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ABSTRACT. In this note, we consider a viscous incompressible fluid in a finite domain
in both two and three dimensions, and examine the question of determining degrees of
freedom (projections, functionals, and nodes). Our particular interest is the case of non-
constant viscosity, representing either a fluid with viscosity that changes over time (such
as an oil that loses viscosity as it degrades), or a fluid with viscosity varying spatially
(as in the case of two-phase or multi-phase fluid models). Our goal is to apply the deter-
mining projection framework developed by the second author in previous work for weak
solutions to the Navier-Stokes equations, in order to establish bounds on the number of
determining functionals for this case, or equivalently, the dimension of a determining
set, based on the approximation properties of an underlying determining projection. The
results for the case of time-varying viscosity mirror those for weak solutions established
in earlier work for constant viscosity. The case of space-varying viscosity, treated within
a single-fluid Navier-Stokes model, is quite challenging to analyze, but we explore some
preliminary ideas for understanding this case.
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1. INTRODUCTION

In the following, we consider a viscous incompressible fluid in Ω ⊂ Rd, where Ω is an
open bounded domain with Lipschitz continuous boundary, and where d = 2 or d = 3.
Given the kinematic viscosity ν > 0, and the vector volume force function f(x, t) for
each x ∈ Ω and t ∈ (0,∞), the governing Navier-Stokes equations (NSE) for the fluid
velocity vector u = u(x, t) and the scalar pressure field p = p(x, t) are given by:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f in Ω× (0,∞), (1.1)

∇ · u = 0 in Ω× (0,∞). (1.2)
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2 B. FAKTOR AND M. HOLST

One is also provided with initial conditions u(0) = u0, as well as boundary conditions
on ∂Ω × (0,∞). Our goal in this article is to examine some questions about a concept
known as determining degrees of freedom in the flow described by (1.1)–(1.2). While the
classical setting involves the assumption of a constant bulk viscosity ν > 0, our particular
interest here is in the case of non-constant viscosity, representing either a fluid with
viscosity ν(t) that changes over time (such as an oil that loses viscosity as it degrades),
or a fluid with viscosity ν(x) varying spatially (as in the case of two-phase or multi-
phase fluid models), or both, represented by a viscosity ν(x, t) that changes over space
and time. We will assume that ν is everywhere positive as a function of time and/or
space, and will also assume that it a priori satisfies some uniform pointwise upper and
lower bounds, based on some underlying physical considerations. Although we do not
consider dependence of the viscosity on fluid velocity in this work, we note that there
has long been an active numerical simulation community that studies this case, and there
is now also growing interest in the analysis of the Navier-Stokes equations with variable
viscosity; cf. [20, 19, 7, 6, 18, 8].

The notion of determining modes for the NSE was first introduced in [10] as an attempt
to identify and estimate the number of degrees of freedom in turbulent flows; a thorough
discussion of the role of determining sets in turbulence theory can be found in [5]. This
core idea later led to the study of Inertial Manifolds [11]. Estimates of the number of de-
termining modes under various assumptions have been developed sine the early 1980’s;
some examples include [9, 26]. The notion of determining nodes and related concepts
were introduced in [12, 13], followed by determining volumes in [14, 24], and various
estimates of their number in different modeling scenarios can be found in e.g. [25, 26].
A unified framework for modes, nodes, and volumes was presented in [2, 3], including
the relationship to Inertial Manifolds. In [21, 23], we extended the results of [2, 3] to
the more general setting of weak solutions lying in a suitably defined divergence-free
solution space V (see §2 below). In particular, we showed that if a projection opera-
tor RN : V → VN ⊂ L2(Ω) into a subset VN with N = dim(VN) < ∞, satisfies an
approximation inequality for γ > 0 of the form,

‖u−RNu‖L2(Ω) 6 C1N
−γ‖u‖H1(Ω), (1.3)

then the operator RN is a determining projection for the system (1.1)–(1.2) in the sense
of Definition 1.1 below, provided N is large enough. Furthermore, in [21, 23], we also
derived explicit bounds on the dimension N which guarantees that RN is determining,
and we gave explicit constructions of determining projections for both smooth and weak
solutions using “rough” finite element quasi-interpolants. Our more recent article [22]
generalized these results further, to a more general family of regularized NSE and MHD
models that includes (1.1)–(1.2) as a special case. This area of research has continued
to generate substantial activity; a survey through 2009 appears in our earlier article [22],
and much more recent related activity includes [16, 34, 15] and the references therein,
among many other related works that are too numerous to list here.

Bounds on the number of determining modes, nodes, and volumes are usually phrased
in terms of a generalized Grashof number, defined for the two-dimensional NSE as:

Gr =
c2
ρF

ν2
=

F

λ1ν2
,

where λ1 is the smallest eigenvalue of the Stokes operator and cρ = 1/
√
λ1 is the related

(best) Poincaré constant. Here, F = lim supt→∞(
∫

Ω
|f(x, t)|2)1/2 if f ∈ L2(Ω) for al-

most every t, or F = lim supt→∞
√
λ1‖f‖H−1(Ω) if f ∈ H−1(Ω) for almost every t. Due
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to the failure of the Sobolev embedding H1 ↪→ C0 in dimensions 2 and 3, determining
node analysis, which was based on point-wise interpolants of the velocity, was limited
to H2-regular solutions, although it was understood that determining modes and volume
elements made sense under weaker conditions. To construct a general analysis frame-
work for the case of weak (e.g., H1-regular solutions) solutions to (1.1)–(1.2), in [23] we
introduced the notions of determining projections and determining functionals, which
we now define. (The standard spaces H , V , and V ′ for (1.1)–(1.2) are reviewed below
in §2.)

Definition 1.1 (Determining Projections for the NSE). Let f(t), g(t) ∈ V ′ be any two
forcing functions satisfying

lim
t→∞
‖f(t)− g(t)‖V ′ = 0, (1.4)

and let u, v ∈ V be corresponding weak solutions to (1.1)–(1.2). The projection operator
RN : V → VN ⊂ L2(Ω), N = dim(VN) < ∞, is called a determining projection for
weak solutions of the d-dimensional NSE if

lim
t→∞
‖RN(u(t)− v(t))‖L2(Ω) = 0, (1.5)

implies that
lim
t→∞
‖u(t)− v(t)‖H = 0. (1.6)

Given a basis {φi}Ni=1 for the finite-dimensional space VN , and a set of bounded linear
functionals {li}Ni=1 from V ′, a projection operator can be constructed as:

RNu =
N∑
i=1

li(u)φi. (1.7)

Condition (1.5) is then implied by:

lim
t→∞
|li(u(t)− v(t))| = 0, i = 1, . . . , N (1.8)

and in this case we refer to {li}Ni=1 as a set of determining functionals.

The analysis of whether RN or {li}Ni=1 are determining can be reduced to an analysis
of the approximation properties of RN . Note that in this construction, the basis {φi}Ni=1

need not span a subspace of the solution space V , so that the functions φi need not, for
example, be divergence-free. Note that Definition 1.1 encompasses each of the notions
of determining modes, nodes, and volumes by making particular choices for the sets of
functions {φi}Ni=1 and {li}Ni=1.

Outline. Preliminary material is presented in §2, including notation used for Lebesgue
and Sobolev spaces and norms, and some inequalities for bounding the terms appearing
in weak formulations of the NSE. In §3, we given an overview of the general frame-
work for constructing determining projections for the NSE for both two and three spatial
dimensions. To make use of the framework to establish bounds on the number of deter-
mining degrees of freedom for weak solutions, one must assume, or establish, a single
a priori bound for solutions to the equations, and also provide a projection operator that
satisfies a single approximation inequality. The remainder of the article then turns to the
necessary a priori bounds for non-constant viscosity. In §4, we derive some a priori
bounds for the case of time-varying viscosity that are needed to make use of the deter-
mining projection framework in §3. Section §5 looks briefly at a simplified model for
space-varying viscosity. We first develop a natural weak formulation for a simplified
model, where the viscosity is allowed to now be space-varying, but is also assumed to be
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explicitly given as data, and in particular, does not depend on the fluid velocity. Using
this simplified formulation, we then establish some basic a priori bounds for use with the
determining projection framework from §3. Some additional technical tools are summa-
rized in Appendix A, a priori estimates for the constant viscosity case are presented in
Appendix B.

2. PRELIMINARY MATERIAL

We briefly review some background material and notation, following the approach
taken in our earlier articles [21, 23, 22], which in turn followed the notational conventions
used in [4, 29, 32, 33]. To keep the discussion in this section as clear and concise as
possible, we have placed some technical results that are repeatedly used throughout the
paper in Appendix A.

Let Ω ⊂ Rd denote an open bounded set. The embedding and other standard results
we will need to rely on are known to hold for example if the domain Ω has a locally
Lipschitz boundary, denoted as Ω ∈ C0,1 (cf. [1]). For example, open bounded convex
sets Ω ⊂ Rd satisfy Ω ∈ C0,1 (Corollary 1.2.2.3 in [17]), so that convex polyhedral
domains are in C0,1. Let Hk(Ω) denote the usual Sobolev spaces W k,2(Ω). Employing
multi-index notation, the distributional partial derivative of order |α| is denoted Dα, so
that the (integer-order) norms and semi-norms in Hk(Ω) may be denoted

‖u‖2
Hk(Ω) =

k∑
j=0

|Ω|
j−k
d |u|2Hj(Ω), |u|2Hj(Ω) =

∑
|α|=j

‖Dαu‖L2(Ω), 0 6 j 6 k,

where |Ω| represents the measure of Ω. Fractional order Sobolev spaces and norms may
be defined for example through Fourier transform and extension theorems, or through
interpolation. A fundamentally important subspace is the k = 1 case of

Hk
0 (Ω) = {closure of C∞0 (Ω) in Hk(Ω)},

for which the Poincaré Inequality holds. (See Lemma A.2 in Appendix A.) The spaces
above extend naturally (cf. [32]) to product spaces of vector functions u = (u1, u2, . . . , ud),
which are denoted with the same letters but in bold-face; for example, Hk

0(Ω) =
(
Hk

0 (Ω)
)d.

The inner-products and norms in these product spaces are extended in the natural Eu-
clidean way; the convention here will be to subscript these extended vector norms the
same as the scalar case.

Define now the space V of divergence free C∞ vectors with compact support as

V = {φ ∈ C∞0 (Ω) | ∇ · φ = 0} .
Two subspaces of L2(Ω) and H1

0(Ω) are fundamental to the study of the NSE:

H = {closure of V in L2(Ω)}, V = {closure of V in H1
0(Ω)}.

We use a fairly standard notation (cf. [32]) for inner-products and norms in H and V is:

(u, v)H = (u, v)L2(Ω), ‖u‖H = ‖u‖L2(Ω), (2.1)

(u, v)V = [u, v]H1(Ω), ‖u‖V = |u|H1(Ω). (2.2)

Thanks to the Poincaré inequality, the H1-semi-inner-product [u, v]H1(Ω) is an inner-
product on V , and the H1-semi-norm |u|H1(Ω) is a norm on V .

The NSE (1.1)–(1.2) with homogeneous Dirichlet (no-slip) boundary conditions are
equivalent (cf. [32]) to the functional differential equation:

du

dt
+ νAu+B(u, u) = f, u(0) = u0, (2.3)
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where the Stokes operator A and bilinear map B are defined as

Au = −P∆u, B(u, v) = P [(u · ∇)v],

where the operator P is the Leray orthogonal projector, P : H1
0 → V and P : L2 → H ,

respectively. Weak formulations of the NSE will use the bilinear Dirichlet form a(·, ·)
and trilinear form b(·, ·, ·) as:

a(u, v) = (∇u,∇v)H , b(u, v, w) = (B(u, v), w)H = (P ((u · ∇)v), w)H .

Again, thanks to the Poincaré inequality, the form a(·, ·) is actually an inner-product on
V, and as noted above, the induced semi-norm | · |H1(Ω) = a(·, ·)1/2 is in fact a norm on V,
equivalent to the H1-norm. A priori bounds and various symmetries can be derived for
the trilinear form b(·, ·, ·); the results of this type that we will need are collected together
in Appendix A.

A general weak formulation of the NSE (1.1)–(1.2) can be written as (cf. [32, 33, 4]):

Definition 2.1 (Weak Solutions of the NSE). Given f ∈ L2([0, T ];V ′), a weak solution
of the NSE satisfies u ∈ L2([0, T ];V ) ∩ Cw([0, T ];H), du/dt ∈ L1

loc((0, T ];V ′), and

<
du

dt
, v > +νa(u, v) + b(u, u, v) =< f, v >, ∀v ∈ V, for almost every t, (2.4)

u(0) = u0. (2.5)

Here, the space Cw([0, T ];H) is the subspace of L∞([0, T ];H) of weakly continuous
functions, and < ·, · > denotes the duality pairing between V and V ′, where H is the
Riesz-identified pivot space in the Gelfand triple V ⊂ H = H ′ ⊂ V ′. Note that since
the Stokes operator can be uniquely extended to A : V → V ′, and since it can be shown
that B : V × V → V ′ (cf. [4, 33] for both results), the functional form (2.3) still makes
sense for weak solutions, and the total operator represents a mapping V → V ′.

Consider now two forcing functions f, g ∈ L2([0,∞];V ′) and corresponding weak
solutions u and v to (2.3) in either the two- or three-dimensional case. Subtracting equa-
tions (2.3) for u and v yields an equation for the difference function w = u− v, namely

dw

dt
+ νAw +B(u, u)−B(v, v) = f − g. (2.6)

Since the residual of (2.6) lies in the dual space V ′, for almost every t, we can consider
duality pairing of (2.6) with a function in V , and in particular with w ∈ V , which yields

<
dw

dt
, w > +νa(w,w) + b(u, u, w)− b(v, v, w) =< f − g, w > for almost every t.

Using the notation (2.1)–(2.2) going forward, it can be shown (cf. [32, 33]) that
1

2

d

dt
‖w‖2

H =<
dw

dt
, w > (2.7)

in the sense of distributions. Lemma A.4 in Appendix A establishes the symmetry rela-
tion b(w, u, w) = b(u, u, w)− b(v, v, w),∀u, v, w ∈ V , so the function w = u− v must
satisfy

1

2

d

dt
‖w‖H + ν‖w‖2

V + b(w, u, w) =< f − g, w > . (2.8)

Equation (2.8) will be the starting point for our analysis of determining projections below.
In the introduction, we highlighted an approximation property (1.3) that we will assume
that a determining projection satisfies, and we will give an explicit example of such a
projection below from [21, 23]. A useful consequence of property (1.3) that was noted
in [23] is the following.
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Lemma 2.2. Let RN : V → VN ⊂ L2(Ω), N = dim(VN) < ∞, satisfy the following
approximation inequality for some γ > 0:

‖u−RNu‖L2(Ω) 6 C1N
−γ‖u‖H1(Ω). (2.9)

Then the following inequalities hold:

‖u‖L2(Ω) 6 2C2
1N
−2γ‖u‖H1(Ω) + 2‖RNu‖2

L2(Ω), (2.10)

‖u‖H1(Ω) > [N2γ/(2C2
1)]‖u‖L2(Ω) − [N2γ/C2

1 ]‖RNu‖2
L2(Ω). (2.11)

Proof. We start with squaring (2.9),

‖u−RNu‖2
L2(Ω) = ‖u‖2

L2(Ω) − 2(u,RNu)L2(Ω) + ‖RNu‖2
L2(Ω) 6 C2

1N
−2γ‖u‖2

H1(Ω).

Rearranging the inequality we have

‖u‖2
L2(Ω) 6 C2

1N
−2γ‖u‖2

H1(Ω) − ‖RNu‖2
L2(Ω) + 2(u,RNu)L2(Ω)

6 C2
1N
−2γ‖u‖2

H1(Ω) − ‖RNu‖2
L2(Ω) + 2‖u‖L2(Ω)‖RNu‖L2(Ω)

= C2
1N
−2γ‖u‖2

H1(Ω) − ‖RNu‖2
L2(Ω) +

(
1√
2
‖u‖L2(Ω)

)(
2
√

2‖RNu‖L2(Ω)

)
6 C2

1N
−2γ‖u‖2

H1(Ω) − ‖RNu‖2
L2(Ω) + 1

2
‖u‖2

L2(Ω) + 2‖RNu‖2
L2(Ω),

which after multiplying through by 2 and simplifying gives (2.10). Rearrangement of the
terms in (2.10) then also gives (2.11) �

Finally, we note key tools for establishing a number of a priori estimates in Sections 4
and 5 will be both classical and generalized Gronwall inequalities (cf. [9, 24]) which we
include in Appendix A.

3. THE FRAMEWORK FOR CONSTRUCTING DETERMINING PROJECTIONS

We now give an overview of the general framework for constructing determining pro-
jections for the NSE for both two and three spatial dimensions, represented by Theo-
rem 3.1 below. To make use of the framework to establish bounds on the number of
determining degrees of freedom for weak solutions, one must assume, or establish, a
single a priori bound for solutions to the equations, (inequality (3.2) below) and also
provide a projection operator that satisfies a single approximation inequality (inequal-
ity (2.9) above).

Our earlier results in [21, 23] are included as particular instances of this framework,
and we include in Appendix B the well-known a priori bounds for constant viscosity in
the d = 2 and d = 3 cases that were used in [21, 23, 22]. The remainder of the article
then turns to the necessary a priori bounds for non-constant viscosity.

Theorem 3.1 (Existence of Determining Projections for the NSE on domains Ω ⊂ R2).
Let f(t), g(t) ∈ V ′ be any two forcing functions satisfying

lim
t→∞
‖f(t)− g(t)‖V ′ = 0,

and let u, v ∈ V be the corresponding weak solutions to (1.1)–(1.2) for d = 2. If there
exists a projection operator RN : V → VN ⊂ L2(Ω), N = dim(VN), satisfying

lim
t→∞
‖RN(u(t)− v(t))‖L2(Ω) = 0,

and satisfying for γ > 0 the approximation inequality

‖u−RNu‖L2(Ω) 6 C1N
−γ‖u‖H1(Ω),
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then
lim
t→∞
‖u(t)− v(t)‖H = 0

holds if N is such that

∞ > N > C

(
1

ν2
lim sup
t→∞

‖f(t)‖V ′
) 1

γ

,

where C is a constant independent of ν and f .

Proof. Staying with the notation (2.1)–(2.2), we begin with equation (2.8), employing
inequality (A.3) from Theorem A.3 in Appendix A, along with Cauchy-Schwarz and
Young’s inequalities, to yield

1

2

d

dt
‖w‖2

H + ν‖w‖2
V 6 ‖u‖V |w|H‖w‖V + ‖f − g‖V ′‖w‖V

6
1

ν
‖u‖2

V ‖w‖2
H +

1

ν
‖f − g‖2

V ′ +
ν

2
‖w‖2

V .

Equivalently, this is

d

dt
‖w‖2

H + ν‖w‖2
V −

2

ν
‖u‖2

V ‖w‖2
H 6

2

ν
‖f − g‖2

V ′ .

To bound the second term on the left from below, we employ the approximation inequal-
ity (2.11) from Lemma 2.2, which yields

d

dt
‖w‖2

H +

(
νN2γ

2C2
1

− 2

ν
‖u‖2

V

)
‖w‖2

H 6
2

ν
‖f − g‖2

V ′ +
νN2γ

C2
1

‖RNw‖2
L2(Ω).

This is a differential inequality of the form

d

dt
‖w‖2

H + α‖w‖2
H 6 β,

with obvious definition of α and β.
The Generalized Gronwall Lemma A.6 can now be applied. Recall that we have as-

sumed both ‖f − g‖V ′ → 0 and ‖RNw‖L2(Ω) → 0 as t → ∞. Since it is assumed that
u and v, and hence w, are in V , so that all other terms appearing in α and β remain
bounded, it must hold that

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0, lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ <∞.

It remains to verify that for some fixed T > 0,

lim sup
t→∞

1

T

∫ t+T

t

α(τ)dτ > 0.

This means we must verify the following inequality for some fixed T > 0:

N2γ >
2C2

1

ν

(
lim sup
t→∞

1

T

∫ t+T

t

2‖u‖2
V

ν
dτ

)
=

4C2
1

ν2
lim sup
t→∞

1

T

∫ t+T

t

‖u‖2
V dτ. (3.1)

The following a priori bound on any weak solution can be shown to hold (Lemma B.2
in Appendix B):

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
Hdτ 6

2

ν2
lim sup
t→∞

‖f(t)‖2
V ′ , (3.2)
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for any T > c2
ρ/ν > 0, where cρ is the best constant from the Poincaré inequality

(Lemma A.2 in Appendix A). Therefore, if

N2γ > 8C2
1

(
1

ν2
lim sup
t→∞

‖f(t)‖V ′
)2

>
4C2

1

ν2

(
2

ν2
lim sup
t→∞

‖f(t)‖2
V ′

)
, (3.3)

implying that (3.1) holds, then by the Gronwall Lemma A.6, it follows that

lim
t→∞
‖w(t)‖H = lim

t→∞
‖u(t)− v(t)‖H = 0.

�

Remark 3.2. Theorem 3.1 for the d = 2 case can be extended to d = 3 in several
ways, which we will not reproduce here. For example, in [23] a finite energy dissipation
assumption was used to extend Theorem 3.1 to d = 3 case; a different approach for the
d = 3 case is taken in [21].

Remark 3.3. In the case of constant viscosity, the required a priori estimate in (3.2)
in the proof of Theorem 3.1 is provided by Lemma B.2 in Appendix B). For the case of
time-varying viscosity, the required estimate is provided by Lemma C.1 or Lemma 4.2
in Section 4. For the case of our simple model of space-varying viscosity, the required
estimate is provided by Proposition 5.3 in Section 5.

4. A PRIORI ESTIMATES FOR TIME-VARYING VISCOSITY

In this section, we develop the a priori estimates needed to apply the determining
projection framework from §3 (Theorem 3.1) to the case of a time-varying viscosity
function ν = ν(t). The first is an L2 estimate that is used to prove the second and third
estimates, following the strategy for the case of constant viscosity (see Appendix B). The
second estimate is what is needed for use with with Theorem 3.1 in different contexts.
The time-varying viscosity is assumed to satisfy ν ∈ L1(0, T ) and obey the a priori
pointwise bounds:

0 < ν 6 ν(t) 6 ν < +∞, ∀t ∈ (0, T ), (4.1)

where

ν = inf
0<t<T

ν(t), ν = sup
0<t<T

ν(t). (4.2)

The first estimate gives a bound on the L2-norm of a weak solution to (1.1)–(1.2).

Lemma 4.1 (L2-Estimates, time-varying viscosity). Let ν ∈ L1(0, T ) and assume
that (4.1)–(4.2) hold. Let u ∈ L2((0, T );V ) be a weak solution of the Navier-Stokes
equations (1.1)–(1.2), with Lipschitz domain Ω ⊂ Rd, d = 2 or d = 3. It holds that

lim sup
t→∞

‖u(t)‖2
H 6

K̄

ν
lim sup
t→∞

‖f(t)‖2
V ′ (4.3)

where K = lim supt→∞
∫ t

0
e−φs(t))/c

2
ρds, φs(t) =

∫ t
s
ν(z)dz, and cρ is the Poincaré con-

stant.

Proof. Beginning with equation (2.4) for v = u, using (2.7), and noting that Theorem A.4
in Appendix A ensures b(u, u, u) = 0, we are left with

1

2

d

dt
‖u‖2

H + ν‖u‖2
V 6 ‖f‖V ′‖u‖V .
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Applying Young’s inequality leads to

d

dt
‖u‖2

H + 2ν‖u‖2
V 6

(√
2

ν
‖f‖V ′

)(√
2ν‖u‖V

)
6

1

ν
‖f‖2

V ′ + ν‖u‖2
V ,

which gives then

d

dt
‖u‖2

H + ν‖u‖2
V 6

1

ν
‖f‖2

V ′ . (4.4)

Employing the Poincaré inequality we end up with

d

dt
‖u‖2

H +
ν

c2
ρ

‖u‖2
H 6

1

ν
‖f‖2

V ′ .

This is a differential inequality for ‖u(t)‖2
H , and by Gronwall’s Inequality (Lemma A.5)

it holds that

‖u(t)‖2
H 6 ‖u(r)‖2

He
−

∫ t
r ν(τ)/c2ρdτ +

∫ t

r

1

ν(s)
‖f(s)‖2

V ′e
−

∫ t
s ν(τ)/c2ρdτds

= ‖u(r)‖2
He
−1/c2ρ

∫ t
s ν(τ)dτ +

∫ t

r

1

ν
e−1/c2ρ

∫ t
s ν(τ)dτ‖f(s)‖2

V ′ds

= ‖u(r)‖2
He
−φr(t)/c2ρ +

∫ t

r

1

ν
e−φs(t)/c

2
ρ‖f(s)‖2

V ′ds

6 ‖u(r)‖2
He
−φr(t)/c2ρ + sup

r6δ6t

1

ν(δ)
‖f(δ)‖2

V ′

∫ t

r

e−φs(t)/c
2
ρds

6 ‖u(r)‖2
He

φr(t)/c2ρ +
K

ν
sup
r6δ6t

‖f(δ)‖2
V ′ ,

where φc(t) =
∫ t
c
ν(z)dz and K =

∫ t
0
e−φs(t)/c

2
ρds, which must hold for every r ∈ (0, t].

Taking the lim supt→∞ of both sides of the inequality leaves (4.3) with obvious definition
of K̄. �

The following estimate gives the a bound on the time-averaged H1-semi-norm of a
weak solution to (1.1)–(1.2).

Lemma 4.2 (Time-averaged H1-Estimates, time-varying viscosity). Let
u ∈ L2((0, T );V ) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with
Lipschitz domain Ω ⊂ Rd, d = 2 or d = 3. Then for every T with T > c2

ρ/ν > 0 it holds
that

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

K̄ν3 + c2
ρ

ν2c2
ρ

lim sup
t→∞

‖f(t)‖2
V ′ (4.5)

where K̄ = lim supt→∞
∫ t

0
e−φs(t))/c

2
ρds, φs(t) =

∫ t
s
ν(z)dz, and cρ is the Poincaré con-

stant.

Proof. We begin with (4.4), which was

d

dt
‖u‖2

H + ν‖u‖2
V 6

1

ν
‖f‖2

V ′ .

Dividing by ν(t) and integrating from t to t+ T with T > 0 gives∫ t+T

t

1

ν(t)

d

dt
‖u(τ)‖2

Hdτ +

∫ t+T

t

‖u(τ)‖2
V dτ 6

∫ t+T

t

1

ν2(τ)
‖f(τ)‖2

V ′dτ.
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Integrating by parts the left-most term gives

1

ν(t+ T )
‖u(t+ T )‖2

H −
1

ν(t)
‖u(t)‖2

H +

∫ t+T

t

1

ν2(τ)
‖u(τ)‖2

Hdτ

+

∫ t+T

t

‖u(τ)‖2
V dτ ≤

∫ t+T

t

1

ν2(τ)
‖f(τ)‖2

V ′dτ

Dropping the positive first and third terms on the left and bounding the integral on the
right gives ∫ t+T

t

‖u(τ)‖2
V dτ 6

1

ν(t)
‖u(t)‖2

H + T sup
t6s6t+T

1

ν2(s)
‖f(s)‖2

V ′ .

Taking the lim supt→∞ of both sides, and dividing by T , gives

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

1

T
lim sup
t→∞

1

ν(t)
‖u(t)‖2

H + lim sup
t→∞

1

ν2(t)
‖f(t)‖2

V ′

6
1

νT
lim sup
t→∞

‖u(t)‖2
H +

1

ν2
lim sup
t→∞

‖f(t)‖2
V ′ .

Using the estimate from Lemma 4.1 and bounding the right-most term gives then

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

(
1

νT
· K
ν

+
1

ν2

)
lim sup
t→∞

‖f(t)‖2
V ′ .

Since T > c2
ρ/ν > 0, we end up with (4.5). �

Remark 4.3. If one takes ν(t) ≡ c, we find that K = c2
ρ/ν, recovering the bounds for

constant viscosity in both of the above estimates for time-varying viscosity (see Appen-
dix B).

5. WEAK FORMULATION AND ESTIMATES FOR SPACE-VARYING VISCOSITY

The remaining two sections of the notes are first steps to understanding the case of
space-varying viscosity, and are both preliminary and somewhat speculative. In this sec-
tion, we attempt to develop a weak formulation that is appropriate for viscosity that can
vary with the spatial location. In the next section, and we establish some preliminary a
priori bounds for the space-varying case. As was the case for the time-varying viscosity,
we will make some basic assumptions on the now space-varying viscosity:

0 < ν 6 ν(x) 6 ν < +∞, ∀x ∈ Ω, (5.1)

where

ν = inf
x∈Ω

ν(x), ν = sup
x∈Ω

ν(x). (5.2)

Let us consider the effects of a space-varying viscosity on equations (2.4) and (2.5).
Our interest here is to develop a weak formulation analogous to (2.4), but in which the
viscosity is allowed to be space-varying, with its gradient is not necessarily zero. Unlike
with the time-dependent case, the NSE will now require an extra term ∇ν · ∇u that
we will call the viscosity-velocity divergence term. If ∇ν 6= 0, then we must consider
νA to be the modified Stokes operator. We will assume that ν ∈ W , where W is an
appropriate Banach space that will be determined later, such that νA remains a bounded
linear map, where A is the stokes operator as in the earlier discussion. The term νa(u, η)
appearing in (2.4) now becomes a(νu, η). We note that νa(u, η) is bounded from below
by ν|u|2H1(Ω) and a(νu, η) is bounded from below by |νu|2H1(Ω).
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We begin with the NSE without consideration of viscosities λ and ν as constants. This
can be written as follows from [31]:

ρ
Du

Dt
= ρf −∇p+∇(λ∇ · u) +∇ · (2νD)

where Drs = 1
2
(∂ur
∂xs

+ ∂us
∂xr

) is the symmetric component of the gradient of velocity, often
referred to as the deformation tensor or rate-of-strain tensor, and Du

Dt
= ∂u

∂t
+u ·∇u is the

material derivative. The following hold:

∇ · (2νD) = ∇(ν∇ · u) +∇ · (ν∇u),

∇ · (ν∇u) = [ν, u] + ν∇2u,

where [ν, u]i = ∇ν · ∇ui (we will use ∇ν · ∇u to denote this term) , and (assuming the
fluid is incompressible)

∇ · u = 0.

With this, we can write

ρ
Du

Dt
= ρf −∇p+ ν∇2u+∇ν · ∇u (5.3)

u(0) = u0 (5.4)

Multiplying both sides by a test function η : R3 → R, integrating over an appropriate
domain Ω ⊂ R3, we find that∫

Ω

ρ
∂u

∂t
· η−

∫
Ω

ν∇2u · η +

∫
Ω

ρ(u · ∇)u · η +

∫
Ω

∇p · η−
∫

Ω

(∇ν · ∇u) · η =

∫
Ω

ρf · η

We reverse-integrate by parts the diffusive term µ∇2u · η and pressure term ∇p · η, and
use the Divergence Theorem:∫

Ω

∇p · η = −
∫

Ω

p∇ · η +

∫
∂Ω

pη · n̂

−
∫

Ω

∇2u · νη =

∫
Ω

∇u · ∇(νη)−
∫
∂Ω

ν
∂u

∂n̂
· η

=

∫
Ω

ν∇u · ∇η +

∫
Ω

∇u∇νη −
∫
∂Ω

∂u

∂n̂
· νη

Substituting back, the result is∫
Ω

ρ
∂u

∂t
· η +

∫
Ω

ν∇u · ∇η +

∫
Ω

∇u · ∇νη +

∫
Ω

ρ(u · ∇)u · η

−
∫

Ω

p∇ · η −
∫

Ω

(∇ν · ∇u) · η

=

∫
Ω

ρf · η +

∫
∂Ω

(ν
∂u

∂n̂
− pn̂) · η

Choosing the test function η so that η = 0 on ∂Ω removes the term involving the bound-
ary integral. The divergence constraint∇ · u = 0 is now

∫
Ω
q∇ · u = 0 ∀q ∈ Q = L2(Ω)

. With this, we can write the weak formulation of the NSE:
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Find u ∈ U = L2((0, T );V ) such that∫
Ω

ρ
∂u

∂t
· η +

∫
Ω

ν∇u · ∇η +

∫
Ω

∇u · ∇νη +

∫
Ω

ρ(u · ∇)u · η

−
∫

Ω

p∇ · η −
∫

Ω

(∇ν · ∇u) · η

=

∫
Ω

ρf · η, ∀η ∈ V = H1
0(Ω),∫

Ω

q∇ · u = 0, ∀q ∈ Q = L2(Ω).

Employing again the Leray orthogonal projector P to incorporate the divergence con-
straint into our functional framework, we have the final weak formulation that allows for
variable viscosity: Given f ∈ L2((0, T );H), if u ∈ L2((0, T );V ) satisfies(

du

dt
, η

)
+ a(νu, η) + b(u, u, η)− (a(ν, u), η) = (f, η), ∀η ∈ V, (5.5)

u(0) = u0 (5.6)

then u will be called a weak solution of the NSE with space-varying viscosity.
To go further with this analysis, we will need some type of a bound from below for

the rather inconvenient term a(νu, u), involving something more useful, such as some
multiple of ‖u‖H1(Ω). Under suitable regularity assumptions on ν and u, we have the
following.

Proposition 5.1. Let ν ∈ H1(Ω) satisfy (5.1)–(5.2), and let u ∈ V ∩H2(Ω). Then

a(νu, u) > ν|u|2H1(Ω).

Proof. We first use the definition of the bilinear form a(·, ·) to write:

a(νu, u) = (∇[νu],∇u)L2(Ω) =

∫
Ω

∇[νu] · ∇u =

∫
Ω

(∇ν)u∇u+

∫
Ω

ν(∇u)2

>
∫

Ω

(∇ν)u∇u+ ν

∫
Ω

(∇u)2

=

∫
Ω

(∇ν)u∇u+ ν|u|2H1(Ω).

We are done if we can show that
∫

Ω
(∇ν)u∇u > 0. To this end, we integrate by parts to

find that ∫
Ω

(∇ν)u∇u =

∫
∂Ω

νu∇u−
∫

Ω

νu∇2u−
∫

Ω

ν(∇u)2

>
∫
∂Ω

νu∇u−
∫

Ω

νu∇2u− ν̄|u|2H1(Ω).

Note that
∫
∂Ω
νu∇u vanishes due to the compact support of functions in V . It remains

to show that
∫

Ω
νu∇2u + ν̄|u|2H1(Ω) 6 0; showing

∫
Ω
u∇2u + |u|2H1(Ω) 6 0 will suffice.

Integrating by parts the integral term gives∫
Ω

u∇2u =

∫
∂Ω

u∇u−
∫

Ω

(∇u)2 = −|u|2H1(Ω).

Thus,
∫

Ω
u∇2u+ |u|2H1(Ω) 6 0, which is what we were after. �
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We now establish some basic preliminary a priori bounds for the weak formulation of
the simplified space-varying viscosity NSE model.

The first estimate gives a bound on the L2-norm of a weak solution to (1.1)–(1.2).

Proposition 5.2 (L2-Estimates, space-varying viscosity). Let u ∈ L2((0, T );V ) be a
weak solution of the Navier-Stokes equations (5.3)–(5.4), with Lipschitz domain Ω ⊂ Rd,
d = 2 or d = 3, and assume that Proposition 5.1 holds. Then it holds that

lim sup
t→∞

‖u(t)‖2
H 6

c2
ρ

2ν2
lim sup
t→∞

‖f(t)‖2
V ′ +

c2
ρ

2ν2
lim sup
t→∞

‖∇ν · ∇u(t)‖2
W , (5.7)

where cρ is the constant from the Poincaré inequality (Lemma A.2 in Appendix A), and
ν = infΩ ν > 0.

Proof. Beginning with (5.5) for η = u, using (2.7), noting that Theorem A.4 guarantees
b(u, u, u) = 0, and under the assumption that Proposition 5.1 holds, we can start with

1

2

d

dt
‖u‖2

H + ν|u|2V 6 ‖f‖V ′|u|V + ‖∇ν · ∇u‖W |u|V .

Applying Young’s Inequality leads to

d

dt
‖u‖2

H + 2ν|u|2V 6 (
√
ν‖f‖V ′)

(
1
√
ν
|u|V

)
+ (
√
ν‖∇ν · ∇u‖W )

(
1
√
ν
|u|V

)
6
ν

2
‖f‖2

V ′ +
1

2ν
|u|2V +

ν

2
‖∇ν · ∇u‖2

W +
1

2ν
|u|2V ,

which gives then

d

dt
‖u‖2

H + ν|u|2V 6
1

2ν
‖f‖2

V ′ +
1

2ν
‖∇ν · ∇u‖2

W . (5.8)

Employing the Poincaré inequality, we we end up with

d

dt
‖u‖2

H +
ν

c2
ρ

‖u‖2
H 6

1

2ν
‖f‖2

V ′ +
1

2ν
‖∇ν · ∇u‖2

W .

This is a differential inequality for ‖u(t)‖2
H , and by Gronwall’s Inequality (Lemma A.5)

it holds that

‖u(t)‖2
H 6 ‖u(r)‖2

He
−

∫ t
r ν/c

2
ρdτ +

∫ t

r

1

2ν

(
‖f(s)‖2

V ′‖+ ‖∇ν · ∇u(s)‖2
W

)
e−

∫ t
r ν/c

2
ρdτds

= ‖u(r)‖2
He
−ν(t−r)/c2ρ +

∫ t

r

1

2ν
e−ν(t−s)/c2ρ

(
‖f(s)‖2

V ′‖+ ‖∇ν · ∇u(s)‖2
W

)
ds

6 ‖u(r)‖2
He
−ν(t−r)/c2ρ

+
1

2ν
sup
r6δ6t

(
‖f(δ)‖2

V ′‖+ ‖∇ν · ∇u(δ)‖2
W

) ∫ t

r

eν(t−s)/c2ρds

= ‖u(r)‖2
He
−ν(t−r)/c2ρ

+
1

2ν
sup
r6δ6s

(
‖f(δ)‖2

V ′‖+ ‖∇ν · ∇u(δ)‖2
W

) cρ
ν2

(
e0 − e−ν(t−r)/c2ρ

)
,

or more simply

‖u(t)‖2
H 6 ‖u(r)‖2

He
ν(t−r)/c2ρ +

c2
ρ

2ν2
sup
r6δ6t

(
‖f(δ)‖2

V ′‖+ ‖∇ν · ∇u(δ)‖2
W

)
,
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which must hold for every r ∈ (0, t]. Taking the lim supt→∞ of both sides of the inequal-
ity leaves (5.7) �

The second estimate gives a bound on the time-averaged H1-semi-norm of a weak
solution to (5.3)–(5.4).

Proposition 5.3 (Time-averaged H1-Estimates, space-varying viscosity). Let u ∈
L2((0, T );V ) be a weak solution of the Navier-Stokes equations (5.3)–(5.4), with Lip-
schitz domain Ω ⊂ Rd, d = 2 or d = 3, and assume that Proposition 5.1 holds. Then for
every T with T > c2

ρ/ν > 0 it holds that

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2V dτ 6
1

ν2

(
lim sup
t→∞

‖f(t)‖2
V ′ + lim sup

t→∞
‖∇ν · ∇u‖2

W

)
, (5.9)

where cρ is the constant from the Poincaré inequality (Lemma A.2 in Appendix A), and
ν = infΩ ν > 0.

Proof. We can begin with (5.8) from the proof of Proposition 5.2, which was

d

dt
‖u‖2

H + ν|u|2V 6
1

2ν
‖f‖2

V ′ +
1

2ν
‖∇ν · ∇u‖2

W .

Integrating from t to t+ t with T > 0 gives

‖u(t+T )‖2
H−‖u(t)‖2

H+ν

∫ t+T

t

|u(τ)|2V dτ 6
1

2ν

∫ t+T

t

‖f(τ)‖2
V ′+

1

2ν

∫ t+T

t

‖∇ν·∇u‖2
W

Dropping the positive first term on the left and bounding the integral on the right gives∫ t+T

t

|u(τ)|2V 6
1

ν
‖u(t)‖2

H +
T

2ν2
sup

t6s6t+T
‖f(s)‖2

V ′ +
T

2ν2
sup

t6s6t+T
‖∇ν · ∇u‖2

W .

Taking the lim supt→∞ of both sides, and dividing by T , gives

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2V 6
1

νT
lim sup
t→∞

‖u(t)‖2
H +

1

2ν2
lim sup
t→∞

‖f(t)‖2
V ′

+
1

2ν2
lim sup
t→∞

‖∇ν · ∇u(t)‖2
W

Using the estimate from Proposition 5.2 gives then

lim sup
t→∞

1

T

∫ t+T

t

|u(τ)|2V 6
(

1

νT
·
c2
ρ

2ν2
+

1

2ν2

)
(

lim sup
t→∞

‖f(t)‖2
V ′ + lim sup

t→∞
‖∇ν · ∇u(t)‖2

W

)
Since T > c2

ρ/ν, we end up with (5.9) �

Remark 5.4. To use these estimates with the determining projection framework of §3
(Theorem 3.1), it remains to determine appropriate function spaces for ν so that terms
involving ν and ∇ν are well-defined and compabible with both the weak formulation,
the theory for weak solutions u, and any estimates we established above for determining
projections. Although ν spatially varies, it is taken here to be given as data, and one can
reverse-engineer any assumptions needed for e.g. ∇ν · ∇u, or other terms involving ν,
to be well-defined. Allowing for a more complicated class of variable viscosity, such as
viscosity that varies with the velocity, would greatly complicate this discussion.
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APPENDIX A. SOME TECHNICAL TOOLS

Here is a collection of some standard technical tools that we use in the paper.
Young’s inequality is used repeatedly throughout.

Lemma A.1 (Young’s Inequality). For a, b > 0, 1 < p, q <∞, 1/p+ 1/q = 1, it holds
that

ab 6
ap

p
+
bq

q
. (A.1)

Proof. See for example [27]. �

We use the Poincaré Inequality in several places; in our setting, it takes the following
form for both the classical Sobolev spaceH1

0 (Ω) and the space of vector-valued functions
H1

0(Ω).

Lemma A.2 (Poincaré Inequality). If Ω is bounded, then it holds that

‖u‖L2(Ω) 6 cρ(Ω)|u|H1(Ω), ∀u ∈ H1
0 (Ω). (A.2)

Proof. For example see [30]. �

In this paper, we use the notation H and V for L2(Ω) and H1(Ω), respectively.
The following a priori bounds can be derived for the trilinear form b(·, ·, ·).

Lemma A.3 (Trilinear Form Bounds). If Ω ⊂ Rd, then the trilinear form b(u, v, w) is
bounded on V × V × V as follows, where d = 2 or d = 3 is the spatial dimension:

d = 2 : |b(u, v, w)| 6 21/2‖u‖1/2

L2(Ω)|u|
1/2

H1(Ω)|v|H1(Ω)‖w‖1/2

L2(Ω)|w|
1/2

H1(Ω), (A.3)

d = 3 : |b(u, v, w)| 6 2‖u‖1/4

L2(Ω)|u|
3/4

H1(Ω)|v|H1(Ω)‖w‖1/4

L2(Ω)|w|
3/4

H1(Ω). (A.4)

Moreover, from Hölder inequalities we have for d = 2 or d = 3:

|b(v, u, v)| 6 ‖∇u‖L∞(Ω)‖v‖2
L2(Ω). (A.5)

Proof. See [28, 32, 33, 4]. �

The following useful symmetries can be shown for the trilinear form.

Lemma A.4 (Trilinear Form Symmetries). If Ω ⊂ Rd, then the trilinear form b(u, v, w)
on V × V × V has the following symmetries:

b(u, v, v) = 0,

b(u, v, w) = −b(u,w, v),

b(u− v, u, u− v) = b(u, u, u− v)− b(v, v, u− v).

Proof. See [32, 33, 4]. �

The classical Gronwall inequality is as follows.

Lemma A.5 (Gronwall Inequality). If α(t) and β(t) are real-valued and non-negative
on (0,∞), and if the function y(t) satisfies the following differential inequality:

y′(t) + α(t)y(t) 6 β(t), a.e. on (0,∞),

then y(t) is bounded on (0,∞) by

y(t) 6 y(0)e−
∫ t
0 α(τ)dτ +

∫ t

0

β(s)e−
∫ t
0 α(τ)dτds.

Proof. See for example [27]. �
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The following generalized Gronwall inequality is used repeatedly throughout Sec-
tions 4 and 5 to obtain a priori estimates.

Lemma A.6 (Generalized Gronwall Lemma). Let T > 0 be fixed, and let α(t) and
β(t) be locally integrable and real-valued on (0,∞), satisfying:

lim inf
t→∞

1

T

∫ t+T

t

α(τ)dτ = m > 0, lim sup
t→∞

1

T

∫ t+T

t

α−(τ)dτ = M <∞,

lim
t→∞

1

T

∫ t+T

t

β+(τ)dτ = 0,

where α− = max{−α, 0} and β+ = max{β, 0}. If y(t) is an absolutely continuous
non-negative function on (0,∞), and y(t) satisfies the following differential inequality:

y′(t) + α(t)y(t) 6 β(t), a.e. on (0,∞),

then limt→∞ y(t) = 0.

Proof. See [9, 24]. �

APPENDIX B. A PRIORI ESTIMATES FOR CONSTANT VISCOSITY

Variations of the following two a priori bounds on solutions to the NSE can be found
throughout the literature on the Navier-Stokes equations; cf. [32, 33, 4]. For example,
Lemmas B.1 and B.2 below (both from [21]) are simple generalizations to f ∈ V ′ of the
bounds in e.g. [4], presented there for f ∈ H .

The first estimate gives a bound on the L2-norm of a weak solution to (1.1)–(1.2).

Lemma B.1 (L2-Estimates, constant viscosity). Let u ∈ L2((0, T );V ) be a weak solu-
tion of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain Ω ⊂ Rd, d = 2 or
d = 3. It holds that

lim sup
t→∞

‖u(t)‖2
H 6

c2
ρ

ν2
lim sup
t→∞

‖f(t)‖2
V ′ , (B.1)

where cρ is the constant from the Poincare inequality.

Proof. Beginning with equation (2.4) for v = u, using (2.7), and noting that Theorem A.4
in Appendix A ensures b(u, u, u) = 0, we are left with

1

2

d

dt
‖u‖2

H + ν‖u‖2
V 6 ‖f‖V ′‖u‖V .

Applying Young’s inequality leads to

d

dt
‖u‖2

H + 2ν‖u‖2
V 6

(√
2

ν
‖f‖V ′

)(√
2ν‖u‖V

)
6

1

ν
‖f‖2

V ′ + ν‖u‖2
V ,

which gives then

d

dt
‖u‖2

H + ν‖u‖2
V 6

1

ν
‖f‖2

V ′ . (B.2)

Employing the Poincaré inequality we end up with

d

dt
‖u‖2

H +
ν

c2
ρ

‖u‖2
H 6

1

ν
‖f‖2

V ′ .
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This is a differential inequality for ‖u(t)‖2
H , and by Gronwall’s Inequality (Lemma A.5)

it holds that

‖u(t)‖2
H 6 ‖u(r)‖2

He
−

∫ t
r ν/c

2
ρdτ +

∫ t

r

1

ν
‖f(s)‖2

V ′e
−

∫ t
s ν/c

2
ρdτds

= ‖u(r)‖2
He
−ν(t−r)/c2ρ +

∫ t

r

1

ν
e−ν(t−s)/c2ρ‖f(s)‖2

V ′ds

6 ‖u(r)‖2
He
−ν(t−r)/c2ρ +

1

ν
sup
r6δ6t

‖f(δ)‖2
V ′

∫ t

r

e−ν(t−s)/c2ρds

= ‖u(r)‖2
He
−ν(t−r)/c2ρ +

1

ν
sup
r6δ6t

‖f(δ)‖2
V ′
c2
ρ

ν

(
e0 − e−ν(t−r)/c2ρ

)
,

or more simply

‖u(t)‖2
H 6 ‖u(r)‖2

He
−ν(t−r)/c2ρ +

c2
ρ

ν2
sup
r6δ6t

‖f(δ)‖2
V ′ ,

which must hold for every r ∈ (0, t]. Taking the lim supt→∞ of both sides of the inequal-
ity leaves (B.1). �

The second estimate gives a bound on the time-averaged H1-semi-norm of a weak
solution to (1.1)–(1.2).

Lemma B.2 (Time-averagedH1-Estimates, constant viscosity). Let u ∈ L2((0, T );V )
be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with Lipschitz domain
Ω ⊂ Rd, d = 2 or d = 3. Then for every T with T > c2

ρ/ν > 0 it holds that

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

2

ν2
lim sup
t→∞

‖f(t)‖2
V ′ , (B.3)

where cρ is the constant from the Poincare inequality.

Proof. We begin with (B.2), which was

d

dt
‖u‖2

H + ν‖u‖2
V 6

1

ν
‖f‖2

V ′ .

Integrating from t to t+ T with T > 0 gives

‖u(t+ T )‖2
H − ‖u(t)‖2

H + ν

∫ t+T

t

‖u(τ)‖2
V dτ 6

1

ν

∫ t+T

t

‖f(τ)‖2
V ′dτ.

Dropping the positive first term on the left and bounding the integral on the right gives∫ t+T

t

‖u(τ)‖2
V dτ 6

1

ν
‖u(t)‖2

H +
T

ν2
sup

t6s6t+T
‖f(s)‖2

V ′ .

Taking the lim supt→∞ of both sides, and dividing by T , gives

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

1

νT
lim sup
t→∞

‖u(t)‖2
H +

1

ν2
lim sup
t→∞

‖f(t)‖2
V ′ .

Using the estimate from Lemma B.1 gives then

lim sup
t→∞

1

T

∫ t+T

t

‖u(τ)‖2
V dτ 6

(
c2
ρ

ν3T
+

1

ν2

)
lim sup
t→∞

‖f(t)‖2
V ′ .

Since T > c2
ρ/ν > 0, we end up with (B.3). �
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APPENDIX C. ADDITIONAL A PRIORI ESTIMATES FOR TIME-VARYING VISCOSITY

The following estimate gives a bound on the time-averaged product of viscosity and
the H1-semi-norm of the weak solution to (1.1)–(1.2).

Lemma C.1 (Time-averaged H1-Estimates, time-varying viscosity). Let
u ∈ L2((0, T );V ) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with
Lipschitz domain Ω ⊂ Rd, d = 2 or d = 3. Then for every T with T > c2

ρ/ν > 0 it holds
that

lim sup
t→∞

1

T

∫ t+T

t

ν(τ)‖u(τ)‖2
V dτ 6

K̄ν + c2
ρ

νc2
ρ

lim sup
t→∞

‖f(t)‖2
V ′ (C.1)

where K̄ = lim supt→∞
∫ t

0
e−φs(t))/c

2
ρds, φs(t) =

∫ t
s
ν(z)dz, and cρ is the Poincaré con-

stant.

Proof. We begin with (4.4), which was

d

dt
‖u‖2

H + ν‖u‖2
V 6

1

ν
‖f‖2

V ′ .

Integrating from t to t+ T with T > 0 gives

‖u(t+ T )‖2
H − ‖u(t)‖2

H +

∫ t+T

t

ν(τ)‖u(τ)‖2
V dτ 6

∫ t+T

t

1

ν(τ)
‖f(τ)‖2

V ′dτ.

Dropping the positive first term on the left and bounding the integral on the right gives∫ t+T

t

ν(τ)‖u(τ)‖2
V dτ 6 ‖u(t)‖2

H + T sup
t6s6t+T

1

ν(s)
‖f(s)‖2

V ′ .

Taking the lim supt→∞ of both sides, and dividing by T , gives

lim sup
t→∞

1

T

∫ t+T

t

ν(τ)‖u(τ)‖2
V dτ 6

1

T
lim sup
t→∞

‖u(t)‖2
H + lim sup

t→∞

1

ν(t)
‖f(t)‖2

V ′ .

Using the estimate from Lemma 4.1 and bounding the right-most term gives then

lim sup
t→∞

1

T

∫ t+T

t

ν(τ)‖u(τ)‖2
V dτ 6

(
K

νT
+

1

ν

)
lim sup
t→∞

‖f(t)‖2
V ′ .

Since T > c2
ρ/ν > 0, we end up with (C.1). �

The following estimate is a variation of the other time-varying estimates from Lemmas
4.2 and C.1 and gives yet another slightly different bound on the time-averagedH1-semi-
norm of a weak solution to 1.1–1.2.

Proposition C.2 (Time-averaged H1-Estimates, time-varying viscosity). Let
u ∈ L2((0, T );V ) be a weak solution of the Navier-Stokes equations (1.1)–(1.2), with
Lipschitz domain Ω ⊂ Rd, d = 2 or d = 3. Then for every T with T > cρ/ν > 0 it holds
that

lim sup
t→∞

1

T

∫ t+T

t

1

ν(τ)
|u(τ)|2H1(Ω)dτ 6 C lim sup

t→∞
‖f(t)‖2

L2(Ω)

where C is dependent only on K̄ = lim supt→∞
∫ t

0
e−φs(t))/c

2
ρds, φs(t) =

∫ t
s
ν(z)dz, and

cρ the Poincaré constant.

Proof. �



DETERMINING PROJECTIONS FOR NON-HOMOGENEOUS INCOMPRESSIBLE FLUIDS 19

REFERENCES

[1] R. A. Adams. Sobolev Spaces. Academic Press, San Diego, CA, 1978.
[2] B. Cockburn, D. A. Jones, and E. S. Titi. Degrés de liberté déterminants pour équations nonlinéaires
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1969.
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