the finest
mesh.
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Table 7.1: Nonlinear Poisson-Boltzmann equation methods.

Method Description

DINMH damped-inexact-Newton-method (linear MH as the Jacobian solver)
DFNMH damped-full-Newton-method (linear MH as the Jacobian solver)
DINMG damped-inexact-Newton-method (linear MG as the Jacobian solver)
NMH nonlinear multilevel (nonlinear extension of linear MH)
NCG nonlinear conjugate gradient method (Fletcher-Reeves variant)
NSOR nonlinear successive over-relaxation (one-dim. Newton solves)
NGS nonlinear Gauss-Seidel (one-dim. Newton solves)

Note that if ε1 = ε2 ≡ 1, then problem (7.2) with the above coefficients is the Bratu problem (see page
432 in [40] for information about this interesting problem) on the unit cube.

7.3 Numerical results for the nonlinear PBE

Table 7.1 provides a key to the plots and tables to follow.
Unless otherwise indicated, all data in the plots and tables to follow include the pre-processing costs

incurred by the various methods. In other words, the multilevel methods times include the additional time
required to set up the problem on coarse grids. This gives a complete and fair assessment of the total time
required to reach the solution.

An initial approximation of zero was taken to start each method, and each method used a stopping
criteria based on the norm of the nonlinear function:

‖F (un)‖ < TOL = 1.0e− 9,

where un represents the nth iterate, and F (·) is the discrete nonlinear algebraic operator for the equation
F (u) = 0 which we are trying to solve. Of course, this is not the most appropriate stopping criteria for
nonlinear iterations (more appropriate stopping tests were discussed in Chapter 4), but for our test problems
this test does indicate well when the solution is approached, and it is the best approach for comparing
different methods since it guarantees that each method is producing a solution of the same quality.

We remark that it was required to perform all computations in double precision; this is necessitated
by the rapid nonlinearities present in the equations, which result an extreme loss in precision. Note that
calculations in double precision are more costly than single precision calculations, and so the execution times
reported here for some of the methods will be somewhat longer than some of the single precision times
reported in Chapter 6.

Timing figures on the Convex C240 and the Convex C3 were obtained from the system timing routine
getrusage. A more detailed performance analysis on several more sequential as well as some parallel
machines can be found in Chapter 8.

7.3.1 Results for acetamide

Figure 7.2 compares the methods in Table 7.1 for the acetamide problem. For this problem, all of the
methods converge, and the two multilevel-based algorithms are superior. The nonlinear conjugate gradient
and nonlinear SOR methods have comparable performance. The method DINMH is extremely efficient,
representing an improvement of more than a factor of fifty over the nonlinear SOR and nonlinear conjugate
gradient methods.

7.3.2 Results for crambin

Figure 7.3 compares the methods in Table 7.1 for the crambin problem. Again, all of the methods converge,
and the two multilevel-based algorithms are superior. The nonlinear conjugate gradient shows superiority
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Figure 7.2: Comparison of various methods for the nonlinear acetamide problem.
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Figure 7.3: Comparison of various methods for the nonlinear crambin problem.
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to the nonlinear relaxation methods. The method DINMH is again extremely efficient, representing an
improvement of more than a factor of fifty over the nonlinear conjugate gradient method.

7.3.3 Results for tRNA

We included this test problem because it appears to cause severe difficulties for other methods which have
been tried; in fact, the nonlinear SOR procedure proposed in [152] was known to diverge for this problem [151].
However, we note that their method was not a true SOR-Newton iteration, and was instead a fixed-point
iteration based on a certain splitting of the operator (see page 443 of [152]). When a true SOR-Newton
iteration is employed, the method converges for this problem. Figure 7.4 shows the relative performance
of the various methods. Again, the method DINMH is the most efficient by far of the methods presented,
representing a factor of fifty improvement over the next best method.

Note that for this problem, the nonlinear multilevel method diverges, even with linesearch for a damping
parameter. Since we do not enforce the nonlinear variational conditions exactly, as outlined in Chapter 4,
we have no guarantee that the coarse level correction is a descent direction, and so this method is not a
global method; this particular test problem illustrates this fact.

7.3.4 Results for SOD

Figure 7.5 shows only two methods applied to the SOD test problem: the method DINMH applied to the full
nonlinear PBE; and the linear DSCG method applied to the linearized PBE. All other nonlinear methods
studied here diverged for this test problem. Again, the method DINMH converges very rapidly, and the
superlinear convergence is clearly visible.

We have included the plot of the linear method DSCG to show clearly that the DINMH method, solving
the full nonlinear problem, is more than a factor of two times more efficient than one of the best available
methods in the literature for only the linearized problem.

7.4 Multilevel behavior for the jump discontinuity problem

Figure 7.6 shows the behavior of the five methods in Table 7.1 when applied to the jump discontinuity dest
problem, with D = ε1/ε2 = 1.0e − 3. The three multilevel-based methods are substantially superior to
the nonlinear relaxation and conjugate gradient methods. More interestingly, the comparison between the
full Newton method (DFNMH) and the inexact Newton method (DINMH) shows at least a factor of four
improvement gained by employing the inexactness strategy outlined in Chapter 4.

Figure 7.7 shows the first 200 CPU seconds of Figure 7.6 expanded to the whole axis. We have included
the linear methods MH, MICCG, and DSCG on the plot to illustrate more graphically how efficient the
method DINMH is; it requires less than a factor of two times more CPU seconds than the linear method
MH for the linearized problem, and is a factor of two times more efficient than the next best linear method,
MICCG.

7.5 Storage requirements

We make a few remarks about the storage required for the multilevel methods as well as some of the other
methods appearing in the chapter. We are faced with the discrete problem of the form:

Au + B(u) = f,

where A is an N ×N SPD matrix, B(·) is a nonlinear function mapping R
N into R

N , u is the N ×1 vector of
unknowns, and f is the N × 1 vector of source function values. The number of unknowns N is related to the
original discrete mesh as N = I · J · K, where I , J , and K are the number of mesh-points in each direction
of the non-uniform Cartesian mesh. Employing the box-method on the non-uniform Cartesian mesh, the
matrix A can be represented by seven diagonals, only four of which need be stored in arrays of length N ,
due to the symmetry of A. The box-method produces “diagonal” nonlinear functions B(·) from the types of
nonlinear partial differential equations we consider in this work, and B(·) can be represented by a single real
nonlinear function and a coefficient array of length N . Therefore, simply to store the nonlinear algebraic
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Figure 7.4: Comparison of various methods for the nonlinear tRNA problem.
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Table 7.2: Storage required by various nonlinear elliptic solvers.

Method Storage Requirements
Name A B(·) u f Ik

k−1 WORK TOTAL

NGS 4N 1N 1N 1N 0N 1N 8N
NSOR 4N 1N 1N 1N 0N 1N 8N
NCG 4N 1N 1N 1N 0N 6N 13N
NMH 4N + 4

7N 1N + 1
7N 1N + 1

7N 1N + 1
7N 27

7 N 5N + 5
7N ≈ 17.6N

DINMH 4N + 4
7N 1N + 1

7N 1N + 1
7N 1N + 1

7N 27
7 N 7N + 7

7N ≈ 19.9N
DINMG 4N + 14

7 N 1N + 1
7N 1N + 1

7N 1N + 1
7N 27

7 N 7N + 7
7N ≈ 21.3N

problem on the finest desired non-uniform Cartesian mesh requires approximately 4N +1N +1N +1N = 7N .
The nonlinear iterative algorithms we have considered here require various amounts of additional storage for
implementation.

With regard to multilevel methods, since the number of unknowns drops by a factor of eight as one
moves to a coarser mesh in three dimensions if standard successively refined non-uniform Cartesian meshes
are used, we see that the storage required to represent on all meshes a vector having length N on the finest
mesh is:

NA = N +
N

8
+

N

64
+ · · · = N ·

(

1

8
+

1

64
+ · · ·

)

≤ 8

7
· N = N +

N

7
.

We will assume that with the multilevel methods, enough levels are always used so that not only is the
coarse problem computational cost negligible, but also the storage requirement (including possibly direct
factorization of the matrix) is negligible due to the size of the coarse problem.

Table 7.2 gives the required storage for a selection of methods. As in our discussion in Chapter 6, these
reflect the storage requirements in our implementations; in particular, while the NGS, NSOR, and NCG
storage requirements are minimal or close to minimal, the storage requirements for our multilevel methods
could be reduced somewhat. To maintain a logically modular structure in our implementations, we have
allowed some redundant storage in the implementations. In the methods NMH and DINMH, it is possible
to implement the (linear or nonlinear) operator-based prolongation Ik

k−1 completely in terms of the matrix

A (and the nonlinearity B(·)), without requiring explicit storage of Ik
k−1. This can save 27N/7 ≈ 4N , which

makes these methods almost equivalent to NCG in terms of storage requirements, with NMH and DINMH
requiring approximately 13.7N and 16N , respectively. If standard linear or trilinear prolongations are used
with the method DINMG, which is the most robust approach for nonlinear problems having discontinuous
coefficient such as the nonlinear PBE, the same savings of approximately 4N can be seen, bringing their
storage requirements for DINMG down to approximately 17.4N .

Therefore, as in the case of the linear multilevel methods of Chapter 3, not only do the multilevel methods
discussed here demonstrate superior complexity properties, we see that they can be implemented with very
efficient memory use, requiring the same or only slightly more storage than that required for competing
methods such as the Fletcher-Reeves nonlinear conjugate gradient methods.

7.6 Conclusions

We have shown numerically that the multilevel methods discussed in this work are generally more efficient
and robust than existing methods for the nonlinear PBE for a range of test molecules, and for a difficult test
problem with huge coefficient discontinuities and rapid nonlinearity. In addition, our results indicate that
the damped-inexact-Newton-multilevel approach is not only the most efficient approach for these problems,
but is also the most robust of all the methods considered. It converged in all situations, and for the SOD
test problem was the only nonlinear method to converge.

This shows that the damped-inexact-Newton-multilevel method not only makes the nonlinear model
feasible by providing a robust solution technique, but it actually improves on the efficiency of available linear
algorithms which are currently used for the less accurate linear model. We remark that initial numerical
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experiments with larger mesh sizes show that the improvement of the damped-inexact-Newton-multilevel
approach over linear methods such as diagonally scaled conjugate gradients grows with the problem size [100].
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Figure 7.8: The potential isosurface of an SOD enzyme at roughly −1.2ec/[kBT ]. The potential field was ob-
tained by solving the nonlinear Poisson-Boltzmann equation numerically, using the damped-inexact-Newton-
multilevel method. The front of the surface has been sliced off, to give a better view of the behavior of the
electrostatic potential inside the surface, near the binding sites. The SOD (SuperOxide Dismutase) enzyme
is an antiradical or antioxident, meaning that it moves around the body binding to and then deactivating free
radicals in the body, preventing them from causing cancer or other cell damage in the body. It is believed
that antiradicals such as SOD can help prevent cancer, heart disease, and a host of other diseases, and
perhaps even delay the aging process. The electrostatic steering effect of the SOD enzyme, which enables it
to attract, bind to, and deactivate free radicals in the human body, is vividly seen in the above graph. The
negatively charged surface surrounding the postively charged binding sites has the effect of “steering” the
radical into the site, from the upper left of the graph into the “hole” in the electrostatic surface.
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Figure 7.9: A potential slice of SOD passing through the two binding sites. The linearized and nonlinear
Poisson-Boltzmann models yield substantially different electrostatic potential values near the binding sites,
leading to correspondingly different reaction rates predicted by Brownian dynamics simulations. This implies
that the full nonlinear model is important for certain modeling situations. In the March 4, 1993 issue of
the New York times, it was announced that researchers at MIT had discovered that the gene responsible for
generating the antiradical SOD in the human body is defective in patients with amytrophic lateral sclerosis
(ALS), also known as Lou Gehrig’s disease. The discovery was deemed so important that the MIT report
was accepted for publication by the journal Nature within 36 hours of submission. Using models such as
the nonlinear Poisson-Boltmann model to gain a better understanding of the function of antiradical enzymes
such as SOD, it is hoped that new drug therapies will be developed for diseases such as ALS based on
synthetic antiradical agents.



8. Performance Benchmarks

In this chapter, we present a collection of performance statistics and benchmarks for the multilevel solvers
on a number of sequential and parallel computers. The software has been developed specifically for high
performance on vector-processor computers; the non-uniform Cartesian meshes give rise to fast diagonal-form
matrix-vector operations in all components of the multilevel iteration. High vector and parallel performance is
demonstrated on several vector and shared memory parallel computers with a series of numerical experiments,
and we give a table of benchmark figures for the software, taken from a large sample of commonly used
workstations and supercomputers.

8.1 Performance on shared memory parallel computers

We consider parallel performance of the multilevel software described in Chapters 6 and 7; we consider only
shared-memory, coarse-grain parallel machines, such as the Convex C240, Convex C3, and the Cray Y-MP.

8.1.1 Execution times

Timings, operation counts, and megaflops (one million floating point operations per second) figures on
the Cray Y-MP were obtained from the performance monitoring hardware accessed through perftrace and
perfview. Timing figures on the Convex C240 and the Convex C3 were obtained from the system timing
routine getrusage, and megaflop rates were computed from the exact operation counts provided by the
Cray.

Figures 8.1 and 8.2 give the required execution times to solve the jump discontinuity test problem on
the Convex C240 and the Convex C3, respectively, using method MH described in Chapter 6. The problem
was solved when the relative residual was reduced below 1.0e − 9. The plots display the execution time as
the number of processors is increased from one to four on the Convex C240, and from one to eight on the
Convex C3.

8.1.2 Parallel speedup and efficiency

We first recall the definitions of parallel speedup and efficiency:

SP ≡ Execution time on 1 processor

Execution time on P processors
,

EP ≡ SP × 1

P
× 100%.

Figures 8.3 and 8.4 display the parallel speedup of the software on the Convex C240 and the Convex C3, as
the number of processors is increased from one to four, and one to eight, respectively. In addition, figures 8.5
and 8.6 display the parallel efficiency of the software on the Convex C240 and the Convex C3, as the number
of processors is increased from one to four, and one to eight, respectively.
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Figure 8.1: Execution times over 4 processors on the Convex C240.
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Figure 8.2: Execution times over 8 processors on the Convex C3.
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Figure 8.3: Speedup over 4 processors on the Convex C240.
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Figure 8.4: Speedup over 8 processors on the Convex C3.



8.1. PERFORMANCE ON SHARED MEMORY PARALLEL COMPUTERS 183

0

10

20

30

40

50

60

70

80

90

100

1 1.5 2 2.5 3 3.5 4

o

o

o

o

NUMBER OF PROCESSORS

PA
RA

LL
EL

 E
FF

IC
IE

NC
Y

CONVEX C240 WITH 63x63x63 GRID

Figure 8.5: Parallel efficiency over 4 processors on the Convex C240.
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Figure 8.6: Parallel efficiency over 8 processors on the Convex C3.
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Table 8.1: Performance summary of the multilevel solver on several architectures.

Machine Megaflops

Cray Y-MP (4 processors) 641.0
Cray Y-MP (1 processor) 224.0
Convex C3 (8 processors) 237.0
Convex C3 (1 processor) 57.4
Convex C240 (4 processors) 39.5
Convex C240 (1 processor) 18.9
IBM RS6000 12.7
Sun SPARC 1 0.6

8.2 Performance summary on a selection of computers

Table 8.1 summarizes the performance characteristics of the software on a number of sequential, vector, and
parallel supercomputers and workstations. Figure 8.7 shows the megaflop rate behavior on the Cray Y-MP,
as the number of processors in increased from one to four.

We wish to remark that the Cray Y-MP figures in this chapter are for the vanilla multigrid method
MV, without Galerkin expressions, coefficient averaging, or the other techniques employed in methods MH
and MG. However, we expect similar behavior for MH and MG on the Cray Y-MP. All other timings and
megaflop rates appearing in this chapter for the Convex computers and the miscellaneous workstations were
for the method MH.

0

100

200

300

400

500

600

700

800

900

1000

1 1.5 2 2.5 3 3.5 4

o

o

o

o

NUMBER OF PROCESSORS

M
EG

AF
LO

P R
AT

E

CRAY YMP-4/4-64 WITH 63x63x63 GRID

Figure 8.7: Megaflop rates over 4 processors on the Cray Y-MP.



A. Symbolic Stencil Calculus

In Chapter 3 we discussed in detail how to algebraically enforce the variational conditions:

Ak−1 = Ik−1
k AkIk

k−1, Ik−1
k = (Ik

k−1)
T , (A.1)

in the case of box or finite element discretizations on logically non-uniform Cartesian meshes. Our approach
was to represent the system operator Ak and the prolongation operator Ik

k−1 as stencils, and to compute the
Galerkin coarse grid operator Ak−1 as a stencil, the entries of which were combinations of the fine operator
stencil entries and the prolongation stencil entries. We described in detail the symbolic stencil calculus in
the one-dimensional case for computing these general matrix-matrix products; our discussion was motivated
by the work of R. Falgout [63], who used a form of stencil calculus for related two-dimensional problems. A
complete description as pertains to two-dimensional stencil calculations can be found in the thesis [63].

The two- and three-dimensional cases are simple generalizations of the one-dimensional case, although
the expressions quickly become unmanageable. By implementing the stencil calculus in a symbolic manipu-
lation environment such as MAPLE or MATHEMATICA, the complex expressions can be obtained without
error. In this Appendix, we will present the expressions obtained for general system operator stencils and
prolongation operator stencils in the one-, two-, and three-dimensional cases. We also present the expressions
for operator-based prolongation in all three cases.

Note that, using these expressions, the Galerkin conditions can be enforced for a variety of discretization
stencils and prolongation stencils on logically non-uniform Cartesian meshes. Our calculations in two and
three dimensions are for nine- and twenty-seven-point stencils, which would correspond to bilinear and
trilinear finite element discretizations on rectangles and three-dimensional boxes. These stencils include as
special cases most other stencils used (see our discussions below for more detail). If a different discretization
stencil or prolongation stencil is desired, the Galerkin expressions can be obtained from the expressions
printed below by simply setting the corresponding fine operator stencil entries or prolongation operator
stencil entries to zero.

A.1 Galerkin operator expressions

In this section, we collect together the expressions for the Galerkin coarse matrix stencils for one-, two-
, and three-dimensional problems. These expressions do not appear to be available in the literature (it
seems that only the expressions for the two-dimensional case have appeared in print, in the special case of
symmetric matrices and a particular prolongation operator, in an Appendix to the paper [19]). The three-
dimensional expressions do not appear to have been published at all, apparently due to their complexity and
how many pages the expressions require. Since the Galerkin approach seems to be the only robust multilevel
approach for certain degenerate problems, and since logically non-uniform Cartesian box-method and finite
element method meshes are widely used for both two- and three-dimensional problems, we are including
these expressions here.
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A.1.1 One dimension

As detailed in Chapter 3 for the one-dimensional case, the fine grid operator stencil, the restriction stencil,
and the prolongation stencil are given by:

Ah =
[

−Wi Ci −Ei

]h

h
, IH

h =
[

PWi PCi PEi

]H

h(H)
,

Ih
H = [ PEi−1 0 PWi+1 ]hH(h) ∨ [ PCi ]hH(H).

As computed in Chapter 3, the Galerkin coarse grid operator stencil is:

AH =
[

−W H
i CH

i −EH
i

]H

H
,

where

CH
i = (PCi)

2Ci + (PWi)
2Ci−1 + (PEi)

2Ci+1 − PWiPCiEi − PEiPCiWi+1

−PWiWi − PEiEi,

−EH
i = PEiPWi+2Ci+1 − PCiPWi+2Ei − PCi+2PEiEi+1,

−W H
i = PWiPEi−2Ci−1 − PCiPEi−2Wi − PCi−2PWiWi−1.

Remark A.1. In the case that the original matrix Ah is symmetric, or Wi = Ei−1, then since the Galerkin
coarse space matrix AH = (Ih

H )T AhIh
H is also clearly symmetric, only the center entry CH

i and either W H
i

or EH
i need be computed and stored. In this case, the expressions for the Galerkin coarse grid matrix stencil

entries can be expressed completely in terms of Ci and one of Wi or Ei.
Recall that a box-method, finite difference, or finite element (piecewise linear basis functions) discretiza-

tion of Poisson’s equation on a uniform one-dimensional mesh will yield the following stencil representation
of the system matrix:

Ah =
[

−1 2 −1
]h

h
, (A.2)

where the meshwidth h has been divided out of the matrix. Linear interpolation and the resulting restriction
in this case are represented by:

Ih
H =

[

1
2 0 1

2

]h

H(h)
∨ [ 1 ]hH(H), IH

h =
[

1
2 1 1

2

]H

h(H)
.

As commented earlier, nested finite element discretizations automatically satisfy the Galerkin conditions, if
the prolongation operator corresponds to the natural inclusion operation in the finite element space; linear
interpolation of the grid function representation of a finite element function corresponds to the inclusion
for piecewise linear basis functions. Therefore, with the above choice of stencils, the stencil calculus should
reproduce (A.2) as the Galerkin matrix stencil on the coarse mesh:

AH =
[

−1 2 −1
]H

H
.

This is easily verified using the above expressions for the stencil entries.

A.1.2 Two dimensions

The two-dimensional stencil calculus proceeds exactly as the one-dimensional case, although grid functions
are now two-dimensional. For example, the unit vector eH has the grid function representation on a logically
non-uniform Cartesian mesh as follows:

eH =

...
...

...
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·

...
...

...

,
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where we take the horizontal direction as the “x-direction”, and the vertical direction as the “y-direction”.
Stencils will operator on these two-dimensional grid functions. The prolongation operator must now handle
four special cases with the standard nested non-uniform Cartesian mesh:

(1) Fine points coincident with coarse mesh points.

(2) Fine points lying on a coarse mesh x-line but not of Type (1).

(3) Fine points lying on a coarse mesh y-line but not of Type (1).

(4) Fine points points not on a coarse mesh point or line.

By using subscripts H(i) to indicate how the prolongation operator acts on the mesh point Type (i), we
can represent the prolongation operator for handling these special cases using a notion similar to the one-
dimensional case.

Now, recall that a box-method, finite difference method, or finite element method (either linear basis
functions over triangles or bilinear basis functions over rectangles) discretization of a second order elliptic
partial differential equation over a non-uniform Cartesian in two-dimensions yields either a five-, seven-, or
nine-point stencil, all of which can be considered to be special cases of a general nine-point stencil.

This general discretized differential operator, along with a general prolongation operator for a two-
dimensional non-uniform Cartesian mesh and its corresponding restriction operator, can be represented in
two-dimensional stencil form as:

Ah =





−NWij −Nij −NEij

−Wij Cij −Eij

−SWij −Sij −SEij





h

h

, IH
h =





PNWij PNij PNEij

PWij PCij PEij

PSWij PSij PSEij





H

h(H)

,

Ih
H =





PSEi−1,j+1 0 PSWi+1,j+1

0 0 0
PNEi−1,j−1 0 PNWi+1,j−1





h

H(4)

∨





PSi,j+1

0
PNi,j−1





h

H(3)

∨
[

PEi−1,j 0 PWi+1,j

]h

H(2)
∨ [ PCij ]hH(1).

It is easily verified by applying the prolongation stencil Ih
H above to the unit grid function eH that the

restriction operator above satisfies IH
h = (Ih

H )T . With these stencils, the resulting Galerkin coarse grid
operator stencil has the form:

AH =





−NW H
ij −NH

ij −NEH
ij

−W H
ij CH

ij −EH
ij

−SW H
ij −SH

ij −SEH
ij





H

H

.

Using our MAPLE implementation of the two-dimensional stencil calculus, we can compute the expressions
for the individual stencil components, which are as follows:

C
H
ij = +P SWij (Ci−1,j−1P SWij − Ni−1,j−1P Wij

−Ei−1,j−1P Sij − NEi−1,j−1P Cij )

+P Wij (−Si−1,j P SWij + Ci−1,j P Wij

−Ni−1,j P NWij − SEi−1,j P Sij

−Ei−1,j P Cij − NEi−1,jP Nij )

+P NWij (−Si−1,j+1P Wij + Ci−1,j+1P NWij

−SEi−1,j+1P Cij − Ei−1,j+1P Nij )

+P Sij (−Wi,j−1P SWij − NWi,j−1P Wij

+Ci,j−1P Sij − Ni,j−1P Cij

−Ei,j−1P SEij − NEi,j−1P Eij )

+P Cij (−SWij P SWij − Wij P Wij

−NWijP NWij − Sij P Sij

+Cij P Cij − Nij P Nij

−SEijP SEij − Eij P Eij

−NEijP NEij)

+P Nij (−SWi,j+1P Wij − Wi,j+1P NWij

−Si,j+1P Cij + Ci,j+1P Nij

−SEi,j+1P Eij − Ei,j+1P NEij)
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+P SEij (−Wi+1,j−1P Sij − NWi+1,j−1P Cij

+Ci+1,j−1P SEij − Ni+1,j−1P Eij )

+P Eij (−SWi+1,j P Sij − Wi+1,j P Cij

−NWi+1,jP Nij − Si+1,jP SEij

+Ci+1,j P Eij − Ni+1,j P NEij)

+P NEij (−SWi+1,j+1P Cij − Wi+1,j+1P Nij

−Si+1,j+1P Eij + Ci+1,j+1P NEij )

−N
H
ij = +P Wij (−Ni−1,j P SWi,j+2 − NEi−1,j P Si,j+2)

+P NWij (Ci−1,j+1P SWi,j+2 − Ni−1,j+1P Wi,j+2

−Ei−1,j+1P Si,j+2 − NEi−1,j+1P Ci,j+2)

+P Cij (−NWij P SWi,j+2 − NijP Si,j+2

−NEijP SEi,j+2)

+P Nij (−Wi,j+1P SWi,j+2 − NWi,j+1P Wi,j+2

+Ci,j+1P Si,j+2 − Ni,j+1P Ci,j+2

−Ei,j+1P SEi,j+2 − NEi,j+1P Ei,j+2)

+P Eij (−NWi+1,j P Si,j+2 − Ni+1,j P SEi,j+2)

+P NEij (−Wi+1,j+1P Si,j+2 − NWi+1,j+1P Ci,j+2

+Ci+1,j+1P SEi,j+2 − Ni+1,j+1P Ei,j+2)

−S
H
ij = +P SWij (−Si−1,j−1P Wi,j−2 + Ci−1,j−1P NWi,j−2

−SEi−1,j−1P Ci,j−2 − Ei−1,j−1P Ni,j−2)

+P Wij (−Si−1,j P NWi,j−2 − SEi−1,j P Ni,j−2)

+P Sij (−SWi,j−1P Wi,j−2 − Wi,j−1P NWi,j−2

−Si,j−1P Ci,j−2 + Ci,j−1P Ni,j−2

−SEi,j−1P Ei,j−2 − Ei,j−1P NEi,j−2)

+P Cij (−SWij P NWi,j−2 − Sij P Ni,j−2

−SEijP NEi,j−2)

+P SEij (−SWi+1,j−1P Ci,j−2 − Wi+1,j−1P Ni,j−2

−Si+1,j−1P Ei,j−2 + Ci+1,j−1P NEi,j−2)

+P Eij (−SWi+1,j P Ni,j−2 − Si+1,jP NEi,j−2)

−E
H
ij = +P Sij (−Ei,j−1P SWi+2,j − NEi,j−1P Wi+2,j )

+P Cij (−SEij P SWi+2,j − Eij P Wi+2,j

−NEijP NWi+2,j)

+P Nij (−SEi,j+1P Wi+2,j − Ei,j+1P NWi+2,j )

+P SEij (Ci+1,j−1P SWi+2,j − Ni+1,j−1P Wi+2,j

−Ei+1,j−1P Si+2,j − NEi+1,j−1P Ci+2,j )

+P Eij (−Si+1,j P SWi+2,j + Ci+1,j P Wi+2,j

−Ni+1,j P NWi+2,j − SEi+1,jP Si+2,j

−Ei+1,j P Ci+2,j − NEi+1,jP Ni+2,j)

+P NEij (−Si+1,j+1P Wi+2,j + Ci+1,j+1P NWi+2,j

−SEi+1,j+1P Ci+2,j − Ei+1,j+1P Ni+2,j )

−W
H
ij = +P SWij (−Wi−1,j−1P Si−2,j − NWi−1,j−1P Ci−2,j

+Ci−1,j−1P SEi−2,j − Ni−1,j−1P Ei−2,j )

+P Wij (−SWi−1,j P Si−2,j − Wi−1,j P Ci−2,j

−NWi−1,jP Ni−2,j − Si−1,j P SEi−2,j

+Ci−1,j P Ei−2,j − Ni−1,j P NEi−2,j)

+P NWij (−SWi−1,j+1P Ci−2,j − Wi−1,j+1P Ni−2,j

−Si−1,j+1P Ei−2,j + Ci−1,j+1P NEi−2,j )

+P Sij (−Wi,j−1P SEi−2,j − NWi,j−1P Ei−2,j )

+P Cij (−SWij P SEi−2,j − Wij P Ei−2,j

−NWijP NEi−2,j)

+P Nij (−SWi,j+1P Ei−2,j − Wi,j+1P NEi−2,j)

−NE
H
ij = −P Cij NEijP SWi+2,j+2

+P Nij (−Ei,j+1P SWi+2,j+2 − NEi,j+1P Wi+2,j+2)

+P Eij (−Ni+1,j P SWi+2,j+2 − NEi+1,jP Si+2,j+2)

+P NEij (Ci+1,j+1P SWi+2,j+2 − Ni+1,j+1P Wi+2,j+2

−Ei+1,j+1P Si+2,j+2 − NEi+1,j+1P Ci+2,j+2)
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−NW
H
ij = +P Wij (−NWi−1,j P Si−2,j+2 − Ni−1,j P SEi−2,j+2)

+P NWij (−Wi−1,j+1P Si−2,j+2 − NWi−1,j+1P Ci−2,j+2

+Ci−1,j+1P SEi−2,j+2 − Ni−1,j+1P Ei−2,j+2)

−P Cij NWijP SEi−2,j+2

+P Nij (−Wi,j+1P SEi−2,j+2 − NWi,j+1P Ei−2,j+2)

−SE
H
ij = +P Sij (−SEi,j−1P Wi+2,j−2 − Ei,j−1P NWi+2,j−2)

−P Cij SEi,j P NWi+2,j−2

+P SEij (−Si+1,j−1P Wi+2,j−2 + Ci+1,j−1P NWi+2,j−2

−SEi+1,j−1P Ci+2,j−2 − Ei+1,j−1P Ni+2,j−2)

+P Eij (−Si+1,j P NWi+2,j−2 − SEi+1,jP Ni+2,j−2)

−SW H
ij = +P Wij (−NWi−1,j P Si−2,j+2 − Ni−1,j P SEi−2,j+2)

+P NWij (−Wi−1,j+1P Si−2,j+2 − NWi−1,j+1P Ci−2,j+2

+Ci−1,j+1P SEi−2,j+2 − Ni−1,j+1P Ei−2,j+2)

−P Cij NWij P SEi−2,j+2

+P Nij (−Wi,j+1P SEi−2,j+2 − NWi,j+1P Ei−2,j+2)

Remark A.2. In the case that the original matrix Ah is symmetric, then the Galerkin coarse space matrix
AH = (Ih

H )T AhIh
H is also clearly symmetric. In this case, only the center entry and four of the remaining

eight stencil entries need be computed and stored. This is a result of the following stencil symmetries,
representing the symmetry of the corresponding matrices, which hold for both the original fine grid matrix
stencil and the Galerkin coarse grid matrix stencil:

Sij = Ni,j−1, Wij = Ei−1,j , SEij = NWi+1,j−1, SWij = NEi−1,j−1.

For example, these stencil symmetries can be used to eliminate the entries Sij , Wij , SEij , and SWij from
the above expressions for the Galerkin matrix stencil entries, and only the resulting stencil component
expressions for CH

ij , NH
ij , EH

ij , NW H
ij , NEH

ij need be computed and stored.
Recall the well-known fact that a box-method, finite difference method, or finite element method (piece-

wise linear on triangles) discretization of Poisson’s equation on a uniform two-dimensional Cartesian mesh
placed on the unit square will yield the following stencil representation of the system matrix:

Ah =





0 −1 0
−1 4 −1

0 −1 0





h

h

, (A.3)

where the meshwidth h has been divided out of the matrix. If the triangles are formed from the cubes which
make up the uniform Cartesian mesh by connecting the lower-left vertex to the upper-right, then linear
interpolation and the corresponding restriction on this uniform Cartesian mesh of triangles are represented
by the stencils:

Ih
H =







0 0 1
2

0 0 0
1
2 0 0







h

H(4)

∨







1
2

0
1
2







h

H(3)

∨
[

1
2 0 1

2

]h

H(2)
∨ [ 1 ]hH(1), IH

h =







0 1
2

1
2

1
2 1 1

2
1
2

1
2 0







H

h(H)

.

As commented earlier, nested finite element discretizations automatically satisfy the Galerkin conditions, if
the prolongation operator corresponds to the natural inclusion operation in the finite element space; linear
interpolation of the grid function representation of a finite element function corresponds to the inclusion for
linear basis functions on triangles. Therefore, with the above choice of stencils, the stencil calculus should
reproduce (A.3) as the resulting coarse grid Galerkin matrix stencil. This is easily verified (although now
somewhat tedious in two dimensions) using the above expressions for the stencil components.

Consider now a finite element discretization of Poisson’s equation on a uniform two-dimensional Cartesian
mesh placed on the unit square, employing piecewise bilinear basis functions on rectangles. As is well-known,
this discretization will yield the following stencil representation of the system matrix:

Ah =
1

3





−1 −1 −1
−1 8 −1
−1 −1 −1





h

h

, (A.4)
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where the meshwidth h has been divided out of the matrix. Bilinear interpolation and the corresponding
restriction in this case are represented by:

Ih
H =







1
4 0 1

4

0 0 0
1
4 0 1

4







h

H(4)

∨







1
2

0
1
2







h

H(3)

∨
[

1
2 0 1

2

]h

H(2)
∨ [ 1 ]hH(1), IH

h =







1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4







H

h(H)

.

Since the bilinear prolongation operator corresponds to the natural inclusion operation in the finite element
space constructed from bilinear basis functions, with the above choice of stencils, the stencil calculus should
reproduce (A.4) as the resulting coarse mesh Galerkin stencil; this is easily verified.

A.1.3 Three dimensions

The three-dimensional stencil calculus proceeds exactly as in the one- and two-dimensional cases, although
grid functions are now three-dimensional. For example, the unit vector eH has the grid function representa-
tion:

eH =

(down−plane)

...
...

...
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·

...
...

...

×

(level−plane)

...
...

...
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·

...
...

...

×

(up−plane)

...
...

...
· · · 0 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 0 · · ·

...
...

...

.

Within each plane, the horizontal direction is taken as the “x-direction”, and the vertical direction as
the “y-direction”; the different planes then represent the “z-direction”. Stencils will operate on these three-
dimensional grid functions. The prolongation operator must now handle eight special cases with the standard
nested non-uniform Cartesian mesh:

(1) Fine points coincident with coarse mesh points.

(2) Fine points lying on a coarse mesh x-line but not of Type (1).

(3) Fine points lying on a coarse mesh y-line but not of Types (1)–(2).

(4) Fine points lying on a coarse mesh z-line but not of Types (1)–(3).

(5) Fine points lying on a coarse mesh xy-plane but not of Types (1)–(4).

(6) Fine points lying on a coarse mesh yz-plane but not of Types (1)–(5).

(7) Fine points lying on a coarse mesh xz-plane but not of Types (1)–(6).

(8) Fine points points not on a coarse mesh point, line, or plane.

By using subscripts H(i) to indicate how the prolongation operator acts on the mesh point Type (i), we can
represent the prolongation operator for handling these special cases using a notion similar to the one- and
two-dimensional cases.

Now, recall that a box-method, finite difference method, or finite element method (trilinear basis functions
over three-dimensional boxes) discretization of a second order elliptic partial differential equation over a non-
uniform Cartesian product mesh in three-dimensions yields either a seven- or twenty-seven-point stencil, both
of which can be considered to be special cases of a general twenty-seven-point stencil.

This general discretized differential operator, along with a general prolongation operator for a three-
dimensional non-uniform Cartesian mesh and its corresponding restriction operator, can be represented in
three-dimensional stencil form as follows:

Ah =





−dNWij −dNij −dNEij

−dWij −dCij −dEij

−dSWij −dSij −dSEij



×





−oNWij −oNij −oNEij

−oWij oCij −oEij

−oSWij −oSij −oSEij





×





−uNWij −uNij −uNEij

−uWij −uCij −uEij

−uSWij −uSij −uSEij





h

h

,
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IH
h =





dPNWij dPNij dPNEij

dPWij dPCij dPEij

dPSWij dPSij dPSEij



×





oPNWij oPNij oPNEij

oPWij oPCij oPEij

oPSWij oPSij oPSEij





×





uPNWij uPNij uPNEij

uPWij uPCij uPEij

uPSWij uPSij uPSEij





H

h(H)

,

Ih
H =





uPSEi−1,j+1,k−1 0 uPSWi+1,j+1,k−1

0 0 0
uPNEi−1,j−1,k−1 0 uPNWi+1,j−1,k−1



×





0 0 0
0 0 0
0 0 0





×





dPSEi−1,j+1,k+1 0 dPSWi+1,j+1,k+1

0 0 0
dPNEi−1,j−1,k+1 0 dPNWi+1,j−1,k+1





h

H(8)

∨





dPNi,j−1,k+1 0 dPSi,j+1,k+1

0 0 0
uPNi,j−1,k−1 0 uPSi,j+1,k−1





h

H(7)

∨





dPEi−1,j,k+1 0 dPWi+1,j,k+1

0 0 0
uPEi−1,j,k−1 0 uPWi+1,j,k−1





h

H(6)

∨





oPSEi−1,j+1,k 0 oPSWi+1,j+1,k

0 0 0
oPNEi−1,j−1,k 0 oPNWi+1,j−1,k





h

H(5)

∨





dPCi,j,k+1

0
uPCi,j,k−1





h

H(4)

∨





oPSi,j+1,k

0
oPNi,j−1,k





h

H(3)

∨





oPEi−1,j,k

0
oPWi+1,j,k





h

H(2)

∨ [ oPCij ]hH(1).

The multiple “crossed” stencils are interpreted as the first stencil operating on the “down” plane, the middle
stencil operating on the “level” plane, and the third stencil operating on the “up” plane. Note that restriction
operator above satisfies IH

h = (Ih
H )T ; this is verified by applying the prolongation operator stencil to the

unit grid function, which produces a grid function corresponding to the restriction operator stencil.
In the prolongation operator definition, although there is no simple way to represent which of the three

coordinate directions the one-dimensional stencils act, or which two of the three coordinate directions the
two-dimensional stencils act, this should be clear from the indices of the stencil components (which is one
reason we chose to represent the prolongation operator stencil using this index scheme, in addition to the
fact that the corresponding restriction operator stencil has the very simple form above).

With these stencils, the Galerkin coarse grid operator stencil has the form:

AH =





−dNW H
ij −dNH

ij −dNEH
ij

−dW H
ij −dCH

ij −dEH
ij

−dSW H
ij −dSH

ij −dSEH
ij



×





−oNW H
ij −oNH

ij −oNEH
ij

−oW H
ij oCH

ij −oEH
ij

−oSW H
ij −oSH

ij −oSEH
ij





×





−uNW H
ij −uNH

ij −uNEH
ij

−uW H
ij −uCH

ij −uEH
ij

−uSW H
ij −uSH

ij −uSEH
ij





H

H

.

Before we present the expressions for the Galerkin matrix stencil components, we wish to make some
simplifying assumptions to keep the length of this Appendix reasonable. In the case that the original matrix
Ah is symmetric, then the Galerkin matrix AH = (Ih

H )T AhIh
H is also clearly symmetric. In this case, only

the center entry and thirteen of the remaining twenty-six stencil entries need be computed and stored. This
is a result of the following stencil symmetries, representing the symmetry of the corresponding matrices,
which hold for both the original fine grid matrix stencil and the Galerkin coarse grid matrix stencil:

Sijk = Ni,j−1,k , Wijk = Ei−1,j,k, SEijk = NWi+1,j−1,k , SWijk = NEi−1,j−1,k,

dCijk = uCi,j,k−1, dWijk = uEi−1,j,k−1, dEijk = uWi+1,j,k−1,

dNijk = uSi,j+1,k−1, dNWijk = uSEi−1,j+1,k−1, dNEijk = uSWi+1,j+1,k−1,

dSijk = uNi,j−1,k−1, dSWijk = uNEi−1,j−1,k−1, dSEijk = uNWi+1,j−1,k−1.
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We now employ these stencil symmetries to eliminate the entries on the left of each equality, and only the
resulting stencil component expressions for CH

ij and the Galerkin coarse matrix equivalents of the thirteen
components on the right of each equality above need be computed and stored. Using our MAPLE implemen-
tation of the three-dimensional stencil calculus, we can compute the expressions for the center component
and the remaining thirteen required components for the symmetric case. To keep the appendix a reasonable
length, we will present only four representative components:

oCH
ijk , oEH

ijk , oNEH
ijk , uNEH

ijk .

The remaining ten components have similar forms to the above four; the components oNH
ijk and uCH

ijk are

of the same form as oEH
ijk , whereas oNW H

ijk , uEH
ijk , uW H

ijk , uNH
ijk, and uSH

ijk have the same form as oNEH
ijk ,

and the remaining components uNW H
ijk , uSEH

ijk, and uSW H
ijk have the same form as uNEH

ijk.

oC
H
ijk

= +oP Nijk (−uNEi−1,j,k−1dP Wijk

−oNEi−1,j,koP Wijk − uSWi,j+1,kuP Wijk

−uEi−1,j+1,k−1dP NWijk − oEi−1,j+1,k oP NWijk

−uWi,j+1,kuP NWijk − uNi,j,k−1dP Cijk

−oNi,j,koP Cijk − uSi,j+1,kuP Cijk

−uCi,j+1,k−1dP Nijk + oCi,j+1,koP Nijk

−uCi,j+1,kuP Nijk − uNWi+1,j,k−1dP Eijk

−oNWi+1,j,koP Eijk − uSEi,j+1,kuP Eijk

−uWi+1,j+1,k−1dP NEijk − oEi,j+1,koP NEijk

−uEi,j+1,kuP NEijk)

+dP Nijk (−oNEi−1,j,k−1dP Wijk − uSWi,j+1,k−1oP Wijk

−oEi−1,j+1,k−1dP NWijk − uWi,j+1,k−1oP NWijk

−oNi,j,k−1dP Cijk − uSi,j+1,k−1oP Cijk

+oCi,j+1,k−1dP Nijk − uCi,j+1,k−1oP Nijk

−oNWi+1,j,k−1dP Eijk − uSEi,j+1,k−1oP Eijk

−oEi,j+1,k−1dP NEijk − uEi,j+1,k−1oP NEijk)

+dP Cijk (−oNEi−1,j−1,k−1dP SWijk − uSWi,j,k−1oP SWijk

−oEi−1,j,k−1dP Wijk − uWi,j,k−1oP Wijk

−oNWi,j,k−1dP NWijk − uNWi,j,k−1oP NWijk

−oNi,j−1,k−1dP Sijk − uSi,j,k−1oP Sijk

+oCi,j,k−1dP Cijk − uCi,j,k−1oP Cijk

−oNi,j,k−1dP Nijk − uNi,j,k−1oP Nijk

−oNWi+1,j−1,k−1dP SEijk − uSEi,j,k−1oP SEijk

−oEi,j,k−1dP Eijk − uEi,j,k−1oP Eijk

−oNEi,j,k−1dP NEijk − uNEi,j,k−1oP NEijk)

+uP Cijk (−uNEi−1,j−1,koP SWijk − oNEi−1,j−1,k+1uP SWijk

−uEi−1,j,koP Wijk − oEi−1,j,k+1uP Wijk

−uSEi−1,j+1,koP NWijk − oNWi,j,k+1uP NWijk

−uNi,j−1,koP Sijk − oNi,j−1,k+1uP Sijk

−uCi,j,koP Cijk + oCi,j,k+1uP Cijk

−uSi,j+1,koP Nijk − oNi,j,k+1uP Nijk

−uNWi+1,j−1,koP SEijk − oNWi+1,j−1,k+1uP SEijk

−uWi+1,j,koP Eijk − oEi,j,k+1uP Eijk

−uSWi+1,j+1,koP NEijk − oNEi,j,k+1uP NEijk)

+oP Cijk (−uWi+1,j,k−1dP Eijk − oEi−1,j,koP Wijk

−uSEi−1,j+1,k−1dP NWijk − uNEi−1,j−1,k−1dP SWijk

−uNi,j−1,k−1dP Sijk − oNEi−1,j−1,koP SWijk

−uEi−1,j,k−1dP Wijk − oNWi+1,j−1,koP SEijk

−uCi,j,k−1dP Cijk − uNWi+1,j−1,k−1dP SEijk

−uSWi+1,j+1,k−1dP NEijk − uSi,j+1,k−1dP Nijk

−oNi,j−1,koP Sijk − uNEi,j,kuP NEijk

−oNEi,j,koP NEijk − uEi,j,kuP Eijk

−uSEi,j,kuP SEijk − oNi,j,koP Nijk

−oEi,j,koP Eijk − uSi,j,kuP Sijk

+oCi,j,koP Cijk − uSWi,j,kuP SWijk

−uNi,j,kuP Nijk − uCi,j,kuP Cijk

−uWi,j,kuP Wijk − oNWi,j,koP NWijk

−uNWi,j,kuP NWijk)

+uP Sijk (−uEi−1,j−1,k oP SWijk − oEi−1,j−1,k+1uP SWijk
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−uSEi−1,j,koP Wijk − oNWi,j−1,k+1uP Wijk

−uCi,j−1,k oP Sijk + oCi,j−1,k+1uP Sijk

−uSi,j,koP Cijk − oNi,j−1,k+1uP Cijk

−uWi+1,j−1,koP SEijk − oEi,j−1,k+1uP SEijk

−uSWi+1,j,koP Eijk − oNEi,j−1,k+1uP Eijk)

+oP Sijk (−uEi−1,j−1,k−1dP SWijk − oEi−1,j−1,k oP SWijk

−uWi,j−1,kuP SWijk − uSEi−1,j,k−1dP Wijk

−oNWi,j−1,koP Wijk − uNWi,j−1,kuP Wijk

−uCi,j−1,k−1dP Sijk + oCi,j−1,k oP Sijk

−uCi,j−1,k uP Sijk − uSi,j,k−1dP Cijk

−oNi,j−1,koP Cijk − uNi,j−1,k uP Cijk

−uWi+1,j−1,k−1dP SEijk − oEi,j−1,koP SEijk

−uEi,j−1,kuP SEijk − uSWi+1,j,k−1dP Eijk

−oNEi,j−1,koP Eijk − uNEi,j−1,kuP Eijk)

+dP Sijk (−oEi−1,j−1,k−1dP SWijk − uWi,j−1,k−1oP SWijk

−oNWi,j−1,k−1dP Wijk − uNWi,j−1,k−1oP Wijk

+oCi,j−1,k−1dP Sijk − uCi,j−1,k−1oP Sijk

−oNi,j−1,k−1dP Cijk − uNi,j−1,k−1oP Cijk

−oEi,j−1,k−1dP SEijk − uEi,j−1,k−1oP SEijk

−oNEi,j−1,k−1dP Eijk − uNEi,j−1,k−1oP Eijk)

+uP NWijk (−uNi−1,j,koP Wijk − oNi−1,j,k+1uP Wijk

−uCi−1,j+1,koP NWijk + oCi−1,j+1,k+1uP NWijk

−uNWi,j,koP Cijk − oNWi,j,k+1uP Cijk

−uWi,j+1,koP Nijk − oEi−1,j+1,k+1uP Nijk)

+oP NWijk (−uNi−1,j,k−1dP Wijk − oNi−1,j,koP Wijk

−uSi−1,j+1,kuP Wijk − uCi−1,j+1,k−1dP NWijk

+oCi−1,j+1,koP NWijk − uCi−1,j+1,k uP NWijk

−uNWi,j,k−1dP Cijk − oNWi,j,koP Cijk

−uSEi−1,j+1,kuP Cijk − uWi,j+1,k−1dP Nijk

−oEi−1,j+1,koP Nijk − uEi−1,j+1,kuP Nijk)

+uP Wijk (−uNi−1,j−1,k oP SWijk − oNi−1,j−1,k+1uP SWijk

−uCi−1,j,koP Wijk + oCi−1,j,k+1uP Wijk

−uSi−1,j+1,koP NWijk − oNi−1,j,k+1uP NWijk

−uNWi,j−1,koP Sijk − oNWi,j−1,k+1uP Sijk

−uWi,j,koP Cijk − oEi−1,j,k+1uP Cijk

−uSWi,j+1,koP Nijk − oNEi−1,j,k+1uP Nijk)

+dP NWijk (−oNi−1,j,k−1dP Wijk − uSi−1,j+1,k−1oP Wijk

+oCi−1,j+1,k−1dP NWijk − uCi−1,j+1,k−1oP NWijk

−oNWi,j,k−1dP Cijk − uSEi−1,j+1,k−1oP Cijk

−oEi−1,j+1,k−1dP Nijk − uEi−1,j+1,k−1oP Nijk)

+oP Wijk (−uNi−1,j−1,k−1dP SWijk − oNi−1,j−1,k oP SWijk

−uSi−1,j,kuP SWijk − uCi−1,j,k−1dP Wijk

+oCi−1,j,koP Wijk − uCi−1,j,kuP Wijk

−uSi−1,j+1,k−1dP NWijk − oNi−1,j,koP NWijk

−uNi−1,j,kuP NWijk − uNWi,j−1,k−1dP Sijk

−oNWi,j−1,koP Sijk − uSEi−1,j,kuP Sijk

−uWi,j,k−1dP Cijk − oEi−1,j,koP Cijk

−uEi−1,j,kuP Cijk − uSWi,j+1,k−1dP Nijk

−oNEi−1,j,koP Nijk − uNEi−1,j,kuP Nijk)

+uP SWijk (−uCi−1,j−1,k oP SWijk + oCi−1,j−1,k+1uP SWijk

−uSi−1,j,koP Wijk − oNi−1,j−1,k+1uP Wijk

−uWi,j−1,koP Sijk − oEi−1,j−1,k+1uP Sijk

−uSWi,j,koP Cijk − oNEi−1,j−1,k+1uP Cijk )

+oP SWijk (−uCi−1,j−1,k−1dP SWijk + oCi−1,j−1,k oP SWijk

−uCi−1,j−1,k uP SWijk − uSi−1,j,k−1dP Wijk

−oNi−1,j−1,koP Wijk − uNi−1,j−1,k uP Wijk

−uWi,j−1,k−1dP Sijk − oEi−1,j−1,k oP Sijk

−uEi−1,j−1,kuP Sijk − uSWi,j,k−1dP Cijk

−oNEi−1,j−1,koP Cijk − uNEi−1,j−1,kuP Cijk)

+dP Wijk (−oNi−1,j−1,k−1dP SWijk − uSi−1,j,k−1oP SWijk

+oCi−1,j,k−1dP Wijk − uCi−1,j,k−1oP Wijk

−oNi−1,j,k−1dP NWijk − uNi−1,j,k−1oP NWijk

−oNWi,j−1,k−1dP Sijk − uSEi−1,j,k−1oP Sijk
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−oEi−1,j,k−1dP Cijk − uEi−1,j,k−1oP Cijk

−oNEi−1,j,k−1dP Nijk − uNEi−1,j,k−1oP Nijk)

+uP NEijk (−uNEi,j,koP Cijk − oNEi,j,k+1uP Cijk

−uEi,j+1,koP Nijk − oEi,j+1,k+1uP Nijk

−uNi+1,j,koP Eijk − oNi+1,j,k+1uP Eijk

−uCi+1,j+1,koP NEijk + oCi+1,j+1,k+1uP NEijk)

+uP Eijk (−uNEi,j−1,koP Sijk − oNEi,j−1,k+1uP Sijk

−uEi,j,koP Cijk − oEi,j,k+1uP Cijk

−uSEi,j+1,koP Nijk − oNWi+1,j,k+1uP Nijk

−uNi+1,j−1,koP SEijk − oNi+1,j−1,k+1uP SEijk

−uCi+1,j,koP Eijk + oCi+1,j,k+1uP Eijk

−uSi+1,j+1,koP NEijk − oNi+1,j,k+1uP NEijk)

+dP NEijk (−oNEi,j,k−1dP Cijk − uSWi+1,j+1,k−1oP Cijk

−oEi,j+1,k−1dP Nijk − uWi+1,j+1,k−1oP Nijk

−oNi+1,j,k−1dP Eijk − uSi+1,j+1,k−1oP Eijk

+oCi+1,j+1,k−1dP NEijk − uCi+1,j+1,k−1oP NEijk)

+oP NEijk (−uNEi,j,k−1dP Cijk − oNEi,j,koP Cijk

−uSWi+1,j+1,kuP Cijk − uEi,j+1,k−1dP Nijk

−oEi,j+1,koP Nijk − uWi+1,j+1,kuP Nijk

−uNi+1,j,k−1dP Eijk − oNi+1,j,koP Eijk

−uSi+1,j+1,kuP Eijk − uCi+1,j+1,k−1dP NEijk

+oCi+1,j+1,koP NEijk − uCi+1,j+1,k uP NEijk)

+oP SEijk (−uEi,j−1,k−1dP Sijk − oEi,j−1,k oP Sijk

−uWi+1,j−1,kuP Sijk − uSEi,j,k−1dP Cijk

−oNWi+1,j−1,koP Cijk − uNWi+1,j−1,kuP Cijk

−uCi+1,j−1,k−1dP SEijk + oCi+1,j−1,k oP SEijk

−uCi+1,j−1,kuP SEijk − uSi+1,j,k−1dP Eijk

−oNi+1,j−1,koP Eijk − uNi+1,j−1,kuP Eijk)

+dP SEijk (−oEi,j−1,k−1dP Sijk − uWi+1,j−1,k−1oP Sijk

−oNWi+1,j−1,k−1dP Cijk − uNWi+1,j−1,k−1oP Cijk

+oCi+1,j−1,k−1dP SEijk − uCi+1,j−1,k−1oP SEijk

−oNi+1,j−1,k−1dP Eijk − uNi+1,j−1,k−1oP Eijk)

+uP SEijk (−uEi,j−1,k oP Sijk − oEi,j−1,k+1uP Sijk

−uSEi,j,koP Cijk − oNWi+1,j−1,k+1uP Cijk

−uCi+1,j−1,koP SEijk + oCi+1,j−1,k+1uP SEijk

−uSi+1,j,koP Eijk − oNi+1,j−1,k+1uP Eijk )

+oP Eijk (−uNEi,j−1,k−1dP Sijk − oNEi,j−1,koP Sijk

−uSWi+1,j,kuP Sijk − uEi,j,k−1dP Cijk

−oEi,j,koP Cijk − uWi+1,j,kuP Cijk

−uSEi,j+1,k−1dP Nijk − oNWi+1,j,koP Nijk

−uNWi+1,j,kuP Nijk − uNi+1,j−1,k−1dP SEijk

−oNi+1,j−1,koP SEijk − uSi+1,j,kuP SEijk

−uCi+1,j,k−1dP Eijk + oCi+1,j,koP Eijk

−uCi+1,j,kuP Eijk − uSi+1,j+1,k−1dP NEijk

−oNi+1,j,koP NEijk − uNi+1,j,kuP NEijk)

+dP Eijk (−oNEi,j−1,k−1dP Sijk − uSWi+1,j,k−1oP Sijk

−oEi,j,k−1dP Cijk − uWi+1,j,k−1oP Cijk

−oNWi+1,j,k−1dP Nijk − uNWi+1,j,k−1oP Nijk

−oNi+1,j−1,k−1dP SEijk − uSi+1,j,k−1oP SEijk

+oCi+1,j,k−1dP Eijk − uCi+1,j,k−1oP Eijk

−oNi+1,j,k−1dP NEijk − uNi+1,j,k−1oP NEijk)

+uP Nijk (−uNEi−1,j,koP Wijk − oNEi−1,j,k+1uP Wijk

−uEi−1,j+1,koP NWijk − oEi−1,j+1,k+1uP NWijk

−uNi,j,koP Cijk − oNi,j,k+1uP Cijk

−uCi,j+1,koP Nijk + oCi,j+1,k+1uP Nijk

−uNWi+1,j,koP Eijk − oNWi+1,j,k+1uP Eijk

−uWi+1,j+1,koP NEijk − oEi,j+1,k+1uP NEijk)

+dP SWijk (oCi−1,j−1,k−1dP SWijk − uCi−1,j−1,k−1oP SWijk

−oNi−1,j−1,k−1dP Wijk − uNi−1,j−1,k−1oP Wijk

−oEi−1,j−1,k−1dP Sijk − uEi−1,j−1,k−1oP Sijk

−oNEi−1,j−1,k−1dP Cijk − uNEi−1,j−1,k−1oP Cijk)

−oE
H
ijk

= +dPSijk (−oEi,j−1,k−1dP SWi+2,j,k − uEi,j−1,k−1oP SWi+2,j,k
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−oNEi,j−1,k−1dP Wi+2,j,k − uNEi,j−1,k−1oP Wi+2,j,k)

+oP Sijk (−uWi+1,j−1,k−1dP SWi+2,j,k − oEi,j−1,k oP SWi+2,j,k

−uEi,j−1,k uP SWi+2,j,k − uSWi+1,j,k−1dP Wi+2,j,k

−oNEi,j−1,koP Wi+2,j,k − uNEi,j−1,kuP Wi+2,j,k)

+uP Sijk (−uWi+1,j−1,k oP SWi+2,j,k − oEi,j−1,k+1uP SWi+2,j,k

−uSWi+1,j,koP Wi+2,j,k − oNEi,j−1,k+1uP Wi+2,j,k)

+dP Cijk (−oNWi+1,j−1,k−1dP SWi+2,j,k − uSEi,j,k−1oP SWi+2,j,k

−oEi,j,k−1dP Wi+2,j,k − uEi,j,k−1oP Wi+2,j,k

−oNEi,j,k−1dP NWi+2,j,k − uNEi,j,k−1oP NWi+2,j,k)

+oP Cijk (−uNWi+1,j−1,k−1dP SWi+2,j,k − oNWi+1,j−1,koP SWi+2,j,k

−uSEi,j,kuP SWi+2,j,k − uWi+1,j,k−1dP Wi+2,j,k

−oEi,j,koP Wi+2,j,k − uEi,j,kuP Wi+2,j,k

−uSWi+1,j+1,k−1dP NWi+2,j,k − oNEi,j,koP NWi+2,j,k

−uNEi,j,kuP NWi+2,j,k)

+uP Cijk (−uNWi+1,j−1,k oP SWi+2,j,k − oNWi+1,j−1,k+1uP SWi+2,j,k

−uWi+1,j,koP Wi+2,j,k − oEi,j,k+1uP Wi+2,j,k

−uSWi+1,j+1,koP NWi+2,j,k − oNEi,j,k+1uP NWi+2,j,k)

+dP Nijk (−oNWi+1,j,k−1dP Wi+2,j,k − uSEi,j+1,k−1oP Wi+2,j,k

−oEi,j+1,k−1dP NWi+2,j,k − uEi,j+1,k−1oP NWi+2,j,k)

+oP Nijk (−uNWi+1,j,k−1dP Wi+2,j,k − oNWi+1,j,koP Wi+2,j,k

−uSEi,j+1,kuP Wi+2,j,k − uWi+1,j+1,k−1dP NWi+2,j,k

−oEi,j+1,k oP NWi+2,j,k − uEi,j+1,kuP NWi+2,j,k)

+uP Nijk (−uNWi+1,j,koP Wi+2,j,k − oNWi+1,j,k+1uP Wi+2,j,k

−uWi+1,j+1,k oP NWi+2,j,k − oEi,j+1,k+1uP NWi+2,j,k)

+dP SEijk (oCi+1,j−1,k−1dP SWi+2,j,k − uCi+1,j−1,k−1oP SWi+2,j,k

−oNi+1,j−1,k−1dP Wi+2,j,k − uNi+1,j−1,k−1oP Wi+2,j,k

−oEi+1,j−1,k−1dP Si+2,j,k − uEi+1,j−1,k−1oP Si+2,j,k

−oNEi+1,j−1,k−1dP Ci+2,j,k − uNEi+1,j−1,k−1oP Ci+2,j,k)

+oP SEijk (−uCi+1,j−1,k−1dP SWi+2,j,k + oCi+1,j−1,k oP SWi+2,j,k

−uCi+1,j−1,k uP SWi+2,j,k − uSi+1,j,k−1dP Wi+2,j,k

−oNi+1,j−1,k oP Wi+2,j,k − uNi+1,j−1,kuP Wi+2,j,k

−uWi+2,j−1,k−1dP Si+2,j,k − oEi+1,j−1,koP Si+2,j,k

−uEi+1,j−1,k uP Si+2,j,k − uSWi+2,j,k−1dP Ci+2,j,k

−oNEi+1,j−1,koP Ci+2,j,k − uNEi+1,j−1,kuP Ci+2,j,k)

+uP SEijk (−uCi+1,j−1,k oP SWi+2,j,k + oCi+1,j−1,k+1uP SWi+2,j,k

−uSi+1,j,koP Wi+2,j,k − oNi+1,j−1,k+1uP Wi+2,j,k

−uWi+2,j−1,k oP Si+2,j,k − oEi+1,j−1,k+1uP Si+2,j,k

−uSWi+2,j,koP Ci+2,j,k − oNEi+1,j−1,k+1uP Ci+2,j,k)

+dP Eijk (−oNi+1,j−1,k−1dP SWi+2,j,k − uSi+1,j,k−1oP SWi+2,j,k

+oCi+1,j,k−1dP Wi+2,j,k − uCi+1,j,k−1oP Wi+2,j,k

−oNi+1,j,k−1dP NWi+2,j,k − uNi+1,j,k−1oP NWi+2,j,k

−oNWi+2,j−1,k−1dP Si+2,j,k − uSEi+1,j,k−1oP Si+2,j,k

−oEi+1,j,k−1dP Ci+2,j,k − uEi+1,j,k−1oP Ci+2,j,k

−oNEi+1,j,k−1dP Ni+2,j,k − uNEi+1,j,k−1oP Ni+2,j,k)

+oP Eijk (−uNi+1,j−1,k−1dP SWi+2,j,k − oNi+1,j−1,koP SWi+2,j,k

−uSi+1,j,kuP SWi+2,j,k − uCi+1,j,k−1dP Wi+2,j,k

+oCi+1,j,koP Wi+2,j,k − uCi+1,j,kuP Wi+2,j,k

−uSi+1,j+1,k−1dP NWi+2,j,k − oNi+1,j,koP NWi+2,j,k

−uNi+1,j,kuP NWi+2,j,k − uNWi+2,j−1,k−1dP Si+2,j,k

−oNWi+2,j−1,koP Si+2,j,k − uSEi+1,j,kuP Si+2,j,k

−uWi+2,j,k−1dP Ci+2,j,k − oEi+1,j,koP Ci+2,j,k

−uEi+1,j,kuP Ci+2,j,k − uSWi+2,j+1,k−1dP Ni+2,j,k

−oNEi+1,j,koP Ni+2,j,k − uNEi+1,j,kuP Ni+2,j,k)

+uP Eijk (−uNi+1,j−1,k oP SWi+2,j,k − oNi+1,j−1,k+1uP SWi+2,j,k

−uCi+1,j,koP Wi+2,j,k + oCi+1,j,k+1uP Wi+2,j,k

−uSi+1,j+1,koP NWi+2,j,k − oNi+1,j,k+1uP NWi+2,j,k

−uNWi+2,j−1,koP Si+2,j,k − oNWi+2,j−1,k+1uP Si+2,j,k

−uWi+2,j,koP Ci+2,j,k − oEi+1,j,k+1uP Ci+2,j,k

−uSWi+2,j+1,koP Ni+2,j,k − oNEi+1,j,k+1uP Ni+2,j,k)

+dP NEijk (−oNi+1,j,k−1dP Wi+2,j,k − uSi+1,j+1,k−1oP Wi+2,j,k

+oCi+1,j+1,k−1dP NWi+2,j,k − uCi+1,j+1,k−1oP NWi+2,j,k

−oNWi+2,j,k−1dP Ci+2,j,k − uSEi+1,j+1,k−1oP Ci+2,j,k

−oEi+1,j+1,k−1dP Ni+2,j,k − uEi+1,j+1,k−1oP Ni+2,j,k)
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+oP NEijk (−uNi+1,j,k−1dP Wi+2,j,k − oNi+1,j,koP Wi+2,j,k

−uSi+1,j+1,kuP Wi+2,j,k − uCi+1,j+1,k−1dP NWi+2,j,k

+oCi+1,j+1,k oP NWi+2,j,k − uCi+1,j+1,k uP NWi+2,j,k

−uNWi+2,j,k−1dP Ci+2,j,k − oNWi+2,j,koP Ci+2,j,k

−uSEi+1,j+1,kuP Ci+2,j,k − uWi+2,j+1,k−1dP Ni+2,j,k

−oEi+1,j+1,k oP Ni+2,j,k − uEi+1,j+1,k uP Ni+2,j,k)

+uP NEijk (−uNi+1,j,koP Wi+2,j,k − oNi+1,j,k+1uP Wi+2,j,k

−uCi+1,j+1,k oP NWi+2,j,k + oCi+1,j+1,k+1uP NWi+2,j,k

−uNWi+2,j,koP Ci+2,j,k − oNWi+2,j,k+1uP Ci+2,j,k

−uWi+2,j+1,k oP Ni+2,j,k − oEi+1,j+1,k+1uP Ni+2,j,k)

−oNE
H
ijk

= +dP Cijk (−oNEi,j,k−1dP SWi+2,j+2,k − uNEi,j,k−1oP SWi+2,j+2,k)

+oP Cijk (−uSWi+1,j+1,k−1dP SWi+2,j+2,k − oNEi,j,koP SWi+2,j+2,k

−uNEi,j,kuP SWi+2,j+2,k)

+uP Cijk (−uSWi+1,j+1,k oP SWi+2,j+2,k − oNEi,j,k+1uP SWi+2,j+2,k)

+dP Nijk (−oEi,j+1,k−1dP SWi+2,j+2,k − uEi,j+1,k−1oP SWi+2,j+2,k

−oNEi,j+1,k−1dP Wi+2,j+2,k − uNEi,j+1,k−1oP Wi+2,j+2,k)

+oP Nijk (−uWi+1,j+1,k−1dP SWi+2,j+2,k − oEi,j+1,koP SWi+2,j+2,k

−uEi,j+1,k uP SWi+2,j+2,k − uSWi+1,j+2,k−1dP Wi+2,j+2,k

−oNEi,j+1,koP Wi+2,j+2,k − uNEi,j+1,kuP Wi+2,j+2,k)

+uP Nijk (−uWi+1,j+1,k oP SWi+2,j+2,k − oEi,j+1,k+1uP SWi+2,j+2,k

−uSWi+1,j+2,k oP Wi+2,j+2,k − oNEi,j+1,k+1uP Wi+2,j+2,k)

+dP Eijk (−oNi+1,j,k−1dP SWi+2,j+2,k − uNi+1,j,k−1oP SWi+2,j+2,k

−oNEi+1,j,k−1dP Si+2,j+2,k − uNEi+1,j,k−1oP Si+2,j+2,k)

+oP Eijk (−uSi+1,j+1,k−1dP SWi+2,j+2,k − oNi+1,j,koP SWi+2,j+2,k

−uNi+1,j,kuP SWi+2,j+2,k − uSWi+2,j+1,k−1dP Si+2,j+2,k

−oNEi+1,j,koP Si+2,j+2,k − uNEi+1,j,kuP Si+2,j+2,k)

+uP Eijk (−uSi+1,j+1,k oP SWi+2,j+2,k − oNi+1,j,k+1uP SWi+2,j+2,k

−uSWi+2,j+1,k oP Si+2,j+2,k − oNEi+1,j,k+1uP Si+2,j+2,k)

+dP NEijk (oCi+1,j+1,k−1dP SWi+2,j+2,k − uCi+1,j+1,k−1oP SWi+2,j+2,k

−oNi+1,j+1,k−1dP Wi+2,j+2,k − uNi+1,j+1,k−1oP Wi+2,j+2,k

−oEi+1,j+1,k−1dP Si+2,j+2,k − uEi+1,j+1,k−1oP Si+2,j+2,k

−oNEi+1,j+1,k−1dP Ci+2,j+2,k − uNEi+1,j+1,k−1oP Ci+2,j+2,k )

+oP NEijk (−uCi+1,j+1,k−1dP SWi+2,j+2,k + oCi+1,j+1,k oP SWi+2,j+2,k

−uCi+1,j+1,k uP SWi+2,j+2,k − uSi+1,j+2,k−1dP Wi+2,j+2,k

−oNi+1,j+1,koP Wi+2,j+2,k − uNi+1,j+1,kuP Wi+2,j+2,k

−uWi+2,j+1,k−1dP Si+2,j+2,k − oEi+1,j+1,koP Si+2,j+2,k

−uEi+1,j+1,k uP Si+2,j+2,k − uSWi+2,j+2,k−1dP Ci+2,j+2,k

−oNEi+1,j+1,koP Ci+2,j+2,k − uNEi+1,j+1,kuP Ci+2,j+2,k )

+uP NEijk (−uCi+1,j+1,k oP SWi+2,j+2,k + oCi+1,j+1,k+1uP SWi+2,j+2,k

−uSi+1,j+2,koP Wi+2,j+2,k − oNi+1,j+1,k+1uP Wi+2,j+2,k

−uWi+2,j+1,k oP Si+2,j+2,k − oEi+1,j+1,k+1uP Si+2,j+2,k

−uSWi+2,j+2,k oP Ci+2,j+2,k − oNEi+1,j+1,k+1uP Ci+2,j+2,k)

−uNE
H
ijk

= −oP Cijk uNEi,j,kdP SWi+2,j+2,k+2

+uP Cijk (−oNEi,j,k+1dP SWi+2,j+2,k+2 − uNEi,j,k+1oP SWi+2,j+2,k+2)

+oP Nijk (−uEi,j+1,k dP SWi+2,j+2,k+2 − uNEi,j+1,kdP Wi+2,j+2,k+2)

+uP Nijk (−oEi,j+1,k+1dP SWi+2,j+2,k+2 − uEi,j+1,k+1oP SWi+2,j+2,k+2

−oNEi,j+1,k+1dP Wi+2,j+2,k+2 − uNEi,j+1,k+1oP Wi+2,j+2,k+2)

+oP Eijk (−uNi+1,j,kdP SWi+2,j+2,k+2 − uNEi+1,j,kdP Si+2,j+2,k+2)

+uP Eijk (−oNi+1,j,k+1dP SWi+2,j+2,k+2 − uNi+1,j,k+1oP SWi+2,j+2,k+2

−oNEi+1,j,k+1dP Si+2,j+2,k+2 − uNEi+1,j,k+1oP Si+2,j+2,k+2)

+oP NEijk (−uCi+1,j+1,k dP SWi+2,j+2,k+2 − uNi+1,j+1,kdP Wi+2,j+2,k+2

−uEi+1,j+1,kdP Si+2,j+2,k+2 − uNEi+1,j+1,kdP Ci+2,j+2,k+2)

+uP NEijk (oCi+1,j+1,k+1dP SWi+2,j+2,k+2 − uCi+1,j+1,k+1oP SWi+2,j+2,k+2

−oNi+1,j+1,k+1dP Wi+2,j+2,k+2 − uNi+1,j+1,k+1oP Wi+2,j+2,k+2

−oEi+1,j+1,k+1dP Si+2,j+2,k+2 − uEi+1,j+1,k+1oP Si+2,j+2,k+2

−oNEi+1,j+1,k+1dP Ci+2,j+2,k+2 − uNEi+1,j+1,k+1oP Ci+2,j+2,k+2)

Remark A.3. Consider a finite element discretization of Poisson’s equation on the unit cube, employing a
uniform three-dimensional Cartesian mesh. We use piecewise linear basis functions on tetrahedral elements
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which subdivide each cube in the uniform Cartesian mesh. The four master-element basis functions on the
master-element ẽ having the three vertices {(1, 0, 0), (0, 1, 0), (0, 0, 1)} have the form:















φ̃1(x, y, z) = x,

φ̃2(x, y, z) = y,

φ̃3(x, y, z) = z,

φ̃4(x, y, z) = 1 − x − y − z.















For Poisson’s equation, we can evaluate the integrals required for the master-element stiffness matrix ana-
lytically, yielding:

[
∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

∇φ̃i · ∇φ̃j dzdydx

]

=
1

6









3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1









.

There are exactly ten ways to break a cube into tetrahedra such that the vertices of the tetrahedra
coincide with the vertices of the cube (cf. [156] for analysis and references to similar geometric results for
tetrahedra). Choosing to subdivide the unit cube into five or six tetrahedra, the unit cube element stiffness
matrix can be constructed from the individual tetrahedral master-element stiffness matrices. It is not difficult
to show after some bookkeeping that the resulting stencil representations of the system matrix, depending
on whether five or six tetrahedra are used to divide the cube, are as follows:

Ah =





0 0 0
−1 −1 0

0 0 0



×





0 −1 −1
0 8 0

−1 −1 0



×





0 0 0
0 −1 −1
0 0 0





h

h

, (A.5)

Ah =





0 1 0
−1 −4 0

1 0 0



×





0 −4 −1
−2 20 −2
−1 −4 0



×





0 0 1
0 −4 −1
0 1 0





h

h

, (A.6)

where the meshwidth h has been divided out of the matrices. More generally, note that for a variable
coefficient operator rather than the Laplace operator, the nonzero structure of the stencil produced by a
tetrahedral refinement of a non-uniform Cartesian mesh will be:

Ah =





0 −dNij 0
−dWij −dCij 0
−dSWij 0 0



×





0 −oNij −oNEij

−oWij oCij −oEij

−oSWij −oSij 0



×





0 0 −uNEij

0 −uCij −uEij

0 −uSij 0





h

h

.

The additional zero elements in the first case occur due to the symmetries present for the Laplace operator
on a uniform Cartesian mesh. This is also true in two dimensions; the usually seven-point stencil produced
by a triangular refinement of a non-uniform Cartesian mesh reduces to the familiar five-point stencil in the
case of the Laplace operator.

Linear interpolation of a grid function on the uniform Cartesian mesh, and the corresponding restriction
operator, are represented by:

IH
h =







0 1
2 0

1
2

1
2 0

1
2 0 0






×







0 1
2

1
2

1
2 1 1

2
1
2

1
2 0






×







0 0 1
2

0 1
2

1
2

0 1
2 0







H

h(H)

,

Ih
H =







0 0 0

0 0 0
1
2 0 0






×







0 0 0

0 0 0

0 0 0






×







0 0 1
2

0 0 0

0 0 0







h

H(8)
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∨







0 0 1
2

0 0 0
1
2 0 0







h

H(7,6,5)

∨







1
2

0
1
2







h

H(4,3,2)

∨ [ 1 ]hH(1).

Since the linear prolongation operator corresponds to the natural inclusion operation in the finite element
space constructed from linear basis functions, then with the above choice of stencils for the Poisson equation
case, the stencil calculus should reproduce both (A.5) and (A.6) as the resulting coarse mesh Galerkin
stencils. This is difficult to show by hand, but is easily verified in MAPLE.

Consider now a finite element discretization of Poisson’s equation on the unit cube, employing a uniform
three-dimensional Cartesian mesh and piecewise trilinear basis functions on the resulting cube elements. The
eight master-element basis functions on the master-element ẽ = [−1, 1]× [−1, 1]× [−1, 1] have the form:



















φ̃1(x, y, z) = (1−x)(1−y)(1−z)
8 , φ̃5(x, y, z) = (1−x)(1−y)(1+z)

8 ,

φ̃2(x, y, z) = (1+x)(1−y)(1−z)
8 , φ̃6(x, y, z) = (1+x)(1−y)(1+z)

8 ,

φ̃3(x, y, z) = (1+x)(1+y)(1−z)
8 , φ̃7(x, y, z) = (1+x)(1+y)(1+z)

8 ,

φ̃4(x, y, z) = (1−x)(1+y)(1−z)
8 , φ̃8(x, y, z) = (1−x)(1+y)(1+z)

8 .



















For Poisson’s equation, we can evaluate the integrals required for the master-element stiffness matrix ana-
lytically, yielding:

[∫ 1

−1

∫ 1

−1

∫ 1

−1

∇φ̃i · ∇φ̃j dxdydz

]

=
1

6

























4 0 −1 0 0 −1 −1 −1
0 4 0 −1 −1 0 −1 −1

−1 0 4 0 −1 −1 0 −1
0 −1 0 4 −1 −1 −1 0
0 −1 −1 −1 4 0 −1 0

−1 0 −1 −1 0 4 0 −1
−1 −1 0 −1 −1 0 4 0
−1 −1 −1 0 0 −1 0 4

























.

It then follows after a little bookkeeping that the resulting stencil representation of the system matrix is as
follows:

Ah =
1

6





−1 −2 −1
−2 0 −2
−1 −2 −1



× 1

6





−2 0 −2
0 32 0

−2 0 −2



× 1

6





−1 −2 −1
−2 0 −2
−1 −2 −1





h

h

, (A.7)

where the meshwidth h has been divided out of the matrix. More generally for a variable coefficient operator,
all twenty-seven stencil components will be nonzero; the zeros occurring above are due to symmetries which
are present for the Laplace operator on a uniform Cartesian mesh. Trilinear interpolation of a grid function
on the uniform Cartesian mesh, and the corresponding restriction operator, are represented by:

IH
h =







1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8






×







1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4






×







1
8

1
4

1
8

1
4

1
2

1
4

1
8

1
4

1
8







H

h(H)

,

Ih
H =







1
8 0 1

8

0 0 0
1
8 0 1

8






×







0 0 0

0 0 0

0 0 0






×







1
8 0 1

8

0 0 0
1
8 0 1

8







h

H(8)

∨







1
4 0 1

4

0 0 0
1
4 0 1

4







h

H(7,6,5)

∨







1
2

0
1
2







h

H(4,3,2)

∨ [ 1 ]hH(1).

Since the trilinear prolongation operator corresponds to the natural inclusion operation in the finite element
space constructed from trilinear basis functions, then with the above choice of stencils, the stencil calculus
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should reproduce (A.7) as the resulting coarse mesh Galerkin stencil; this is easily verifiable in MAPLE, but
is a tedious calculation by hand.

Finally, consider a box-method discretization of Poisson’s equation on the unit cube, employing a uniform
three-dimensional Cartesian mesh, which as shown in Chapter 2 yields the following seven-point stencil
representation of the system matrix:

Ah =





0 0 0
0 −1 0
0 0 0



×





0 −1 0
−1 6 −1

0 −1 0



×





0 0 0
0 −1 0
0 0 0





h

h

. (A.8)

If linear prolongation is employed, then it is not difficult to show using the MAPLE implementation of the
stencil calculus that the Galerkin coarse mesh stencils converge rapidly to the stencil (A.6). Similarly, if
trilinear prolongation is used, then the Galerkin coarse mesh stencils converge rapidly to the stencil (A.7).
Unfortunately, in the linear case the stencil expands to fifteen-point already on the second finest mesh, but
it remains fifteen-point on coarser meshes. In the bilinear case, the stencil expands to twenty-seven-point on
the second finest mesh, but remains twenty-seven-point on all coarser meshes.

When a general second order elliptic operator is considered, and a box-method discretization is employed
on a fine non-uniform Cartesian mesh yielding a seven point stencil, then the stencils spread in exactly this
same fashion on the second finest mesh. The fixed nonzero structure of the second finest mesh stencil is
preserved on all coarser meshes, so the stencil spreading occurs only from the finest to the second finest mesh
in the general case as well.

A.2 Operator-based prolongations by stencil compression

We outlined in 3 an approach for producing prolongation operators which attempt to conserve flux at box
boundaries in a box-method-based multilevel scheme. There is an analogous interpretation completely in
terms of the discretized stencil, which we also outlined. These approaches were first developed in [2] for
two-dimensional problems, and extensive experiments for three-dimensional problems have appeared in [51].
Related algebraically-based prolongation operators are constructed and discussed in [166]. In this section,
we will give the stencils for one-, two-, and three-dimensional operator-based prolongation operators based
on stencil compression, as described in Chapter 3.

A.2.1 One dimension

In Chapter 3, we developed the one-dimensional operator-based prolongation operator motivated by physical
considerations, and outlined an equivalent approach based completely on the discrete differential operator.
In the second approach, the prolongation operator stencil components were shown to have the form:

PCi = 1, PEi =
Wi+1

Ci+1
, PWi =

Ei−1

Ci−1
.

A.2.2 Two dimensions

As outlined in Chapter 3, the higher-dimensional operator-based prolongations are obtained by stencil com-
pression. The prolongation operator stencil components in the two-dimensional case are as follows:

P Cij = 1

P Nij = (SWi,j+1 + Si,j+1 + SEi,j+1)/(Ci,j+1 − Wi,j+1 − Ei,j+1)

P Sij = (NWi,j−1 + Ni,j−1 + NEi,j−1)/(Ci,j−1 − Wi,j−1 − Ei,j−1)

P Eij = (NWi+1,j + Wi+1,j + SWi+1,j )/(Ci+1,j − Si+1,j − Ni+1,j)

P Wij = (NEi−1,j + Ei−1,j + SEi−1,j )/(Ci−1,j − Si−1,j − Ni−1,j )

P NEij = (SWi+1,j+1 + Si+1,j+1 ∗ P Eij + Wi+1,j+1 ∗ P Nij )/(Ci+1,j+1)

P NWij = (SEi−1,j+1 + Si−1,j+1 ∗ P Wij + Ei−1,j+1 ∗ P Nij )/(Ci−1,j+1)

P SEij = (NWi+1,j−1 + Ni+1,j−1 ∗ P Eij + Wi+1,j−1 ∗ P Sij)/(Ci+1,j−1)

P SWij = (NEi−1,j−1 + Ni−1,j−1 ∗ P Wij + Ei−1,j−1 ∗ P Sij )/(Ci−1,j−1)
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A.2.3 Three dimensions

The three-dimensional operator-based prolongations are also obtained by stencil compression. The prolon-
gation operator stencil components in the three-dimensional case are as follows. Note that for simplicity
in the three-dimensional case, we have assumed symmetry, as in the presentation of the three-dimensional
Galerkin coarse grid matrix stencil components.

oP Cijk = 1

oP Nijk = (uNEi−1,j,k−1 + uNi,j,k−1 + uNWi+1,j,k−1 + oNEi−1,j,k + oNijk + oNWi+1,j,k

+uSWi,j+1,k + uSi,j+1,k + uSEi,j+1,k)/(oCi,j+1,k − oEi−1,j+1,k − oEi,j+1,k

−uCi,j+1,k−1 − uEi−1,j+1,k−1 − uWi+1,j+1,k−1 − uCi,j+1,k − uWi,j+1,k − uEi,j+1,k )

oP Sijk = (uSEi−1,j,k−1 + uSi,j,k−1 + uSWi+1,j,k−1 + oNWi,j−1,k + oNi,j−1,k + oNEi,j−1,k

+uNWi,j−1,k + uNi,j−1,k + uNEi,j−1,k)/(oCi,j−1,k − oEi−1,j−1,k − oEi,j−1,k

−uCi,j−1,k−1 − uEi−1,j−1,k−1 − uWi+1,j−1,k−1 − uCi,j−1,k − uWi,j−1,k − uEi,j−1,k )

oP Eijk = (uSEi,j+1,k−1 + oNWi+1,j,k + uNWi+1,j,k + uEi,j,k−1 + oEijk + uWi+1,j,k

+uNEi,j−1,k−1 + oNEi,j−1,k + uSWi+1,j,k)/(oCi+1,j,k − uCi+1,j,k−1 − uCi+1,j,k

−oNi+1,j,k − uSi+1,j+1,k−1 − uNi+1,j,k − oNi+1,j−1,k − uNi+1,j−1,k−1 − uSi+1,j,k)

oP Wijk = (uSWi,j+1,k−1 + oNEi−1,j,k + uNEi−1,j,k + uWi,j,k−1 + oEi−1,j,k + uEi−1,j,k

+uNWi,j−1,k−1 + oNWi,j−1,k + uSEi−1,j,k)/(oCi−1,j,k − uCi−1,j,k−1 − uCi−1,j,k

−oNi−1,j,k − uSi−1,j+1,k−1 − uNi−1,j,k − oNi−1,j−1,k − uNi−1,j−1,k−1 − uSi−1,j,k)

oP NEijk = (uNEi,j,k−1 + oNEijk + uSWi+1,j+1,k

+(uNi+1,j,k−1 + oNi+1,j,k + uSi+1,j+1,k)oP Eijk

+(uEi,j+1,k−1 + oEi,j+1,k + uWi+1,j+1,k)oP Nijk)

/(oCi+1,j+1,k − uCi+1,j+1,k−1 − uCi+1,j+1,k )

oP NWijk = (uNWi,j,k−1 + oNWijk + uSEi−1,j+1,k

+(uNi−1,j,k−1 + oNi−1,j,k + uSi−1,j+1,k)oP Wijk

+(uWi,j+1,k−1 + oEi−1,j+1,k + uEi−1,j+1,k)oP Nijk)

/(oCi−1,j+1,k − uCi−1,j+1,k−1 − uCi−1,j+1,k )

oP SEijk = (uSEi,j,k−1 + oNWi+1,j−1,k + uNWi+1,j−1,k

+(uSi+1,j,k−1 + oNi+1,j−1,k + uNi+1,j−1,k)oP Eijk

+(uEi,j−1,k−1 + oEi,j−1,k + uWi+1,j−1,k)oP Sijk)

/(oCi+1,j−1,k − uCi+1,j−1,k−1 − uCi+1,j−1,k )

oP SWijk = (uSWi,j,k−1 + oNEi−1,j−1,k + uNEi−1,j−1,k

+(uSi−1,j,k−1 + oNi−1,j−1,k + uNi−1,j−1,k )oP Wijk

+(uWi,j−1,k−1 + oEi−1,j−1,k + uEi−1,j−1,k )oP Sijk)

/(oCi−1,j−1,k − uCi−1,j−1,k−1 − uCi−1,j−1,k )

dP Cijk = (uNWi,j,k−1 + uWi,j,k−1 + uSWi,j,k−1 + uNi,j,k−1 + uCi,j,k−1 + uSi,j,k−1

+uNEi,j,k−1 + uEi,j,k−1 + uSEi,j,k−1)/(oCi,j,k−1 − oNi,j,k−1 − oNi,j−1,k−1

−oNWi,j,k−1 − oEi−1,j,k−1 − oNEi−1,j−1,k−1

−oNEi,j,k−1 − oEi,j,k−1 − oNWi+1,j−1,k−1)

dP Nijk = (uSWi,j+1,k−1 + uSi,j+1,k−1 + uSEi,j+1,k−1

+(oNEi−1,j,k−1 + oNi,j,k−1 + oNWi+1,j,k−1)dP Cijk

+(uWi,j+1,k−1 + uCi,j+1,k−1 + uEi,j+1,k−1)oP Nijk)

/(oCi,j+1,k−1 − oEi−1,j+1,k−1 − oEi,j+1,k−1)

dP Sijk = (uNWi,j−1,k−1 + uNi,j−1,k−1 + uNEi,j−1,k−1

+(oNWi,j−1,k−1 + oNi,j−1,k−1 + oNEi,j−1,k−1)dP Cijk

+(uWi,j−1,k−1 + uCi,j−1,k−1 + uEi,j−1,k−1)oP Sijk)

/(oCi,j−1,k−1 − oEi−1,j−1,k−1 − oEi,j−1,k−1)

dP Eijk = (uNWi+1,j,k−1 + uWi+1,j,k−1 + uSWi+1,j,k−1

+(uNi+1,j,k−1 + uCi+1,j,k−1 + uSi+1,j,k−1)oP Eijk

+(oNWi+1,j,k−1 + oEi,j,k−1 + oNEi,j−1,k−1)dP Cijk)

/(oCi+1,j,k−1 − oNi+1,j,k−1 − oNi+1,j−1,k−1)
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dP Wijk = (uNEi−1,j,k−1 + uEi−1,j,k−1 + uSEi−1,j,k−1

+(uNi−1,j,k−1 + uCi−1,j,k−1 + uSi−1,j,k−1)oP Wijk

+(oNEi−1,j,k−1 + oEi−1,j,k−1 + oNWi,j−1,k−1)dP Cijk )

/(oCi−1,j,k−1 − oNi−1,j,k−1 − oNi−1,j−1,k−1)

dP NEijk = (uSWi+1,j+1,k−1 + uWi+1,j+1,k−1oP Nijk + uSi+1,j+1,k−1oP Eijk

+uCi+1,j+1,k−1oP NEijk + oNEi,j,k−1dP Cijk + oEi,j+1,k−1dP Nijk

+oNi+1,j,k−1dP Eijk)/oCi+1,j+1,k−1

dP NWijk = (uSEi−1,j+1,k−1 + uEi−1,j+1,k−1oP Nijk + uSi−1,j+1,k−1oP Wijk

+uCi−1,j+1,k−1oP NWijk + oNWi,j,k−1dP Cijk + oEi−1,j+1,k−1dP Nijk

+oNi−1,j,k−1dP Wijk)/oCi−1,j+1,k−1

dP SEijk = (uNWi+1,j−1,k−1 + uWi+1,j−1,k−1oP Sijk + uNi+1,j−1,k−1oP Eijk

+uCi+1,j−1,k−1oP SEijk + oNWi+1,j−1,k−1dP Cijk + oEi,j−1,k−1dP Sijk

+oNi+1,j−1,k−1dP Eijk)/oCi+1,j−1,k−1

dP SWijk = (uNEi−1,j−1,k−1 + uEi−1,j−1,k−1oP Sijk + uNi−1,j−1,k−1oP Wijk

+uCi−1,j−1,k−1oP SWijk + oNEi−1,j−1,k−1dP Cijk + oEi−1,j−1,k−1dP Sijk

+oNi−1,j−1,k−1dP Wijk )/oCi−1,j−1,k−1

uP Cijk = (uSEi−1,j+1,k + uEi−1,j,k + uNEi−1,j−1,k + uSi,j+1,k + uCijk + uNi,j−1,k

+uSWi+1,j+1,k + uWi+1,j,k + uNWi+1,j−1,k)/(oCi,j,k+1 − oNi,j,k+1 − oNi,j−1,k+1

−oNWi,j,k+1 − oEi−1,j,k+1 − oNEi−1,j−1,k+1

−oNEi,j,k+1 − oEi,j,k+1 − oNWi+1,j−1,k+1)

uP Nijk = (uNEi−1,j,k + uNijk + uNWi+1,j,k

+(oNEi−1,j,k+1 + oNi,j,k+1 + oNWi+1,j,k+1)uP Cijk

+(uEi−1,j+1,k + uCi,j+1,k + uWi+1,j+1,k )oP Nijk)

/(oCi,j+1,k+1 − oEi−1,j+1,k+1 − oEi,j+1,k+1)

uP Sijk = (uSEi−1,j,k + uSijk + uSWi+1,j,k

+(oNWi,j−1,k+1 + oNi,j−1,k+1 + oNEi,j−1,k+1)uP Cijk

+(uEi−1,j−1,k + uCi,j−1,k + uWi+1,j−1,k )oP Sijk)

/(oCi,j−1,k+1 − oEi−1,j−1,k+1 − oEi,j−1,k+1)

uP Eijk = (uSEi,j+1,k + uSi+1,j+1,k + uNEi,j−1,k

+(uSi+1,j+1,k + uCi+1,j,k + uNi+1,j−1,k )oP Eijk

+(oNWi+1,j,k+1 + oEi,j,k+1 + oNEi,j−1,k+1)uP Cijk)

/(oCi+1,j,k+1 − oNi+1,j,k+1 − oNi+1,j−1,k+1)

uP Wijk = (uSWi,j+1,k + uWijk + uNWi,j−1,k

+(uSi−1,j+1,k + uCi−1,j,k + uNi−1,j−1,k)oP Wijk

+(oNEi−1,j,k+1 + oEi−1,j,k+1 + oNWi,j−1,k+1)uP Cijk )

/(oCi−1,j,k+1 − oNi−1,j,k+1 − oNi−1,j−1,k+1)

uP NEijk = (uNEijk + uEi,j+1,koP Nijk + uNi+1,j,koP Eijk

+uCi+1,j+1,koP NEijk + oNEi,j,k+1uP Cijk + oEi,j+1,k+1uP Nijk

+oNi+1,j,k+1uP Eijk)/oCi+1,j+1,k+1

uP NWijk = (uNWijk + uWi,j+1,k oP Nijk + uNi−1,j,koP Wijk

+uCi−1,j+1,k oP NWijk + oNWi,j,k+1uP Cijk + oEi−1,j+1,k+1uP Nijk

+oNi−1,j,k+1uP Wijk)/oCi−1,j+1,k+1

uP SEijk = (uSEijk + uEi,j−1,koP Sijk + uSi+1,j,koP Eijk

+uCi+1,j−1,koP SEijk + oNWi+1,j−1,k+1uP Cijk + oEi,j−1,k+1uP Sijk

+oNi+1,j−1,k+1uP Eijk)/oCi+1,j−1,k+1

uP SWijk = (uSWijk + uWi,j−1,k oP Sijk + uSi−1,j,koP Wijk

+uCi−1,j−1,k oP SWijk + oNEi−1,j−1,k+1uP Cijk + oEi−1,j−1,k+1uP Sijk

+oNi−1,j−1,k+1uP Wijk )/oCi−1,j−1,k+1

A.3 Stencil calculus in MAPLE and MATHEMATICA

The MAPLE and MATHEMATICA routines implementing the stencil calculus in two and three dimensions,
which were used to produce the expressions in this Appendix and which can be used to produce FORTRAN
or C expressions directly, can be obtained from the author.



B. Information about the Software

In the course of this work, a package of three-dimensional linear and nonlinear partial differential equation
solvers has been developed. At the core of the package are the linear multilevel methods discussed in the
earlier chapters. The package is applicable to three-dimensional nonlinear Poisson-like scalar equations, al-
lowing for nonlinearities that depend on the scalar unknown (but not on derivatives); nonlinearities of this
type occur in the Poisson-Boltzmann equation as well as in other applications, such as semiconductor mod-
eling. The class of problems for which the package is applicable can be extended with suitable modifications
to the software (the methods need not be modified). In this Appendix, we summarize the essential features
and ideas in the package, as well as how the package is used.

B.1 The FORTRAN-language multilevel numerical software

The software is restricted to logically non-uniform Cartesian three-dimensional meshes due to the multilevel
solver employed, and the box-method discretization routine we provide requires a physically non-uniform
Cartesian mesh as well. This discretization routine allows arbitrary Dirichlet or Neumann boundary condi-
tions at any boundary point on a three-dimensional rectangular box, allowing for specification of arbitrary
contact placements and geometries, as may be necessary in semiconductor modeling. Although we provide
a box-method discretization with the software, the multilevel method can form the coarse level equations
algebraically, the only requirement on the fine level discretization being that the equations be representable
as stencils, and that the nonlinear term be diagonal. This is always true for either box or finite element
(with mass lumping) discretization on a logically non-uniform Cartesian mesh.

To use the package as provided, the user defines the problem coefficients, the mesh points and domain
geometry, as well as the boundary conditions and types, in a very simple and well-defined way. All necessary
workspace is passed in by the user; the software will indicate exactly how much workspace is required for
a particular problem configuration. The nonlinearity must be defined in a subroutine supplied by the user
which is to be called by the software, and a second subroutine must also be supplied which provides the
derivative of the nonlinear term for use in forming the Jacobian required by the Newton solver. Using the
solver involves a single subroutine call with a simple and understandable argument list.

The linear multilevel method at the core of the software, as described earlier, is designed specifically for
discontinuous coefficients as occur in material interface problems. Techniques employed include the coefficient
averaging methods or the Galerkin methods, combined with operator-induced prolongation procedures which
attempt to enforce flux conservation at box boundaries when a grid function is interpolated from a coarse to a
fine mesh. The averaging methods are usually sufficient for the Poisson-Boltzmann problem, but particularly
complex molecular surfaces seem to require the Galerkin approach for robustness; this is computationally
more costly and requires more memory than the averaging approach (seven-diagonal matrices produced by
the box-method on the fine mesh expand to twenty-seven-diagonal matrices on coarse meshes), but it always
converges rapidly. Galerkin coefficient expressions are extremely complex in three dimensions, and were
obtained with the help of the MAPLE and MATHEMATICA symbolic manipulation packages.

The user is given many choices in configuring the multilevel method, including choice of smoother, number
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of levels employed, iteration strategy, choice of prolongation operator, coarse problem formulation, as well
as iterative (CG) or direct (banded LINPACK) solve on the coarsest mesh. A conjugate gradient method is
also employed to accelerate the multilevel methods, and while this approach is mathematically guaranteed
to improve the convergence rate of the multilevel method with a corresponding increase in computational
labor, it is also the case that in practice the CPU time to solve the problem is usually reduced using the
acceleration (i.e., the acceleration more than pays for itself).

Nonlinear problems are handled with the methods described earlier: either a nonlinear multilevel method,
or a more robust (essentially globally convergent) inexact-Newton solver coupled with the fast linear multi-
level method. Configuration options include a choice of several stopping criteria, degree of inexactness in the
approximate Newton solves, and damping strategy, in addition to all possible configuration options for the
multilevel Jacobian system solver. A nonlinear operator-based prolongation procedure has been developed
for the nonlinear case as well. Also included in the software are several implementations of more traditional
nonlinear methods, including nonlinear SOR (SOR-outer iteration with one-dimensional Newton-solves) and
nonlinear CG (the Flether-Reeves nonlinear extension to the linear Hestenes-Steifel algorithm).

An interface routine is provided for using the software specifically as a nonlinear Poisson-Boltzmann
equation solver. To handle the severe numerical problems occurring with nonlinearities of exponential-type
present in the Poisson-Boltzmann equation, we developed argument-capping functions which avoid nonvec-
torizable statements. Calls to the standard intrinsic functions are replaced by these modified functions, and
overflows are successfully avoided during early transient iterations without loosing the execution efficiency
of the intrinsic functions.

The entire package is written in standard FORTRAN 77. The package installs itself in single or double
precision on the specified machine, inserting the appropriate compiler directives automatically, and runs
without modification on most current systems, including the Cray C90, Cray Y-MP, Convex C3, Convex
C240, Convex C220, IBM RS/6000, Sun 4, Sun 3, and most other systems with a standard FORTRAN 77
compiler.

Due to the various choices made during the development of this package, the software executes at very
high rates on a number of modern computers; see for example Chapter 8 for benchmarks.

B.2 The C-language X11 user interface

An XWindow interface has been written (in C) for the FORTRAN numerical software. The interface is
completely disconnected from the numerical software in the sense that it provides only input files which are
read by the numerical software, executes the numerical software, and then reads and processes the output
files produced by the numerical software. The purposes of this driver are: to provide for ease of use of
the numerical software, preventing some common mistakes such as incorrect input file entries; to provide
interactive information during the solution process; and to provide quick, easy, and immediate access to
output such as performance information and solution values, through the use of various windows, displays,
and visualization tools.

The C-language interface runs as is on any machine that has a standard C compiler and the standard
X11 distribution Release 4 or newer. The interface uses only the Athena Widget set (along with Xlib and
the Xt intrinsics), so that the interface is also quite portable. We have tested it on the machines mentioned
above in the description of the numerical software, and the interface runs without modification in each case.

A sample display produced by the interface is given in Figure B.1.

B.3 Obtaining the software

The software package, including the numerical software as well as the XWindow interface software, can be
obtained from the author.
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Figure B.1: Sample displays produced by the XMG software.
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