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FINITE ELEMENT EXTERIOR CALCULUS FOR EVOLUTION PROBLEMS

ONOoOhwNE

ANDREW GILLETTE AND MICHAEL HOLST

ABSTRACT. Arnold, Falk, and WintherBull. Amer. Math. Soc47 (2010), 281-354]
recently showed that mixed variational problems, and thaimerical approximation
by mixed methods, could be most completely understood usieagdeas and tools of
Hilbert complexes This led to the development of the Finite Element Exteriai-C
culus (FEEC) for a large class of linear elliptic problems.orl recently, Holst and
Stern [arXiv:1005.4455,arXiv:1010.6127] extended th&EEramework to semi-linear
problems, and to problems containingriational crimes allowing for the analysis and
numerical approximation of linear and nonlinear geomaettiiptic partial differential
equations on Riemannian manifolds of arbitrary spatialetision, generalizing surface
finite element approximation theory. In this article, we elep another distinct exten-
sion to the FEEC, namely to parabolic and hyperbolic evotuiystems, allowing for
the treatment of geometric and other evolution problems.approach is to combine the
recent work on the FEEC for elliptic problems with a claskag@proach to solving evo-
lution problems via semi-discrete finite element methogsyibwing solutions to the
evolution problem as lying in time-parameterized Hilbgrases (oBochnerspaces).
Building on classical approaches by Thomée for parabobblems and Geveci for hy-
perbolic problems, we establishpriori error estimates for Galerkin FEM approxima-
tion in the natural parametrized Hilbert space norms. Iti@aar, we recover the results
of Thomée and Geveci for two-dimensional domains and loweder mixed methods
as special cases, effectively extending their resultshirary spatial dimension and to
an entire family of mixed methods. We also show how the Haisk &tern framework
allows for extensions of these results to certain semalim®olution problems.
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1. INTRODUCTION

More than two decades of research on linear mixed varidtipredlems, and their
numerical approximation by mixed methods, recently cuated in the seminal work
of Arnold, Falk, and Winther Arnold, Falk, and Winthér [3].h&y showed that these
problems could be most completely understood using thesided tools oHilbert com-
plexes leading to the development of the Finite Element ExterialcGlus (FEEC) for
elliptic problems. In two related articles [17,/18], HolsidaStern extended the Arnold—
Falk—Winther framework to includeariational crimes allowing for the analysis and
numerical approximation of linear and nonlinear geomegtiiptic partial differential
equations on Riemannian manifolds of arbitrary spatialetision, generalizing the ex-
isting surface finite element approximation theory in saldirections. In the current
article, we extend the FEEC in another direction, namelyampolic and hyperbolic
evolution systems. Our approach is to combine the recerk wothe FEEC for elliptic
problems with a classical approach to solving evolutiorbfgms using semi-discrete
finite element methods, by viewing solutions to the evolufiooblem as lying in time-
parameterized Banach (Bochne) spaces. Building on classical approaches by Thomée
for parabolic problems and Geveci for hyperbolic problems,establista priori error
estimates for Galerkin FEM approximation in the naturauratparametrized Hilbert
space norms. In particular, we recover the results of Tleoaréd Geveci for two-
dimensional domains and the lowest-order mixed method gecia case, effectively
extending their results to arbitrary spatial dimension smdn entire family of mixed
methods. We also show how the Holst and Stern framework alfowextensions of
these results to certain semi-linear evolution problems.

To understand why the finite element exterior calculus (FEES emerged in a natu-
ral way to become a major mathematical tool in the developmienumerical methods
for PDE, we recall one of the many examples presented atHandB]. Consider the
vector Laplacian:

—Au = — grad divu + curl curlu,

and a natural variational formulation: Finde H (curl; ) N Hy(div; 2) s.t.

/[(V-u)(V-v)+(qu)-(va)]dx = / f-vdx, Yv € H(curl; Q)NHy(div; Q). (1.1)
Q Q

A mixedformulation is a natural alternative: Fijd, u) € H*(Q2) x H(curl; Q) s.t.

/(UT—U-VT) dr =0, V1€ HY(Q), (1.2)
0

/[VU-U—F(VXu)~(V><v)]dx:/f-vdx, Vo € H(curl; Q). (1.3)
Q Q

Using the standard finite element approach based on the n@drformulation [(1.11)
can yield incorrect results if the domain has certain geamétatures (e.g. domains
with corners) or topological features (e.g. non-simplyroected domains). A standard
finite element approach based on the mixed formulafion {{L3), on the other hand,
suffers neither of these difficulties and typically worksrerely well.

The explanation for why one approach fails and the otheremdx lies in the fun-
damental mathematical structures underlying the finitemetg method. The error due
to geometric features can be traced to a problenmadnsistencyi.e. that the discrete
approximation of the operators and data do not approxirhatedntinuous problem cor-
rectly as the mesh size is taken to zero. The error due todgmall features can be traced
to the presence of non-zelnarmonic vector fielden the domain, i.e. vector fields which
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are both curl-free and divergence-free. The mixed fornmutaturns out to be both con-
sistent and respectful of non-zero harmonic vector fieldéevthe standard formulation
does not. A natural question is then: What is an appropriatthematical framework
for understanding these problems abstractly so that a metaonstruction of “good”

finite element methods can be carried out for these and siRID& problems?

The answer turns out to bidilbert Complexes Hilbert complexes were originally
studied in[[8] as a way to generalize certain propertieslgftel complexes, particularly
the Hodge decomposition and other aspects of Hodge thedrjlb&rt complex(W, d)
consists of a sequence of Hilbert spatg§, along with closed, densely-defined linear
mapsd”: V¥ c Wk — V1 c W+ possibly unbounded, such th#dto d*~! = 0 for
eachk.

k—1 k
AU ¢ 5 D 72 UL v 2

This Hilbert complex is said to bleoundedif d* is a bounded linear map fromv’* to
W+l for eachk, i.e., (W, d) is a cochain complex in the category of Hilbert spaces. It
is said to beclosedif the imaged*V* is closed inlW**! for eachk. It was shown in
[2,13] that Hilbert complexes are also a convenient abssetting for mixed variational
problems and their numerical approximation by mixed finle@reent methods, provid-
ing the foundation of a framework calldohite element exterior calculusThis line of
research is the culmination of several decades of work oredniiite element meth-
ods and computational electromagnetics [6/ 15| 22, 23].rmbst important example of
a Hilbert complex for our purposes of the FEEC arises fromd#aé&ham complex of
smooth differential forms on a domain or manifold.

The main developments in FEEC to date have been for linearfaw semi-linear)
elliptic problems such as Poisson’s equation

—Au = f.

Our goal here is expand the scope of this analysis to incladaolic linear (and semi-
linear) equations such as the heat equation,

(8t - A)U = f7
and hyperbolic equations such as the wave equation,
(O — A)u = f.

The exterior calculus framework treatsas(d + ¢)?, whered is the exterior derivative
operator and its adjoint. The incorporation of the time derivative ogera o, into this
framework, however, has not been previously consideredreifeedy this, we develop
the most natural extension of FEEC theory to evolution gotd: a generalization of the
semi-discrete method often called the ‘method of linesisEpproach involves the dis-
cretization of the spatial part of the differential operal®aving the time variable contin-
uous. It can be viewed as introducing a time parameter irgaligcrete (Hilbert) spaces
that have been developed for elliptic problems. These petrégad Hilbert spaces are
particular kinds oBochner spaceand we will review work by Renardy and Rogers|[26]
that makes obvious the well-posedness of the problems ws&dsm Moreover, the ac-
companying Bochner space norms, when coupled with FEEGioot®r Hilbert com-
plexes, provide a clear and consistent notation for bowgndimors in mixed methods
accumulated over a finite time interval.

We note that there is another approach to solving evoluttoblpms with finite ele-
ments, namely using a complete discretization of space:-tifinis tactic allows for the
dynamical change of the underlying discrete approximasipaces in both space and
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time. Such an approach gives rise to space-time adaptanty,is potentially the most
flexible and powerful approach to the numerical treatmergasfbolic and hyperbolic
evolution problems. This approach, which we will consideaisecond article, is most
naturally formulated using geometric calculus, a weldgtd mathematical structure for
time-dependent problems. In the current article, we focusxdending FEEC to semi-
discrete methods using Bochner norm estimates for the raifiines approach.

Finally, we note that the work presented here was developedltsneously and in-
dependently from a related project by Arnold and Chen [1] deneralized Hodge-
Laplacian style linear parabolic problems. Our focus is thork is to extend thecalar
Hodge-Laplacian to both linear and semi-linear parabalabjems as well as linear hy-
perbolic problems, as this touches the existing literatureemi-discrete methods in the
broadest fashion. The pairing of these two results will leafdirther insight in a variety
of research directions.

Summary of the papeihe remainder of the paper is structured as follows. In Sec-
tion[2, we review the classical semi-discrete mixed finitarednt method error estimates
for parabolic problems (due to Thomée [30] and others) amchyperbolic problems
(due to Geveci [13] and others). In Sectldn 3, we give a veigflmverview the Finite
Element Exterior Calculus and recall some relevant resuitSectior 4, we formulate
abstract parabolic and hyperbolic problems in Bochnerespaad state some standard
results on the existence and uniqueness of strong and wa#loss. In Sectionls, we
combine the classical approach to semi-discrete methatismodern FEEC theory to
establish some bask priori error estimates for Galerkin mixed finite element meth-
ods for parabolic problems. The main result is Theorem 5Hickvexploits the FEEC
framework to obtain a classification of spatial finite eletrsgraces that give optimal or-
der convergence rates in Bochner norms. In Secttion 6, wg oatra similar analysis
for hyperbolic problems, resulting in the error estimateegiin Theoren 612, a simulta-
neous sharpening of the result by Geveci for problems in tweedsional domains and
a generalization to problems endimensional domains. Our results recover the esti-
mates of Thomée and Geveci for two-dimensional domaingtaatbwest-order mixed
method as a special case, effectively extending theirtesuarbitrary spatial dimension
and to an entire family of mixed methods. In Secfidon 7, we eyhe results of Holst
and Stern[[18] to extend our parabolic estimates to a classrof-linear evolution PDE.
Finally, in SectiorB, we draw conclusions and make remanksiture directions.

2. SEEMI-DISCRETEFEM ERRORESTIMATES FOREVOLUTION PROBLEMS

We begin by reviewing semi-discrete finite element methodktheira priori error
estimates for parabolic and hyperbolic PDE systems. Wesfateach case on a rela-
tively simple, well-studied system of interest to modelaogmmunities, namely, the heat
equation (parabolic) and the wave equation (hyperbolid)e Aeat equation is: find
u(z, t) such that

u—Au=f inqQ, fort >0

w="0 onoQ, fort>0 withu(-0)=ginQ. (2.1)

We review the approach to Galerkin methods for this probleprasented in Thomée [30]
for domains? ¢ R2. His approach is based on work with Johnson [19] and buildsup
prior analysis of elliptic projectiori [7]. A similar approla, restricted td2 c R?, was

carried out by Garcia in_[12]. Similar work Let = Vu and define the mixed, weak
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form problem: Findu, o) € L? x H(div) such that

(ur, ¢) — (divo, ¢) = (f,¢), Vo€ L?, t>0 2.2)
(o,w) + (u,divw) =0, Vwe H(div), t>0, u(0)=g. '
The semi-discrete problem is then to fifd,, 01,) € S, x H, C L* x H(div) such that
(unt, &n) — (divoy, ¢n) = (f,¢n), ¥V on € Sp, t>0 2.3)
(on,wn) + (up, divwy) =0, Vwy € Hy, t>0, up(0) = gp. '

whereg,, is an approximation of in .S;,. With bases foiS;, and H},, the matrix form of
the discrete problem is

AU, - BY. = F,
B'U + Dx =0, fort >0, U(0)given

wherelU andX. are vectors correspondingtg andoy,. It is easily seen that the matrices
A andD are positive definite. Eliminating, we have the system of ODEs

AU, + BD™'BTU = F, fort >0, U(0)given

which by standard results in ODE theory has a unique solution

Thomée uses discontinuous linear elementsSfpand piecewise quadratic elements
for H,. He defines the solution operatdy : L? — S, given byT,f = u,, for the
corresponding elliptic problem and sets

gn = Rpg = =T, Ag.
For g, = R,g andt > 0, Thomée derives the estimates

un(t) — ()2 < ch? (||u<t>||Hz + [l ds) , (2.4)

" 1/2
llon(t) — o (t)]|2 < ch? (HU(t)HHs + (/O el 32 d8> ) - (2.5)

Note that these estimates are for a fixed time valaied restricted to a particular choice
of finite elements in 2D.
We now turn to thevave equation: find u(z, t) such that

utt—Au:f in Q, f0rt>0,
u=0 ondf, fort>0 withu(-,0)=wugin, (2.6)
andu(+,0) = uy in
There are two approaches to defining a mixed weak form of ttublem. The first is
very similar to the parabolic case: givénu,, anduy, find (u, o) such that

(utta¢)_(divav¢) :(f7¢)7 V¢EL2, t>0’

(o,w) + (u,divw) =0, Vw e H(div), t>0,
_ 2.7)
u(0) = uo,
w(0) = uy.

It is difficult to derive estimates for the numerical approztion of [2.Y7) akin to those
found in the parabolic case due to the second derivativesaajng in the formulation.
Some attempts at estimates along these line€far R? have been given by Baker|[4]
and Cowsar, Dupont and Wheeler[10} 11].
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For the purpose of extending the FEEC framework, we find ¥Rocity-stress' for-
mulation of the problem and the results of Geveci/[13] to be more usdtilk formula-
tion solves for := u, instead ofu: Given f, ug, andu,, find (i, o) € L? x H(div) such

that
(b, ¢) — (div o, ¢)
(o, w) + (p,divw) =
1(0) =,
o(0) =

The semi-discrete problem is then to fid,, 0,) € S, x H;, C L* x H(div) such that

(tne, on) — (divon, én) = (f.¢n), YV éu € Sp, >0,
(ah,t,wh) </~Lh7 div wh) = 0, v wp € Hh, t > 0,
( ) = U1,h,
on(0) = (Vuo)n,
whereu, ;, is an approximation ofi; in S, and (Vuy), is an approximation oW w,.
Again, bases fof), and H;, reduce the discrete problem to a matrix formulation:

AW, — BY. = F,

BTW + D%, =0, fort >0, W(0),X(0) given
wherelW and X are vectors corresponding tg, ando;, and A and D are symmetric,
positive definite matrices. As Geveci [13, p. 248] explaiims can be reduced to a
single iterative system of the form
(D+k*BTA™'B)Yy" ™ =@,

wherek denotes the time step in an implicit Euler time-differemgcatheme.

To derive an error estimate for the velocity-stress diszatibn, Geveci states the need
for projection operators fromi (div) to H;, and fromL? to S, satisfying certain approx-
imation properties. He explains that such operators efasta variety of finite element
spaces irR?, e.g. the Raviart-Thomas spacgs|[25], allowing the foltmmiesult. For
1< s<rwithr > 2,

ln () = (O] + lon(®) = o@Oll 2 < e (lur = wrallp + || Vuo = (Vuo)all2) +

+ch? <||ul||s+HWo||s+/O (Hut(f)||s+H@(T)HsdT)
(2.10)

Like estimates[(2]4) and_(2.5) for the parabolic problémI@® says that the approxi-
mation error can be controlled ib?> norm at any time by the Z° norm of the initial
conditions plus the accumulated norm of the variables upne t. It is these types
of estimates that the FEEC framework can refine, simplifg generalize to arbitrary
spatial dimensiomn.

( ¢), Voel? t >0,

Vwe H(div), t>0,
(2.8)

(2.9)

3. THE FINITE ELEMENT EXTERIOR CALCULUS

The finite element exterior calculus (FEEC) provides anateghathematical frame-
work for deriving error estimates for a large class of eliRDE. We now give a brief
overview of the notation and certain main results from FEHtct are relevant to this
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paper. We refer the reader to the seminal papers of Arnold, &ad Winther[2] 3] for
additional explanation.

Let 2 be a boundech-manifold embedded ifiR™ and assumé&) has a piecewise
smooth, Lipschitz boundary. The spacel@fbounded continuous differential k-forms
on () is given by

L2AR(Q) = {Zaldm e A" (Q) : a; € L3(Q) w},

1

wherel ranges over all strictly increasing sequencesioflices chosen froil, ..., n}.

The exterior derivative operatay, : A*(Q) — A*1(Q) acts on these spaces to form a
Hilbert complex(L2A,d). The associated domain complex is the sequence of spaces
HA* := domaing,) c L?A*(Q2), commonly called thé.> deRham complex:

0—— HA® %o gar B g,
The norm on each space is the graph norm associatéd.&®
(w, ) (e = (U, V) ar(@) + (dru, dxv) srs(q).-

We note that in any dimension the beginning and end of the¢ deRham complex can
be understood in terms of traditional Sobolev spaces afetéliftial operators:

0 Hl(Q) gad  div

L*(Q) ——=0

A major conclusion of FEEC is that stable finite element méghior elliptic PDE must
seek solutions in finite dimensional subspaagésc HA* that satisfy certain key ap-
proximation properties. First, the subspaces should fosabeomplex of the.? deR-
ham complex, meaningA¥ ¢ AF*!. SecondA¥ should have sufficient approximation
that upper bounds ofnf, ¢, ||u — v||;,x can be ensured for some or all € HA*,

Third, there must exist bounded cochain projectiefis: HA* — A¥ which are in-
variant onA¥, commute with the exterior derivative operators, and meva bound
|[7ko|| par < cllvllas forallv € HAF,

In the context of the deRham complex, all these propertieshown to be provided
for by two canonical classes of piecewise degreelynomials associated to a simplicial
mesh7T of €. LetP, denote polynomials in variables of degree at mosandH,. C P,
the subspace of homogeneous polynomials. The first classtetiP, A*(7), consists
of all k-forms with coefficients belonging t®, on eachn-simplex of 7. The second
class, denote® A*(T), interleaves with the first class, i.e.

Pt AN(T) © Py ANT) € PANT),

To defineP A*(T), first defineX be the vector field o™ such thatX (z) is the vector
based atr € R” that points opposite to the origin with lengjth]. DefineP-A*(T) :=
PN @ kH,_A**1, a direct sum, where is defined by contraction witi'. The maps
is called theKoszul differentiabnd gives rise to thEoszul complexThis is elaborated
upon in detail in the work of Arnold, Falk and Winther elg. 3,328].

Forn = 3, we have the following correspondences between the FEE&tiootof
finite element spaces and traditional element spaces.
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P.1A*(T) = Neédeélec 2nd-kind7(div) elements of degre€ r + 1 (see([23])
P A*(T) = Neédélec 1st-kindi(div) elements of order (see[22])
P, A*(T) = discontinuous elements of degree-

P.A3(T) = discontinuous elements of degree-

Hence, in the case of the deRham complex, FEEC recoverskmalin finite element
spaces while at the same time describing their generalizébi arbitrary spatial dimen-
sions.

The last piece of FEEC used in this work is the existence ofathsal projection
operators

7 LPAY — L2AF whereAf € {P.AR(T), P-AM(T)}. (3.1)

These operators are shown, by virtue of their constructmbe uniformly bounded (in
L?A*) with respect toh. The following theorem asserts some key properties of these
operators.

Theorem 3.1 ([3] Theorem 5.9)

(i.) Let A} be one of the spaceB_ ,A*(T) or, if r > 1, P,A*(T). Thenx} is a
projection ontoA’ and satisfies

< ch?||w|

HCU - WZW‘ ‘L2Ak(ﬂ) HsAF(Q) w € HsAk(Q),

for 0 < s <r+ 1. Moreover, for allw € L2A*(Q), mfw — win L? ash — 0.
(ii.) Let A¥ be one of the spac&3. A*(T) or P, A*(T) withr > 1. Then
|| d(w < ch® ||dw]| gopngqy,  w € HAM(S),
for0 <s <.
(iii.) Let AE~Y € {P. AFY(T), Pr AF1(T)} and Ak = P AK(T) or, if r > 0,
P,A*(T). Thendr;~! = nfd.

— mw)| ‘LQA’V(Q)

An explicit construction of these operators can be fountiégapers of Arnold, Falk,
and Winther[[2| 3].

4. ABSTRACT EVOLUTION PROBLEMS AND BOCHNER SPACES

We now cast parabolic and hyperbolic problems into the absframework of
parametrized Banach spaces. These types of spaces araago&s Bochner spaces, a
term we will use to avoid the lengthy equivalent ‘paramettiBanach space.” We follow
prior approaches using this approach, especially [29, f&fand [26].

Let X be a Banach space add:= (0,7) an interval with closurd := T = [0, 7).
Define
C(I,X):={u:I— X | ubounded and continuoys
Equip this space with the norm

lulle x) = sup [[u(®)]]x -
tel

The Bochner space L' (I, X) is then defined to be the completion 617, X) with

respect to the norm
1/p
([ ( JALCIE dt) |
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p N 1/2
el = ( J I +|| G0 th) .

We will commonly useX = L?A* or X = H*A* where it understood that the forms are
defined over spatial domain &

We now consider abstractions of the two main types of evafufiDE.

Let H andV be real, separable Banach spaces suchthsicontinuously and densely
embedded if. This provides a Gelfand triple, also calledigged Hilbert space

VcHCV",

The spacéd’ (I, X) has an analogous norm

where H is also continuously and densely embedded’in It should be noted that the
isomorphism betweelr andV* is in generalnot the same as the composition of the
inclusion mappings.

Let (-, -) denote the inner product ati as well as the natural pairing betwe€n and
V. GivenA(t) € L(V,V*) depending continuously ane I, define a quadratic form

a(t,u,v) = _(A(t)uvv)v (41)
for (t,u,v) € R x V x V. Assume that satisfies the coercivity condition
alt,u,u) 2 e [ully — ez [Jullf (4.2)

with ¢, ¢, constants independent oE . Consider the abstract parabolic problem

up = A(t)u+ f(t), t>0, (4.3)
u(0) = wo, (4.4)
and the abstract hyperbolic problem
= A(t)u+ f(t), t>0, (4.5)
u(0) = wo, (4.6)
u(0) = uy. (4.7)

These abstract formulations are well-posed in the follgvgense.

Theorem 4.1 (Existence of Unique Solution to the Abstract ParabolicbhiRrm). Let
f e L*I,V*)anduy € H, leta(,-,-) be as in(@.1), and let(@.2) hold. Then the
abstract parabolic problem (4.3) has a unique solution

we LA, V)N HY(I,V*).

Moreover, the Sobolev embedding theorem impliesC'(1, V*), allowing an interpre-
tation of the initial condition:(0) = wo.

Proof. See [26], page 382. O

The analogous result for the abstract hyperbolic case agllire two additional con-
ditions:

a(t,u,v) = a(t,v,u), Yu,veV, (4.8)
Ae CHI,L(V, V). (4.9)
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Theorem 4.2 (Existence of Unique Weak Solution to the Abstract HypearBtoblem)
Givenf € L'(I,H),uo € V,andu, € H. Leta(-,-,-) be as in@.1), and let(4.2), (4.8),
and (4.9) hold. Then the abstract hyperbolic probldm {4.5) has a uaiyeak solution

ue C(IL,V)NnCYI, H).
Proof. See [26], page 389. O

These results give a concise and elegant way to prove thatexslass of PDE prob-
lems amenable to finite element methods are well-posed. rticplar, we now explain
how these abstract results apply in the cases of the heati@y{@.1) and wave equa-
tion (2.8) studied here. Fix the Gelfand triptel c L* C (H;)* =: H~! and define
A: H} — H' byu — (Vu,V-). The bilinear form induced by is the weak form
of the Laplacian and is thus coercive, due to the Poincaguality being available on
H;. Interpretingu as a map fronT into A}, we have thaveak form of the heat equa-
tion (Z1): Givenf € L*(I, H™') anduy € L?, findu : I — HJ such that

(u,v) = (Vu,Vo)+ (f,v), Yve L*(I,H}), t>0,
(u(0),v) = (ug,v), Vo e L*(I, H}).
Theoreni 4.1l applies to the strong form[of (4.10) and hencéiésithat there is a unique
solutionu € L2(I, HYn HY(I, H)nC(I, H™Y).

For the hyperbolic case, observe that the weak form of thdacegn given byA

satisfies the symmetry and smoothness conditions requirdd.B) and[(4.9). Theveak

form of the wave equation (2.6) is: Givenf € L*(I, L?), uyp € H}, andu, € L?, find
w: I — H} such that

(4.10)

(uy,v) = (Vu,Vov)+ (f,v), Yve L*(I,Hj), t>0,
(u(0),v) = (uo,v), Yo e L*(I, HY). (4.12)
(u(0),v) = (u,v0), Yo e L2(I, HY).
1

5. A Priori ERROR ESTIMATES FORPARABOLIC PROBLEMS

We extend Thomée’s error estimates from Sedtion 2 to thadanoclass of elements
and arbitrary spatial dimension allowed by FEEC using th&trabt framework estab-
lished in Sectionl4. Lef? c R™ and suppose that the kernel of divi /A"~ — HA"
is trivial[] Define theBochner mixed weak parabolic problem: Givenf € L2(I, H™Y)
andg € L2, find (u,0) : I — HA" x HA"! such that

(ur, ) — (dive,¢) =(f.¢), Vo€ HA", tel,
(o,w) + (u,divw) =0, Vwe HA™', tel, (5.1)
u(0) =g.

Observe that{ (511) is the mixed form ¢f (4110) with the introtion of the variabler
defined by dive = u in a weak sense. As discussed at the end of Settion 4, a unique
solution foru exists, implying the existence of a solution tarSince we assumed that the
kernel of div is trivial,o is unique as well. Hencd, (5.1) has a unique solution (pair)
inthe spacd.?(I, HA" x HA" Y )NHY(I, (HA" x HA"Y)*\NC(I, (HA™ x HA™1)*).
Therefore, it makes sense to look for discrete approximatuf (u, o) as functionals

1 The trivial divergence kernel assumption is satisfied byatitractible domains, for instance.
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on finite dimensional subsets 6fA" x HA"!, e.g. finite element spaces. Thami-
discrete Bochner parabolic problem is thus: Find(u,,04) : I — A7 x A}~! such
that

(Ui, &n) — (diVon, ) = (f,on), YVon €Ay, tel,

(ah,wh) + (uh, div wh) =0, Ywy, € AZ_I, tel, (5.2)

uh(O) = (gh.
Defineg, to be the solution to the elliptic problem with load datdg, i.e.
(divon, on) + (Ag, dn) =0 ¥V, € A}, (5.3)

(&h,wh) -+ (gh, div wh) =0, Vw, € Az_l. '

Itis shown in [30] that a unique solution {o (b.2) exists,drhen the positive-definiteness
of the solution operatdf;, : L? — A7 for the elliptic problem. A more basic argument
for this result can also be made by appealing to the existeinae adjoint to the discrete
divergence operator.

Elliptic projection, an idea dating back to Wheeler|[32]ndze carried out for any
fixed time value as we now discuss. For apye I, define theime-ignorant discrete
eliptic problem: Find (i, 5,) € A} x A}~! such that

(dIV Oh, (bh) + (—Au(to), ¢h) =0, Vo¢,e€ AZ,
(&h,wh) + (@h, div wh) = 0, Ywy, € Az_l, (54)
'&h(O) = Ggh.
Note that theu appearing in the first equation &f (5.4) is the solution todbetinuous
problem [5.11). Thus, we can viesy, and, as functions of with the understanding
that they are defined for ea¢hvalue by [5.4) alone; no continuity with respectttes
required, hence the moniker ‘time-ignorant.’

For ease of notation, and in keeping with Thomée, definerttog finctions

p(t) = un(t) — u(t),

0(t) := up(t) — ap(t),

e(t) := on(t) — an(t).
We now prove a lemma which will aid in our subsequent analye result appears as
part of the proof of Thoméé [30, Theorem 17.2] but we expaheiie for clarity.

Lemma 5.1 (Thoméel[30]) The error functions satisfy the semi-discrete formulation

(eta ¢h) - (le £, ¢h) = _(pt7¢h)7 v ¢h S AZ» te I’ (5 5)
(5,wh)+(6',dinh) =0, thEAZ_l, tel. .

Proof. The second equation is immediate from the second equatiofisd) and[(5.4).
The first equation can be written out as

(Wht, &) — (diV op, o) + (diV Gn, On) — (Unye, On) = (s, dn) — (Tn, On)
which is reduced as follows:
(Unt, @n) — (diV oy, ¢p) + (div &p, ¢n) = (ur, Pn) cancel like terms

(un,i, on) — (AIV o, dn) = —(Au, ¢p) + (ur, 1) by (5.4)
(f, &) = —(Au, ¢n) + (us, ¢n) by (5.2)
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This says that the continuous probleimn— Aw = f should hold in a weak sense when
tested against any of the functionsAsj. This is guaranteed to be true since we chose
Ay c A" = L% Thus, the error equations hold as stated. O

The following theorem says that if? and A7~ are chosen according to the FEEC
framework, then error estimates akinfto (2.4) dnd|(2.5) @aoltained. Note that in the
semidiscrete settingAu),(t) = 0, Au(t) since the time and spatial derivatives commute,
allowing the simplified notatiot\u,(t) used here.

Theorem 5.2. Fix Q C R” such that the kernel afiv : HA"™! — HA" is trivial (see
footnote[1) and fix := [0,7]. Suppos€u,o) is the solution to[(5]1) such that the
regularity estimate

w(@®)|gevz + o @) e < || Au(t)]| 4 (5.6)
holds for0 < s < s,,.x andt € I. Choose finite element spaces

Pr—l—lAn_l(T)
At = or . Ay =P A(T) (=PA(T))
Pra A N(T)
Then for0 < s < spax, gn defined by[(513), anduy, 0,,) the solution to[(512), the
following error estimates hold:

b (1180 a1y + VT Bl par ) 7 =0

up — U ny < s
[un = ull (g p2am ch2t <I|AU||L2(LH8) +\/T||Aut||L1(I,HS)> forr > 0,
ifs<r—1
(5.7)
(
ch <||AU||L2(I,HS) + \/T||Aut||L2(I,L2)>
ifr=0,s=0,A"=P A" YT)

c (h”s [1Aull (g ey + hVT ||Aut||L2(IvL2))

||Uh - UHL2([7L2A7L—1) S )
ifr=0,s<1, Az_l =P A" YT
e (W 180 g ey + VT At
L forr >0,ifs<r—1
(5.8)
[ (1 1l g ey + P N1 1))
. ifr=0,s<1
||dlv(0h - U)||L2(17L2An) < (59)

¢ (P 180 gy + B 18] )

forr >0,ifs<r—1

\

Remark 5.3. Previous literature on semi-discrete methods usuallyeleaggularity as-

sumptions implied by the error estimates. For instandgu(t)|| ;s appears on the right
side, it is implicitly assumed that(t) € H® for all t € I. We have stated the specific
regularity assumptiom_(5.6) to make clear what regularitigtine assumed and to follow
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the presentation from Arnold, Falk, and Winther [3, p. 34Zhe careful reader will
notice that the left side of (5.6) does not includéwdt) term, sinceu(t) € A™ implies
du(t) = 0, nor al||do(t)||,. term, since this can be absorbed into ffet)|| ;... term.

An additional, more subtle difference is thaAton the right side of[(5]l6) has been re-
placed byAw. While these two are equivalent in the elliptic cagey(t) evolves based
on the initial datay while f(t) is prescribed, meaning they are in general different in the
parabolic settin

Proof. To simplify notation, we will often usé-|| to mean||-|| .. . We adapt the proof
technique of the corresponding theorem from Thornée [36pTdm 17.2] to our setting.

Observe thaf(5l4) is exactly tihe= n case of the Hodge-Laplacian problem analyzed
by Arnold, Falk and Winther [3] and the hypotheses here mdieir hypotheses. We
can thus use a triangle inequality argument for each esireal.

[lu(®) = un@)] < [Ju(t) = an (@] + [[an(t) = un O] = [le@[ + [I0@O]] (5.10)

The first term will be bounded using the estimates from [3] #redsecond by the tech-
niques from Thomée [30]. The FEEC estimate [3, p. 342] giverediately

Hmwmgs{ch“”Wz fr=0 (5.10)

ch* < ||Au(t)||y. if s <r—1,forr >0

Bounding||0(t)||,. is more subtle. Sep, := 0 andw;, := ¢ in (6.5). Adding the
equations yields
1d

S I+ Il = (o), teT (5.12)

We use a technique from Thomée|[30, p. 8] to derive an estifioat|0(¢)||. Since||d||
may not be differentiable wheh= 0, introduce a constait> 0 and observe that

1d _1d
2 dt 24t

the last step following by (5.12) and Cauchy-Schwarz. Sife< (||6]|* + 62)/2, we
have that

d
(161" + )2 (llo1" + 8)% = S—(I[61* + 0%) 1611 < [l 11611

S0P+ < il
Note that?(0) = up(0) — @x(0) = gr, — gn = 0. Thus
T td 2\1/2 !
o = tim [ 1611+ 89" < [l

Using the bounds ofip(t)|| from (5.11), we get

t
ch/ || A (€)]] 2l if =0,
0

0[] < (5.13)

gsdl forr>0,ifs <r—1.

t
Chs / | Au(0)
0

2We thank one of the referees of this paper for pointing owstshbtlety.
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We can now assemble estimdte [5.7) by collecting our restssshow the technique of
the case = 0 as the other case employs identical analysis.

T 1/2
o=l = ([ o) - o)
0
T

< (] i+ ||e<t>||>2dt)l/2
< ch (/OT (HAu(t)H + /Ot ||Aut(£)\|L2d£)2dt> "
< ch </0T2 <||Au(t)||2 + (/Ot ||Aut(€)||L2d€)2> dt) 1/2.

Roll the 2 into the constantand observe that the inner integral is maximal whenT'.
Thus,

T 1/2
2 2
[un — ull 2y poany < ch (/0 [Au)[|” + [|Awel[71 7 12 dt)

9 9 1/2
e (1180l 31+ T 1w 1 0))
2 2
< ch (|18ullFaqrze) + T 1AW G102y +
1/2
21830l g gy VT 1B 111
= ch (1180l a1y + VT B0l 1) -

We now turn to[(5.B), i.e. an error bound for the approxinatid . We use the
same technique of bounding (t) — &5 (¢)|| by the corresponding FEEC estimate and
llon(t) — on(t)|| (= ||lg(t)]]) by a modification of[(5)5). First, observe that the FEEC
estimatel[3, p. 342] gives

lo(®) = an(®)l] < ch* || Au(t)]

o fesrHl At =P APH(T)
oy .
" s <, A =P AT

T

(5.14)
To bound||e(t)]|, differentiate the second equation 0f (5.5) with respect &nd set
On = 20;, wy, = 2¢, yielding

(6’t,26’t) — (d|V 5,290 = _(Pt>29t)>
(e4,2¢) + (6;,dive) = 0.

Adding the equations and converting to norms, we have thadbou

d
7 el + 216" = —2(pe. 6:) < [lpel|” + 116411,

by Cauchy-Schwarz and the AM-GM inequality. Note that siig® = 0, we have
£(0) = 0 by the second equation ¢f (5.5). Thus

t t t
2 d 2 / d 2 2 / 2
- [ = < [ = + < ,
lle(@®)]] /0 ds”g(S)H ds < ; d8||5(3)|| |[0:]]" ds < ; [ pe| | ds
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As before, we usé (5.11) to derive

t 1/2
ch (/ ||Aut(5)||§2de) if r=0,
0

le@)I] < t " (5.15)
ch*** (/ || Au(0)]]7,, dﬁ) forr>0,if s <r—1.
0
T 1/2
lom — ollpagr zones, = ( [ w01 dt)
T ) 1/2
< (/ (o) = (]| + D) dt)
1/2

T ¢ 1/2\ 2
<e|f (h”sllAu(tN " +h( / ||Aut<e>||izdf) ) dt
0 0
T t 1/2
<ch (/ 2 (h2s ||Au(t)| i, +/ ||Aut(€)||2L2d€) dt) )
0 0

Rolling the 2 into the constamtand again noting that the inner integral is maximal when
t =T, we recover the first two estimates pbf (5.8):

T 1/2
s 2 2
lon — 0l 20 gpery < ch ( [ 18O By + 18l g dt)

0

= ch (h* || Aul? T ||Aw|? at)"’
=c AL prey + T [ Awe|[12(g 12y

<ch <hs ||Au||L2(1,H5) + \/THAutHLQ(LL?)> :

Whenr > 0, (5.14) requires < r ors < r + 1 to obtain optimal convergence rates on
the first term of the right side whil@ (5.115) requires< » — 1 to obtain optimal rates on
the second term. Thus the hypothesis r — 1 implies both[(5.I4) and (5.15). The last
estimate of{(5.8) then follows by identical analysis to thstfiwo cases.

Finally, we turn to estimatd (5.9) and follow the same teghai Since div is the
exterior operatod : A»~! — A", we have from FEEC [3, p. 342] that

ldiv(o(t) — a1()]] < ch® [|Au(®)]] e, if s <7+ 1. (5.16)

To bound||div ¢|| setw;, := ¢ in (5.8) and take the derivative with respect:toThis
yields

d .
y le])* + (8, dive) = 0.

Note that dive € A} since the discrete spaces are chosen to satisfy the redaijpon
divA7~' C A?. Thus, we can sef;, := div ¢ in in (5.8) and substitute to get

d , .
7 [lell* + lldiv el [* = (pr, div e).

By Cauchy-Schwarz, we havgiv =||> < ||p.]| ||div ¢|| and hence

[Idiv e[| < [lp]-
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Again, we usel(5.11) to get

_ ch|| Ay ;- if r=20
v <q ) | BNCEYS
ch*™ || Awuy|| . if s <r—1,forr >0

The estimate (519) follows by combining this with (5.16). O

6. A Priori ERRORESTIMATES FORHYPERBOLIC PROBLEMS

We now analyze hyperbolic problems using the sdm8ochner spaceg?(I, L2A¥)
introduced in Sectionl4. Lé? C R" and suppose that the kernel of divi A"~! — HA"
is trivial (see footnotel1). Define tH@ochner velocity-stress mixed weak for mulation:
Givenf € LY(I,L?),uy € H', andu, € L?, find (u,0) : I — HA™ x HA"! such that

(e, ¢) — (divo,¢) = (f ), Voe HN", tel,
(op,w) + (p,divw) = Vwe HA" 1, tel,
1(0) =,
(O) = VUO,

(6.1)

wherep = u; as in [2.8). Observe thdt (6.1) is the mixed form[of (#4.11hwtfte intro-
duction of the variable defined by diw = i in a weak sense. As in the parabolic case,
the trivial kernel hypothesis and the discussion at the drigeotion 4 imply that[(6]1)
has a unique solution pa(t, o) in the space” (I, HA™ x HA" )N CY(I, A" x A™™1).
Therefore, it makes sense to look for discrete approximatif (1, o) as functionals
on finite dimensional subsets &6fA" x HA"!, e.g. finite element spaces. Thami-
discrete Bochner hyperbolic problem is thus: Find(y,, o) : I — AP x A}~' such
that

(g &n) — (diV oy, p) (f> bn), Von€N;, tel,
(O‘h,t,wh) + (,uh, div wh) Y wy, € AZ_l, tel,
( ) = U1,h,

a(0) = (Vug)n.

(6.2)

We now generalize the results of Gevecil[13] and others imtddnguage of FEEC. We
first prove a very simple proposition explaining the appneadion properties of the”
operators in this context.

Proposition 6.1. Choose finite element spaces
Pr—l—lAn_l(T)
At = or L A= PANT) (= PAYT)).
P AT
The smoothed projection operators frdm (3.1) have the appration properties

Hﬂ-f?_lw - WHL2A7L—1 <c h? HW| HsAn—1 5
for0<s<r+2, ifA"' =P, A" (T), or

for0 <s<r+1, ifA}" =P AY(T),
1T ¢ = @llpopn < ¢ |0

(6.3)

goan s TOr0<s<r+1. (6.4)
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Proof. Estimate[(6.B) follows directly from Theordm Bil)( Note that Theorein 3.1.)
is stated for the cas®, A"~! while here we havéP, ;A" !, thereby allowing for the
higher bound om in this case. Finally, since?u — u = 0;(77u — ), Theorem 3.11i()
also implies[(6.4). O

Theorem 6.2. Fix Q C R" such that the kernel afiv : HA"™' — HA" is trivial (see
footnotd 1) and fiX := [0, T']. Choose finite element spaces

7D7‘+1An_1(7->
At = or , AL =P AT (=PANT)).
P AT

Then for(uy, o1,) the solution to[(6.2), the following error estimate holds:

in = il por p2amy + llon = 0l 2 oan-1) < ¢ <\/TE1 +h (ﬁEz + ES)) , (6.5)

where
By = [lug — uppl| 2 +
|[(Vug) — (Vuo)nl| ;2 (error due to discretization of initial data)
Es = ||u1|| s + [|Vuol| s (regularity of initial data)

By = [|w|[ 27 sy + lloll 27,5+ (regularity of continuous solution t0 (6.1))

Remark 6.3. This theorem strengthens and generalizes the result bycGEa] for

n = 2 where L? projection is used instead of the smoothed projection ¢pesa;.
An article by Makridakis[[211] extended Geveci’s resultsrto= 3 in the context of
linear elastodynamics, however both papers had to assuenextetence of finite ele-
ment spaces and projections to them with certain prope@asresult here makes clear
what these spaces and projections should be in the unifignidge of FEEC. More-
over, the fact that the} operators are not the* projection and hence not self-adjoint
requires a revised proof technique that ultimately alloies tremoval of the error term
el 21 grey + lloe]] 121 1r+) @PPEArING in prior error bounds.

Proof. Define ¥ := A™ x A"~! with finite dimensional subspack;, := A} x A}~
Denote the components of an elemeénte ¥ by {¢;,w;}. The L? inner product and
norm onVv are

(Y1, ¥2)w = (¢1, P2)r2 + (w1, wo)r2 and  |[[Y|]y ==/ (¥, ¥)w.
Define a skew-symmetric bilinear formn: ¥ x ¥ — R by
a(z/)l, @Dg) = —(diV w1, ¢2)L2 + (Cbl, le w2)L2.

Let¢ := (i, 0) € ¥ be the solution td(6]1) and let := (¢,w) € ¥ be arbitrary. Then
adding the equations df (6.1) yields

(5t,'¢)\1/ +a(€ﬂ/}) = (f7 ¢)L2 V?/) eVv. (66)
Similarly, from (6.2) we get
(Ents Vn)w + aln, n) = (fidn)rz YV n € Wy (6.7)

Define a projection operatar, : ¥ — W, using the bounded cochain projections from
B1) viam,y := {m}¢, 73 'w}. Sincer, only affects the spatial variables, it commutes
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with the time derivative operator, i.€0;,7,€, ¥ )y = (1h0:, ¥n ). Using this and(616),
and lettingl denote the identity operator, we derive
a(mhé, n) = a(&, ¥n) + a((mn — D&, ¥n)
(Ovmn€, n)w + a(mné, ¥n) = a(€, ¥n) + (0, Un)w + a((mn, — 1)E, )

(atﬂ-h£7 ¢h)‘1’ + a<7rh£7 ¢h) = (f7 (bh)L2 + ((ﬂ-h - H)8t£7 ¢h>\1} + CL((ﬂ'h - H)gv ¢h)(76 8)

which holds for alk), € ¥, C ¥. Now define the error function
en(t) == ma&(t) — &n(2).

The derivation of a good bound f@ie,(t)||,, constitutes the bulk of the remainder of the
proof. Subtracting (617) froni (6.8) yields

(Deen(t), Yn)wtalen(t), ¥n) = ((mn=DEE), Yn)w+a((mn=D)ER), Yn),  Vibn € Wi,

Define the skew-adjoint linear operatby : ¥, — ¥, by ©9
(Lnthr, o)y = ath1,09) V ahy, g € Uy,
We can thus re-writé (6.9) as an equation of functional®gn
Oen(t) + Lpen(t) = (mp — 1)0E(t) + Ly (7, — DE(E) (6.10)
To ease notation, s€X(t) := (m, — [)0,&(t) andR(t) := (m, — 1)&(¢), yielding
Oren(t) + Lpen(t) = Q(t) + LpR(t) (6.11)

We will use some basic results from the theory of semigrodipisear operators as can
be found, for instance, in [24]. For any fixede R, the product rule in this context
yields

Bu(e! "D (en(t) = R(1) = L™ V0 (en(t) = R(8)) + "7y (en(t) — R(1))
= 6(t_T)Lh (@»sh(t) + LhEh(t) — (Lh + 8t)R(t))

Note that we used the fact that~"“» commutes with,,, a standard result [24, Corol-
lary 1.4]. Swapping the roles efandr, we re-write the above as

O, (e~ Dn (2 (1) — R(1))) = e 0 (3.2, (7) + Lyen(r) — (L, + 0,)R(7))
(6.12)

Now we integrate in such a way that (6.11) ahd (6.12) will gigean expression for
en(t). First observe thal, R(7) = Q(7) sinced, commutes withr;, andl. Thus,

0= /Ot e~ (Q(1) — 0.R(7)) dr

— /O t e~ (Q(7) + LyR(1) — (Ly + 0;)R(7)) dr by +L,R(7)

N /t ~UmDE (9,84 (T) + Lien(r) — (L + 0-)R(7)) dr by (6.11)
/ O-(e" I n(ey (1) — R(7)) dr by (6.12)

= en(t) — R(t) — e rey(0) + R(0) fund. thm. calculus

Rewriting the above chain of equalities, we see that
en(t) = e ney,(0) + R(t) — R(0) (6.13)
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Observe that~'Z» is unitary meaning it preservek-norm, i.e.He‘tLthH\p = |9y
for all » € W. This follows from the fact thaL,, is a real, skew self-adjoint operator,
meaningi L, is self-adjoint, which is equivalent to sayiag'/» is unitary [24, Theorem
10.8]. Thus, taking thg-||, norm of (6.18), the triangle inequality gives

len@lly < llen(O)ly + 1ROy + [[RO)]
= [len(0)lly + I[(mn = DE@ [y + [|(mn = DEO) ]y , (6.14)

Unpacking the notation lets us characterize this boundringeof the errors defined in
the theorem statement. Recall thgtandu, are given initial data functions and should
not be confused with;, or u;. We will use f < g to meanf < cg wherec is some
constant independent éfand7’. We have

len®] S Nmhur = wanl|+ |7~ (Vo) = (Vuo)n] [+ (7 — DER)|+] (mn — DEO)]]
(6.15)

To bound the first term on the right, uge (6.4) from Proposi€idl to get

[mhur — urp|| < [lmpur — w|| + [Jur — urpl] S °° |l

e lur — |
Using (6.3) likewise for the second term, we have
Iy — upl| + || (Vo) — (Vuo)al|| S Er + h*Es (6.16)
Also by (6.3) and[(6/4), we have the bounds
(= DED| S W (o @] grapn—r + (O] groan) (6.17)
(0 = DEO)| S (Ve pors + 1l rep) (6.18)
Using (6.15) in conjunction with (6.16), (6.17), and (6.18F derive

T T
/ llen(®)|]? dt < TE? + h*TE? + hzs/ llo(t)]
0 0

STE} + h*TE; + h*Es + h*TE; (6.19)
We now start building up the main result.

e+ e + E2 dt

2
(||/~Lh = g2z p2any + llon — UHL2(1,L2A7H)>
T ) . )
< /0 (e = sl 2 + ||on — 7 UHB)
+ |7 — pl 5 + |7t — o ‘; dt
r 2 n 2 n—1 2
= [ a0l et = il + 17271 = A g

2 02 [ (0)] 1. de

T
< / len())2a + 2 |[u(t)]

T
< / en(®)] 22 dt + K2 E2. (6.20)
0
Combining [6.2D) and(6.19) yields
2
<|‘Mh = 1l 2z 2any + llon — UHLQ(I,L?An*l)) S (TE} + 20*TE; + 2h*E3)

< (\/TE1 + h* (\/TE2 + E3)>2

Taking the square root of both sides completes the proof. O
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7. SEMI-LINEAR EVOLUTION PROBLEMS

We now show how the techniques developed above can be ext¢mdertain types
of non-linear evolution problems. Consider tgeni-linear heat equation: Find u(x, t)
such that

uw—Au+ F(u)=f inQ, fort>0
u=0 ondf, fort>0 withu(-,0)=ginQ,

whereF is some non-linear operator dif(2). The existence and uniqueness of solu-
tions to instances of this problem have been studied extelgdil6,/14, 27, 33] as have
finite element methods for the approximation of its soluf@f (9, 28, 30|, 20].

We focus here on the case whéfesatisfies a Lipschitz condition

|1F(v) = Fw)llp < Cllo —wllz.  Vo,we LQ). (7.2)
This condition, or a weaker locally Lipschitz condition [53$ assumed by Holst and
Stern [18] in their recent extension of the FEEC error esia®ao semi-linear elliptic
problems. Hence, it serves as an obvious assumption fonairig our evolution results
to the semi-linear case.
For Q) C R", define theBochner semi-linear mixed weak form parabolic: Given f
andg, find (u, o) : I — HA™ x HA"! such that
(ut; @) — (dive,¢) + (F(u),¢) =(f,¢), Yo HA", tel,
(o,w) + (u,divw) =0, Vwe HA Y, tel, (7.3)
u(0) =g.
The semi-linear semi-discrete Bochner parabolic problem is thus: Find(uy, o) :
I — A7 x A}~! such that

(Unt, &) — (div on, on) + (F(un), dn) = (f,0n), Yén €A}, tel,
(on,wp) + (up, divw,) =0, Vw, €AY tel, (7.4)

(7.1)

ur(0) = gn,
whereg;, € A} is an approximation of. Analogously to the linear case, for atiye I,
define thetime-ignorant linear discrete eliptic problem: find (i, 5,) € A7 x A}~
such that

(div ap, ¢n) — (Aulty), ¢n) =0, Vo, Ay, tel,
(Gn,wn) + (an,divwy) =0, Vw, €AYl tel, (7.5)
u,(0) = gn,
where now is the solution to the continuous semi-linear probleml| (7S&nilarly, define
p(t) := un(t) — u(t),
0(t) := up(t) — up(t),
e(t) := op(t) — an(t),

whereu, o and their discrete counterparts are now solutions to thesponding semi-
linear problems. We have an analogous lemma.

Lemma 7.1. The semi-linear error functions satisfy the semi-discfetenulation, i.e.

(0, 0n) — (dive, dn) = —(pi,0n), Yon€AL, tel,

7.6
g,wp) + (0,divwy) =0 Vw, e AL tel (7.6)
(&, wn) + ( ; h
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Proof. The second equation is immediate from the second equatioffs4) and[(7.5).
The first equation can be written out as

(Unt, @n) — (div oy, @p) + (div Gp, dn) — (Une, On) = (wr, On) — (T, On)

which is reduced as follows:

(Whts &n) — (diV op, 1) + (div Gy, @) = (ur, Pn) cancel like terms
(unt, on) — (AIV o, dn) = —(Au, ¢p) + (ur, 1) by (Z.5)
<f7 ¢h> - (F<uh)7 (bh) = _(Au7 (bh) + (utu ¢h> by @')

This says that the continuous problem- Au+ F'(uy,) = f should hold in a weak sense
when tested against any of the functions\ih This is guaranteed to be true since we
choseA} ¢ A" = L% Thus, the error equations hold as stated. O

(see footnote]1)

Theorem 7.2. Fix Q C R” such that the kernel afiv : HA"~! — HA"™ is trivial (see
footnote[1) and fix := [0,7]. Suppos€u,o) is the solution to[(7]3) such that the
regularity estimate

[|u(t)] e (7.7)

holds for0 < s < s @andt € I. Assume that the operatdf satisfies the Lipschitz
assumption(7]2). Choose finite element spaces

o2 @] g + [ldo (@) g < c||Au(?)]

7D7‘+1An_1<7—>
Ayt = or , Ay =P AN(T) (=PAYT))
P A H(T)

Then for0 < s < suax, gn defined by[(513), anduy, 0,,) the solution to[(714), the
following error estimates hold:

eh (180l ooy + VT 1Al ) 7 =0

Uup — U n S S
||, HLz(l,LzA ) chit (HAUHB(LHS) + \/THAU‘tHLl(I,HS)) forr > 0,
ifs<r—1
(7.8)

(
ch <||AU||L2(1,HS) + VT ||Aut||L2(I,L2)>
ifr=0,s=0,A""=P A" YT)

c (hlJFS ||AU||L2(I,H5) + VT ||Aut||L2(IvL2))

||Uh - UHL2([7L2A7L—1) S )
ifr=0,s<1, AZ‘I =P AT
& (h1+5 ||Au||L2(I’H5) + h(3/2)+5ﬁ||Aut||L2(I’H5)>
L forr >0,ifs<r—1

(7.9)
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( S
¢ (B 180l gy ey + 10|21 )

. ifr=0,s<1
||dlv(0h - U)||L2([7L2An) < . (7.10)

¢ (P 18 ey + W4 1Bl )

forr >0,ifs<r—1

Proof. The proof is very similar to that of Theordm b.2. Equatiofd)7s thek = n case
of the discrete mixed variational problem examined by Haist Stern in[[18, Equation
(9)]. Therefore, we can use the same type of triangle inéguabm (5.10) to recover
the estimates. By [18, Theorem 4.2], we have the estimates

ch||Au(t)]] - if r=20
ch?* || Au(t)|

. { s<rl AT =P AH(T)
s If

s <, At =P AT
(7.12)

geo fs<r+41. (7.13)

P2 < { (7.11)

gs Fs<r—1,forr>0

lo(t) = an(®)ll > < ch'™ || Ault)]

ldiv(a(t) = an(t))l] 2 < ch®[|Au(t)]

An explanation of how these estimates are derived from thdteof [18] is given in Ap-
pendixA. Note that these estimates are exactly the sameastresponding estimates
(5.11), [5.14) and (5.16) from the linear case. The proaf hh@ceeds exactly as before
since the rest of the argument does not appeal to the ligedrihe problem at all. [

This approach seems likely to extend to semi-linear hygeripyoblems as well.
Since the well-posedness of such problems is a significeue is its own right, however,
we do not consider such an approach in the present work.

8. CONCLUDING REMARKS

In this article, we have extended the Finite Element ExteZimculus of Arnold, Falk,
and Winther|[[3| 2] for linear mixed variational problems toelar and semi-linear para-
bolic and hyperbolic evolution systems. Both the parabafid hyperbolic cases make
strong use of the smoothed projection operattdiswhich are one of the most elabo-
rate and delicate constructions in the FEEC framework. émpirabolic case, the use of
the 7} operators was hidden somewhat by the use of elliptic priojeetrror estimates,
proofs of which rely on properties of these operators. Inhiyygerbolic case, the proof
techniques use these properties more explicitly. In ang,d&® formal treatment and
generalization of these operators by Arnold, Falk and Winitean now be seen as a
useful tool for the analysis of evolution problems as wekbiptic PDE.

We have also seen in this article how the recent generaimmbf the FEEC by Holst
and Stern|[[1[7, 18] for semi-linear elliptic PDE can be extshtb evolution PDE as
well, both parabolic and hyperbolic types. We also antifghat the basic approach to
analyzing variational crimes in [17, 18] for the linear aramslinar elliptic cases will
also work in the case of evolution problems; we will expldre guestion of variational
crimes in a subsequent article, with the target being thiysisaf surface finite element
methods for evolution problems.
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APPENDIX A. EXPLANATION OF SEMI-LINEAR ERROR ESTIMATES

In this appendix, we explain why estimates (7.11), (I7.18¢, &.13) follow from [18,
Theorem 4.2]. We will focus just on the> 0 case of[(7.111) as it requires the sharpening
of a special case of an estimate appearing in [18, Theorem At other cases work
out along similar lines by a direct application of the Holstlé&tern estimates.

First, we recall some notation from/[3] usedlin [18](W, d) is a Hilbert complex with
associated domain complék, d) and parametrized subcomplex familyj,, d), denote
the best approximation i/ -norm by

E(w) = vinvfk lw— ||y, weWk

h

The relevant result from Holst and Stern[[18, Theorem 4.8}ased as

lu— tplly + [P — pally < c(E(u) + E(du) + E(p)

+n[E(0) + E(do)] + (6 + p)E(do) + pE(Pyu)),
(A.1)

wheren, §, and . are coefficients defined as the norms of certain abstracatpsr
u € Wy, andp is a harmonid:-form with discrete counterpapt, introduced to make the
abstract Hodge-Laplacian problem well-posed.

Casting this into the context of the deRham complex, we have

(W,d) = (L*A,d) and (V,d) = (HA,d).

Since we are interested here only in the case n, there are no harmonic-forms so
thatp = p;, = 0. Further,du = 0 sincedA™ = 0, whereby||u — ||, = ||u — G|y, =
||u — G|, 2. This eliminates the error terms jranddu, giving us the reduced estimate

|lu =t < c(E(w) +n[E(0) + E(do)] + (0 + p)E(do) + pE(Pyu)).
Crucially, this estimate can be reduced further when n. The derivation of[(A.ll) uses
the estimate
ld(u — )y < c(E(du) +n[E(do) + E(p)]

from [3, Theorem 2.11] which is unnecessary here since theside is always zero.
Since this is the only part of the derivation that requirestérmnE(do), we can drop
it, yielding

lu = tn|| > < c(E(u) +nE(0) + (6 + p) E(do) + pE(Pyu)). (A.2)

We now give bounds on each of the terms[in_{A.2). The coeffisiappearing in the
abstract estimates can be stated in terms of poweksimthe deRham context. These
appear inl[3, p. 312] as

n=0(h), §=O0h™E+))  andy = O(R™).

To bound the error terms, Arnold, Falk and Winther define simpoojection operators
7y L2A*(Q) — AF satisfying optimal convergence rates as stated precisel8, i
Theorem 5.9]. For instance, Af} is one of P, | A*(7;) or, if r > 1, P,A*(T;) then

Hw—wﬁwHLQAk(Q)Schs||w\HsAk(Q), forw e HA*(Q), 0<s<r+1.

These types of results bourdd(w) in terms of||w|| . ,x, Which is in turn bounded in
terms of||Au|| 4.5« DY the regularity hypothesi§ (7.7). Summarizing theseltgswe
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have
(u) < ch**? || Aul| .
(0) < ch**1[| Aul] .
E(do) < ch®||Aul| 4.
E(Pygu) < ch**2 || Aul
We can now provd (7.11) by collecting results and applyimgrtho [A.2), yielding
||P(t)||L2 S C(hs+2 + h(hs+1) + (hmin(27r+1) + hr+1)hs + hr+1hs+2) ||Au(t)||Hs

The greatest common factor from the above expressiafrishence this is the overall
order estimate that can be inferred, as was claimed.

IA

E
E

Hs
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