
Efficient Mesh Optimization Schemes based on Optimal
Delaunay Triangulations

Long Chena,∗, Michael Holstb,1

aDepartment of Mathematics, University of California at Irvine, Irvine, CA 92697
Email: chenlong@math.uci.edu

bDepartment of Mathematics, University of California at San Diego, La Jolla, CA 92093.
Email: mholst@math.ucsd.edu

Abstract

In this paper, several mesh optimization schemes based on optimal Delaunay triangula-
tions are developed. High-quality meshes are obtained by minimizing the interpolation
error in the weighted L1 norm. Our schemes are divided into classes of local and global
schemes. For local schemes, several old and new schemes, known as mesh smoothing,
are derived from our approach. For global schemes, a graph Laplacian is used in a
modified Newton iteration to speed up the local approach. Our work provides a math-
ematical foundation for a number of mesh smoothing schemes often used in practice,
and leads to a new global mesh optimization scheme. Numerical experiments indicate
that our methods can produce well-shaped triangulations in a robust and efficient way.

Keywords: mesh smoothing, mesh optimization, mesh generation, Delaunay
triangulation, Optimal Delaunay triangulation

1. Introduction

We shall develop fast and efficient mesh optimization schemes based on Optimal
Delaunay Triangulations (ODTs) [1, 2, 3]. Let ρ be a given density function defined on
a convex domain Ω ⊂ Rn, i.e. ρ > 0,

∫
Ω

ρdx < ∞. Let T a simplicial triangulation
of Ω, and let u(x) = ‖x‖2 and uI the piecewise linear nodal interpolation of u based
on T . We associate the following weighted L1 norm of the interpolation error as an
energy to the mesh T

E(T) =
∫

Ω

|(uI − u)(x)|ρ(x)dx.

Let TN denote the set of all triangulations with at most N vertices. Our mesh optimiza-
tion schemes will be derived as iterative methods for solving the following optimization

∗Corresponding Author. Telephone: (949)8246595; Fax: (949)8247993. The first author is supported by
NSF Grant DMS-0811272, and in part by NIH Grant P50GM76516 and R01GM75309.

1The second author was supported in part by NSF Awards 0715146 and 0915220, and DTRA Award
HDTRA-09-1-0036.

Preprint submitted to Computer Methods in Applied Mechanics and Engineering November 2, 2010

problem:
inf

T ∈TN

E(T). (1.1)

Minimizer of (1.1) will be called Optimal Delaunay Triangulations.
Mesh optimization by minimizing some energy, also known as the variational mesh-

ing method, has been studied by many authors; see, e.g. [4, 5, 6, 7] and references
therein. There are many energies proposed in the literature for this purpose, includ-
ing the widely used harmonic energy in moving mesh methods [8, 9, 10], summation
of weighted edge lengths [11, 12], and the distortion energy used in the approach of
Centroid Vornoni Tessellation (CVT) [13, 14]. The advantages of our approach are:

1. Mathematical analysis is provided to show minimizers of (1.1) will try to equidis-
tribute the mesh size according to the density function as well as preserve the
shape regularity.

2. Optimization of the connectivity of vertices is naturally included in our optimiza-
tion problem.

3. Efficient algorithms, including local and global mesh optimization schemes, are
developed for the optimization problem (1.1).

To solve the optimization problem (1.1), we decompose it into two sub-problems.
Let us denote a triangulation TN by a pair (p, t), where p ∈ ΩN represents the set of
N vertices and t represents the connectivity of vertices, i.e. how vertices are connected
to form simplices, and rewrite the energy as E(p, t). We solve the following two sub-
problems iteratively:

1. Fix the location of vertices and solve mint E(p, t);
2. Fix the connectivity of vertices and solve minp E(p, t).

We stress from the outset that both problems mint E(p, t) and minp E(p, t) do not
need to be solved exactly. We are not interested in the optimal mesh but rather meshes
with good geometric quality (including the density of vertices and shape regularity of
simplices). We shall show that the mesh quality will be considerably improved by
performing just a few steps of the iteration methods developed in this paper.

Let us first consider the optimization problem mint E(p, t). That is, for a fixed
vertex set p, find the optimal connectivity of the vertices (in the sense of minimizing
the weighted interpolation error E(T).) In [2, 3], we proved that when Ω is con-
vex, the minimizer is a Delaunay triangulation of the point set p. Thus, the problem
mint E(p, t) is simplified to:

Given a set of vertices p, construct a Delaunay triangulation of p. (1.2)

The problem (1.2) is well studied in the literature [15, 16]. We can classify methods
proposed for (1.2) as one of

• Local method: edge or face flipping;

• Global method: lifting method (QHULL).

2

The focus of this paper is on the optimization problem minp E(p, t), namely opti-
mizing the placement of vertices when the connectivity is fixed. We shall also discuss
two types of methods:

• Local mesh smoothing;

• Global mesh optimization.

Local relaxation methods are commonly used methods for mesh improvement. For
example, Gauss-Seidel-type relaxation methods consider a local optimization problem
by moving only one vertex at a time. The vertex is moved inside the domain bounded
by its surrounding simplicies while keeping the same connectivity to improve geomet-
ric mesh quality such as angles or aspect ratios. This is known as mesh smoothing
in the meshing community [17, 18, 19, 1, 20, 21, 22, 23, 13]. With several formu-
las for the interpolation error, we shall derive a suitable set of local mesh smoothing
schemes among which the most popular scheme, Laplacian smoothing, will be derived
as a special case.

Local methods, however, can only capture the high frequency in the associated
energy, and thus results in slow convergence when the number of grid points becomes
larger; see [12, 24] for related discussions and numerical examples. To overcome
slow convergence of local mesh smoothing schemes, some sophisticated multigrid-like
methods, notably full approximation scheme (FAS), have been recently proposed [25,
26, 27, 28, 29]. To use multigrid-type methods, one has to generate and maintain a
nested mesh hierarchy which leads to complex implementations with large memory
requirements. The interpolation of point locations from the coarse grid to the fine grid
can fold triangulations, and addressing this carefully leads to additional implementation
complexity. See [27, 25] for related discussions.

We shall derive a global mesh optimization method by using another technique of
multilevel methods: multilevel preconditioners. One iteration step of our method reads
as

pk+1 = pk −A−1∇E(pk, t), (1.3)

where A is a graph Laplacian matrix with nice properties: it is symmetric and positive
definite (SPD) and also a diagonally dominant M-matrix. Note that if we replace A by
∇2E(pn) in (1.3), it becomes Newton’s method. Our choice of A can be thought as a
preconditioner of the Hessian matrix. Comparing with Newton’s method, our choice
of A has several advantages

• A is easy to compute, while ∇2E is relatively complicated;

• A−1 can be computed efficiently using algebraic multigrid methods (AMG)
since A is an SPD and M -matrix, while ∇2E may not be;

• A is a good approximation of ∇2E.

We should clarify that our methods are designed for mesh optimization, not mesh
generation. Therefore, we only move interior nodes and assume all boundary nodes are
well placed to capture the geometry of the domain. We note that many mesh generators
become slow when the number of vertices becomes large. Therefore, we call mesh

3

generators only to generate a very coarse mesh, and then apply our mesh optimization
methods to the subsequently refined meshes. By doing so, we can generate high-quality
meshes with large numbers of elements in an efficient way.

The concept of Optimal Delaunay Triangulation (ODT) was introduced in [2] and
some local mesh smoothing schemes were reported in a conference paper [1] and sum-
marized in the first author’s Ph. D thesis [3]. Application of ODT to other problems
can be found in [30, 31, 32]. In this paper, we include some results from [1, 3] for the
completeness and more importantly, present several new improvements listed below:

• several improved smoothing schemes for non-uniform density functions;

• a neat remedy for possible degeneration of elements near the boundary;

• a global mesh optimization scheme;

• some 3D numerical examples.

The rest of this paper is organized as follows. In section 2, we review the theory on
Delaunay and Optimal Delaunay Triangulations. In section 3, we go over algorithms
for the construction of Delaunay triangulation. In section 4, we give several formu-
lae on the energy and its derivatives. Based on these formulae, we present several
optimization schemes including local mesh smoothing and a global modified Newton
method. In section 5, we provide numerical examples to show the efficiency of our
methods. In the last section, we conclude and discuss future work.

2. Delaunay and Optimal Delaunay Triangulations

Delaunay triangulation (DT) is the most commonly used unstructured triangulation
in many applications. It is often defined as the dual of the Voronoi diagram [33]. In this
section we use an equivalent definition [34, 35] which involves only the triangulation
itself.

Let V be a finite set of points in Rn. The convex hull of V , denoted by CH(V), is
the smallest convex set which contains these points.

Definition 2.1. A Delaunay triangulation of V is a triangulation of CH(V) so that it
satisfies empty sphere condition: there are no points of V inside the circumsphere of
any simplex in the triangulation.

There are many characterizations of Delaunay triangulations. In two dimensions.
Sibson [36] observed that Delaunay triangulations maximize the minimum angle of
any triangle. Lambert [37] showed that Delaunay triangulations maximize the arith-
metic mean of the radius of inscribed circles of the triangles. Rippa [38] showed that
Delaunay triangulations minimize the Dirichlet energy, i.e. the integral of the squared
gradients. D’Azevedo and Simpson [39] showed that in two dimensions, Delaunay
triangulations minimizes the maximum containing radius (the radius of the smallest
sphere containing the simplex). Rajan [40] generalized this characterization to higher
dimensions. Chen and Xu [2] characterize Delaunay triangulations from a function
approximation point of view. We shall briefly survey the approach by Chen and Xu [2]
in the following.

4

Definition 2.2. Let Ω ⊂ Rn be a bounded domain, T a triangulation of Ω, and uI,T
be the piecewise linear and globally continuous nodal interpolation of a given function
u ∈ C(Ω̄) based on the triangulation T . Let 1 ≤ q ≤ ∞. We define an error-based
mesh quality Q(T , u, q) as

Q(T , u, q) = ‖u− uI,T ‖Lp(Ω) =
(∫

Ω

|u(x)− uI,T (x)|q dx
)1/q

.

By choosing a special function u(x) = ‖x‖2, we can characterize the Delaunay tri-
angulation as an optimal triangulation which achieves the best error-based mesh qual-
ity. The proof of the following result can be found in [2].

Theorem 2.3. For a finite point set V , we let Ω = CH(V) and denote TV all possible
triangulations of Ω by using the points in V . Then

Q(DT, ‖x‖2, q) = min
T ∈TV

Q(T , ‖x‖2, q), ∀ 1 ≤ q ≤ ∞.

This type of result was first proved in R2 by D’Azevedo and Simpson [39] for q = ∞
and Rippa [41] for 1 ≤ q < ∞. Rajan proved the case q = ∞ in multiple dimen-
sions [40]. Theorem 2.3 is a generalization of their work to general Lq norms in multi-
ple dimensions. A similar result on the optimality of Delaunay triangulation in higher
dimensions was also obtained by Melissaratos in a technical report [42].

Remark 2.4. Indeed we proved in [2] that uI,DT (x) ≤ uI,T (x) for all x ∈ Ω. Since
u is convex (downwards), we have point-wise optimality

|uI,DT (x)− u(x)| ≤ |uI,T (x)− u(x)|.

Therefore Theorem 2.3 is trivially generalized to the general density ρ since ρdx de-
fines a measure.

We have shown that Delaunay triangulations optimize the connectivity when the
vertices of triangulations are fixed. Now we free the locations of vertices to further
optimize the triangulation.

Definition 2.5. Let TN denote the set of all triangulations with at most N vertices.
Given a continuous function u on Ω̄ and 1 ≤ q ≤ ∞, a triangulation ODT ∈ TN is
optimal if

Q(ODT, u, q) = inf
T ∈TN

Q(T , u, q).

We call it an Optimal Delaunay Triangulation (ODT) with respect to u and q.

The following theorem concerns the existence of optimal Delaunay triangulations and
can be found in [2, 3]. In general, ODTs are not unique.

Theorem 2.6. Given 1 ≤ q ≤ ∞, an integer N , and a convex function u, there exists
an optimal Delaunay triangulation ODT ∈ TN with respect to u and q.

5

Graded and anisotropic meshes are important to keep the geometry features and
achieve better approximation in numerical solutions of partial differential equations.
In [2], we generalize the concept of DT and ODT to general convex functions u. The
density and the shape of the mesh will be controlled by the metric defined by the
Hessian of u. In this paper, we keep the simplest quadratic form u(x) = ‖x‖2 and
use the density function ρ to control the gradient of the mesh density.

In the following, we give an error analysis for the interpolation error u−uI to show
that ODT will aim to produce shape regular and uniform meshes. For simplicity, we
only present the case q = 1, i.e. the L1 norm of the interpolation error. Similar results
hold for general q ∈ [1,∞]; see [3, 31].

Suppose τ is a d-simplex with vertices xi, i = 1, · · · , d + 1. Let τi(x) denote the
simplex formed by vertices xi, i = 1, · · · , d + 1 with xi being replaced by x. We
define λi(x) = |τi(x)|/|τ | as the barycentric coordinates of x with respect to xi for
i = 1, · · · , d + 1. By the definition of barycentric coordinates, it is easy to verify that

uI(x) =
d+1∑
i=1

λi(x)u(xi), x =
d+1∑
i=1

λi(x)xi, and
d+1∑
i=1

λi(x) = 1. (2.1)

Lemma 2.7. For a simplex τ with vertices (x1,x2, · · · ,xd+1), let tij = ‖xi − xj‖2
be the squared edge length. For u(x) = ‖x‖2, we have∫

τ

(uI − u)(x)dx =
|τ |

(d + 1)(d + 2)

d+1∑
i,j=1,j>i

tij . (2.2)

Proof. By Taylor expansion,

u(xi) = u(x) +∇u(x)(xi − x) + (x− xi)t(x− xi). (2.3)

Here we use the fact that ∇2u = 2I . Multiplying both sides of (2.3) by λi and sum-
ming together, we obtain

d+1∑
i=1

λiu(xi) = u(x)
d+1∑
i=1

λi +∇u(x)
d+1∑
i=1

λi(xi − x) +
d+1∑
i=1

λi(x− xi)t(x− xi).

Using the property (2.1), we simplify it as

uI(x)− u(x) =
d+1∑

i,j=1

λiλj(xj − xi)t(x− xi). (2.4)

We switch the indices i, j to get

uI(x)− u(x) =
d+1∑

i,j=1

λiλj(xi − xj)t(x− xj). (2.5)

Summing (2.4) and (2.5), we obtain

uI(x)− u(x) =
1
2

d+1∑
i,j=1

λi(x)λj(x)t2ij =
d+1∑

i,j=1,j>i

λi(x)λj(x)t2ij .

6

Using the integral formula∫
τ

λi(x)λj(x)dx =
1

(d + 1)(d + 2)
|τ |,

we get the desired result. �

Theorem 2.8. For u(x) = ‖x‖2, there exists a constant Cd depending only on the
dimension of space such that

Q(TN , u, 1) ≥ Cd

∑
τ∈T

|τ |1+2/d ≥ CdN
−2/d|Ω|

d+2
d . (2.6)

Furthermore

1. the first inequality becomes equality if and only if each simplex is equilateral;
2. the second inequality becomes equality if and only if all simplex are equal vol-

umes.

Therefore, minimizing Q(T , u, 1) will attempt to equidistribute volumes and edge lengths
of all simplices in the triangulation.

Proof. First, by the error formula (2.2), we have, for u(x) = ‖x‖2,

Q(T , u, 1) =
∑
τ∈T

Q(τ, u, 1) =
1

(d + 1)(d + 2)

∑
τ∈T

|τ |
d+1∑

i,j=1,j>i

tij ≥ Cd

∑
τ∈T

|τ |1+2/d.

Here we use a geometric inequality [43]

d+1∑
i,j=1,j>i

tij ≥ Cd|τ |2/d. (2.7)

Equality holds if and only if τ is an equilateral simplex.
We then use the Hölder inequality

|Ω| =
∑
τ∈T

|τ | ≤

(∑
τ∈T

|τ |1+2/d

) d
d+2
(∑

τ∈T
1

) 2
d+2

=

(∑
τ∈T

|τ |1+2/d

) d
d+2

N
2

d+2 ,

to obtain ∑
τ∈T

|τ |1+2/d ≥ N−2/d|Ω|
d+2

d .

The equality holds if and only if τ = constant = N−1|Ω|. �
For non-uniform density, we give a simple (not rigorous) analysis by assuming ρ is

approximated by a piecewise constant function. We refer readers to [32] and [3] for the
proof of general cases. For a given function ρ ∈ Lr(Ω), r > 0, we define the weighted
volume

|τ |ρr =
∫

τ

ρr dx.

7

When ρ is constant on the simplex τ , as in Lemma 2.7, we obtain the formula∫
τ

(uI − u)ρ dx = Cd

d+1∑
i,j=1,j>i

tij |τ |ρ.

Again use (2.7), we then get∫
τ

(uI − u)ρ dx ≥ Cd|τ |1+2/dρ = |τ |1+2/d
ρr with r =

d

d + 2
. (2.8)

The inequality holds if and only if all edge lengths are equal. Summing over all ele-
ments and applying Hölder inequality, we have∫

Ω

(uI − u)ρ dx =
∑
τ∈T

∫
τ

(uI − u)ρ dx ≥
∑
τ∈T

|τ |1+2/d
ρr ≥ N−2/d‖ρ‖Lr .

For general density, we can approximate it by a piecewise constant function and the
remainder is of high order o(N−2/d). We conclude that for general density, an optimal
triangulation will be shape regular and equidistribute the weighted volume |τ |ρr , which
means when ρ is big, the volume |τ | should be small. Therefore, non-uniform density
consequently leads to a shape-regular and graded mesh.

3. Algorithms for Delaunay Triangulations

In this section, we survey two popular algorithms, one local and another global, for
the construction of a Delaunay triangulation for a given set of points.

3.1. Local method: edge flipping
One local method to construct a Delaunay triangulation is known as edge flip-

ping [36, 33] in two dimensions or edge/face flipping [21, 33] in three dimensions.
Here we describe a two dimensional edge flipping algorithm following [33] and dis-
cuss its convergence behavior from the function approximation point of view.

Given a 2D triangulation T , we denote by E the edge set of T and ne the number
of edges in E . We say an edge ab ∈ E is locally Delaunay if (i) it belongs to only one
triangle or (ii) it belongs to two triangles, abc and abd, and d lies outside the circum-
circle of abc and c lies outside the circumcircle of abd. Notice that if ab is not locally
Delaunay then the union of the two triangles sharing ab, i.e., the quadrilateral acbd is
convex. It is fairly easy to see, then, the other diagonal cd will be locally Delaunay. The
flipping algorithm replaces ab by cd, through updating the set of triangles and edges.

We prove the flipping algorithm will terminate from the function approximation
point of view. Different choices of diagonals will lead to different linear interpolations.
The interpolation error will be the difference between the graph of the linear interpola-
tion and the paraboloid. From Fig. 1, we see that Q(T1, u, p) > Q(T2, u, p) where T2

is obtained via the flipping algorithm from T1. Thus local edge flipping algorithm will
result a sequence of triangulations Tk, k = 1, 2, . . . m in TV with

Q(T1, u, p) > Q(T2, u, p) > . . . > Q(Tm, u, p) > 0.

8

Algorithm: Edge flipping for 2D triangulations
while exist non locally Delaunay edge do

find a non locally Delaunay edge ab;
find the two triangles sharing ab;
flip diagonals of the convex quadrilateral formed by these two triangles.

end

v1

v2

v3

v′
1

v′
2v′

3

v4

v′
4

T1
v1

v2

v3

v′
1

v′
2

v′
3

v4

v′
4

T2

Figure 1: Different triangulations using different diagonals and the graph of corresponding linear interpo-
lations. The triangulation T2 is obtained via the flipping algorithm from T1, and the interpolation error is
decreased after the flipping.

Since #TV is fixed, the algorithm will stop. In 2D, it will end with a Delaunay trian-
gulation.

Similar algorithms of swapping faces, can be defined in 3D. However in 3D it
could get stuck in cases where we would like to flip but we cannot. Extra effort is
needed to resolve this non-transformable case, for example, by changing their local
neighborhood [21, 33].

The running time of the edge flipping algorithm is O(N2) and the worst case is
possible (that is, flipping all edges in the initial triangulation to get a Delaunay trian-
gulation). To speed up the algorithm, one can interleave flipping edges with adding
points randomly. With a directed acyclic graph data structure, the running time of the
randomized incremental algorithm can be reduced to O(N log N) [44, 33].

3.2. Global method: the lifting trick

We now give a geometric explanation of Theorem 2.3 and present a global method
for constructing Delaunay triangulations.

For a given point set V in Rd, we have a set of points V ′ in Rd+1 by lifting point
in V to the paraboloid xn+1 = ‖x‖2. The convex hull CH(V ′) can be divided into
lower and upper parts; a facet belongs to the lower convex hull if it is supported by a
hyperplane that separates V ′ from (0,−∞). We may assume the facets of the lower
convex hull are simplices since if n+2 more vertices forms a facet, we can choose any

9

triangulation of this facet. The projection of a lower convex hull of V ′ in Rd+1 is a DT
of V in Rn.

This is known as the lifting trick in the mesh generation community [45], and a
widely used algorithm to construct Delaunay triangulations based on this approach is
by using QHULL [16] to construct the convex hull. We classify it as a global method
by assuming there is a fast algorithm to construct the convex hull of a points set. We
present the algorithm below and refer to Fig. 2 for an illustration.

Algorithm:The Lifting Method
1. lift points in Rd to the graph of the paraboloid in Rd+1;
2. construct convex hull of lifted points in Rd+1;
3. project the lower convex hull back to Rd.

(a) lift points to the paraboloid (b) construct a convex hull in R3 (c) project back to R2

Figure 2: Three steps of the lifting method to construct a Delaunay triangulation

As was the case earlier, the interpretation of the lifting trick from the function
approximation point of view is more transparent. We construct a linear interpolant
based on the lifted points on the paraboloid. The interpolation error in L1 norm will be
the volume of the region bounded between the graph of the paraboloid and the linear
interpolation. Since the paraboloid is convex, the graph of the best linear interpolation
will be the lower convex hull of these lifted points.

The global method is expensive when the goal is to improve the mesh quality, and
not to construct Delaunay triangulation. For example, in 2D, the computational cost
of Qhull is like O(N log N) and in 3D it could be O(N2), where N is the number
of vertices. We can call it when the location of mesh points are changed dramatically.
After the location of points is stabilized, we use the local flipping method to improve
the connectivity.

4. Algorithms for Optimal Delaunay Triangulation

In this section, we present iterative methods for the construction of optimal De-
launay triangulation. We also classify our methods into local and global classes. The

10

local methods are relatively easy to implement but slow to converge for large number
of vertices. The global method can significantly speed up the convergence rate and
may save computation cost (provided one can invert a symmetric and positive definite
matrix efficiently.)

Since now the connectivity of vertices is fixed, we simplify our energy notation as
E(p), p = (x1, · · · ,xN),xi ∈ Rd, where x1, · · · ,xN are all interior nodes. Here we
assume the boundary nodes b = (xN+1, · · · ,xN+Nb),xi ∈ Rd are fixed and give a
good discretization of ∂Ω. When we refer to each vertex, we use xi and when we treat
all vertices as a set of points, we use a single letter p. We denote

∂iE :=
∂E

∂xi
:= (

∂E

∂x1
i

, · · · ,
∂E

∂xd
i

),

and ∇E = (∂1E, · · · , ∂NE)T . Note that ∂iE is a vector in Rd and thus ∇E is a
vector field defined on each vertex. The Hessian∇2E in general should be a dN ×dN
matrix. But we will always approximate it by one N ×N matrix for all d components.

4.1. Overview of Iterative Methods

Let pk be the position of interior vertices in the kth-step. A general iteration method
for solving minp E(p) can be formulated as

pk+1 = pk −B−1∇E(pk), (4.1)

where −∇E(pk) is the direction in which the energy decreased in the most rapid rate,
and B is an invertible matrix. We unify different methods as different choices of B.

4.1.1. Richardson-type method
A simple choice B−1 = α leads to the steepest descent method. The parameter α

is called step size and can be found by the line search. This method can be also read as
the forward Euler method with time step α for solving the gradient flow

∂p

∂t
= −∇E(p).

4.1.2. Jacobi-type method
We use the diagonal information of the Hessian matrix, i.e. B−1 = α diag(∇2E(pk))−1.

We write out the component-wise iteration in the following subroutine.

function pk+1 = JacobiMethod(pk)

Compute ∇E(pk) and ∂iiE(pk).
for i=1:N

xk+1
i = xk

i − α∂iiE(pk)−1∂iE(pk);
end

The step size α can be determined by the line search. For the simplicity and efficiency,
a fixed step size α ∈ (0, 1] is usually used.

11

4.1.3. Gauss-Seidel type method
Another local relaxation scheme is to move one point xi at a time. Most mesh

smoothing schemes are in this form.

function pk+1 = GaussSeidelMethod(pk)
for i=1:N

Compute ∂iE(pk) and ∂iiE(pk);

xk+1
i = xk

i − ∂iiE(pk)−1∂iE(pk);
end

The difference of JacobiMethod and GaussSeidelMethod (G-S) is that in
the G-S method, ∇E and ∇2E are updated once a vertex is moved. When the energy
is locally convex considering as a function of one vertex only, which is the case for our
energy E, then the energy will be strictly decrease in the G-S method and thus ensure
the converges of the iteration. In this sense, G-S is superior than Jacobi method. On
the other hand, Jacobi method is computationally efficient since no update of∇2E and
E inside the for loop and the method is embarrassingly parallel.

4.1.4. Newton’s method
We choose B = ∇2E(pk) as the Hessian matrix of the energy to get the well

known Newton’s method. If ∇2E(pk) is symmetric positive definite (SPD), it is well
known that Newton’s method will converge with a quadratic rate provided the initial
guess is sufficiently close to the minimizer.

Richardson, Jacobi, and Gauss-Seidel type methods are classified as local methods
since when updating xi only information of the neighboring vertices of xi is used
(through the computation of ∂iE). Newton’s method is global since the inversion of
the Hessian matrix will bring the local effect ∂iE for xi to all vertices.

Local methods are frequently used in variational mesh adaptation for several rea-
sons. First, it is easy to implement. Second, convergence can be easily ensured. For
Gauss-Seidel method, the energy is decreasing if it is locally convex. For Richardson-
and Jacobi-type methods, if we choose the step size α small enough, one can easily
prove the corresponding mapping T : pk 7→ pk+1 is a contraction and thus the scheme
converges.

The drawback of local methods is the slow convergence. From a multi-scale point
of view, local smoothing cannot carry the information in the coarse level to the fine
level efficiently. The global method, such as Newton’s method, is very desirable when
the energy is globally convex (as a function of all vertices) and the initial guess is
sufficiently close to a minimizer, due to the quadratic convergent rate. However, when
the energy is non-convex and the initial guess is not close, the convergence conditions
are very restrictive. Another complexity of Newton’s method is the computation of
the Hessian matrix and its inverse. In many cases, both the computation of ∇2E and
(∇2E)−1 are not easy or efficient. Later in the paper we propose a global method
which strikes a good balance between the local and global methods.

12

4.2. Local mesh smoothing schemes
We first give formulas for E,∇E and the diagonal of ∇2E. We then modify the

energy slightly to get approximated formula for ∇E. We derive formulas for uniform
density and adapt to the non-uniform and piecewise constant density through numerical
quadrature. Based on these formulas, we derive several local mesh smoothing schemes
and develop techniques to address issues near the boundary.

4.2.1. ODT smoothing
Recall that p is the set of all interior nodes of a triangulation. For a vertex xi ∈ p,

let ωi be the star of xi, i.e., the set of all simplices containing xi, and ϕi the hat function
of xi, i.e. a piecewise linear function with value one at xi and zero at other vertices.
Let | · | denote the Lebesgue measure in Rd.

Lemma 4.1. For uniform density ρ = 1,

E(p) =
1

d + 1

N∑
i=1

x2
i |ωi| −

∫
Ω

‖x‖2dx. (4.2)

Proof. Since u(x) = x2 is convex, |uI − u| = uI − u =
∑N

i=1 u(xi)ϕi − u. Then∫
Ω

|u− uI | dx =
∫

Ω

uI dx−
∫

Ω

‖x‖2 dx =
N∑

i=1

u(xi)
∫

Ω

ϕi dx−
∫

Ω

‖x‖2dx.

The desired results then follows from the integral formula for ϕi. �
We then compute the gradient ∇E using this formula.

Lemma 4.2. Let xi be an interior node. For uniform density ρ = 1, one has

∂iE(xi) =
1

d + 1

[
2xi|ωi|+

∑
τj∈ωi

∑
xk∈τj ,xk 6=xi

‖xk‖2∇xi |τj |
]
, (4.3)

∂iE(xi) =
1

d + 1

∑
τj∈ωi

∑
xk∈τj ,xk 6=xi

‖xk − xi‖2∇xi |τj |, (4.4)

∂iE(xi) =
2

d + 1

∑
τj∈ωi

(xi − cj)|τj |, (4.5)

where cj is the center of the circum-sphere of τj .

Proof. When xi is moved inside ωi, the domain formed by ωi does not change. But it
will change the star ωj for other vertices xj connected with xi. We thus need to include
the constant ∇xi |τj | in an appropriate way. Formula (4.3) immediately follows from
the differentiation of formula (4.2) and the fact |ωi| does not depend on xi.

To prove (4.4), we note that the interpolation error depends only on the quadratic
part of the approximated function. More specifically, if we change the function u(x) =
x2 to v(x) := (x−xi)2, we have u−uI = v−vI . The second formula is then obtained
by using v in the first formula.

13

To prove (4.5), we need some preparation. First we give more explanation on the
constant ∇xi

|τj |. Let us use x to denote the free node xi. When x is moving around
in ωi, the volume |τj(x)| is a linear function of x. Let F j be the face opposite to xi

in τj . Then obviously |τj(x)| = 0 for x ∈ F j , i.e. F j is part of the zero level set of
linear function |τj(x)|. Therefore the vector

fF j :=
∑

xk∈τj ,xk 6=xi

‖xk‖2∇xi |τj |

is a normal vector of F j pointing to xi with magnitude depending on F j only. Phys-
ically fF j can be interpreted as a force acting on xi from the “wall” F j . When F j is
an interior face sharing by two simplices, the vector −fF j will be the force acting on
the other vertex opposite to F j .

Then we derive formulae for the circumcenter of a simplex. Since |ωi| =
∑

j∈ωi
|τj |

does not depend on xi, we have
∑

j∈ωi
∇xi |τj | = ∇xi |ωi| = 0. By (4.4), if the neigh-

boring vertices xk lie on the same sphere with center xi and radius R, then

∂iE(xi) =
d

d + 1
R2
∑
j∈ωi

∇xi |τj | = 0,

and consequently the optimal location is the circumcenter. In particular, when the star
is a simplex, the minimal point is the circumcenter of this simplex. By (4.3), we thus
obtain a formula for the circumcenter in terms of the force fF :

2|τj |cj = −
∑
F∈τj

fF . (4.6)

We now add artificial forces fF and −fF for each interior face F of the star ωi.
Then the second term in (4.3) can be written as∑

F∈∂ωi

fF =
∑

τj∈ωi

∑
F∈τj

fF = −2
∑

τj∈ωi

|τj |cj .

Formula (4.5) is then obtained by writing the first term 2xi|ωi| = 2
∑

τj∈ωi
|τj |xi. �

Formula (4.3) is derived in Chen [1] and (4.4) can be found in Chen [3]. The
simplified version (4.5) is firstly derived in Alliez et. al. [24]. From (4.5), we conclude
that for an ODT, ∇E = 0, and therefore

xi =
∑
j∈ωi

|τj |
|ωi|

cj . (4.7)

Namely for an ODT, each interior vertex xi is a weighted centroid of circumcenters of
simplices in the star of xi.

Next we compute the second derivative of the energy.

Lemma 4.3. For uniform density ρ = 1, one has

∂iiE(xi) =
2

d + 1
|ωi|. (4.8)

14

Proof. Note that both ∇xi |τj | and |ωi| do not depends on xi. Then (4.8) comes from
the differentiation of (4.3) with respect to xi. �

The error formula (4.2) and the gradient formula (4.3) can be easily generalized to
convex functions u by simply replacing ‖xk‖2 by u(xk) and 2xi by ∇u(xi); see [2].
This generalization is useful when the convex function is available, which might be the
case for the numerical solution of partial differential equations (PDEs). When applying
to mesh optimization, it is hard to find such a convex function. Therefore we switch to
a density-based generalization.

Lemma 4.4. For general density ρ,

E(p) =
N∑

i=1

x2
i |ωi|ρϕi −

∫
Ω

‖x‖2ρ(x)dx, (4.9)

∂iE(xi) ≈ 2xi|ωi|ρϕi
+
∑

τj∈ωi

∑
xk∈τj ,xk 6=xi

‖xk‖2∇xi |τj |ρϕi , (4.10)

∂iE(xi) ≈
2

d + 2

∑
τj∈ωi

(xi − cj)ρτj
|τj |. (4.11)

Proof. The formula (4.9) is proved as before. The formula (4.10) only gives an ap-
proximation to ∂iE. The term

∫
ωi

ρ∂iϕi dx is skipped. The practical formula (4.11) is
obtained by one point quadrature |τj |ρϕi

≈ ρτj
|τj |/(d + 1) and the same argument as

before. �
Formula (4.11) will be the one we used in this paper to compute ∇E for general

density. It retains its nice geometric meaning by only changing of the weight of cir-
cumcenters. Meanwhile it is a good approximation of the true gradient when ρ varies
smoothly (more precisely |∇ρ| ≤ C). The formula (4.10) is presented for possibly
high-order approximations of the gradient. For example, we could use ρI to replace ρ
and compute the weighted volume using middle points of edges (which is exact in two
dimensions). Suppose xi, xj , and xk are three vertices of the triangle τj ; we could
then use quadrature

|τj |ρϕi ≈
|τ |
6

(2ρ(xi) + ρ(xj) + ρ(xk))

and consequently a better approximation of the gradient

∇xi |τj |ρϕi ≈
1
3

[ρ(xi)∇xi |τj |+∇ρ(xi)|τj |] .

Thanks to these formulas, we now derive a local mesh smoothing scheme by con-
sidering the minimization of the energy as a function of xi only. Namely we fix all
other vertices and consider the optimization problem

min
xi

E(xi). (4.12)

We use (4.11) to get a ODT based scheme

xnew
i = (1− α)xi + α

∑
τj∈ωi

|τj |ρτ

|ωi|ρτ

cj . (4.13)

15

When α = 1, the geometric explanation is first computing circumcenters of simplices
in the star, and then move the point to the weighted center of the polytope formed by
these circumcenters. The step size α is incorporated to avoid the folding of simplices as
explained below. The initial setting is α = 1. If moving xi to xnew

i results a non-valid
triangulation (some simplices could have negative signed volume), we then reduce α
by half. That is we use α = 1, 1/2, 1/4, · · · as a simple line search strategy.

When near the boundary, the ODT smoothing could result squashed/stretched el-
ements. For example, in Fig. 3 (a), since the neighboring vertices lie on a circle, the
weighted average of circumcenters is the center of this circle, which results a stretched
triangle near the boundary. If this edge is inside the domain, the stretched triangle
will disappear after one or two edge flipping. But for a boundary edge, flipping is not
possible.

The reason for this problem near boundary is that the object function in our min-
imization problem is the interpolation error which is not directly related to geometric
mesh quality such as aspect ratio. It is well known that optimization of location of
vertices may result well distributed points which is not necessarily lead to meshes with
good aspect ratio [46]. Obtuse triangles are examples in 2D and similar examples in
3D are known as silvers . Optimization of topology, i.e., the connectivity of points is
necessary to further improve the aspect ratio, which is possible for interior parts but
may fail for boundary parts.

Ideally we should change the object function near the boundary. Commonly used
object function include: minimum/maximum angle [22, 23, 47], aspect ratio [48, 17],
or distortion metrics [19].

(a) circumenters (b) modified centers

Figure 3: For boundary elements, we use barycenters not circumcenters. The bold line is the boundary of
the domain. The square dots are centers of triangles. In (a), since the neighboring vertices lie on a circle, the
weighted average of centers is the center of this circle, which results a stretched triangle near the boundary.
In (b), we change the circumcenter of the triangle near the boundary to the barycenter. Then the weighted
average of modified centers, the triangle dot, is moved away from the boundary.

To keep the simple form and geometric interpretation of our mesh smoothing scheme,
we simply modify the center for the squashed element close to the boundary following
the rule:

16

For boundary elements, use the barycenter.

Here boundary elements are defined as simplexes containing at least one node on the
boundary. For the implementation, one can record a logical array isBdNode to indi-
cate which node is on the boundary and boundary elements can be easily found by

% 2D
isBdElem = isBdNode(t(:,1)) | isBdNode(t(:,2)) | isBdNode(t(:,3));
% 3D
isBdElem = isBdNode(t(:,1)) | isBdNode(t(:,2)) | ...

isBdNode(t(:,3)) | isBdNode(t(:,4));

With such a modification, the polytope formed by the centers is still inside the
domain. When stretched elements appear near the boundary, their volume is small.
Therefore, the contribution of the corresponding center to the new location is not major,
as the other centers will attract the points back; see Fig. 3 (b).

4.2.2. CPT smoothing
We present another formula for our energy. The proof is given in [1]. For com-

pleteness, we include it here.

Lemma 4.5. For uniform density ρ = 1, one has

E(p) =
1

d + 1

N∑
i=1

∫
ωi

‖x− xi‖2dx. (4.14)

Proof. Recall that {λi(x)}d+1
i=1 is the barycenter coordinate of x in the simplex τ . Then

x =
∑d+1

i=1 λixi and

d+1∑
k=1

∫
τ

‖x− xk‖2 =
d+1∑

i,j,k=1

∫
τ

λiλj(xi − xk)t(xj − xk)

=
|τ |

(d + 2)(d + 1)

d+1∑
i,j,k=1

(xi − xk)t(xj − xk)

=
d + 1

2
|τ |

(d + 2)(d + 1)

d+1∑
i,j=1

‖xi − xj‖2

= (d + 1)
∫

τ

(uI − u)(x)dx.

The last equality follows from Lemma 2.7. The third one is obtained by summing up
the following basic identity for i, j, k = 1, · · · , d + 1:

‖xi − xj‖2 = ‖xi − xk‖2 + ‖xj − xk‖2 − 2(xi − xk)t(xj − xk).

By rearranging the summation from element-wise to vertex-wise, we obtain∫
Ω

(uI − u)(x)dx =
1

d + 1

NT∑
i=1

d+1∑
k=1

∫
τi

‖x− xτ,k‖2 =
1

d + 1

N∑
i=1

∫
ωi

‖x− xi‖2.

17

Here NT is the number of elements in the triangulation. �
The formula (4.14) motives a slightly different energy for general density function

ρ defined as:

Ẽ(p) =
1

d + 1

N∑
i=1

∫
ωi

‖x− xi‖2ρ(x)dx. (4.15)

When ρ is piecewise constant on each simplex, E = Ẽ in views of Lemma 4.5. Other-
wise, Ẽ can be thought as a high-order perturbation of E.

We shall derive an approximation of the derivative ∂iẼ by considering the follow-
ing 1D optimization problem:

min
xi

Ẽi, where Ẽi =
1

d + 1

∫
ωi

‖x− xi‖2ρ(x) dx. (4.16)

Since ∪iωi is an overlapping decomposition of Ω, the change of ωi will affect other
patches and thus the overall energy will not necessarily be reduced by solving this local
optimization problem. Nevertheless it will result an efficient local mesh smoothing
scheme.

Again since the domain formed by ωi does not depends on xi, differentiation of
the energy Ẽi gives the following result.

Lemma 4.6. For general density ρ, one has

∂iẼi =
2

d + 1

[
xi

∫
ωi

ρ(x)dx−
∫

ωi

xρ(x) dx
]

(4.17)

and therefore the minimizer of (4.16) is the centroid of ωi with respect to the density
ρ(x), namely

x∗i =

∫
ωi

xρ(x)dx∫
ωi

ρ(x)dx
. (4.18)

Definition 4.7. For a triangulation T , if for any vertex xi ∈ T , xi is also the centroid
of its patch ωi with respect to the density ρ, we call it Centroidal Patch Triangulation
(CPT) with respect to the density ρ.

Remark 4.8. This mimics the definition of Centroidal Voronoi Tessellations in [14]
for which the generator and centroid of each Voronoi region coincide. For various
application of CVT to the mesh generation and numerical solution of PDEs, we re-
fer to [14, 13, 49, 50, 51, 52, 53]. Mesh smoothing based on CVT in Du and Gun-
zburger [13] is the mostly closely related work.

We use one point numerical quadrature to evaluate the integral, i.e.
∫

τ
xρi(x) dx ≈

bτρτ |τ | where bτ is the barycenter of τ and ρτ = ρ(bτ). The quadrature is exact for
uniform density ρ = 1. We then get an approximation of the gradient as

∂iE(xi) ≈ ∂iẼi =
2

d + 1

∑
τj∈ωi

(xi − bj)|τj |ρτj
, (4.19)

18

where bj is the barycenter of simplex τj . Note that ∂iE(xi) =
∑

xj∈ωi
∂iEj . We skip

the contribution from other patches to get an approximation which is more computa-
tionally efficient.

We thus get a CPT-based mesh smoothing scheme

xnew
i = (1− α)xi + α

∑
τj∈ωi

|τj |ρτ

|ωi|ρτ

bj . (4.20)

What is the difference between ODT and CPT smoothing? In CPT (4.20) we use
the barycenter while in ODT (4.13) the circumcenter. There are several advantages to
using barycenters over circumcenters:

• The barycenter (an averaging of coordinates of vertices) is easy to compute while
the computation of circumcenter is relatively costly; see the formula (4.6), for
example.

• Barycenters will be always inside the simplex. Therefore moving to the aver-
age of the barycenters without changing the connectivity will still result a valid
triangulation.

• No modification is needed near the boundary.

On the other hand, we should be aware that barycenter-based CPT smoothing only
minimizes an approximation of the energy. Numerical examples in Section 5 show that
ODT is slightly better than CPT.

What is the right choice of the density function ρ? It could be given a priori.
Namely, the density is given by the user according to a priori information. For ex-
ample, we choose ρ = 1 for uniform meshes and non-constant ρ for graded meshes.
In practice, especially when solving partial differential equations, the density could be
given by a posteriori error estimate, which of course is problem dependent. In appli-
cation to mesh optimization, ρ can be chosen as the curvature of the boundary curves
or as distance to the boundary or other feature, with high density near the feature of
interest. The density ρ can be also estimated from the current triangulation. We will
discuss one of such choice in the next.

4.2.3. Laplacian smoothing
Laplacian smoothing [54], in its simplest form, involves moving each vertex to the

arithmetic average of the neighboring points.

xnew
i =

1
k

∑
xj∈ωi,xj 6=xi

xj , (4.21)

where k is the number of vertices of ωi. Laplacian smoothing is easy to implement
and requires very low computational cost, but it operates heuristically and does not
guarantee an improvement in the geometric mesh quality. We now derive a variant of
Laplacian smoothing from CPT smoothing by a special choice of the density.

When the mesh is obtained by local refinement driven by error indicators, it is
reasonable to assume that local refinement will equidistribute the product ρ|τ |. Namely

19

we could take ρτ = C/|τ |, where C is chosen to normalize the density such that∑
τ ρτ = 1. If we chose ρτ = C/|τ | and α = 3/2 in formula (4.20) in 2D, we

obtain Laplacian smoothing, i.e. Laplacian smoothing is an over-relaxation of CPT
smoothing. We emphasis that in 3D, no such a relation exists. For a vertex xj of ωi

and xj 6= xi, the number of simplices containing the edge formed by xi and xj in ωi

is not fixed while in two dimensions, this number is always two since xi is an interior
vertex.

From the discussion above, we see Laplacian smoothing will preserve the current
mesh density. Therefore if triangles in the current mesh are well shaped, Laplacian
smoothing will be more efficient (without computing the volume). But even in this
case, i.e., to keep the current mesh density, we recommend using CPT or ODT smooth-
ing (with choices ρ = 1/|τ |, α = 1)

xnew
i =

1
k

∑
τj∈ωi

bj , or xnew
i =

1
k

∑
τj∈ωi

cj , (4.22)

where, recall that, bj is barycenter and cj is circumcenter.

4.3. Global Mesh Optimization Scheme
Writing bτ as combination of vertices, i.e. bτ =

∑d+1
k=1 xk/(d + 1) in (4.19), we

obtain another form of the approximated gradient

∂iẼi =
∑
τ∈ωi

∑
xk∈τ

2|τ |ρτ

(d + 1)2
(xi − xk). (4.23)

Therefore we can approximate ∇E by a nonlinear diffusion system. More specifically,
let p̄ = p∪ b be the set of all vertices and pτ the set of vertices of τ . We define a matrix
Ā(p̄) such that

Ā(p̄)p̄ =
∑
τ∈T

Aτpτ , with Aτ =
2|τ |ρτ

d(d + 1)


d −1 . . . −1
−1 d . . . −1
.
−1 −1 . . . d

 . (4.24)

We then define A = Ā(1 : N, 1 : N) as the submatrix of Ā restricted to interior ver-
tices. From the element-wise relation, it is not hard to write out the matrix A explicitly.
Let xi, i = 1, · · · , N +Nb be N interior points and Nb boundary points. We construct
the (N + Nb)× (N + Nb) matrix Ā by

ai,j = − 2
d(d + 1)

∑
τk∈ωi∩ωj

|τk|ρ for i 6= j, i, j = 1 : N + Nb (4.25)

and ai,i =
∑
j 6=i

−ai,j for i = 1 : N + Nb. (4.26)

The scaling factor 2/(d(d + 1)) is chosen such that aii = ∂iiE when the density is
uniform, i.e., ρ = 1.

20

We choose A as an approximation of ∇2E to obtain an ODT-based global mesh
optimization scheme

pk+1 = pk − αA−1∇E(pk), (4.27)

or CPT-based global mesh optimization scheme by using the approximated gradient

pk+1 = pk − αA−1∇̃Ẽ(pk). (4.28)

It is easy to see the matrix A is an SPD and M-matrix. These nice properties enable
us to solve the resulting algebraic system efficiently, e.g. using algebraic multigrid
methods (AMG). See [55] on the nearly optimal complexity analysis for AMG for an
SPD and M-matrix on general unstructured grids.

Why not solve Euler-Lagrange type equation∇Ẽ = 0 directly? Let us write Apb =
Ā(1 : N, N + 1 : N + Nb). Then in view of (4.23), we have

∇̃Ẽ(p) ≈ d

d + 1
(Ap + Apbb).

Therefore ∇Ẽ = 0 becomes a diffusion equation with Dirichlet boundary condition:

A(p̄)p = −Apb(p̄)b. (4.29)

Note that this is a non-linear equation since the matrix A(p̄) depends on p also. The
simplest fixed-point iteration is pk+1 = −A−1(p̄k)Apb(pk)b may not converge. The
iteration (4.28) can be written as

pk+1 = pk − αA−1 d

d + 1
(Apk + Apbb) = (1− αd

d + 1
)pk − αd

d + 1
A−1Apbb,

which is a damped fixed-point iteration.
We can construct more efficient mesh optimization schemes by using advanced

numerical algorithms for solving the nonlinear diffusion equation (4.29). One such
algorithm is the two-grid method developed in [56]. Let us use subscript H and h to
denote meshes with different scales and assume h � H . The mesh TH is called the
coarse mesh and Th is the fine mesh. To solve the nonlinear equation on the fine mesh
Th, we first solve it on the coarse mesh to get an accurate approximation pH and then
start the fixed-point iteration with pH . The computational cost of the nonlinear problem
on the coarse mesh is usually small.

In our setting, we will replace the coarse grid solver by any robust (not necessarily
efficient) mesh generator, which also solves the deficiency of fixing boundary nodes
in our mesh improvement schemes. We then uniformly refine the coarse mesh sev-
eral times and apply our local and global methods to further improve the mesh; see
odtmesh2d in Section §5.3.

5. Numerical Examples

In this section, we present several numerical examples to show the efficiency of
our mesh smoothing and optimization schemes. We first present local mesh smoothing

21

schemes of Gauss-Seidel type for both uniform density and non-uniform density cases.
We then give an example to show fast convergence of our new global method compared
with local methods. Next we combine a robust mesh generator, distmesh [12], with our
efficient mesh optimization methods to obtain a robust and efficient mesh generator in
2D. Last we present examples on local mesh smoothing schemes for 3D meshes.

To measure the mesh quality, we use the ratio of radius of inscribed and circum-
scribed circles. In 2D, we have the following formula

q(τ) = 2
rin

rout
=

(b + c− a)(c + a− b)(a + b− c)
abc

, (5.1)

where rin and rout are radius of inscribed and circumscribed circles of the triangle τ ,
and a, b, c are the side lengths. The idea equilateral triangle has q = 1, and the smaller
the q is, the worse the aspect ratio of τ . As indicated in [12], if all triangles have
q > 0.5, the results are good. We calculate the minimal and mean value of the mesh
quality and sometimes show its histogram.

We also include a measure of uniformity [12]: the standard deviation of the ratio
of actual sizes to desired sizes specified by a function h. That number is normalized to
measure the relative sizes. The smaller the value of the uniformity, the more uniform
(with respect to h) is the point distribution.

5.1. Local mesh smoothing

For completeness, we present a Gauss-Seidel type mesh smoothing and edge flip-
ping algorithms for a 2D triangulation below.

for k = 1:step
% mesh smoothing
for i = 1:N

if x∗ is interior
x∗ = smoother(xi, ωi, ρ);

end
if x∗ is acceptable

xi = x∗;
end

end
% edges flipping
for e = 1:ne

if e is non locally Delaunay
find the convex quadrilateral sharing e;
flip the diagonals;

end
end

end

Recall that ωi is the triangles attached to the vertex xi and ρ is a density function
specified by users. Here x∗ is acceptable means by replacing xi by x∗, the resulting
mesh is still valid, i.e. all signed area is positive.

We incorporate the edge flipping after one step of mesh smoothing since it can
change the topological structure of the mesh to further minimize the energy – these are
two sub-problems associated with the minimization of our energy. However, we do not

22

repeat edge flipping until the mesh is Delaunay. Instead we only perform one loop for
all edges and flip non Delaunay edges.

There are several variants of the above subroutine. One can perform two or more
iterations of smoothing loops and followed by one loop of edge flipping. To further
save computational cost, inside each mesh smoothing or edge flipping loop, one can
restrict the operation to triangles or edges with bad respect ratio.

5.1.1. Uniform density
The goal of the mesh smoothing is to get a mesh consisting of equilateral triangles

with equal areas. We use CPT (4.20) and ODT (4.13) smoothing with step size α = 1
and uniform density ρ = 1, and show the reduction of the interpolation error.

We use a mesh for a wavy channel displayed in Fig. 4(a). The nodes inside the
domain are perturbed randomly while the nodes on the boundary is equally spaced
since only interior nodes are allowed to move. We perform ten iterations and present

1

(a) Original mesh: min(q) = 0.141, mean(q) = 0.875, uniformity = 15.62%

1

(b) ODT smoothing: min(q) = 0.709, mean(q) = 0.964, uniformity = 5.16%

1

(c) CPT smoothing: min(q) = 0.708, mean(q) = 0.967, uniformity = 6.15%

Figure 4: Comparison of meshes obtained by ODT and CPT smoother for 10 iterations.

meshes obtained by different smoothers in Fig. 4. Both ODT and CPT result in much
better meshes than the initial mesh; see Fig. 4(b) and 4(c). The mesh quality obtained
by ODT and CPT smoothers are almost the same. However ODT results in a better
uniformity than CPT.

23

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x 10−4

iteration step

ap
pr

ox
im

at
e

in
te

rp
ol

at
io

n
er

ro
r

ODT smoothing
CPT smoothing

Figure 5: Error comparison of ODT and CPT smoother.

In Fig. 5, we plot the energy shifted by a constant. Let E1
k, E2

k denote the integral∫
Ω

uI(x)dx on the mesh obtained by k-th iteration of ODT or CPT smoothing, respec-
tively. Ideally the energy will be obtained by subtracting

∫
Ω
‖x‖2 dx from Ek; see the

formula in Lemma 4.1. Instead we compute approximate energy by E1
k − E1

10 and
E2

k − E1
10. Fig. 5 clearly shows the reduction of this approximated energy after each

iteration. The ODT smoother is better in reducing the energy since it has a provable
reduction property. The numerical convergence of the interpolation errors for those
smoothers is very clear from this picture. A Gauss-Seidel type convergence history is
also evident. Namely, the energy is decreased most rapidly in the first few steps and
then the curve becomes flat.

5.1.2. Non-uniform density
In practice, to resolve the complex geometry or to resolve the singularity of the

solution to some PDEs, it is advantageous to have different sizes in different regions.
The mesh size will be controlled by the density function. We shall show our mesh
smoothing schemes are also effective for non-uniform density functions.

For highly curved boundaries, the curvature or the distance to the boundary may be
used in the formulation of ρ. For functions with singularity, a posteriori or a priori error
estimators can serve in the role of density function. Usually we assume the density ρ
is specified by the user and we will present relevant examples later.

There are some cases for which the user may not know the density function a priori.
In other words, the user provides a mesh as an input, and wants an output mesh with
better mesh quality while keeping similar mesh density. In this case, we simply choose
ρ = C/|τ | in ODT or CPT smoothers and thus use the formulae (4.22). The constant
C is not important since it will cancel out in the normalization.

We choose an air foil mesh displayed in Fig 6(a). The average of the mesh quality
is 0.9 and the minimal one is 0.25. In Fig 6(b), we display the mesh obtained by
performing three iterations of ODT mesh smoothing. The average quality is improved
to 0.95 and the minimal one is 0.57. Histograms of the mesh quality for the original

24

FIGURE 1. Mesh

1

(a) The original mesh of an airfoil. FIGURE 1. Mesh

1

(b) A smoothed mesh after 3 steps of ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

 min(q) = 0.25
mean(q) = 0.90

(c) Quality of the original mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

 min(q) = 0.57
 mean(q) = 0.95

(d) Quality of the smoothed mesh.

(e) Sample triangles with quality q < 0.7.

Figure 6: ODT smoothing applied to a non-uniform mesh.

25

mesh and smoothed mesh are presented in Fig 6(c) and 6(d). The mesh density in the
original mesh is kept in the smoothed mesh.

We would expect higher quality for the min(q). By tracing the triangles with
smaller q, we found it is constrained by the topology of the input mesh. We could
improve the mesh quality by removing some grid points on the boundary. However
in this example, the goal is to improve the mesh quality by using the same set of ver-
tices, so we are not allowed to delete any vertex. This suggests incorporating our mesh
smoothing/optimization into the mesh generator; see Section §5.3.

5.2. Global mesh optimization schemes

Again for completeness, we recall a general mesh optimization algorithm below.

for k = 1:step

p = p + αA−1∇E(p);
t = delaunay(p);

end

We choose uniform density ρ = 1. We compute an area based graph Laplacian A using
the element-wise formula (4.24) and the standard assembling procedure. The inverse
A−1 is computed using the backslash (or left matrix divide) function in MATLAB
which is a very fast direct solver for SPD matrices. The step size α is included for
generality and a common choice is α ∈ [0.75, 1]. If we replace A by diag(A), we get a
Jacobi-type local mesh smoothing method. We shall compare our global method with
this local method.

To illustrate that local method will fail to capture the error made in the coarse level,
we construct a special input triangulation in two steps. First we perturb a uniform mesh
of an equilateral triangle by moving 3 interior nodes; See Fig 7(a). Then we apply
several global refinements; See Fig. 7(b). The quality of the finest mesh is determined
by that of the coarse mesh.

We apply both local mesh smoothing and global mesh optimization to the mesh
in Fig. 7(b). As we have shown in the previous step, the local method will improve
the mesh quality and the resulting mesh is equilateral almost everywhere. But the
improvement is gradually; see Fig. 7(c) for a mesh obtained by 42 iterations of the
local method. The reason is, inside each coarse triangle, the star around a vertex is
symmetric and ∇E vanishes. Therefore, the local method can only move vertices on
the edge of the coarse mesh first and then conduct the movement to the interior nodes
gradually. In contrast, the global method is extremely fast and it leads to the best
triangulation, i.e., all triangles are equilateral, in four iterations; see Fig. 7(d). Again
we plot approximated energies by shifting the integral

∫
Ω

uI(x)dx in Fig. 8. The global
method will converge in very few steps, and Newton-type convergence is observed.

Remark 5.1. It is likely that the global method can bring the energy down to a lower
level. In this example, the global method leads to the global minimizer. In general it
may not be the case.

26

FIGURE 1. Mesh

1

(a) A coarse triangulation T0
FIGURE 1. Mesh

1

(b) Global refinement of T0

FIGURE 1. Mesh

1

(c) Jacobi-type local mesh smoothing (42 iterations)
FIGURE 1. Mesh

1

(d) Global mesh optimization (4 iterations)

Figure 7: Comparison of meshes obtained by local and global methods based on ODT.

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

x 10−5

iteration step

ap
pr

ox
im

at
e

in
te

rp
ol

at
io

n
er

ro
r

Global method
Local method

Figure 8: Error comparison of a local method and a global method

27

5.3. Combination of Distmesh and ODT mesh optimization

One constraint in our previous examples is the fixing of the boundary nodes. The
distribution of boundary nodes is crucial for capturing the geometry of the domain,
which is considered a function of mesh generators. It is natural to combine our mesh
optimization schemes with any robust mesh generator to produce a better meshing
algorithm.

Our previous example indicates that the global method can capture both fine and
coarse level errors. This motivates a paradigm based on the combination: first, we
apply any robust (not necessarily efficient) mesh generator at a very coarse level to
capture the geometry of the domain; then, we apply several uniform refinement of the
coarse mesh and use our global mesh optimization to obtain a fine and smoothed mesh.

This paradigm will be extremely useful for large size simulation of PDEs where the
number of nodes is above several hundred of thousands. For such large size meshes,
local mesh smoothing methods will not be efficient.

The mesh generator we choose is distmesh [12]. The geometry of the domain is
represented by a signed distance function d and the nodes are distributed by solving for
equilibrium in a truss structure. The combination of distance function representation
and node movements from spring-like forces, which can be also treat as a local mesh
smoothing method, enable distmesh to capture the boundary and improve mesh quality.
It can produce non-uniform meshes by using an element size function h to weight the
force associated to each edge. The size function h is small for a denser region i.e.
where ρ is big. A relation between them is ρ = 1/hr with r = 2 or 3.

The main disadvantages of distmesh are slow execution and the possibility of non-
termination when the number of grid points is large. The slow execution is partially
due to the local feature of the mesh movement. The possibility of nontermination is
from the lack of convergence theory. As noted in [12], the equilibrium position is hard
to find due to the discontinuity in the force function when the topology of the mesh is
changed. Furthermore, near the boundary, some stretched triangles are possible; see
Fig. 3 (a) for such an example. At equilibrium, it is highly possible the vertices will
be projected onto the boundary to eliminate such stretched triangles but without guar-
antee. However it may take a long time to reach the equilibrium, especially when the
number of grid points is large.

We shall use distmesh in the coarse level. For small size meshes, say around 300
vertices, it is fast and reliable. We modify distmesh2d in [12] into a mesh smoothing
subroutine distmeshsmoothing. Since we need only a initial guess for the fine
mesh, we perform a fixed number of iterations rather than run the algorithm to reach an
equilibrium configuration. Then we apply global uniform refinement several times. To
better capture the boundary, we also apply distmeshsmoothing on the fine mesh
a few times which will take care of the high frequency of the error. After that we use
global method odtmeshoptimization. Lastly, to eliminate some bad triangles
caused by some degree 2 vertices, which are vertices sharing by only two triangles,
on the boundary (see Fig 6(e)), we code a cleanup subroutine. We summarize our
algorithm as follows.

function [p,t] = odtmesh2d(fd,fh,h0,hbox,pfix,varargin)

28

h0 = h0*2ˆlevel;
[p,t] = initmesh(fd,fh,h0,hbox,pfix);
[p,t] = distmeshsmoothing(p,t,fd,fh,pfix,80);
[p,t] = uniformrefine(p,t,level);
[p,t] = distmeshsmoothing(p,t,fd,fh,pfix,10);
[p,t] = odtmeshopt(p,t,fd,fh,pfix,3);
[p,t] = cleanup(p,t,fd,pfix);

The interface of odtmesh2d is identical to distmesh2d. In the input argu-
ments, fd is the distance function, fh is the size function, h0 is the distance between
points in the initial distribution, hbox is a rectangle containing the domain, pfix are
fixed nodes, and varargin allows additional parameters; see [12] for details.

We include two examples to show the change of mesh quality and uniformity. Since
we apply distmeshsmoothing only a fixed number of times, the quality after the
smoothing is not necessarily high. Some triangles (near the boundary) may still have
bad aspect ratio. odtmeshoptimization (with modification near the boundary)
will improve the quality dramatically. The final step cleanup will further take care
of those bad triangles caused by degree 2 boundary nodes.

(d) Square with hole (refined at hole) h = 0.02
1. distmeshsmoothing - Min(q) 0.48 - Mean(q) 0.95 - Uniformity 5.1%
2. uniform refinement - Min(q) 0.48 - Mean(q) 0.95 - Uniformity 6.9%
3. distmeshsmoothing - Min(q) 0.25 - Mean(q) 0.96 - Uniformity 4.6%
4. odtmeshoptimization - Min(q) 0.63 - Mean(q) 0.97 - Uniformity 5.0%
5. clean up - Min(q) 0.71 - Mean(q) 0.97 - Uniformity 5.4%

(e) Geometric Adaptivity h = 0.01
1. distmeshsmoothing - Min(q) 0.50 - Mean(q) 0.96 - Uniformity 6.4%
2. uniform refinement - Min(q) 0.50 - Mean(q) 0.96 - Uniformity 6.4%
3. distmeshsmoothing - Min(q) 0.54 - Mean(q) 0.96 - Uniformity 6.1%
4. odtmeshoptimization - Min(q) 0.73 - Mean(q) 0.97 - Uniformity 6.1%
5. clean up - Min(q) 0.73 - Mean(q) 0.97 - Uniformity 6.1%

Table 1: Quality of all sample meshes in Fig. 9.

Examples (a) (b) (c) (d) (e) (f)
min(q) 0.74 0.74 0.76 0.71 0.73 0.57

mean(q) 0.99 0.98 0.98 0.97 0.97 0.97
uniformity 2.9% 4.5% 3.8% 5.4% 6.1% 7.6%

We present some sample meshes produced by odtmesh2d in Fig. 9 and the cor-
responding quality in Table 1. Almost all examples have minimal q > 0.7 and the
average quality is greater than 0.97. The last example (f) has a sharp corner and the
minimal quality is constrained by the triangle containing that corner.

5.4. Three dimensional mesh generation and optimization
The methods and formulae presented in this paper are for general dimensions. In

this subsection, we shall provide two examples of mesh smoothing for three dimen-
sional tetrahedron meshes.

29

FIGURE 1. Mesh

1

(a) Unit circle

FIGURE 1. Mesh

1

(b) Unit circle with hole

FIGURE 1. Mesh

1

(c) Square with hole (uniform)

FIGURE 1. Mesh

1

(d) Square with hole (refined at hole)

FIGURE 1. Mesh

1

(e) Geometric Adaptivity

FIGURE 1. Mesh

1

(f) Pie with hole

Figure 9: Sample meshes produced by odtmesh2d.

30

We first present an example of local mesh smoothing using CPT (4.20) and ODT
(4.13) smoothing with step size α = 1 and uniform density ρ = 1.

We choose a initial mesh of the unit ball produced by distmesh, and apply only few
steps of the mesh smoothing schemes in distmesh. The mean value of the mesh quality
for the initial mesh is 0.74, and quite a few bad elements (q ≤ 0.4) exist; see Fig. 10(a)
(b). We then apply CPT (4.20) and ODT (4.13) smoothing to this initial mesh. Note
that, in ODT, we modify the centers of the boundary elements (defined as tetrahedrons
containing at least one boundary vertex) to be barycenter, not circumcenter. We present
the histogram of the mesh quality for two meshes obtained by applying 40 steps of
ODT and CPT smoothing in Fig. 10(d) (f). We apply the delaunayn command in
MATLAB after each 2 smoothing steps to optimize the connectivity.

We observe similar behavior as in 2D case. The mesh quality is improved sig-
nificantly by ODT and CPT; see Fig 10(b), 10(d), and 10(f). The improvement of the
mesh quality due to ODT and CPT are similar; concerning uniformity, ODT smoothing
produces a better result when compared with CPT smoothing.

ODT smoothing has been included in the Computational Geometry Algorithms Li-
brary (CGAL) [57]. We use CGAL to demonstrate the effectiveness of ODT smoothing
on 3D meshing. The initial grid of the standard bunny object is obtained by applying
constrained Delaunay refinement; a description of this algorithm can be found in [58]
or [59]. The average shape quality of 0.78 is reasonably good.

We then apply ODT and CPT smoothing to the initial grid. The density ρ in CGAL
ODT smoothing is determined as follows: first we compute a size function at all ver-
tices h(x) = mean(‖x− c‖), where c is the circumcenter, and the average is taken in
the star of the vertex x. This leads to a piecewise linear size function. The element-wise
density function is chosen as ρτ = 1/h(bτ)3, with bτ as the barycenter of the element
τ . Lloyd mesh smoothing from CVT [13] is also included in CGAL. The difference
between ODT and CVT is the average of circumcenters is in the Voronoi region, not
the star of the vertex.

In each step of mesh smoothing, a surface smoothing step is also included for the
boundary mesh. After several steps smoothing, constrained Delaunay algorithms are
applied to ensure the current triangulation is still Delaunay (constrained to the bound-
ary).

We apply these three mesh smoothing schemes to the same initial grid in Fig. 5.4,
and compare the mesh quality. From Fig. 11, we can conclude:

1. The mesh quality is improved by these three mesh smoothing schemes.
2. ODT mesh smoothing is the best among these three smoothers.
3. In the first 10 steps, the ODT and CPT smoothing improved the quality a lot and

then the improvement is slow down. While CVT smoother in the 10 steps is not
as good as other two methods.

Although our mesh smoothing scheme is not sliver-free (there are still some tetrahe-
dron with tiny aspect ratios), it appears that mesh smoothing based ODT will produce
fewer sliver tetrahedra; see [24, 60] for more supporting numerical examples.

In [24, 60], the authors use and improve some of the local mesh smoothing schemes
developed in our previous work [1]. We expect the more efficient global method de-
veloped in this paper will further improve the performance of 3D mesh generation.

31

(a) The original mesh of the unit ball.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

− Min 0.0002
− Mean 0.7426
− Uniformity 17.32%

(b) Quality of the original mesh.

(c) A smoothed mesh after 40 steps of ODT
smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

− Min 0.1879
− Mean 0.8388
− Uniformity 5.41%

(d) Quality of the smoothed mesh in (c).

(e) A smoothed mesh after 40 steps of CPT
smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

− Min 0.1437
− Mean 0.8345
− Uniformity 7.03%

(f) Quality of the smoothed mesh in (e).

Figure 10: ODT and CPT mesh smoothing applied to a mesh of the unit ball.

32

(a) An initial grid of a bunny.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

− Min 0.0062
− Mean 0.7801

(b) Quality of the initial mesh.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

− Min 0.0951
− Mean 0.8727

odt 10

(c) Quality of a mesh after 10 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

odt 50

− Min 0.0825
− Mean 0.8798

(d) Quality of a mesh after 50 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

− Min 0.0682
− Mean 0.8711

(e) Quality of a mesh after 10 steps CPT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

− Min 0.0459
− Mean 0.8774

cpt 50

(f) Quality of a mesh after 50 steps ODT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

− Min 0.0062
− Mean 0.8375

cvt 10

(g) Quality of a mesh after 10 steps CVT smoothing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

cvt 50

− Min 0.0236
− Mean 0.8707

(h) Quality of a mesh after 50 steps CVT smoothing.

Figure 11: ODT, CPT and CVT mesh smoothing applied to a mesh of the bunny.

33

However, the implementation of such a method requires critical and non-trivial work
on the boundary surface mesh; see [61, 62, 63].

6. Conclusion and Further Work

In this paper we have introduced several local mesh smoothing and global mesh
optimization schemes based on minimizing energies related to a weighted interpola-
tion error. We combined our global mesh optimization of a fine mesh with a robust
mesh generator for a coarse mesh, to get an efficient mesh generation algorithm in two
dimensions. The splitting of scales in the mesh generation and optimization procedures
is critical for the numerical solution of partial differential equations. In future work,
we will apply such a methodology to adaptive finite element methods, in the hope to
develop more efficient adaptive mesh refinement procedures. We shall also investigate
the combination of surface mesh smoothing with 3D mesh smoothing or optimization.

Acknowledgment

The authors would like to thank Huayi Wei from Xiangtan University on the prepa-
ration of the last 3D example: mesh smoothing for a mesh of the bunny using CGAL.

[1] L. Chen, Mesh smoothing schemes based on optimal Delaunay triangulations, in:
13th International Meshing Roundtable, Sandia National Laboratories, Williams-
burg, VA, pp. 109–120.

[2] L. Chen, J. Xu, Optimal Delaunay triangulations, J. Comput. Math. 22 (2004)
299–308.

[3] L. Chen, Robust and Accurate Algorithms for Solving Anisotropic Singularities,
Ph.D. thesis, Department of Mathematics, The Pennsylvania State University,
2005.

[4] P. Knupp, S. Steinberg, Fundamentals of grid generateion, CRC Press (1994).

[5] G. Carey, Computational grids: generation, adaptation, and solution strategies,
CRC, 1997.

[6] V. D. Liseikin, Grid Generation Methods, Springer Verlag, Berlin, 1999.

[7] W. Huang, Variational mesh adaptation: isotropy and equidistribution, Journal of
Computational Physics 174 (2001) 903–924.

[8] A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian
manifolds, Journal of Computational Physics 95 (1991) 450–476.

[9] W. Huang, R. D. Russell, Moving mesh strategy based on a gradient flow equation
for two-dimensional problems, SIAM J. Sci. Comput. 20 (1999) 998–1015.

[10] R. Li, T. Tang, P. Zhang, Moving mesh methods in multiple dimensions based on
harmonic maps, Journal of Computational Physics 170 (2001) 562–588.

34

[11] A. Anderson, X. Zheng, V. Cristini, Adaptive unstructured volume remeshing - i:
The method, Journal of Computational Physics 208 (2005) 616–625.

[12] P.-O. Persson, G. Strang, A simple mesh generator in matlab, SIAM Rev. 46
(2004) 329–345.

[13] Q. Du, M. Gunzburger, Grid generation and optimization based on centroidal
Voronoi tessellations, Appl. Math. Comp. 133 (2002) 591–607.

[14] Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Applications
and algorithms, SIAM Rev. 41(4) (1999) 637–676.

[15] K. Q. Brown, Voronoi diagrams from convex hulls, Inform. Process. Lett. 9
(1979) 223–228.

[16] C. Barber, D. Dobkin, H. Huhdanpaa, The quickhull algorithm for convex hulls,
ACM Transactions on Mathematical Software (TOMS) 22 (1996) 469–483.

[17] M. Aiffa, J. E. Flaherty, A geometrical approach to mesh smoothing, Comput.
Methods Appl. Mech. Engrg. 192 (2003) 4497–4514.

[18] N. Amenta, M. Bern, D. Eppstein, Optimal point placement for mesh smoothing,
Journal of Algorithms (1999) 302–322.

[19] R. E. Bank, R. K. Smith, Mesh smoothing using a posteriori error estimates,
SIAM J. Numer. Anal. 34 (1997) 979–997.

[20] L. A. Freitag, M. T. Jones, P. E. Plassmann, A parallel algorithm for mesh smooth-
ing, SIAM J. Sci. Comput. 20 (1999) 2023–2040.

[21] L. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping
and smoothing, International Journal of Numerical Methods in Engineering 40
(1997) 3979–4002.

[22] L. Freitag, On combining laplacian and optimization-based mesh smoothing tech-
niques, AMD Trends in Unstructured Mesh Generation, ASME 220 (July 1997)
37–43.

[23] T. Zhou, K. Shimada, An angle-based approach to two-dimensional mesh
smoothing, in: 9th International Meshing Roundtable, Sandia National Labo-
ratories, pp. 373–384.

[24] P. Alliez, D. Cohen-Steiner, M. Yvinec, M. Desbrun, Variational tetrahedral
meshing, ACM Trans. Graph. 24 (2005) 617–625.

[25] M. Berndt, M. Shashkov, Multilevel accelerated optimization for problems in
grid generation, in: Proc. 12th Int. Meshing Roundtable, Sandia Nat. Lab., 2003,
pp. 351–359.

[26] Y. Koren, I. Yavneh, A. Spira, A multigrid approach to the scalar quantization
problem, IEEE Transactions on Information Theory 51 (2005) 2993–2998.

35

[27] Y. Koren, I. Yavneh, Adaptive multiscale redistribution for vector quantization,
SIAM J. Sci. Comput. 27 (2006) 1573–1593.

[28] R. M. Spitaleri, Full-fas multigrid grid generation algorithms, Appl. Numer.
Math. 32 (2000) 483 – 494.

[29] Q. Du, M. Emelianenko, Uniform convergence of a nonlinear energy-based mul-
tilevel quantization scheme, SIAM J. Numer. Anal. 46 (2008) 1483–1502.

[30] L. Chen, New analysis of the sphere covering problems and optimal polytope
approximation of convex bodies, Journal of Approximation Theory 133 (2005)
134–145.

[31] L. Chen, On minimizing the linear interpolation error of convex quadratic func-
tions, East Journal of Approximation 14 (2008) 271–284.

[32] L. Chen, P. Sun, J. Xu, Optimal anisotropic simplicial meshes for minimizing
interpolation errors in Lp-norm, Math. Comp. 76 (2007) 179–204.

[33] H. Edelsbrunner, Triangulations and meshes in computational geometry, Acta
Numer. (2000) 1–81.

[34] M. Bern, D. Eppstein, Mesh generation and optimal triangulation, in: D.-Z. Du,
F. Hwang (Eds.), Computing in Euclidean Geometry, volume 1, World Scientific,
Lecture Notes Series on Computing – Vol. 1, 1992, pp. 23–90.

[35] S. Fortune, Voronoi diagrams and Delaunay triangulations, in: Computing in
Euclidean Geometry, Edited by Ding-Zhu Du and Frank Hwang, World Scientific,
Lecture Notes Series on Computing - Vol. 1, 1992.

[36] R. Sibson, Locally equiangular triangulations, Computer Journal 21 (1978) 243–
245.

[37] T. Lamber, The Delaunay triangulation maximize the mean inradius, in: Proc.
6th Canad. Conf. Comput. Geom, pp. 201–206.

[38] S. Rippa, Minimal roughness property of the Delaunay triangulation, Comput.
Aided Geom. Design 7 (1990) 489–497.

[39] E. F. D’Azevedo, R. B. Simpson, On optimal interpolation triangle incidences,
SIAM J. Sci. Statist. Comput. 6 (1989) 1063–1075.

[40] V. T. Rajan, Optimality of the Delaunay triangulation in Rd, Proc. of the Seventh
Annual Symp. on Comp. Geom (1991) 357–363.

[41] S. Rippa, Long and thin triangles can be good for linear interpolation, SIAM J.
Numer. Anal. 29 (1992) 257–270.

[42] E. A. Melissaratos, Lp Optimal d Dimensional Triangulations for Piecewise Lin-
ear Interpolation: A New Result on data Dependent Triangulations, Technical
Report RUU-CS-93-13, Department of Information and Computing Sciences,
Utrecht University, 1993.

36

[43] D. S. Mitrinovic, J. E. Pecaric, V. Volenec, Recent Advances in Geometric In-
equalities, Mathematics and its applications: East European Series 28, 1989.

[44] L. J. Guibas, D. E. Knuth, M. Sharir, Randomized incremental construction
of delaunay and voronoi diagrams, in: Proceedings of the seventeenth inter-
national colloquium on Automata, languages and programming, Springer-Verlag
New York, Inc., New York, NY, USA, 1990, pp. 414–431.

[45] H. Edelsbrunner, R. Seidel, Voronoi diagrams and arrangements, Disc. and
Comp. Geom. 8 (1986) 25–44.

[46] H. Edelsbrunner, X.-Y. Li, G. Miller, A. Stathopoulos, D. Talmor, S.-H. Teng,
A. Üngör, N. Walkington, Smoothing and cleaning up slivers, in: STOC ’00:
Proceedings of the thirty-second annual ACM symposium on Theory of comput-
ing, ACM, New York, NY, USA, 2000, pp. 273–277.

[47] H. Xu, T. S. Newman, An angle-based optimization approach for 2d finite element
mesh smoothing, Finite Elem. Anal. Des. 42 (2006) 1150–1164.

[48] V. Parthasarathy, S. Kodiyalam, A constrained optimization approach to finite
element mesh smoothing, Finite Elements in Analysis and Design 9 (1991) 309–
320.

[49] Q. Du, D. Wang, Tetrahedral mesh generation and optimization based on cen-
troidal voronoi tessellations, International Journal for Numerical Methods in En-
gineering 56 (2003) 1355–1373.

[50] Q. Du, D. Wang, Recent progress in robust and quality Delaunay mesh genera-
tion, J. Comput. Math. 195 (2006) 8–23.

[51] Q. Du, M. Gunzburger, L. Ju, Voronoi-based finite volume methods, optimal
Voronoi meshes, and PDEs on the sphere, Comput. Methods Appl. Mech. Engrg.
192 (2003) 3993–3957.

[52] L. Ju, Conforming centroidal voronoi delaunay triangulation for quality mesh
generation, International Journal of Numerical Analysis and Modeling To appear
(2007).

[53] L. Ju, M. Gunzburger, W. Zhao, Adaptive finite element methods for elliptic
PDEs based on conforming centroidal Voronoi Delaunay triangulations, SIAM J.
Sci. Comput. To appear (2007).

[54] D. A. Field, Laplacian smoothing and Delaunay triangulation, Communications
in Applied Numerical Methods 4 (1988) 709–712.

[55] D. A. Spielman, S.-H. Teng, Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems, Preliminary draft (2006).

[56] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM
J. Numer. Anal. 33 (1996) 1759–1777.

37

[57] CGAL, Computational Geometry Algorithms Library, ???? Http://www.cgal.org.

[58] J. R. Shewchuk, Tetrahedral mesh generation by Delaunay refinement, in: 14th
Annual ACM Symposium on Computational Geometry, pp. 86–95.

[59] T. K. Dey, Delaunay mesh generation of three dimensional domains, Technical
Report OSU-CISRC-9/07-TR64 (2007).

[60] J. Tournois, C. Wormser, P. Alliez, M. Desbrun, Interleaving delaunay refinement
and optimization for practical isotropic tetrahedron mesh generation, ACM Trans.
Graph. 28 (2009) 1–9.

[61] Q. Du, D. Wang, Constrained boundary recovery for three dimensional Delaunay
triangulations, International Journal for Numerical Methods in Engineering 61
(2004) 1471–1500.

[62] Q. Du, M. Gunzburger, L. Ju, Constrained centroidal Voronoi tessellations for
surfaces, SIAM J. Sci. Comput. 24 (2003) 1488–1506.

[63] Z. Yu, M. J. Holst, J. A. McCammon, High-fidelity geometric modeling for
biomedical applications, Finite Elements in Analysis and Design 44 (2008) 715
– 723.

38

	Introduction
	Delaunay and Optimal Delaunay Triangulations
	Algorithms for Delaunay Triangulations
	Local method: edge flipping
	Global method: the lifting trick

	Algorithms for Optimal Delaunay Triangulation
	Overview of Iterative Methods
	Richardson-type method
	Jacobi-type method
	Gauss-Seidel type method
	Newton's method

	Local mesh smoothing schemes
	ODT smoothing
	CPT smoothing
	Laplacian smoothing

	Global Mesh Optimization Scheme

	Numerical Examples
	Local mesh smoothing
	Uniform density
	Non-uniform density

	Global mesh optimization schemes
	Combination of Distmesh and ODT mesh optimization
	Three dimensional mesh generation and optimization

	Conclusion and Further Work

