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Abstract.  This paper presents a brief review of multi-scale modeling at the molecular to
cellular scale, with new results for heart muscle cells. A Pnite element-based simulation
package (SMOL) was used to investigate the signaling transduction at molecular and sub-
cellular scales Http://mccammon.ucsd.edu/smohittp://FETK.org by numerical solution

of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the
molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-
limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using
crystallographic structural data. The predicted rate constants exhibit increasingly delayed
steady-state times with increasing ionic strength and demonstrate the role of an enzymeOs
electrostatic potential in inBuencing ligand binding. At the sub-cellular scale, an extension of
SMOL solves a nonlinear, reaction-diffusion system describing’ Ggand buffering and
diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal
the important role of mobile and stationary C#uffers, including C&' indicator dye. We

found that alterations in C&binding and dissociation rates of troponin C (TnC) and total
TnC concentration modulate sub-cellular’Caignals. Model predicts that reduced off-rate

in the whole troponin complex (TnC, Tnl, TnT) versus reconstructed thin Plaments (Tn,
Tm, actin) alters cytosolic G4 dynamics under control conditions or in disease-linked TnC
mutations. The ultimate goal of these studies is to develop scalable methods and theories for
the integration of molecular-scale information into simulations of cellular-scale systems.
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1. Introduction

Diffusion of enzymes and ions plays an important role in a variety of biological processes and has been studied
extensively using various biophysical, biochemical and computational approaches. Computational models of
diffusion have been widely used in both discretgdnd continuum method<]. Discrete methods describe

the stochastic trajectories of individual particles and include methods such as Monte ¥ aBoofvnian
dynamics fi] and Langevin dynamics5]. Continuum approaches model particle diffusion by the evolution of
continuous probability distributions and include the Smolochowski and FokkerbPlanck formalisms. Relative
to discrete methods, continuum approaches provide an inexpensive alternative for the modeling of individual
Brownian particles.

In our previous work, we applied adaptive Pnite-element methods to solve the time-dependent
Smoluchowski equation on a single enzyme molecule (mouse acetylcholinesterase (MAChE)) or clusters of
MAChEs BEB]. We observed both steady-state and time-dependent diffusive particle distributions on the
diffusion domain and calculated the rate association coefpbcient for acetylcholine (ACh) diffusive particles.
Including the electrostatic Peld determined by solution of the PoissonbBoltzmann equation allowed us to
examine the role of electrostatics in guiding diffusive particles to the active center. This study resulted in
the SMOL software package, which facilitates the Pnite-element solution of steady-state and time-dependent
Smoluchowski equations for molecular species.

Recently, the SMOL package was generalized to model signaling transduction processes on the sub-
cellular level and specibcally the role of calcium &aliffusion and binding to mobile and stationary buffers
during the cardiac excitationbcontraction cyc®1[1]. Previous approaches employed a systems biology
approach, in which components of the myocyte are represented by simple geonigfibg.[In recent
years, advancements in the electron microscopy community have enabled the three-dimensional (3D) structure
determination of cells and sub-cellular organelles across a wide range of spatial 4&hl€imulations
utilizing experimentally derived structures offer a degree of realism that cannot be easily captured with reduced
representations.

The extended simulation tool SMOL represents progress toward unifying molecular-level and cellular-
level dynamics via the solution of partial differential equations on 3D tetrahedral meshes representative of
realistic systems. In this paper, we summarize the capabilities of SMOL in modeling molecular-level and
cellular-level events, provide new data for myocyte cellular modeling and discuss potential further applications
and extensions of the SMOL multi-scale modeling tool.
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2. Methods and software

2.1. Time-dependent Smoluchowski equation

The starting point for solving the time-dependent SMOL equation is based on the steady-state Smoluchowski
equation solver described by Soeigal [16, 17]. The original time-dependent Smoluchowski equation has the
form of a continuity equation,

du(R; t)

at =" #éi(k, t), (1)

where the particle Ruk(I; t) is debned as

!
Y(R:t) = D(R) #u(R;t) +! #W(R)u(R; t)
= D(R) e ' WRg% & WRy(R: 1). )

Hereu(R; t) is the distribution function of the ensemble of Brownian particR$R) is the diffusion
coefpcient] = 1/ kgT is the inverse Boltzmann enerdi is the Boltzmann constant, is the temperature
andW(R) is the potential of mean force (PMF) for a diffusing particle due to solvent-mediated interactions
with the target molecule. For simplicitf(R) is assumed constant. The two terms contributing to the Rux
have clear physical meaning. The Prst is due to free diffusion processes, as quantiped by FickOs brst law.
The second contribution is due to the drift veloc#yW(r)/" , induced by the systematic forcesW(r),
and friction quantibed by the friction constadntThe relation between the diffusion coefbci@ntiR) and the
friction constant' is given by the StokesbEinstein equatioi = 1.

The diffusion-determined reaction rate constant during the simulation time can be obtained from the RBux
i (R: t) by integration over the active site bounda#h) i.e.

#

Kon(t) = Upix #nu!z) &j(R; t)ds, (3)

whereupy is the bulk concentration at the outer boundary at#) is the surface normab]. The variation
of reaction rates with ionic strength is often interpreted via the DebyebHuckel limitind &d/9).

For molecular simulations, the long-range contributions to the PMF are electrostatic in nature and thus
may be estimated by solving the PoissonbBoltzmann equation. Typical approaches consider the positions of
atoms from high-resolution x-ray crystal structures available in the Protein Data Bapk/(vww.rcsb.org
and their corresponding partial charges, as well as the dielectric constant of the surrounding solvent. For sub-
cellular systems, we assume that the electrostatic potential arising from the cell membrane is screened beyond
the characteristic Debye length, which is less than 1.0 nm at physiological ionic strengths. As si¢{R)the
term dePned in?) may be neglected and one arrives at FickOs law of diffusjon [

2.2. Reaction-diffusion equations

In this section, we derive a model that describes the diffusive transport?fiCthe presence of stationary
and mobile C&" buffers. Assuming mass action kinetics and Fickian diffusij, jwe can write the transport
equations,

$ Ca2+ i . Pmax Rnax
[ & I Dcd#t 2[Ca'; " Rs,, " Ra, + Jeayu (4)
m=1 s=1
$[C$Lt8m] = Dcap,# ?[CaBm] + Rg,, %)
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$[CaBq] _

st e (6)
Re, = kih([Bm] " [CaBm])[Ca®*]i " kix[CaBnl], @)
Re, = kgn([Bs] ! [CaBs])[Caz+]i ! kaf[CaBs], (8)

where [C&"]; is intracellular C&" concentrationk!, andk' . are the association and dissociation buffer rate
constants, Bg] is the concentration of stationary buffeB{] is the concentration of mobile buffeDc; and
Dcag,, are the diffusion constants for free £and C&* bound to mobile buffer, andcs,, is the total C&"
Bux via the cell membrane.

2.3. Numerical algorithms, software and meshing tools

In 3D Pnite-element methods, the geometry is discretized into polyhedrons, over which the local solution to
the partial differential equations may be estimated. This process is usually referred to as mesh generation
[21, 22]. Although different types of meshes may be generated depending on the numerical solvers to
be employed, we restrict ourselves to triangular (surface) and tetrahedral (volumetric) mesh generation as
commonly used in biomedical simulatioht{p://fetk.org/codes/gamer/index.h)mOf particular interest are

3D scalar volumes obtained by imaging techniques such as the 3D electron tomography (cellular level) and
x-ray crystal structures (molecular level).

The time-dependent Smoluchowski equation and nonlinear reaction-diffusion system were solved by a
Pnite-difference method in time and a Pnite-element method in space using our SMOL software tool. The
SMOL program utilizes libraries from the Pnite-element tool kit (FEtkp://FETK.org, which previously
has been used in several molecular level studi€B, [23ER5]. To extend SMOL to sub-cellular simulations,
the reaction terms due to buffering were decoupled from the diffusion and Rux boundary conditions debned
in (4)b@). Simulation results were visualized using OpenDX and GMV mesh viewers, whereas post-
processing and data analyses were implemented by customized Python, MATLAB 2008b (MathWorks, Natick,
MA) scripts and Xmgrace softwar@).

3. Results and discussion

3.1. Continuum diffusion on the molecular level

This section demonstrates SMOLOs probciency in the numerical modeling of diffusion-limited binding kinetics
of a single enzyme molecule (in this particular case, mMAChE) under various ionic strength con@itib@s [
Acetylcholinesterase is an enzyme that hydrolyzes ACh during neuron signaling. Under physiological
conditions, the experimentally suggested association rate conkggnis($ 102M" 1 min" 1, which is close

to the diffusion limit. Therefore, it is not easy to accurately meadyre By numerically solving the
PoissonbBoltzmann and time-dependent Smoluchowski equations, we caléglateder the inRuence of

a molecular electrostatic beld. The tetrahedral mashes in this numerical experiment were obtained from the
inBated van der Waals-based accessibility data for the mAChE monomer and tetramers using the level-set
boundary interior exterior-mesher (Pgu)d 6].

The steady-staté,, value ¢ > 10us) for a charged ligand in a 0.0 M ionic strength solution was
estimated to be .86 % 10"*M" Imin" !, which is consistent with the experimentally suggested value of
9.8+ 0.6 % 10''M" 1min' ! [18] and the predicted value from the time-independent solution of the
Smoluchowski equationlp]. Our model studies also indicate that the mAChE association rate was rapidly
attenuated by increasing the ionic strength (ranging in this numerical experiment from 0.0 to 0.67 M), which
supports the idea of electrostatically guided molecular diffusiyriife concluded that accurate estimation of
the electrostatic potential and of the time to reach steady state are important factors in modeling the activity of
enzymes and buffers in cellular volumes.

To further test the SMOL solver, recently we also applied it to study the drug molecular diffusion in
wild-type neuraminidase and its mutan&/]. We observed quantitatively consistent trends compared with
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Figure 1. Left to right: mAChE monomer; the molecular surface and outer sphere; magnibcation of
the active site gorge; the tetrahedral mesh of the internal volume between the molecular surface and
the outer sphere.

experimental measurements, although the predictions were an order of magnitude higher than experiment. This
indicates that the Pnite size of the drug molecule, as well the conformational changes of the active site of the
target protein, may be signibcant. These attributes are neglected in the current SMOL tool. To overcome this
limitation, we are developing a new multi-scale algorithm to couple the SMOL continuum formulation with
particle-based Brownian dynamics. The simulation of explicit particles naturally accommodates Pnite-size
and conformational effects that may infSuence association rate constants. These studies also lay the foundation
for integrating molecular-scale information into cellular-scale systems such’asigaaling transduction in

cardiac myocytesgpl1].

3.2. Continuum diffusion on sub-cellular level

In cardiac muscle cells, calcium (€2 is best known for its role in contraction activatio?g]. A remarkable
number of quantitative data on cardiac cell structure, ion-transporting protein function and distribution and
intracellular C&* dynamics have become availables] 28E80]. Alterations in myocyte ultra-structure and in
protein function and distribution are now recognized to be the primary mechanisms of cardiac dysfunction in
a diverse range of common pathologies including cardiac arrhythmias and hypert2&hy [

3.2.1. Cardiomyocyte ionic model with realistic t-tubule geometry.this paper, we used our published
computational model with realistic transverse-axiibule geometry and experimentally suggested ion-
transporting protein distributions, to analyze several important spatial and temporal featuréssig@aling,
buffering and diffusion in rat ventricular myocyte$1]. We considered a small compartment containing a
singlet-tubule and its surrounding half-sarcomeres (P@umaiddle panel). Thétubule diameter varied from

0.19 to Q469um and thet-tubule depth was.645um. The surrounding half-sarcomeres were modeled as a
rectangular-shaped box of2n % 2 um in the plane of external sarcolemma anéigim in depth. Because

the originalt-tubule model did not include the realistic cell surface, one of the box faces (top red surface
in bgure?) was assumed to be the external cell membrdrig [To generate the high-bdelity and -quality
tetrahedral meshes for a 3Bubular system, we used GAMe27].

The overall scheme of the ionic model is shown in bdlifeght panel) In this study, we examined €a
diffusion in rat cells that were treated with ryanodine and thapsigargin to eliminate the release and uptake
of C&* by the sarcoplasmic reticulum (e.g. C&uxes via the ryanodine receptors and the SR @amps
blocked) [L1]. At rest, C&"* inRux via C&* leak was adjusted to match €aefRux via NCX; thus no net
movement across the cell membrane would occur. The depolarization of the sarcolemma activates E*type Ca
channels. The subsequent inBux ofCicreases the intracellular €aconcentration ([C&];). Free C&"
diffuse and react throughout the cytoplasm. The equations describfiig3G=es via the-tubule and surface
membrane dca,, = Jca+ Incx + Iv-leak WhereJcais LCC C&* inBux, Incx is NCX Ce* Bux andJy-eak
is membrane Cé& leak) were the same as those in Chen@l (see alsappendiy. The generalized SMOL
package was used to solve the nonlinear reaction-diffusion system debr®®@) [11]. Unless specibed
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Figure 2. Left panel: troponin C monomer. Middle panel: geometric model of a sikiglbule and
surrounding half-sarcomeres extracted from two-photon microscopy images inIfjicRight panel:

schematic drawing of G4 entrance and extrusion via the cell membrane antf ®affering and
diffusion inside the cell. L-type GAchannel (LCC), N&C&* exchanger (NCX), membrane €deak

(Leak), ryanodine receptor (RyR), sarcoplasmic reticulum (SR), SR @amp (SERCA), troponin
C (TnC), adenosine triphosphate (ATP) and RBuorescent indicator (Fluo-3). Bottom pealel bar
showing the relative lengths of the TnC macro-molectitebule and myocyte.

otherwise in the bgure legends or in the text, all initial conditions and values of the parameters that are not
included in this paper correspond to those used in Cle¢iadf 11].

In agreement with experimen8]], the model predicts that spatially uniform €aransients can be
achieved with 100M Fluo-3 when total C& Rux (Jcg,) Was heterogeneously distributed along the
sarcolemma (Pgur®. Figure3 also shows that strongly non-uniform€aignals are predicted in the absence
of a Buorescent indicator. The surface plots in bdliseere computed from Chengt al line-scan images
(Pgures 4(F) and 6(F)) in Chereg al [11]). To delineate further the suggested spatial differences iR'|Ca
(see bPgure8(A) and (B)), we introduced a quantity called Ospati&l* Gaterogeneity® (SCH). The SCH is
debned to be the difference of the maximal and minimaf{aalues, normalized by the maximal value at a
given reference point along the scanning line in a given momesftinterest. High SCH value suggests non-
uniform [C&]; distribution and an SCH of zero indicates spatially uniformjadistribution. The histogram
in bgure3(C) shows that in the absence of dye, SCH (10 ms) increased by 1.64-fold, SCH (70 ms) by 2.63-fold,
SCH (76 ms) by 2.68-fold, SCH (100 ms) by 4.46-fold and SCH (200 ms) by 28.65-fold.

In this particular model, the effects of exogenous and endogendtisGiers (Fluo-3, ATP and troponin
C) were considered. The buffer €adissociation constantK§2H° = 0.739uM, K5A™P = 200uM and
K53 = 1pM) and on-rate constank§2F°= 0.23uM" I ms 1, k$3ATP = 0.225uM" I ms’ * andk$a™ =
0.04uM" tms'1) used here are average values measured in different cardiac species under physiological
conditions PBL1]. Theoretical estimates &§2™", k$24TP or kSa8FOrates in the literature, however, are lacking.
Moreover, the C&-binding buffer constants for several other important buffers regulating cardiac cell cycle
(including calmodulin, myosin, TnC high-afbnity sites and ADP) are controversial or unkrid@yag]. Thus,
in the event that the association ralg,f is unknown, we assume a typical near-diffusion-limited on-rate
value of 0125uM" 1 ms 1 [12]. Hence, the computational estimation of these kinetic parameters presents an
exciting opportunity to leverage our advanced molecular-level tools.

Two classes of Cd-binding sites have been identiPed on cardiac TnC subunit (Eleé panel): one
low-afbnity C&*-specibc site on the amino end of TnC (N-domain) and two high-afeni/ig?* binding
sites on the carboxy end of TnC (C-domai®$[32]. The high-afbnity C&/Mg?* sites are saturated at resting
[C&a®*]i ($ 100 nM). Therefore, in our model only the low-afbnityCapecibc site was included since large
and rapid changes in the €aoccupancy of these sites can occur during th&*@ansient B2]. We assume
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Figure 3. C&* signals in the presence (A) and absence of dyeEBjimated SCH with 10aM Fluo-3

and zero Fluo-3 (C)in (A) and (B), the line scan was positioned at 200 nm from the surface of the
t-tubule. Featured spots along the scanning line: 108 8nd 5.4%1m. Momentd; of interest: 10 msN
L-type C&" current peaki(.,-peas); 70 msNduration of L-type C&" current {;.,-max); 76 msN[C&®*];

peak (caz+,-pear); 100 and 200 msNrelaxation times for [€3; (t10oms t200 m9-

also that TnC is immobile because it is attached to the thin blar@ghtlittle is known, however, about how
alterations in TnC on- and off-rates in the whole Tn compex (TnC, Tnl, TnT) modulate the spatial and temporal
features of the C signaling, buffering and diffusion in rats. Therefore, our goal here was to examine these
effects from a modeling perspective. In this study, we used published experimental measuremégts for

and kgf?T” because currently at the molecular scale we do not yet have theoretical estimates as in the case of
MAChE monomer on-rates].

3.2.1.1 Effects of changes in €=on-rate for TnC in the whole Tn complex on local € aignals A recent

study has claribed the role of a specibc, disease-associated mutation of the TnC regulatory domain in altered
C&" binding, signal transmission and myocyte contractile dysfunction in 88fis [Lim and collaborators,

by combining targeted expression/integration of recombinant mutant TnC in cardiomyocyt@s ‘trd
functional analysis, found a decrease in myoblameRt €ensitivity and C&" binding afbnity. It is difbcult,
however, to derive from the Liret al studies an understanding of how changes in th& Ga-rate for TnC

(k$8T"S) modulate spatial G4 distribution in rats. Our studies imply that in the absence of dye with MO

7
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(A) 70uM TnC, 260uM ATP (B) 35puM TnC, 260uM ATP
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Figure 4. (ADC) Estimated spatial €aheterogeneity index with respect#®5% andt 50% changes

in control C&* on-rate for TnCKS3™ = 0.04pM" ! ms 1, assuming the bask$3"value of 004 ms *

is unchanged) in the absence of dye. In panels (A)D(C), @a was heterogeneously distributed, line
scan positioned at 200 nm away from theibule membrane and the featured spots along the scan line

were chosen to be the same as in bdure

TnC (see bguré(A)), inRatedk$3™values tend to decrease SCH within the initial 10 ms of simulation, during
which the calcium concentration ([€%;) is low. SCH, however, increases at the total{gabeyond 10 ms.
Measurements have demonstrated also that the total TnC concentration{{)Tce] range from 30 to
150uM [28, 32]. With this in mind, we computed SCH decreasing or increasing [nGjigures4(A)D(C)
show that at; . -peak (10 ms) 35uM [TnC]it enhanced SCH, whereas 140 [TnClq: tends to decrease SCH
as predicted with 7QM [TnClyq. Interestingly, withk$3™" ranging from 0.02 to @6pM” *ms’ *: (i) beyond
10 ms [C&*]; was more uniformly distributed with 35M [TnC]yo; than was predicted for 40M [TnCliot; (i)
140uM [TnCliot also decreased SCH (M [TnClior) att) o, -max tica+);-peak @Ndti00ms Whereas at 200 ms
SCH remained almost unchanged. Additional model Pndings are that WitM3%nCl,: SCH increased at
the total [C&*]; beyond 10 ms (Pgur¥B)), while the changes ikSaTslightly affected the predicted SCH (70,
76, 100 and 200 ms) when control [Tn&]ncreased 2-fold (Pgu(C)). Taken together, our numerical work
and analyses suggest that the disease-linked changg8'ih(respectively ink 53T = k52T k52T and the
alterations in [TnG}y level at low free [C&']; (SR activity disabled) alter the effective diffusion coefbcient for
free C&* (DEM [8, 9]. The changes iDE" will affect local Row rates of membrane Edransporters and local

Ce&* trigger Buxes (d[CH]i/ dt) controlling SR CA' release and ultimately the normal myocyte functidg] |
8
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Figure 5. (ADC) Estimated spatial €aheterogeneity index with respect to 75% decrease and 2.3-fold
increase in WT Tn off-ratekG3™ = 0.04 ms *, assuming the bask§a™ value of Q04uM” tms !

is unchanged) in the absence of dye. L48Q Tn mutatihﬁﬂ’)mQ)O.Ol ms 1. 161Q Tn mutationN
kSl = 0.092ms ™. In these sets of simulations the line scan was positioned at 200 nm away from
the surface of thé-tubule, C&" Rux was heterogeneously distributed and the reference points were

chosen to be the same as in bg8ire

3.2.1.2 Effects of changes in €aoff-rate for TnC in whole Tn complex on local €asignals Kreutziger

and colleagues introduced site-directed mutations in the N-terminus of rat ThC (L48Q TnC, 161Q TnC) that
altered the control G4 off-rate value B4]. Using stopped-Row spectroscopy, they measured diasociation

rates from the whole troponin complex containing recombinant WT Tnl and WT TnT andany one amon81WT
TnC, L48Q TnC and 161Q TnC (in the paper, Caff-rates are denoted a§™, k$i%s0) OF kSiiloio):
respectively). These experiments demonstrated that the mutations in TnC altered thk&pﬁéilalue,
reducing it by 75% for L48Q TnC and increasing it by 3.2-fold for 161Q TnC. It is difpcult, however, to derive
from these studies an understanding of how these site-directed mutations in TnC (e.g.lé#é?,eblg‘“”

and Dgf;) modulate the cytosolic G&dynamics that ultimately will affect the normal cell function. Here, we
used our 3D reaction-diffusion model to investigate this. Fidi@fg shows that with 7QuM [TnC]: (i) both

the alterations irkgf?T” enhanced SCH a&{,-peal 10 ms); (ii) att| . ,-max (70 MS),ticz2+-peak (76 MS) andz00 ms
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Figure 6. Estimated spatial G4 heterogeneity index for all TnC variants in whole Tn complex (A) and
reconstructed thin blaments (B) in the absence of dye. Panekfp)? = 0.0297 ms*, k§ilgq) =
0.0073m$* andk$ils o = 0.067ms L. Panel (B)k5; " = 0.0754ms?, kifi g = 0.028ms
andkggee) = 0.2377ms™. In this set of simulationsk§a™ value was M4pM” *ms ; C&* Bux
was heterogeneously distributed; the line scan positioned at 200 nm from the surface-tftihle;
reference points along the scaned line were chosen to be the same as i.bgure

inRatedk (81 decreased SCH, while no visible differences in SCH were found when the ckijféwas

reduced by 75% (L48Q Tn mutation); (iii) at 200 ms both the alteratiorkgf?ﬁ” decreased SCH.

The model also predicts that &t ,-peak the decrease in control TnC buffer capacity tqud8 increased
SCH, whereas 140M [TnC];o decreased SCH for all TnC variants (Pguses)D(C)). In addition, Pgurg(B)
demonstrates that with 38V [TnClr, SCH decreased at the total fCh beyond 10ms. The predicted
changes in SCH beyond 10 ms with 148! [TnC]y; are shown in Pguré(C). This set of simulations
demonstrates that: (i) at 70 and 76 ms, ian@ﬁTng) increased SCH, while [G4]; was more uniformly
distributed when<§f?T” was decreased (L48Q Tn mutation); (ii) at 200 ms no visible differences in SCH were
found wherkG#™"was increased 2.3-fold (161Q Tn mutation), while a 75% drop in the B3$it" (L48Q Tn
mutation) decreased SCH notably; (i) at 200 ms both the alteratiok{§? tended to decrease the SCH. In
summary, our results demonstrate that the mutation-linked chang§$ ih(in KgaTn, respectively) and the
variations in [TnCly levels alter contrngf;, thereby altering the local sarcolemmal Buxes, SR @@gger
Ruxes and local [C4]; inside the cell with SR disabled. The model also demonstrates that the alterations in
kS2T"may affect quite differently local G4 distributions ([C4"]; and d[C&*]i/ dt) with respect to those when
controlk$3™is varied (compare bgurdsands).

In Kreutzigeret alOs experimerig?™" was determined for each TR™ = 0.0297ms %; k§f%sq) =
0.0073ms?; kgf?(Tng) = 0.067 ms 1) by btting Ruorescence data (at4®) with exponential curves3g]. We
then calculated SCH replacing the mokig?"values (001 ms  L48Q Tn, Q04 ms ! WT Tn and 0092 ms *
161Q Tn) with the experimentally measured values. However, only minor effects in predicted SCH were found
with 70puM [TnCl]iot (compare PgureS(A) and6(A)).

3.2.1.3 Effects of changes in €aoff-rate for TnC in reconstructed thin blaments on local’C aignals
Recently, Kreutzigeet al[34] measured the off-rates in reconstructed thin Plaments with WT or mutant whole
TnC, WT Tm and WT actin (in the paper these’Caff-rates are denoted &§7 ', kS ia6) OF Kot »
respectively). They found 2.2D3.4-fold increases in off-rates for all TnC variants versus the isolateoi whole Tn
complex. The relative effect of the mutations in TnC remained almost the same as for whole Tn, such that
kgf?Tr(THwas reduced by 63% for L48Q (versus 75% in isolated Tn complex) and increased by 3.2-fold for

161Q Tn in the thin Plaments. It remains unclear, however, whether the changes in off-rates in reconstructed
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thin blaments would have a different effect orf€dynamics relative to those predicted with the isolated whole
Tn complex. Our numerical results demonstrate that with MO[TnC]c Visible differences in the calculated
SCH values compared to those in isolated whole Tn complex were founigAteak (10 ms) & 2.5-fold
increase in WT variant had little or no effect on SCH} &.85-fold increase in L48Q variant decreased SCH,
while a$ 3.55-fold increase in 161Q variant increased SCH (bPg6¢a3 versus6(B)).

Figures5 and6 also show that at the moment b, closing (70 ms) and at [C4]; peak (76 ms), SCH
decreased for WT and 161Q variants versus the whole Tn complex. The model also predicts thato(hsat
SCHKSE™ $ SCHEKS; ™), SCHEGEha0)) < SCHEKGr 1 xse) and SCHKSATE, o)) > SCHKS 161y ) (i) at
t200msSCHKGE™ > SCHKSF ), SCHEGE e0)) $ SCHS (L Aa0) and SCHKSATE, o)) > SCHEkg 1 1610))-

These Pndings suggest that the use of whole Tn off-rates versus reconstructeoi thin bPlament off-rates into
cardiac cellular and sub-cellular models may alter the predicted control and disease-lidketh@sporter
rates, C&' trigger Ruxes for SR release and locaPtCsignals.

In summary, our studies provide a foundation for a more comprehensive understanding of sigggling
transduction at molecular and sub-cellular scales. Our studies also illustrate the importance of improved
experimental measurements of‘Cauffering kinetics and of complementary theoretical estimates 6t Ca
buffer reaction rates. Together, this will lead to a better understanding %fsignaling in the heart under
normal or pathological conditions.

4. Conclusions

In this paper, we applied the SMOL package to molecular-level reaction kinetics of ACh and cellular-level
C&* dynamics. Our data demonstrate that a continuum-based description of ion diffusion, the Smoluchowski
equation, captures molecular-level details impacting reaction rates. This suggests that alternative descriptions
of electrodynamics, such as the PoissonbNernstbPlanck equation, could further improve our estimates.
These data also demonstrate progress toward sub-cellular modeling of the heart, in which buffering
dynamics are handled at a molecular level. Future applications of SMOL will feature spatially coupled 3D
structural and functional models of ventricular cardiac myocytes with (i) realistic sub-cellular anatomical
structures, such as €asignaling micro-domains and cell organelles; (i) sarcoplasmic reticulum RBuxes
via ryanodine receptors (RyR) and the SERCA pump; and (iii) spatial and temporal scales spanning from
single-channel ion RBuxes to tension development in actin and myosin blaments. These developments would
facilitate modeling excitationbcontraction coupling inBuenced by mutations, phosphorylation and alterations
in protein expression. Other molecular-level approaches that could further benebt excitationBcontraction
modeling include analysis of nucleotide-activated conformational dynadiskinase activity B6], channel

gating B7] and structure-based drug desig8g8]. In concert, these approaches constitute a prototypical
workRow for patient-specibPc modeling and therapies.
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Appendix

Equations describing total €aRux (Jca,,,), L-type C&" current (c,), Na*/Ce* exchanger BuxJycx) and
C&" leak current Jy-iear) throughout the-tubule and external membrane:

Jeawx = Jecat Inex + Im-leaks (A1)

lcat) = lca, F(1) (A.2)
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Table 1. Membrane calcium Ruxes parameters

Symbol Debpnition Value Reference
L-type C&" current
Ica, Constant 1 9
ta Constant 4ms 40]
ty Constant 70ms 40
Na’/ Ca* exchange current
[Na*]e Extracellular N& 140mM 28
concentration
[Na*]; Resting N& 10mM [28]
concentration
Onex Pump rate of 3SuMms * [41]
NCX
% \oltage dependence of 0.35 47
NCX control
Km Na Na" half saturation 87.5mM 11
of NCX
Km.ca C&* half saturation 138aM [41]
of NCX
Ksat Low potential 0.1 41]
saturation factor
of NCX
Membrane C#' leak
OM-leak Conductance 3e" 6pMmV ' 'ms ! Estimated
%
&1.1438Q, 0< t<ty,
f(t) = , 173189 + 511444 & umes:, t,! t < tp, (A.3)
&0, t" tp,
I _ e%/F/ RT[Na+]i3[Ca2+]e " e(%' 1)VF/ RT[Na+]g[Ca2+]i (A 4)
NOX T N+ INETD (i ca + [CETe) (L + kg DVFIRTY’ |
IM” leak = gM-Ieak([Caz+]e ! [Caz+]i)- (A.5)

Flux parameter values were estimated or taken from the literature (sed Yaliehis study, the Cd leak is
not actually a particular Oleak protein®. THé IBak was included and adjusted so that at rest @®ux via
Ca* leak matches G4 efRux via NCX and thus no net movement across the cell membrane occurs.
In the model, each current densit;)(was converted to G4 Bux (J) by using the experimentally
suggested surface to volume rat'@;ﬁ 8.8 pF/pL) in adult rat ventricular myocyte39]:
) 1 Cn

J= = li. A6
R TSV (A.6)

The voltage-clamp protocol (holding potential B50;neléctric pulse of 10 mV for 70 ms) and whole-cell
L-type C&* current were derived from the Zahradnikateal data with the blocked SR activitg{).
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