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CONVERGENCE OF GOAL-ORIENTED ADAPTIVE FINITE ELEMENT
METHODS FOR NONSYMMETRIC PROBLEMS

MICHAEL HOLST AND SARA POLLOCK

ABSTRACT. In this article we develop convergence theory for a clasgoatf-oriented
adaptive finite element algorithms for second order nonsgtrimlinear elliptic equa-
tions. In particular, we establish contraction and quaircality results for a method
of this type for second order Dirichlet problems involvirigetelliptic operatolLu =
V- (AVu) —b- Vu — cu, with A Lipschitz, almost-everywhere symmetric positive def-
inite (SPD), withb divergence-free, and with> 0. We first describe the problem class
and review some standard facts concerning conforming #hément discretization and
error-estimate-driven adaptive finite element method€M¥J: We then describe a goal-
oriented variation of standard AFEM (GOAFEM). Followingethecent work of Mom-
mer and Stevenson for symmetric problems, we establishaatitn of GOAFEM. We
also then show convergence in the sense of the goal funafiananalysis approach is
signficantly different from that of Mommer and Stevensormbining the recent con-
traction frameworks developed by Cascon et. al, by Noch8itbert, and Veeser, and
by Holst, Tsogtgerel, and Zhu. In the last part of the papepaorm a complexity
analysis, and establish quasi-optimal cardinality of GBM= We include an appendix
discussion of the duality estimate as we use it here in amtdééfionake the paper more
self-contained.
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1. INTRODUCTION

In this article we develop convergence theory for a classoal-griented adaptive
finite element methods for second order nonsymmetric lisfigatic equations. In par-
ticular, we report contraction and quasi-optimality résdibr a method of this type for
the problem

—V - (AVu)+b-Vu+cu=f, inQ, (1.1)
u=20, o0nos, (1.2)

with @ C R? a polyhedral domaind = 2 or 3, with A Lipschitz, almost-everywhere
(a.e.) symmetric positive definite (SPD), withdivergence-free, and with > 0. The
standard weak formulation of this problem reads: Rind H}(2) such that

a(u,v) = f(v), Vv € HL(R), (1.3)

where
a(u,v) = / AVu-Vv+b-Vuv + cuv dz, flv) = / fvdx. (1.4)
0 0

Our approach is to first describe the problem class in somaldand review some
standard facts concerning conforming finite element diszagon and error-estimate-
driven adaptive finite element methods (AFEM). We will theesdribe a goal-oriented
variation of standard AFEM (GOAFEM). Following the recenbrik of Mommer and
Stevensor [10] for symmetric problems, we establish cotitna of GOAFEM. We also
show convergence in the sense of the goal function. Our sisapproach is signficantly
different from that of Mommer and Stevensén|[10], combinihg recent contraction
frameworks of Cascon et. all[4], of Nochetto, Siebert, andsee [11], and of Holst,
Tsogtgerel, and Zhl[8]. We also give a complexity analyaisi establish quasi-optimal
cardinality of GOAFEM.

The goal-oriented problem concerns achieving a targeitguala given linear func-
tional g: HO(Q) - R of the weak solution, € H} () of the problem[(113). For ex-
ample,g(u fQ W Xwis the average value af over some domaiw C €2. By writing

down the adjomt operatot,*(z,v) = a(v, z), we consider thadjoint or dual problem:
find z € H}(Q) such that*(z,v) = g(v), forallv € H}(Q). It has been shown for the
symmetric form § = 0) of problem [1.1)-£(1]2) with piecewise constant SPD difias
cofficient A (and withc = 0), that by solving theprimal and dual problems simulta-
neously, one may converge to an approximatiog(af) faster than by approximating
theng(u), when forcing contraction in only the primal problem [10].eWtill follow
the same general approach in order to establish similargoaited AFEM results for
nonsymmetric problems. However, in order to handle nonsgtmmwe will follow the
technical approach in [9, 4] 8], and rely largely on est&ilig quasi-orthogonality. In
particilar, contraction results are established’in [9,ct](f.1)-{1.2) in the case that
is SPD, Lipschitz or piecewise Lipschitzjs divergence-free, and> 0. In [8], quasi-
orthogonality is used as the basis for establishing cotraof AFEM for two classes
of nonlinear problems. As in these earlier efforts, relyorgquasi-orthogonality will
require that we assume that the initial mesh is sufficientlg,fand that the solution to
the dual problem*(w, v) = g(v), g € Ly(Q) is sufficiently smooth, e.g. iff” ().

Following [8], the contraction argument developed in traper will foIIow from first
establishing three preliminary results for two successiF&EM approximations:; and
us, and then applying the Dorfler marking strategy:
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1) Quasi-orthogonality§3.1): There existd > 1 such that
e = uall® < Aflu — wi]|* = fluz — wi|I*.

2) Error estimator as upper bound on errg8.9): There exist§’; > 0 such that
lu = well* < Comic(un, To), k= 1,2.

3) Estimator reduction§B.4): ForM the marked set that takes refinem@&nt— 75,
for positive constants < 1 andA; and anyy > 0

(v, T2) < (L4 0){ni (o1, To) — Ani (v, M} + (1467 ) Aangfloz — val].

The marking strategy used is the original Dorfler stratetigments are marked for re-
finement based on indicators alone. The marked\dehust satisfy

Z ni(ulﬂT) > ‘92771%<uk7 776)

TeM
In the goal-oriented method, a second marked set is chosenl lwan an error indicator
for the dual problem associated with the given goal funeipand the union of the two
marked sets is then used for refinement.

A main advantage of the approach lin [4] is that it does notirecan interior node
property. This allows us to establish the necessary refultontraction without taking
full refinements of the mesh at each iteration. This improsenfollows from the use
of the local perturbation estimate or local Lipschitz pndpeather than the estimator
as lower bound on error. We use the standard lower bound astias found in_[9] for
optimality arguments in the second part of the paper comegiguasi-optimality of the
method.

There are three main notions of error used throughout thpempalhe energy error
llu. — ug||, the quasi-error and the total-error. Téreergy erroris defined by the symmet-
ric part of the bilinear form that arises from the given diffietial operator in[(1]3). The
guasi-erroris thel, sum of the energy-error and scaled error estimator

Qulur, T) = (lu — ugl|* + ) 2,

and this is the quantity that is reduced at each iteratioh@atgorithm. In§3 the quasi-
error is shown to satisfy

e = wisa I + 0740 < @2 (Ju — wel® +9m) , @ < 1.
Thetotal error includes the oscillation term rather than the estimator
Ey(ur, T) = ([lu — u|® + 0s¢) /2.

The oscillation term captures the higher-frequency aaodhs in the residual missed by
the averaging of the finite element method. While the quasieas the focus of the
contraction arguments, it is the total error that will betical to complexity analysis.
Therefore, we will need to establish various preliminautes for both types of error.

The quasi-optimality of the goal oriented methodi#is developed with respect to
the total error which is shown to satisfy Cea’s lemma. Thelioatity result

Co

1/2s
#Tw — #To < 5(0) {Mp <1 + %) Qi (ur, Tr)

1/2t
My (1 + %) Q,;”%zm;)}
2
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bounds the growth of the adaptive mesh with respect to thsi-gueor of both problems.
An equivalence between the quasi-error and total errorté&béshed inj4.

A final brief comment is in order concerning the notation usece compared to that
in [4] and the related literature. Inl[4], the number of timegch marked element is
refined is denoted. In this article, each marked element is refined once. Theseh
will be reserved for the convection term in the nonsymmaedrablem. The constard
will denote a generic but global constant that may dependherata and the condition
of the initial mesHh7,, and may change from step to step.

Outline of the paper. The remainder of the paper is structured as followsy2anwe
first describe the problem class and review some standaisldancerning conforming
finite element discretization and error-estimate-drivdapdive finite element methods
(AFEM). In §2.3, we then describe a goal-oriented variation of the stahdpproach to
AFEM (GOAFEM). Following the recent work of Mommer and Stagen for symmet-
ric problems, ing3 we establish contraction of goal-oriented AFEM. We alsmtehow
convergence inf3.6 in the sense of the goal function. Our analysis approgsignfi-
cantly different, combining the recent contraction fraroexg developed by Cascon et.
al [4], Nochetto, Siebert, and Veeser[11], and by Holst,gigerel, and Zhu [8]. 14,
we consider complexity questions, and establish quasimaptardinality of GOAFEM.
We recap the results B, and point out some remaining open problems.

2. PROBLEM CLASS, DISCRETIZATION, GOAL-ORIENTED AFEM

2.1. Praoblem class, weak formulation, spaces and norms. Consider the nonsymmet-
ric problem [1.8), where as ih.(1.4) we have

a(u,v) = (AVu, Vu) 4+ (b - Vu,v) + (cu, v).

Here we have introduced the notation-) for the L, inner-product ovef2? ¢ R?. The
adjoint or dual problem is: Find € H} () such that

a*(z,v) = g(v) forallv € H () (2.1)

wherea*(-, -) is the formal adjoint ofa( -, - ), and where the functional is defined
through

o) = [ gquds (2.2)
Q
for some givery € L,(£2). We will make the following assumptions on the data:

Assumption 2.1 (Problem data) The problem datd) = (A, b, ¢, f) and dual problem
dataD* = (A, —b, c, g) satisfy

1) A:Q — R4 Lipschitz, and a.e. symmetric positive-definite:
ess inf, .o Amin(A(z)) = po > 0, (2.3)
€SS SURcqAmad A(x)) = 11 < o0. (2.4)

2) b: Q — R4, withb, € L.(Q), andb divergence-free.
3) c: Q= R,withc € L (Q2), andc(x) > 0forall z € Q.
4) fvg € L2(Q)

The native norm is the Sobolé¥!' norm given by
]2 = (Vv, Vo) + (v, v). (2.5)
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The L, norm of a vector valued functiomover domainv is defined here as thg norm
of the L, (w) norm of each component

1/2

d 2/p
ol = (Z (/) ) =12
Jj=1 w
d o\ 1/2
0] L) = (Z (ess sumj) ) . (2.6)
j=1 @

Similarly, the L, norm of a matrix valued function/ over domainw is defined as the
Frobenius norm of thé,,(w) norm of each component

d 2/p 1/2
||M||Lp(w)=<z</M£») ) , p=1,2,...

i,j=1
d 2 1/2

1M L) = (Z (ess surMij) ) . 2.7)
ij=1 w

We note that one could employ other equivalent disdrgt®rms in the definitions$ (2.6)
and [2.7), however this choice simplifies the analysis.

Continuity ofa( -, - ) follows from the Holder inequality, and bounding the norm
of the function and its gradient by thi&' norm

a(u,v) < (p1 + [0l Lo + llello) Null vl = Mellull o [Jo] a1 (2.8)

Coercivity follows from the Poincaré inequality with caastCy, and the divergence-free
condition

a(v,v) > polvlin > Copollv[l7n = mg|v]F, (2.9)

where the coercivity constant? := Cqu,. Continuity and coercivity imply existence
and uniqueness of the solution by the Lax-Milgram Theoren The adjoint operator
a*(, )is given by

a*(v,u) = a(u,v), u,v € Hy(S2).
Integration by parts on the convection term and the divargdree condition imply
a*(z,v) = (AVz,Vv) — (b- Vz,0v) + (cz,v). (2.10)
Define the energy semi-norm by
Ioll? = a(v,v). (2.11)
Non-negativity follows directly from the coercivity estate [2.9)
I > m o]l (2.12)

llv

which establishes the energy semi-norm as a norm. Puttisigpidpether with the reverse
inequality

ol < m|Volz, + llellallvliz, = ol < Mellvllm, (2.13)
establishes the equivalence between the native and enemgng mvith the constant/s =
(1 + [lell.)'2.
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2.2. Finiteelement approximation. We employ a standard conforming piecewise poly-
nomial finite element approximation below.

Assumption 2.2 (Finite element mesh)We make the following assumptions on the un-
derlying simplex mesh:

1) The initial meslty, is conforming.
2) The mesh is refined by newest vertex bise¢f8hr10] at each iteration.
3) The initial mesHy, is sufficiently fine. In particular, it satisfiels (8.6).

Based on assumptiohs 2.2 we have the following mesh cosstant
1) Define
hy =maxhy, wherehy = |T|"<. (2.14)
TeT

In particular,hy is the initial mesh diameter.
2) Define the mesh constant = 2+, where

ho .
and h,,;, = min hy
hmin TeTo

Tr =

then for any two elements, 7' in the same generation
hT < ’}/rhT

and as neighboring elements may differ by at most one geaerfir any two
neighboring elements and7”

hy < 2v.hpr = yNhy (2.15)

3) The minimal angle condition satisfied by newest vertegdtisn implies the mesh-
sizehr is comparable ta.,, the size of any true-hyperfaeeof T'. In particular,
there is a constant

h
—Z <A*forall T. (2.16)
hr
Let T the set of conforming meshes derived from the initial mgshDefineTy C T
by
Ty ={T €T | #T — #T; < N}.

For a conforming mesff; with a conforming refinemerit; we say7; > 7;. The set of
refined elements is given by

Rise =Rr_pn =T\ (T2NTL). (2.17)

An overlayof two mesheg; > 7T, and7, > 7, where7, is not generally a refinement
of 77 is given by

Ti® Tz :={T € Ti|T C T forsomel” € T,} U{T € T5|T C T' for someI" € T;}

(2.18)
and is itself conforming. Define the finite element space
Vr=Hy(Q)n [[ Pu(T) andVy =V, (2.19)
TeT
For subsets) C 7T,
Vr(w) = Hy(Q) N [ Pu(D), (2.20)

Tew



GOAFEM FOR NONSYMMETRIC PROBLEMS 7

wherelP,, (T') is the space of polynomials degree degrerer?’. Denote the patch about
TeT

wr =TU{T" €T | TNT is atrue-hyperface cf'}. (2.21)
For ad-simplexT’, an true-hyperface is@— 1 dimensional face df’, e.g., a face in 3D
or an edge in 2D. Define the discrete primal problem: kipd V; such that

a(ug, vi) = f(vg), v € Vi, (2.22)
and the discrete dual problem
a*(zx, k) = g(vg), v, € Vy. (2.23)

2.3. Goal oriented AFEM (GOAFEM). As in [10] the goal oriented adaptive finite
element method (GOAFEM) is based on the standard AFEM dlguri

SOLVE — ESTIMATE — MARK — REFINE.

In the goal oriented method, one enforces contraction aftiasi-error in both the primal
problem and an associated dual problem. As shown in seg3i@nthe error in the goal-
function satisfies the bound

19(u) = glur)| = la(u —ur, 2 = 2¢)| < 2flu —wellllz = 2]l

This motivates driving down the energy-error in both thenmaii and dual problems at
each iteration. As noted inl[4] the residual-based erramedor does not exhibit mono-
tone behavior in general, although it is monotone non-emireg with respect to nested
mesh refinement when applied to the same (coarse) functioa.qliasi-error is shown
to contract for each problem for which mesh refinement satighe Dorfler property.
However, refining the mesh with respect to the primal probtkras not guarantee the
qguasi-error in the dual problem will be non-increasing, ammk-versa. As such, the
procedures SOLVE and ESTIMATE are performed for each of timegd and dual prob-
lems. The marked set is taken to be the union of marked setsthre primal and dual
problems, each chosen to satisfy the Dorfler property. m@thod produces a sequence
of refinements for which both the error in the primal and duwabfems contract at each
step.

Procedure SOLVE. The contraction result supposes the exact Galerkin solusio
found on each mesh refinement. In practice a linear-timatiter method is employed
so that the Galerkin solution is found up to a given tolerance

Procedure ESTIMATE. The estimation of the error on each element is determined
by a standard residual-based estimator. The residualseterent interiors and jump-
residuals over the boundaries are based oraite strong formf the elliptic operator
and its adjoint as follows.

L(v)=V-(AVv)—=b-Vv—cv; L(v)=V-(AVv)+b-Vv—cv. (2.24)
Theresidualsfor the primal and dual problems using the sign conventiddjiare:
R(v) = f+L(v); R'(v)=g+L(v), veE V. (2.25)
While the primal and dual solutionsandz of (1.3) and[(2.11) respectively satisfy
f(2) = alu, 2) = a*(z,u) = g(u)

the residuals for the primal and dual problems are in genkffalent. Thgump residual
for the primal and dual problems is

Jr(v) = [[AVv] - n]or (2.26)
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wherejump operator| - | is given by
[6or = lim é(x + tn) — d(z — tn) (2.27)

andn is taken to be the appropriate outward normal defined piesseano7’. On bound-
ary edgew, we have

[[AVY] - 0], =0
so that[[AVv] - n]ar = [[AV] - n]arnq. For clarity, we will also employ the notation
Rr(v) = R(v)|,., v € Vr,
and similarly for the other strong form operators. The emdicator is given as
(0, T) = R | RO 0y + 21T (0 oy, v €V (2.28)
The dual error-indicator is then given by
Crw,T) = Wyl R () iy + 1T (@) oy w0 € Vi (2.29)

The error estimators are given by thesum of error indicators over elements in the space
wherep = 1 or 2.

=Y 9 T), veVr (2.30)
TeT
The dual energy estimator is:
=Y Fw), weVr (2.31)
TeT

The contraction results for the quasi-error presentedvb&dl be shown to hold for
p = 1,2 where the error estimator and oscillation are defined indevfithel, norm.
While complexity results are shown only fpr= 2, the contraction results for= 1 are
useful for nonlinear problems; see [8].

For analyzing oscillation, for € V. let I12, the orthogonal projector defined by the
bestL, approximation ir?,, over mesty" andP? = I —I12,. Define now the oscillation
on the element¥’ € 7 for the primal problem by

0s¢r (v, T) = hr|| Py, o R(V) | or) (2.32)
and analogously for the dual problem. For subsefs 7 set
0s¢(v,w) =Y 0s¢(v,T). (2.33)
Tew

The data estimator and data oscillation, identical for béhprimal and dual problems,
are given by

WD, T) = b (HdivAHiw(T + R IANE oy + Nl + ||bH”m(T)>, (2.34)
0s¢.(D,T) = hg(n  divAIZ g+ B IPEAIR o
FRENPE el oy + 1 PSsaclly oy + P00 oy ) (2.35)

The data estimator and oscillation over the m&sbr a subsev C 7 are given by the
maximum data estimator (oscillation) over elements in tlesimor subset: Fos C T

nr(D,w) = max nr(D,T)and 0sg(D,w) = max oscr (D, T).
cw Ew

The data estimator and data oscillation on the initial mesh
no = N7, (D, 7o), and o0sg := 0scr (D, To).



GOAFEM FOR NONSYMMETRIC PROBLEMS 9

As the grid is refined, the data estimator and data oscilagoms satisfy the monotonic-
ity property [4] for refinement§; > T;

(D, T2) <m(D,Ti) and osg(D,T;) < 0sa(D, Th). (2.36)

Procedure MARK. The Dorfler marking strategy for the goal-oriented problism
based on the following steps aslin[10]:

1) Givend € (0, 1), mark sets for each of the primal and dual problems:
e Mark a setM,, C 7; such that,

> ni(u, T) > 6°n}(ur, Tr) (2.37)
TEM,
e Mark a setM, C 7. such that,
> Gl T) = Gz, Th) (2.38)
TeMy
2) Let M = M, U M, the union of sets found for the primal and dual problems

respectively.

The setM differs from that in [10], where the set of lesser cardiryalietween
M, and M, is used. In the case of the nonsymmetric problem the erroacestiat each
iteration is the quasi-error rather than the energy erram #se symmetric problem [10].
This error for each problem is guaranteed to contract basdtie refinement satisfy-
ing the Dorfler property. As such, refining the mesh with eztgo one problem does
not guarantee the quasi-error in the other problem is noeasing. Sets\,, and M,
with optimal cardinality (up to a factor of 2) can be chosetinear time by binning the
elements rather than performing a full sért/[10].

Procedure REFINE. The refinement (including the completion) is performed ad€o
ing to newest vertex bisection [2]. The complexity and ottreperties of this procedure
are now well-understood, and will simply be exploited here.

3. CONTRACTION AND CONVERGENCE THEOREMS

The key elements of the main contraction argument constubtlow are quasi-
orthogonality 3.1, error estimator as upper-bound on gAapaym errof 3.2 and estimator
reductior 3.4. Estimator-reduction is shown via the Iquaiturbation estimafe 3.3. The
local perturbation of the oscillation is presented here asetl in§4. Mesh refinements
71 and7; (respectivelyT;) are assumed conforming, angis assumed the Galerkin so-
lution on refinemenT;. The following results hold for both the primal and dual deshs
which differ by the sign of the convection term; therefotreyt are established here only
for the primal problem.

3.1. Quasi-orthogonality. Orthogonality in the energy-nortiu — usl|? = |Ju — uq[|2—
llus — u1]|*> does not generally hold in the nonsymmetric problem. We heenteaker
quasi-orthogonality result to establish contraction oEMF(GOAFEM). The following
is a variation on Lemma 2.1 in/[9] (see al§o0 [8]).

Lemma 3.1 (Quasi-orthogonality)Let the problem data satisfy Assumption 2.1 and the
mesh satisfy conditions (1) and (2) of Assumgiioh 2.2.7Lef, € T with 7, > T;. Let

uy € Vy, the solutiontd2.22) k = 1, 2. There exists a constat, > 0 depending on the
problem dataD and initial mesHh7,, and a numbef < s < 1 dictated only by the angles
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of 59, such that if the meshsizg of the initial mesh satisfie’ := C,A3[|b]| . g /> < 1,
then

= uall® < Aflu = wi[* = fluz — wi %, (3.1)
where
A= (1= OBl g )7
Equality holds (usual orthogonality) whén= 0 in €2, in which case the problem is
symmetric.

Proof. The proof follows close that of Lemma 2.1 in [9]. Let
€y ' =U—1Uy, € =1u—1u, ande; = uy— u.
By Galerkin orthogonality
ledl* = aler, ex) = lleall® + llerl” + aler. e2). (3.2)
Rearranging and applying the divergence-free conditiotherconvection term
le2l* = lleall” = lleall® — 2(0 - Veu, e2).

Applying Holder’s inequality and coercivity (2.9 | i < M0—1/2 lle1 || followed by Young’s

inequality with constand to be determined,

bl 1
=l (3.3)

By a duality argument for som€, > 0 assuming: € H!™(Q) for some0 < s < 1
depending on the angles of2

—2(b- Ve, e2) < dleall, +

leallz, < Cihgllea]]. (3.4)
The details of this argument as described in the appef@iixay also be found in [1]

and [5]. Applying [3.4) and (313) t6 (3.2),

: 19117
(1= 0CZhg" ) u — uall* < flu — waI* — (1 - 5;0 lus — w2l (3.5)

Choose to equate coefficients

bII%.

OHo - Wi
then )
s —1/2\
bu =l < (1= 0l Cotiag ™)l = wal® = flus = wall®.

Assuming the initial mesh as characterizediysatisfies

A = |[b]| 1o Cuhigug < 1, (3.6)
the quasi-orthogonality result holds. O
Note that by[(3.R) we also have
el = ledl® = flezll* = 2(b - Vea, e1). (3.7)
Similarly to (3.3)
I2[]Z

—2(b- Ves,e1) > =2|(b- Vey, e1)| > —dllea[l, — — == [leal, (3.8)

dpo
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which under the same assumptions yields the estimate
s = will* > (1 4+ A) " lu = wa ) = flu — s, (3.9)
whereA <1 = (1+A)"!>1/2.

3.2. Error estimator asglobal upper-bound. We now recall the property that the error
estimator is a global upper bound on the error. The proofiilyfstandard; see e.d. [10]
(Proposition 4.1)/[9] (3.6), and[8].

Lemma 3.2 (Error estimator as global upper-boundet the problem data satisfy As-
sumptiori 211 and the mesh satisfy conditions (1) and (2) sdiAptiod 2.P. Lef;, 75 €
T with 73 > 7;. Letu,, € V,, the solution ta2.22) & = 1,2 andu the solution ta(1.3).
Let

G=G(TT)={T CT|TNT # 0 forsomel € T;,T ¢ T>}.

Then for global constan®’; depending on the problem dafaand initial mesh7,
llue — ui]] < Crmu(us, G) (3.10)

and in particular
lw —wifl < Cimi(u, To). (3.11)

3.3. Local perturbation. The local perturbation property established in [4], analeg
to the local Lipshitz property i [8], is a key step in estabing the contraction result.
This is a minor variation on Proposition 3.3 [0 [4] which dealith a symmetric prob-
lem. Here, we include a convection term in the estimate. hiqudar, (3.12) shows
that the difference in the error indicators over an elem@ietween two functions in
a given finite element space may be bounded by a fixed factdreohative norm over
the patchwr of the difference in functions. In contrast with the analogoesult in([4]
the estimate (3.13) involves a fixed factor of the native nower an individual element
rather than a patch as by the continuity 4ofthe oscillation term does not involve the
jump residual.

We include the proof of(3.12) for completeness. The proaf20f3) may be found
in [4] with the final result inferred by the absence of the jurepidual in the oscillation
term.

Lemma 3.3 (Local perturbation) Let the problem data satisfy Assumption/ 2.1 and the
mesh satisfy condition (1) of Assumption 2.2. Tet T. For all T € T and for any
v,w € Vo

W (0, T) < (w, T) + M (D, T [0 = w] 1o (3.12)
0s¢r (v, T') < oscr(w, T) 4+ Ar0scr (D, T)||v — wl| g (3.13)

where recalling(2.21)wy is the union off” with elements ify” sharing a true-hyperface
with T'. The constantd, A, > 0 depend on the initial mesh, the dimensior and the
polynomial degree..

Proof of (3.12) From (2.28)
(0, T) = R | ROy + 21T (0 oy, v €V (314)
Denoten (v, T) by n(v,T). Sete = v — w. By linearity
Rv)=Rw+e)=f+L(w+e)=f+L(w)+ L(e) = R(w) + L(e)
and
J(v) = J(w+e)=J(w)+ J(e).
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Forp = 1 by the triangle inequality
n(v, T) = he|| R(w) + £(e)| o) + he [T (w) + T(€) | aom)
< n(w, T) + hr | £(€)l|acry + hi* T (€)]| agor)-
Forp = 2 using the generalized triangle-inequality
V(@+b2+ (c+d?<Va>+c2+b+d, fora,bec,d>0 (3.15)

we have
n(v, T) = (h7||R(w) + L(e)||7,y + brllJ (w) + J(e)Z,6m)
< n(w, T) + hel £(&) | oery + hil [T (€) | pacom)-

Consider the second term on the RAS|L(e)||.,(r). By definition [2.24) ofL( - ), the
product rule applied to the diffusion term and the trianiglequality

1L(e)|| Loy < |divA - Ve[ oy + |A 2 D2l oy + llcellLoer) + 110 Vel Ly
whereD?¢ is the Hessian of. Consider each term. The first diffusion term
[divA - Ve[, < |[divA| L. IVell Ly (3.16)

1/2

by the inequality
[0 2l o) < [Vllwn|2llar), v € Loo(T), 2 € La(T). (3.17)
Applying (3.17) and inverse-estimate [3] to the secondudiffn term
1A D]l roer) < Al 1Dl Lacr)

< C'IhEl||AHLO<,(T)||V€||L2(T)- (3.18)
For the reaction term
leell Loy < llellwm el Lo@)- (3.19)
For the convection term applying (3117)
16 Vel L,y < [[blle|| Vel Ly (3.20)

Consider the the jump-residual tetfvi(e)||.,or). For each interior true-hyperface=
TNnT, T, T € T by 227)

Je)|, = tl_i)rgi(AVe)(x +tng) — tl_i)r(E(AVe)(x —tng)
=n, - (AVe)|, —n, - (AVe) (3.21)

where(AVe) }T is understood to refer to the product of the limiting valueddfe as the
element boundary is approached from the interiof' 0By the triangle-inequality

1 (@) lza(0) < 116 - (AVE)| pllLato) + 176 - (AVE) |, [l 20 -
By bounds for the inner-product with a unit normal and a matgctor product
16 nllLo() < 10l Lo, @ € La(o), (3.22)
1MoLyt < IM | Lo |0llLairy, M € Loo(T), ¢ € Lo(T) (3.23)

T/

obtain
176 - (AVe)| I ra0) < 1(AVE)| pllra0) < NA|pl i) Ve pll a0 (3.24)
Applying the trace theorem and an inverse inequalitN/W@\THLQ(U) via the inequality

16l Loy < Ch |10l Lairy, ¢ € La(T) (3.25)
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we have
Vel ol o) < Cr()* bz Vel o) (3.26)
By the Lipschitz property ofd
JA| |2 (0) = 1Al Loc(0) < N[l Loy (3.27)

By ([B.24), [3.26),[(3.27) and comparability of mesh diane({@.15)
17 ae) < 2C2(3)* 98 Az | All oo 1V aor-
Elementl” has at most + 1 interior true-hyperfaces yielding
17 atory < 2(d+1) Cr(N)* 8 *hz | All e or [ Vel Loy
= o | All o) 1Vel ator)-
Putting together the terms frofiand from the jump residual,
(v, T) < n(w,T) + hr (|divA[| o) + Crhz' [ Allpe )

el ity + 1Bl ) el + o> Catz I Allom el 1)

< n(w,T) + Cror nr(D,T)||lv — w| i )
whereCrop differs by a factor of for p = 1, 2. O
3.4. Estimator reduction. We now establish one of the three key results we need,

namely estimator reduction. This result is a minor variatid [4] Corollary 2.4 and
is stated here for completeness.

Theorem 3.4 (Estimator reduction)Let the problem data satisfy Assumptionl 2.1 and
the mesh satisfy conditions (1) and (2) of Assumgtioh 2.2.7L.e T, M C 7; and
T2 = REFINET;, M). Forp = 1 let

Ay = (d+2)*ATmz*  and A= (1-27"%) >0
and forp = 2 let
Ay i=(d+2)A2mz2 and A:=1-2"Y">0
with A, from[3.3 (Local Perturbation). Then for any € V; andv, € V, andd > 0
M3 (v2, T2) <(1+0) {mi (v1, 1) — A (v, M)} + (1407 ) Awrggfloz — wafl*. (3.28)

Proof. The proofs forp = 1 andp = 2 are similar. Fop = 1 it is necessary to sum over
elements before squaring and foe= 2 square first then sum over elements.
Proof for the case = 1. By the local Lipschitz property (3.12)

m2(v2, T) < ma(v1, T) + Ao (D, T)|Jv2 — 1 ]| 1. gwop - (3.29)

Summing over all elements € 7;, the sum of horms ovev; covers each element at
most(d + 2) times as each patehy is the union of element’ and the (up to}l + 1
elements sharing a true-hyperface withThen by the coercivity (2.12) ovér

12(v2, T3) < (01, Tz) + (d + 2)Ayme ™ 03 (D, To) [Jva — v . (3.30)
Squaring[(3.30) and applying Young's inequality with camgt to the cross-term,
M3 (v2, T2) < (L4 0)n3 (01, T2) + (1 +071)(d + 2)*Aimg*n3 (D, To) [l — v ||
= (L+0)n3(v1, o) + (L + 67 ) A3 (D, To) [l — v [|*. (3.31)
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For an elemeni’ € M marked for refinement, 16t = {1’ € T; \ T C T}. As
vy € V; has no discontinuities across element boundari€s in we have/(v;) = 0 on
true hyperfaces in the interior 6% 1.

Recall the element diametey = |T'|'/?. For an elemenri’ marked for refinement]”
must be a proper subsetﬁf in particular a product of at least one bisection so that

1
IT'| < = |T\ o TV < 21/d|T\1/d & hp < b (3.32)
Then
S oL T)< D bR laany + Y 21T )| zaoreom
T'¢Ta,r T'e7'2 T T'€Ta,r
<27y 3 (IR laa) + 272 02T )] ooy
T’E'TQ,T
< 2742 (| Ry + Ail* 10 2agom))
=272 (01, T). (3.33)
For an element” ¢ M, that is7” = T the indicator is reproduced
7’]2(’1}1, T/) = ’)71(1)1, T) (334)

Sum over alll’ € T, by estimates(3.33)[_(3.84) writing the sum of indicatorerahe
T \ M as the total estimator INess the ingicators over the refineisetn\M. Let the
refined seR .= {T' € 7 | T" C T for someT" € M} then

U1,7§ Zﬁz vy, T'

TeTs
= Z M2 (v, T +Z772 v, T
TeT2\R TeR
< mi(vi, Th) — m (v, M) + 2720 (vg, M)
= (v1, T1) — A (v, M) (3.35)

where\; = 1 — 27124 < 1, Squaring[(3.35)
15 (v1, Tz) < 73 (01, To) 4 A 73 (01, M) = 203 0 (v1, M)
= ni(v1, To) = Ani(vr, M) (3.36)
wherel = \? = (1 — 271/24)2, Applying (3.36) to[3.311) and applying monotonicity of
the data-estimator
15 (02, T2) < (14 0) (07 (v1, T1) — An (v, M)
+ (1467 AT (D, To)lve — v |l
The proof for the casg = 2 is similar and may be found inl[4]. O

3.5. Contraction of AFEM. We now establish the main contraction results. The con-
traction result 35 is a modification of [4] Theorem 4.1. Hereuse quasi-orthogonality
to establish contraction of each of the nonsymmetric probl&L.3) and[(2]1).

Theorem 3.5 (GOAFEM contraction) Let the problem data satisfy Assumption 2.1 and
the mesh satisfy Assumptionl2.2. kethe solution to(1.3). Letd < (0,1], and let
{Te, Vi, ux }r>0 be the sequence of meshes, finite element spaces and disxteiens
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produced by GOAFEM. Then there exist constants 0 and0 < « < 1, depending on
the initial mesh7, and marking parametet such that

bt — il + 1 < 02 (= well? +77) (3.37)

The analogous result holds for the dual problem with,, V., z; }x>0 the sequence of
meshes, finite element spaces and discrete solutions EddiycGOAFEM.

Proof. Denote
€ =U— Uk, €ry1=U—Upr1 and ep = uppr — Up.
Let
e = Me(ur, Te),  m(Mi) = mi(ur, My)  and  meg = Megr (Upgs, Trgr)-
By the result of Estimator Reductién 8.4, for any 0
Mer < (14 0) {mg = M (M)} + (1407 A el

Multiplying this inequality by positive constant (to be determined) and adding the
quasi-orthogonality estimaf, 1 [|> < Aflex||* — ||ex]|* obtain

lerall® +vmin < Mlexll® = llewll® + (1 +6) {n — Mni(Mi) }

+(1+ 07 ) Amg llexll”. (3.38)
Choosey to eliminate|c || the error between consecutive estimates by setting
Y1+ DA =1 <= 7= m — y(1+9) = %773 (3.39)
Applying (3.39) to[(3.3B) obtain
lewsil® + i < Allexl* +~(1+ O)ng — (1 + A (My).  (3.40)
By the Dorfler marking strategy? (M) > 6*n? so that
lewell® +ami < Allexll® + (L + d)ni — (1 + )\ n;. (3.41)

Split the last term by factors gf and(1 — /) for any 5 € (0, 1) to arrive at
lewsill® +vmicps < Allexll* + (1 + 0)mg — By(1+ )A0™n;
— (1= B)y(1 +0)A*n3. (3.42)

Applying the upper-bound estimate (3.1, ||> < Cin? to the term multiplied by3
then by [(3.3D)

By(1 4 §)\6?
lewnl? + 97 < Allenl? = 2L peug? 49014 01
— (1= B)y(1 + 6)A6*n; (3.43)
ING?
— Afles]? - 245 (1+ 82
lenl? = B gzl +(1-+ 9
— (1= B)y(1+ 0)\0*n; (3.44)
ING? 9 N 9
(=820 Y el 41 +8) (1 (- 06 - (3.45)
ClAlno

= 01(8, B)llexll® +va3(8, B)i (3.46)
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where
92
ﬁ@ﬁ%zA—BE%E%i Q2(6,8) = (146) (1— (1— BAP).  (3.47)

Choose) small enough so that

o? = max{a?, a3} < 1.

To ensure such aexists in light of the quasi-orthogonality constant- 1 observe
C1A1778

a? < 1whend > (A —1) DY

and
(1 —B)A0*

1—(1—p)A6?
so to obtain an interval of positive measure whemeay be found we require
ClAﬂ)S < (1- 5))‘92

BAG? 1—(1—p)A6?
placing a second constraint on the quasi-orthogonalitgizon

A0'8(1 - B)

CiAamg (1= (1= B)Ag?)
where0 < 5 < 1 andf < 1 may be chosen. In order to place bounds on the growth rate
of the mesh, we further requite< 6, given by [4.5) as discussed in sectiih OJ

a3 < lwhend < (1—(1- ﬁ))\ez)_l —1=

(A=1)

A<1+ (3.48)

Notice the choice of small enough to satisfy? < 1 is always possible, as each term
may be independently driven below unity by a sufficiently Brmalue of §, so long as
the quasi-orthogonality constantis sufficiently close to one. For a discussion on the
optimal contraction factor see Remark 4.3ih [4]; see alsadiscussion in [8].

3.6. Convergence of GOAFEM. We now derive a bound on error in the goal function.

Theorem 3.6 (GOAFEM functional convergencel et the problem data satisfy Assump-
tion[2.1 and the mesh satisfy Assumpfiioh 2.2 ulte solution td1.3)andz the solution

to (Z.1). Letd € (0,1], and let{ Ty, Vi, ux, zx } x>0 be the sequence of meshes, finite el-
ement spaces and discrete primal and dual solutions pratibgegGOAFEM. Lety, the
constanty from Theorem 315 applied to the primal probl¢fh22)and~, the constant
from Theorem 315 applied to the du@.23) Then for constant: < 1 as determined by
Theoreni-3)5

l9(u) — gux)] < 2 {a® (Ju = uoll® +pn2 (uo, o)) — i}

x Lo (I = 2ol + 7 (20, To)) — aGE}".
Proof. On the primal side for all, € V,,
a(u — ug, vg) = a(u, vy) — a(ug, vr) = f(vx) — f(vg) =0,
the primal Galerkin orthogonality property. On the dualesid(u) = a*(z,u) and
g(ug) = a*(z,uy, ) so that
9(u) — g(ur) = a"(z,u — uy)
= a(u — uy, 2)

=a(u—ug, 2z — 2x). (3.49)
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Define an inner-produet by the symmetric part af( -, -)
a(v,w) = (AVv, Vw) + (cv, w),
then
ol = a(v,v) = a(v,v),
and
a(v,w) = a(v,w)+ (b- Vv, w).

Then asy(+, -) is a symmetric bilinear form on Hilbert space; it is an innerdquct and it
induces a norm identical to the energy norm induced®by, - ). As such we may apply
the Cauchy-Schwarz inequality [6] toand we're left to handle the convection term.

a(u —ug, z — 2) = a(u —ug, 2 — 2x) + (b- V(u —uy), z — 2x)
<l —willlz = zell + €0 - V(w—wi), 2 = z). (3.50)

By Holder’s inequality followed by a duality estimate as§ on the dual error and
coercivity on the primal,

(b V(u—ug), 2 = 2z) < ||bll o Cohipig Nz = zillllu — ugl]- (3.51)
RecallingA = ||b|,_ C.hiug
a(u —ug, 2 — 2zi) < flu = wllllz = 21l + Allu = wellllz — 2] (3.52)

Under assumptioi (3.6)\ < 1) on the initial mesh and froni (3.49),

|g(uw) = g(ur)| = la(u — ur, 2 — 2)| < 2fu —wrll|z — 2. (3.53)
From[3.5 there is an < 1 such that for the primal problem with estimatgr
Il = i I < @ (lu = will® + 9mi) = Vonics (3.54)
and for the dual problem with estimatQr
Iz = 20l < 02 (I — 2l® +7aC2) — 7aC21- (3.55)
Iterating, we have froni (3.54) and (3155)
llw = will® + i < @ ([lu — uoll* + 7m5) (3.56)
Iz = 2ell? + 4G < o (12 = 20ll” +7465) - (3.57)
From (3.53),[(3.56) and (3.57) obtain the contraction ofeim quantity of interest
1/2
l9(u) = gu)| < 2 {a™ (Jlu — upll? + 3 (uo, o)) — ypmi } !
x {a? (12 = 20l + 763 (20, T6)) = 1a¢E}'"” (3.58)

or more simply
lg(w) = g(ue)| + pmi + vl < & (Jlu = woll® + vpmg (uo, To)
+llz = 20l + 4¢3 (20, To)) (3.59)
= a* Q3 (3.60)

with @, the quasi-error on the initial mesh.
O
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4. QUASI-OPTIMAL CARDINALITY OF GOAFEM

In this section we establish the quasi-optimality of GOAFEMe result ing4.3 fol-
lows from bounding the cardinality of the marked set for eatlhe primal and dual
problems at each iteration as shown in Lenima 4.9. This isegeliby assuming the
primal and dual solutions belong to appropriate approxmnatlasses as discussed in
§4.4, the optimality assumptions addresseddi?, and the supporting results below.
Under the optimality assumptions, the error-indicatorrag@per-bound on energy-error
as shown irf4.1 and a bound for the oscillation term as the mesh is refinethawn in
§4.2, a suitable reduction in global error between two comsee iterations implies the
respective refinement set satisfies the Dorfler property.atideess the effect of quasi-
orthogonality on the necessary reduction to achieve tisisltre

The estimator as global lower bound on total erroffdnl is used to relate the total-
error to the quasi-error if4.3, connecting the contraction property for the quasirerr
established iff3 to the quasi-optimality of the total error §4.3 which shows the total
error satisfies Céa’s Lemma.

4.1. Estimator as global lower bound and localized upper bound. We start with two
fairly standard results that will be needed in the compyeaitalysis. Theylobal lower
boundmay be found in[[9] Lemma 3.1 and a similar result(in/[10] Pr&ipon 4.3 and
Corollary 4.4. Thdocalized upper bount established iri [4] Lemma 3.6.

Lemma 4.1 (Global lower bound) Let the problem data satisfy Assumption 2.1 and the
mesh satisfy AssumptibnR.2. [/t 7, € T and7, > 7; a full refinement. Let,, € V,
the solution tq2.22) k£ = 1, 2. Then there is a global constant > 0 such that

e (ur, Ti) < Jlu — w]|* + 086G (us, ). (4.1)

Lemma 4.2 (Localized upper bound)_et the problem data satisfy Assumption/ 2.1 and
the mesh satisfy conditions (1) and (2) of Assumition 2.271L6; € T with 75 > 7;.
LetR = R, 7, the set of refined elements. Lete V, the solution tq2.22) & = 1, 2.
Then there is a global constaat, with

luz — wi [ < Cini(ur, R). (4.2)

4.2. Optimality assumptions and optimal marking. In this section we consider the
assumptions on marking paramefieand the marking strategy which allow us to char-
acterize the growth of the adaptive mesh at each iteratitin n@spect to the total error
inf4.5.

We first consider oscillation on the refined mesh, followitasely [4], Corollary 3.5.

Lemma 4.3 (Oscillation on refined mesh)et the problem data satisfy Assumption 2.1
and the mesh satisfy condition (1) of Assumpiion 2.2.7Lef, € T with 7, > 7;. Let
Ay = A2m;? with A, from (3.I3) Then for ally; € V, andv, € V,

0sC(v1, T1 N T2) < 208G (va, Ti N T2) + 208G [|v1 — a7, (4.3)
whereosg = 0s¢, (D, Tq).
Proof. For all element§” in the intersectiod” € 7, N 75
0sG (v1,T) = 08G(vy, T).

Applying this, v; € V; C V, and os¢(D,T) < ose(D,T), j = 1,2, we have
from (3.13)

05G(v1,T) < 056G (va, T) + Ar08G|[v — w]|31 (-
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Squaring and applying Young’s inequality with= 1 yields
0sG (v1,T) < 208G(va, T) + 2A308G||v1 — vall71 (1. (4.4)

Summing over alll’ € 7; N 7T, and bounding the norm ov&; N 75 to the entire domain
to apply the coercivity estimate (2.9)

0sG (v1, Ti N Tz) < 20SG(ve, Ti N Tz) + 2A208G [|[u1 — va .
]

We now discuss some basic assumptions for complexity asalyke optimality as-
sumptions follow those found in[4] with modifications [n ¥ to account for the non-
symmetric problem, the continuity of and the goal-oriented method.

Assumption 4.4 (Optimality assumptions)Assume the following conditions.
1) The marking parametérsatisfies) € (0, 6,) with

(6)) .

0, = T G AT 2h,050)" with 0s¢ = 0s¢(D, Tp) (4.5)
and A given by(3.8). As the data oscillation given f2.35)is identical for the
primal and dual problems and the other constants dependamlyiobal data.
may be assumed the same for both the primal an dual problems.

2) A marked set\1,, of optimal cardinality (up to a factor of two) is selected
(see[10]).

3) The distribution of refinement edges @p satsifies condition (b) of section 4
in [12].

We now consider a basic result on optimal marking. This lenmsna variation of
Lemma 5.9 in[[4], modified to use quasi-orthogondlity 3. heathan Galerkin orthogo-
nality.

Lemma 4.5 (Optimal marking) Let the problem data satisfy Assumption/ 2.1 and the
mesh satisfy Assumptibn 2.2. LBt 7, € T. Letu, € V, the solution to(2.22)
k = 1,2. Let the marking parametersatisfy condition (1) of Assumptibn %.4.

Let7, > 7T, satisfy

lu — uz]l* + 0s¢ <

SIS

(I — w]* + os€) (4.6)
which implies

allu —usfl” + 086 < i (flu — w||* + 0s€) (4.7)
for u:=1(1-%)anda = (1+A), A € (0,1) given by@@.8)in the quasi-orthogonality
argument and where

0SG = 0SG (u1,71), 0SG = 0SG(ug,72), andn =n(u1,7Ti).
Then the seR = R,_ 7, satisfies the Drfler property
nl(ulv R) Z 9771(“17 71)

Proof. (See [4] Lemma 5.9). A8 < 2u < 1, multiply inequality [4.1) byl — 2 to
obtain
(1= 2p)ean? < flu — wi]* + 08¢ — 24 (Jlu — wf|® + 0sg) -
Applying (4.1)
(1 =2p)eant < flu — wi]* — allu — uo||* + 05G — 208G,
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Rearranging terms obtain
0SG — 208G > (1 — 2u)con; + allu — usfl” — flu — uaf|*. (4.8)
By the second quasi-orthogonality estimatel(3.9)
L+ M)u = wzl* = flu = wll® = = (1 + A)flur — uof|?
where0 < A < 1. Applying (4.2)

(L4 M)l = wol* = flu — wi * = = (1 + A)Cinf(ur, R). (4.9)
Combining (4.9) with[(4.8) obtain
0SG — 20SG > (1 —2u)coni — (14 A)C173 (uq, R). (4.10)

For refined elements € R use the dominance of the estimator over the oscillation
0sC (uy, T) < ni(uy, T).
For element§” € 71 N T, (4.3) yields
0SC (u1, T1 N Ta) — 208G (uz, T1 N T2) < 25086 |Jur — us|*.
Then
0SC (uy, T1) — 208G (ug, T2) < ni(ur, R) + 2A208G||us — ual)?.
Applying (4.2) to the last term
0SC (uy, T1) — 208G (ug, T2) < (1 + 201A508¢)n; (ur, R). (4.11)

Rearranging terms in (4.111) and applyiog (4.10)
(1= 2p)com; — (1 + A)Cui (uy, R)

(1+2C1A50s@) '

77%(“17 R) >

Combining like terms obtain

1 —2p)cy
2 R > ( - 2.
m(w, R) 2 1+Cl(1+A+2A2osc§)771

Applying the definitions of. andf, obtain the result
77%(“1773) > ‘9277%
O
Due to the use of quasi-orthogonality, the required assiomji.7) is stronger than
lu — uzll* +08G < g (Jlu — wf|* + 0sg)
the condition in[[4] for the symmetric problem, but it is alweaker than

1
llu = wall” + 08¢ < = (Jlu — wi||* + 0sQ)

wherea = 1 + A > 1, formally similar to the symmetric estimate. We may impdse t
stronger condition for ease of analysis, however in pradiiis says that the increase
in error-reduction we require of the finer mesh needs onlyetmom the energy-norm
error, not the oscillation.

We recall a standard result on the mesh overlap, see [4] LeBama

Lemma 4.6 (Overlay of meshes)Let the mesh satisfy condition (1) of Assumpiion 2.2.
Let7;,7; € T. Then the overlay = 7; & T3 is conforming and satisfies

#T < #Ti + #T2 — #To.
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4.3. Quasi-optimality of total errror. We show the total error satisfies Céa’s Lemma;
e.g. seel[4] Lemma 5.2. This version appropriate for the syanmetric problem relies
quasi-orthogonality 3|1 rather than Galerkin orthogdmgali

Theorem 4.7 (Quasi-optimality of total error)Let the problem data satisfy Assump-
tion[2.1 and the mesh satisfy Assumpfion 2.2. Thet T. Letwu the solution of(1.3)
andu, € V; the solution of(2.22) Then there is a constant, depending on the initial
mesh7, and the problem dat® such that

o — wil* + 08&(u1, To) < Cop inf (flu— ol +086(v, 7). (412)

Proof. Fore > 0 choosev. € V; with
lu = vel” + 0sG (v, T1) < (1 +¢) nf (lu = v|* + 0os¢(v, T1)) -

By (4.3) with7; = 7; obtain
0sG(vy, T1) < 20SC (v., T1) + 2A508G Jur — vo||*. (4.13)
By the same reasoning as (3.1) obtain
e = wdll® + lur = vel* < AfJu— v ||?

which implies

e = will® < Aflu — vel* andfjus — vo||* < Affw — v |*. (4.14)
From (4.138) and (4.14) obtain

lu = wl* +0sG(ur, Ti) < AfJu— v || + 208 (ve, i) + 2208 Juy — v.||?
< A (14 2A5086) [lu — v ||* + 208G (ve, Th).
SetCp == max{2, A (1 + 2A,0s¢)} then
lu — wl* +0sG(ur, Ti) < Cp (Jlu — ve||* + 056 (v2, Tr))
< Cp(1+¢) ui&;l (|||u —v||? + 0sé(v, 7])) )

Lettinge — 0 establishes the result. O

4.4. Approximation classes and approximation property. For problem with solution,
forcing function and datéu, f, D) and dual probleniz, g, D*), membership in an ap-
propriate approximation class says the solutiginespectively:) may be approximated
within a given tolerance by finite element approximation letthe cardinality of the
mesh required to achieve the tolerance satisfies|(4.18).

For N > 0 let Ty the set of conforming triangulations generated from thigaihinesh
To such that the increase in cardinality is at mast

Ty ={T € T |#T — #T, < N}.

For s > 0 define the standard approximation classes for solutionscas the energy
error

A= {oev | s e ing oo < (4.15)
N>0

TeTN v7reVr
and forL, data

A, = {g € Ly(Q) | sup(N°_inf [l — 29 2(9)) < OO} : (4.16)
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Define a measure of approximation based ortdte error

o(Niv,f.D) = inf inf_(Jlo—vrl? +0sG(ur. )

TeTN v7reVr
and denote the total error of- € V1 by

E,T) = (v —vrl® + 0sG(vr, 7))
and the approximation class based on the total erros fo10

A, = {(v,fyD) |0, £, Dl = sup(N*a(N; v, f, D)) < 00}- (4.17)

See[[4] Lemma 5.3 and Lemma 5.4 for a discussion on the relagtween the classes
A,, A, andA,. The results in this paper are developed with respect toltss &, based
on the total error.

Membership of the primal and dual solutions in the approxiomeclasses\, and A,
is applied via the use of the two properties discussed irstision.

D=

1/2

Lemma 4.8 (Approximation property) Let the mesh satisfy condition (1) of Assumption
[2.2. Letu the solution tof1.3). Assume: € A, ando(1;u, f, D) > 0. Then giverx > 0
there is a global constar® depending only on the initial me§fy and the problem data
D, a partition7: € T and av. € V. such that

Clu, f,Dls = (#7To — T=)% (4.18)
E(v.,T:) <e. (4.19)

Proof. By (4.17) and property of the supremum, for akiy> 0
lu, f, D|s > N*c(N;u, f, D) (4.20)

whereN = #7T — #7,. Givene > 0 consider allN > 0 such that(N;u, f, D) > . If
there is no suclv, let N, = 1. By (4.20)

lu, f,D|s > 01 = %5 whereo, .= o(1;u, f, D).
Applying the assumption(1;wu, f, D) > 0
i|u7 f7 D‘S Z €
01

establishing[(4.18) witl' = ¢/04. Also
o(L;u, f,D)= inf inf E(v,T)<e

TeT, UEVTl
so there isT. € T; andv. € V1. so thatE(v., 7.) < ¢ establishing[(4.19). Otherwise,
there isN > 0 with o(NV; u, f, D) > . As the infimum over the total error goes to zero
asN — oo this holds for finitely manyV so define

K :==max{N > 0| o(N;u, f,D) > e} (4.21)
By (4.20) and[(4.21)
lu, f, D], > K*c0(K;u, f,D) > K°. (4.22)
Let N, = 2.

lu, f,D|s > K°c¢ =27°Ne = Clu, f,D|s > N¢
with C' = 2° establishing[(4.18). By (4.21) and property of the infimurthWV, > K
o(Ngu, f; D)= inf inf E(v,7) < inf inf E(v,T) <e

TEeTN,. vEV, TGTNK veV,

€
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implying E(v., T:) < e for someT; € T. and av. € V1. establishing[(4.19). O

4.5. Cardinality of M, and quasi-optimality of the mesh. The results on the cardi-
nality of M, and quasi-optimality are variations an [4] Lemma 5.10 andofrem 5.11.
Here we address the goal-oriented method discussed|in 2.3.

Lemma 4.9 (Cardinality of M}). Let the problem data satisfy Assumptionl 2.1 and the
mesh satisfy Assumption 2.2. Assume conditions (1) and @sumption 414. Lei

the solution of(1.3) and = the solution of2.1). Let {7, Vi, ux, zx }x>0 the sequence
of meshes, finite element spaces and discrete primal andshlations produced by
GOAFEM. If(u, f, D) € A; and(z, g, D*) € A, we have

62 1/2 1/s~1/2s ;—1/s
ﬁ) ‘uu f7D|s C’D Ek; (uk777c>

*

#M,, < 2C {(1 + A)Y/% (1 -

92

- —1/2t
+(1+A)1/2t(1——) |z,g,D*tl/th%Ek_l/t(zk,ﬁ)} (4.23)

02

whereC), is the constant frord.12)and the total errors in the primal and dual problems
B3 (up, Tre) = [lu = ug|l* + 08 (ux, T)
Ei (2, Te) = |2 — 2ll” + 086 (21, T).

Proof. Seti = 1 <1 — Z—i) (14 A)~* with A given by [3.6).

e2 = iCp Ef (uy, Ty), ande == aCp' By (2, Tr).

As (u, f, D) € A,, by the properties in sectién 4.4 there ig,ac T and av, € V., such
that

#T, — #To < Clu, f, D|\/°e,"/* (4.24)
lu = v,[I* + 08E; (v, T,) < e (4.25)
Similarly for (z, g, D*) € A, there is &, € T and aw, € V7, such that
#T0 — #7T5 < Clz,g, D*))/'e V! (4.26)
Iz — wall* + 0S¢ (wa, Ta) < €. (4.27)

Let7; = Tx ® (7, ® Tz) as in Lemma4l6. Let, € V, the Galerkin solution td{2.22)
andz, € V, the respective solution t6 (2.23) . See there is a reductidhe total error
by a factor offi from w,, to uy (respectivelyz;, to z;). Since7; > 7, by Theoreni 47,
monotonicity of infimum over total error and (4]25)

Ju = usll® + 05G(uz, T5) < Cp inf (Jlu— ol + 05G(v72))
< Cpsf)
= fi (Jlu — wil|* + oSG (ux, Tr)) - (4.28)
Similarly for the dual problem
2 = 2l +08G(22. To) < i (|2 — =l* + 08¢ (24, T5)) . (4.29)

This satisfies the hypothes[s_(4.6) in each problem so appli2 the refining subset
R = Ry,-7, C Ti satisfies the Dorfler property for < .. The marking procedure
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selects a subset for markingt,, C 7, of minimal cardinality up to a factor of two so
that by Lemma4]6

H#My < 24#R < 2(#To — #Tk) < 2{(#Tp, — #To) + (#Ta— #To)}.  (4.30)
By (4.30), [4.24), the definition af, ande,, (4.28) and the definition qf
#M < 2{(#Tp, — #7To) + (#Ta — #7T0)}
<20 {Ju, f, DIV + |z, 9, D'} ', "}
~ 02 —1/2s ~
— 20 {(1 + A2 <1 - ﬁ) u, f, DIY*CH* B (uy, Th)

*

92

*

~ 02 —1/2t ~
+(14 A)V/2 <1 — _) 2,9, D/ CYP EY (21, TR).

O

Theorem 4.10 (Quasi-optimality) Let the problem data satisfy Assumption 2.1 and the
mesh satisfy AssumptibnR.2. Let Assumjption 4.4 be satisfie®AFEM. Let: the so-
lution of (1.3)and the solution of(2.1). Let{7x, Vi, u, 2 } x>0 the sequence of meshes,
finite element spaces and discrete primal and dual solufiwoduced by GOAFEM. Let
(u, f, D) € Agand(z, g, D*) € A;. Then

Co

1/2s
#n—#%SS@{M4}+%)cgmwmﬁ>

1/2t
44@@+?)Qﬂ%mm}
2

Proof. Let the total error in primal and dual problem& (uy, 7) and Ex(zx, 7x) as in
Lemmd4.9. Denote the quasi-error in each problem by

Qi (wr, Te) = [lu — will* + i (ur, ),

Qi (21, Tr) = llz = 21l + aGi (2, Tr)-
As shown in[[2] Theorem 2.4 there is a global constaptwhich satisfies

k-1

T —#To < Cp > #M; forallk>1
j=0

and by [4.2B)
92

—1/2s
ﬁ) ‘uu f7 D|i/SC£/2SEk_1/S(uk7 77@)

#M,, < 2C {(1 + A)Y/2 (1 -

- 02 —1/2t ~
(14 A <1 _ @) 2,9, D*; " CYP E (2, TR)

then we have
k-1 k-1

#HTe — #T0 < My Y Ey(ur, Te) ™" + Mg Y Ei(a, To) ™! (4.31)

J=0 J=0
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with the constants
92

—1/2s
S 1/2s
%) lwropecy

M, = 2C;C(1 + A)Y/? (1

- 02 —1/2t
M, = 2C;C(1 4 A)V/* (1 — @) |z, g, D" i/tCll)/zt.

From the domination of the error estimator over the osadlaand the lower bound on
total error [(4.1) we have the equivalence of the total-esirat quasi-error

llu = ul* + 708G (u;, T5) < lu = wsll® + mj (s, T5)

< (1+2) w7 (4.32)
2
or
L ~y 1/2s "
w14 2) 6 ) 4.33)
and similarly for the dual problem
1/2t
Ej—l/t(zjjﬁ) < (1 + Z_Z) Qj—l/t(zﬁ'ﬁ). (4.34)

By the contraction result on the quasi-erifor (3.37)fot j < k — 1
Qi (ur, To) < ®* Q3 (w;, Tj)  and Qi (2, i) < ®*Q3(2;, T)).  (4.35)
Putting together(4.31), (4.83) arid (4.35) obtain

k—1 k—1

#HTe — #To < My Y Eyp(un, Te) ™ + Mg Y Eg(z, Tr) ™!

j=0 7=0

1/2s
< {Mp (1 + %) Qr(ug, To)*

Cy
) ko
+M, (1 + C—d) Qr 2k, ﬁ)_l/t} Z all®
2 .
7j=1

where the geometric seriesdn< 1 is bounded by5 () = a/*(1 — a*/*)~. Then

1/2s
#T. — #To < S(0) {Mp <1 + Z—j) Qr(ug, Tr) "V
1/2t
+M, (1 + %) Qr(ug, E)_l/t}
2
’}/p 1/2s , -y
< 56) 1, (1+g) (It = wall? + 7,05€ (up, T0))

1/2t
—1/2
+ My (1 + %) (|||z —ug|* + vdosci(zk,’ﬁg)) / t} )
2

As seen in[(4.32) the total error and quasi-error are egeitalp to a constant so this
result may be viewed with respect to either the quasi- ot-&rtar. O
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5. CONCLUSION

In this article we developed convergence theory for a clagpal-oriented adaptive
finite element methods for second order nonsymmetric lisfigatic equations. In par-
ticular, we established contraction and quasi-optimaésults for a method of this type
for the elliptic problem[(1J1)£(112) withl Lipschitz, almost-everywhere (a.e.) symmet-
ric positive definite (SPD), witth divergence-free, and with > 0. We first described
the problem class in some detail, with a brief review of comiimg finite element dis-
cretization and error-estimate-driven adaptive finiterelat methods (AFEM). We then
described a goal-oriented variation of standard AFEM (GEW}. Following the recent
work of Mommer and Stevenson [10] for symmetric problems estblished contrac-
tion of GOAFEM. We also showed convergence in the sense afjdaéfunction. Our
analysis approach was signficantly different from that offvieer and Stevenson [10],
and involved the combination of the recent contraction tewrks of Cascon et. all[4],
Nochetto, Siebert, and Veeser [11], and of Holst, Tsogtganel Zhu [8]. We also did a
careful complexity analysis, and established quasi-agtoardinality of GOAFEM.

Problems that were not yet addressed include allowing fopjdiscontinuities in the
diffusion cofficient, and allowing for lower-order nonliaeterms. We will address both
of these aspects in a future work.

6. APPENDIX

Duality. We include an appendix discussion of the duality argumesd irsthe quasi-
orthogonality estimate in an effort to make the paper molfeceatained.

Let « the variational solution td (1.3) andy € V; the Galerkin solution td_(2.22).
Assume for any; € L,(Q2) the solutionw to the dual probleni(21) belongs &#?(Q2) N
H}(Q) and

[wlrz(e) < Krllgllza@)- (6.1)
Then
lu— w1, < Chollu — ui- (6.2)

If we H2.(Q) N Hi(Q) butw ¢ H?(Q2) due to the angles of a nonconvex polyhedral
domain{) thenw € H'** for some0 < s < 1 wheres depends on the angles of).
Assume in this case for anye L,

|w|H1+s(Q) < KRHgHLz(Q) (6-3)
then
lu— w2, < Chill — ], ©4

As discussed i [5][[6] and [1] the regularity assumptioresraasonable based on the
continuity of the diffusion coefficients;; and the convection and reaction coefficieits
andcin L ().

Proof of (6.2). The proof follows the duality arguments in [1] and [3].

Letw € H}(Q) the solution to the dual problem

a*(w,v) = (u—uy,v), v€ HIQ). (6.5)

Let Z" a global interpolator based on refinemént AssumeZw is C° and the
corresponding shape functions have approximation orddform = 2

|w — Z"w]| g < Czhys |w|pge. (6.6)

As discussed i [1] the interpolation estimate over refeeeglement” follows from
the Bramble-Hilbert lemma applied to the bounded lineacfiomal f () = (4 —Z", 0)
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wherei € H'(T) is arbitrary then set té — Z". The Sobolev semi-norms for= 0, 1
over elementd’ € 7 are bounded via change of variables to the reference element
Summing ovefl’ € 7 and combining semi-norms into a norm estimate establighé} (

By (6.1) we have the bound

|w| gz < Kg|lu — uy||L,- (6.7)

By the identitya(v, y) = a*(y, v) write the primal form of the variational problems

a(u,v) = f(v), ve HI Q) (6.8)
a(uy,v) = f(v), veV; (6.9)
a(v,w) = (u —uy,v), v Hy(Q). (6.10)
Takingv = v — u; € H} in (6.10)
a(u —up,w) = (u—u,u—wu) = |lu—wul],. (6.11)
Combining [(6.8) and (619) we have the Galerkin orthogonadisult
a(u—u,v) =0, veV. (6.12)

Then by [6.111) and (6.12) noting the interpolant of the doaition Z"w ¢ V,
lu — w7, = alu —ur,w) = alu — u,w — T"w). (6.13)
Starting with [6.18) and applying continuity (2.8), intefation estimate[(616) and
elliptic regularity (6.7)
lu = w7, < Mcllu—wilmllw - Z"w] m
< Mo llu — w1 Ch o] o
< KpM.Crhol||lu — uq || g ||u — uql| 1, -
Canceling one factor dfu — u:||, and applying coercivity (2]9)
M.
me

Depending on the regularity of the boundai§ the solutionw may have less regu-
larity: w € Higyq, butw ¢ H?(Q). In particular, we may haver € H'** for some
s € (0,1). In that case obtain the more general estimate

lu =i, £ —CzKghollu — ui- (6.14)

lw = Twll < Cohglewlss

yielding
M, -~ s
CrEghillu — w |-
me
The value ofs is found by considering all corners of bounda¥Xy. Writing the interior
angle at each corner by = 7/« it holds fora > 0 and arbitrary: > 0

lu = |, <

w=m/a = we HT"®
andifr/(p; +1) <w < 7w/p, for a set of integerp; characterizing the corners of2
lw =Tl < OB w1y

wheres = min{p,, 1} ands = 1 in the case of a smooth boundary or a convex polyhedral
domain. Details may be found in/[1] and [13].
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