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This article describes a numerical solution of the steady-state Poisson-Boltzmann-
Smoluchowski (PBS) and Poisson-Nernst-Planck (PNP) equations to study diffusion in
biomolecular systems. Specifically, finite element methods have been developed to calculate
electrostatic interactions and ligand binding rate constants for large biomolecules. The result-
ing software has been validated and applied to the wild-type and several mutated avian in-
fluenza neurominidase crystal structures. The calculated rates show very good agreement with
recent experimental studies. Furthermore, these finite element methods require significantly
fewer computational resources than existing particle-based Brownian dynamics methods and
are robust for complicated geometries. The key finding of biological importance is that the
electrostatic steering plays the important role in the drug binding process of the neurominidase.

1. Introduction
Electrostatics and Diffusion play the important role in a variety of biomolecu-
lar processes, which have been studied extensively using various biophysical,
biochemical and computational methods. Computational models of diffusion
have been widely studied using both discrete 1,2,3,4,5 and continuum methods
6,7,8,9,10,11. The discrete methods concentrate on the stochastic processes based
on individual particles, which include Monte Carlo12,13,14,5, Brownian dynamics
(BD) 15,16,17 and Langevin dynamics18,19 simulations. Continuum modeling de-
scribes the diffusional processes via concentration distribution probability in lieu
of stochastic dynamics of individual particles. Comparing with the discrete meth-
ods, continuum approaches needn’t deal with the individual Brownian particles
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and the computionational cost can be substantially less than for the discrete meth-
ods.

In the present work, we apply adaptive finite element methods to solve the PBS
equation and PNP equation in several neurominidase structures. The diffusion re-
sults have been compared with those from recent experimental kinetic studies.
The H5N1 avian influenza neurominidase is a highly pathogenic virus that might
acquire the ability to pass readily among humans and cause a pandemic20,21. Our
continuum modeling demonstrates that it is efficient but accurate enough to ad-
dress the drug binding. To take account of the stochastic dynamics of diffusion
particles, we are developing a state-in-art SMOL package by integrating the con-
tinuum modeling and Brownian dynamics together to study the drug diffusion in
the neurominidase.

2. Theory and Modeling Details
Our SMOL package (http://mccammon.ucsd.edu/smol/index.html) models the
diffusion of ligands relative to a target molecule, subject to a potential obtained
by solving the Poisson-Boltzmann equation. It is perhaps most easily explained
by initially considering motion of an ensemble of Brownian particles in a pre-
scribed external potential φ(~R)(~R being a particle’s position) under conditions of
high friction, where the Smoluchowski equation applies.

2.1. Boundaries and Initialization of the Poisson-Boltzmann and
Smoluchowski Equations

The original Poisson-Boltzmann and Smoluchowski equations have the form of
continuity equations (see Fig. 1):

∇ · (ε∇φ(~R))+κ2sinh(φ(~R)) = ∑
i

qiδ(~R−~Ri)+∑
j

q j p j(~R; t) (1)

∂p j(~R; t)
∂t = −~∇ ·~J j(~R; t) (2)

where the particle flux is defined as:
~J j(~R; t) = D j(~R)[~∇p j(~R; t)+β~∇φ(~R)p j(~R; t)]

= D j(~R)e−βq jφ(~R)∇eβq jφ(~R)p(~R; t) (3)

Here p j(~R; t) is the distribution function of the ensemble of Brownian parti-
cles, including the drug molecule, coions and counterions. D j(~R) is the diffusion
coefficient of the diffusion particle, β = 1/kBT is the inverse Boltzmann energy, kB
is the Boltzmann constant, T is the temperature, and φ(~R) is the potential of mean
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Figure 1. The illustration of the problem domains for Poisson-Boltzmann and Smoluchowski Equa-
tions. The Poisson-Boltzmann equation is solved on Ω, while the Smoluchowski equation is solved
only on Ωs. Γ represents the molecular surface, while Γa and Γr correspond the reactive and nonreac-
tive boundaries.

force (PMF) for a diffusing particle due to solvent mediated interactions with the
target molecule. For simplicity, D j(~R) can be assumed to be constant. The two
terms contributing to the flux have clear physical meanings. The first is due to
free diffusional processes, as quantified by Fick’s first law. The second contribu-
tion is due to the drift velocity - ~∇φ(~R)γ induced by the systematic forces - ~∇φ(~R)

and friction quantified by the friction constant γ. The relation between diffusion
coefficient D and friction constant γ is given by Stokes-Einstein equation: Dβγ =
1. κ =

√

2n0e2/(ε0kBT ), ε0 is the vacuum permittivity and n0 is the bulk ionic
concentration.

To accurately solve the Poisson-Boltzmann equation, the potential φ(~R) has
been decomposed into singularized (φs) and regularized (φr) components 22. The
singularized component φs can be further decomposed into the harmonic (φh) and
the singular green function G: φs = φh + G. The φh can be obtained via solving the
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below equation:

∇ · (∇φh(~R)) = 0 on Ωm

φh = −G on Γ (4)

Where the green function G is simply the electrostatic potential induced by all the
singular charges inside the biomolecule, i.e.,

∇ · (εm∇G(~R)) = ∑
i

qiδ(~R−~Ri) on Ωm (5)

and can be directly given by G(~R) = ∑i
qi

εm|~R−~Ri|
Eq. 4 can be solved using the finite element method or boundary element

method. For φr , we need to solve the below equation:

∇ · (ε∇φr(~R))+κ(~R)2sinh(φr +φs) = 0 on Ω
φr = 0 on Γ

ε
∂φr
∂n = −εm

∂φs
∂n on Γ (6)

Since κ(~R) = 0 on Ωm and φs = 0 on Ωs, therefore Eq. 6 can be further
simplified as

∇ · (ε∇φr(~R))+κ(~R)2sinh(φr) = [εφs]ΓδΓ (7)

Where [εφs]ΓδΓ is the jump on the molecular interface.
Finally, the solution of the PB equation cab be given by:

φ = φr +φh +G (8)

The Smoluchowski equation (Eq. 2) can be solved to determine biomolecular
diffusional encounter rates before steady state is established. Following the work
of Song et al.9,10 and Zhou et al.23,24,25, the application of the Smoluchowski
equation to this question involves the solution of Eq. 2 in a three-dimensional
domain Ω, with the following boundary and initial conditions. A bulk Dirichlet
condition is imposed on the outer boundary Γb ⊂ ∂Ω,

p j(~Rl ; t) = pbulk
j , f or ~Rl ∈ Γb, (9)

where pbulk
j denotes the bulk concentration at the outer boundary. A reactive

Robin condition is implemented on the active site boundary Γa ⊂ ∂Ω,

n(~R0) ·∇p(~R0; t) = α(~R0)p(~R0), f or ~R0 ∈ Γa, (10)
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providing an intrinsic reaction rate α(~R0). Here, n(~R0) is the surface normal.
For the diffusion-limited reaction process, such as inhibitor binding in N1, the
concentration of the inhibitor at the binding site is approximately zero. Therefore,
the reactive Robin condition on the inner boundary can be simplified as:

p j(~R0; t) = 0, f or ~R0 ∈ Γa, (11)

Where p j in the inhibitor concentration. It must be noted that for coions and
counterions, there are no reactive boundaries. For the non-reactive surface parts
of the inner boundary Γr ⊂ ∂Ω, a reflective Neumann condition is employed.

n(~R0) · jp(~R0; t) = 0, (12)

Finally, we set up the initial conditions as

p j(~R;0) =

{

pbulk
j |~R| = l

0 |~R| < l
(13)

The solution of the PBS equation can be obtained by sequentially solving the
Eq. 1 and Eq. 2; To solve the PNP equation, we need to solve the Eq. 1 and Eq. 2
iteratively, until the potential value φ converges to the initial threshold set by the
user.

Therefore, the diffusion-determined biomolecular reaction rate constant dur-
ing the simulation time can be obtained from the flux ~j(~R; t) by integration over
the active site boundary, i.e.

k(t) = p−1
j;bulk

Z

Γa
n(~R) ·~j(~R; t)dS (14)

Finally, the corresponding concentration distribution can be obtained by
p j(~R; t) = e−βφ(~R)u(~R; t).

2.2. Adaptive Finite Element Mesh Generation
Before generating the tetrahedral meshes for the external and internal space for the
biomolecule, we first generate the surface triangular meshes for the molecule us-
ing the MSMS code (http://www.scripps.edu/ sanner/html/msms home.html) 26.
Certainly, Although MSMS is very efficient for surface mesh generation, the
quality of the surface mesh still need to improve. Fortunately, the “Adventure
Project” provides the excellent surface mesh smoothing for the MSMS surface
mesh (http://adventure.q.t.u-tokyo.ac.jp/). With the molecular surface mesh, Tet-
gen was implemented to generate adaptive finite element meshes for biomolecules
(http://tetgen.berlios.de/).
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In the present study, molecular dynamics studies on the wild-type N1 structure
(PDB code: 2HU4) have obtained ”open” and ”closed” conformations by Amaro
et al. (unpublished results). Adaptive meshes for the ”open” and ”closed” confor-
mations have been generated respectively. To compare the difference between the
wild type and the mutants, we also prepared the meshes for the His274Tyr mutant
(PDB code: 3CL0 and 3CKZ) and the Asn294Ser mutant (PDB code: 3CL2).
The active site of the anti-neuraminidase inhibitors has been labeled as reactive
boundaries. Reactive boundaries were defined following the typical BD methods:
a spherical reactive surface is defined at an arbitrary radius from the biomolecular
active site 27. Generally, the user can label the active site with several spheres and
write into the input file.

3. Results and Discussion
3.1. Validation of the PBS and PNP solver with A Spherical Test Case
Before applying our SMOL code to a biomolecular system with complicated ge-
ometries, we first tested it with the classic spherical system 28 and compared the
calculated result with the known analytical solution. For this test case, we chose a
diffusing sphere with a 2 Å radius and +1e charge. The receptor molecule was rep-
resented with a sphere with a 10 Å radius and -1e. The diffusion domain is another
concentric sphere with a 400 Å radius, which was discretized with 141,792 tetra-
hedral elements. A detailed view of the surface mesh for the stationary sphere
is also shown in Fig. 2(a). The diffusing particle’s dimensionless bulk concen-
tration was set to 1 mM. The concentration of coion and counterion was set at
150 mM. The dielectric constant is 2 in the receptor and 80 in the diffusion do-
main. Ignoring hydrodynamic interactions, the diffusion constant D is calculated
as 7.8×104Å2

/µs using the Stokes-Einstein equation with a hydrodynamic radius
of 3.5 Å, solvent viscosity of 0.891×10−3kg/(m · s), and 300 K temperature.

For a unit sphere with radius r0 and charge q in the center of the sphere, the
linearized Poisson-Boltzmann equation have the below analytical solution φa:

φa =
qeκr0

ε(1+κr0)
·

e−κr

r , r ≥ R (15)

Where R is the outer boundary.
Fig. 3 shows the calculated potential comparing with the analytical values.

The relative error is less than %3.
Generally, under physiological condition, the ionic strength is approximately

0.15 M, here we solve the PBS and PNP equations with 150 mM Na+ and Cl−
and 1 mM +e charged inhibitor. If the active site of the receptor is as shown in
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Figure 2. (a) the external diffusion domain; (b) the non reactive molecular surface (cyan), the active
site (red) and the outer sphere (pink).

Fig. 2(b), we can obtain the potential value (φ(~R)) and concentration distribution
(p j(~R; t)) on each node in the diffusion domain. The total free energy for a given
distribution p j(~R; t), i.e., the quantity which develops towards a minimum during
the diffusion process, is a functional defined through

G[p j(~R; t)] =
Z

Ω
g(p j(~R; t))dr (16)

where g(p j(~R; t)) is the free energy density connected with p j(~R; t).

g(p j(~R; t)) = p j(~R; t)(φ(~R)+β−1ln p j(~R; t)
pbulk

j
) (17)

Similarly, we define the local entropy density s j(~R; t) as

s j(~R; t) = −kB p j(~R; t)ln p j(~R; t)
pbulk

j
(18)

Solving the PBS equation, we obtained kon = 9.967×1010M−1 ·min−1 when
the steady state comes. The distribution of Na+, Cl− and +1e inhibitor is shown
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Figure 3. (a) the calculated and analytical potential in the diffusion domain; (b) the relative error for
calculated potential in the diffusion domain.

in Fig.4. Furthermore, the equilibrium has not been reached due to the influx of
all the ions. To accurately describe the equilibrium state, we need to iteratively
solve the PB and Smoluchowski equations until the potential and diffusion rate
constant reach the stable value, which is the ”so-called” PNP equation. The final
kon is 6.517×1010M−1 ·min−1. It seems that coions and counterions play the role
in compensating the fast consumption of the +1e charged inhibitor. Comparing to
the PBS model in Fig. 4, it clearly shows that there are more Na+ ions are pumped
out of the diffusion domain, while more Cl− ions distribute near the receptor in
our PNP model. The local free energy density and entropy density are much more
tight and close to the receptor surface in the PNP model (Fig. 5).

3.2. Application of the PNP solver on different neuraminidase models
The active sites of all the neurominidase models are represented by two spheres,
one is a 3 Å radius with the center on the carboxyl oxygen of Thr-225 and the other
is in the gorge and around 5 Å away from the carboxyl-O of Thr-225. Finally, it
turns out to be around 200 Å2 for the area of each active site. Similarly, we suppose
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Figure 4. The concentration distribution calculated for Na+, Cl− and +1e charged drug via the PBS
and PNP models, respectively.

that there is 150 mM Na+ and 150 mM Cl−, 1 mM -e inhibitor in the bulk. It must
be noted that the potential drug inhibitor carries -e charge.

First, the ”open” and ”closed” conformations of the wild-type neuraminidase
have been modeled. When the steady state comes, the association reaction
rate constant kon is 2.76× 108M−1 ·min−1 for the “open” conformation, while
3.66×108M−1 ·min−1 for the “closed” conformation. It turns out that the “closed”
conformation have stronger binding affinity to anti-neuraminidase drugs. Experi-
mental studies also observed the “tighter interaction with ligand” 20. Meanwhile,
we simulated three mutants 3CL0, 3CKZ and 3CL2. The calculated steady-state
rate constants have been listed in Table.1. Comparing with the experimental data,
our results are very consistent. Additionally, it must be noted that all the calcu-
lated rate constant is larger than experimental data. Actually, the active site of the
neuraminidase is very flexible to change according to both the experimental find-
ing and unpublished molecular dynamics simulations by Amaro et al. The size of
the possible drugs, such as sialic acid, oseltmivir and zanamivir, is relatively big
(at lease 30 atoms). Therefore, different from our previous acetylcholinesterase
model 29, the non-electrostatic interaction, such as VdW and steric effect, and the
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Figure 5. The local free energy and entropy densities in the PBS and PNP models.

rate(PBS) rate(PNP) experimental
wild-type open 18.1 14.6 2.52
wild-type closed 23.1 19.1 2.52
3CL0 11.9 7.32 0.24
3CKZ 12.4 8.17 0.35
3CL2 16.5 11.8 1.1

steric effect, must be taken account into the simulation for accurately depicting
the drug diffusion. Currently, we are trying to hybrid the Brownian dynamics and
finite element method to obtain the collision reaction probability. Combining with
the above diffusion coefficient, it can predict the diffusion association constant
more accurately.
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4. Conclusion
In this study, we describe continuum-based methods for studying electrostatic
diffusion in biomolecular systems. Specifically, we present the SMOL software
package, a finite element-based set of tools for solving the electrostatics and dif-
fusion to calculate ligand binding rate constants for large biomolecules under
pre-steady-state and steady-state conditions. The main improvement from the
previous SMOL solver 9,10,29 can be addressed as below: first, the new regu-
larized Poisson-Boltzmann algorithm instead of the previous APBS. It makes the
solver read the potential value from the same diffusion node and avoid the pre-
vious data mapping error; second, the iteratively solving Poisson-Boltzmann and
Smoluchowski equations results in a stable PNP solver; third, local free energy
and entropy densities have been calculated during the diffusion process. finally, a
simple mesh generator has been included for preparing tetrahedral meshes for the
diffusion domain and molecular domain.

Although our above solution for the neuraminidase is qualitatively consistent
with experiments, the continuum method on studying the diffusion still has two
main limitations: the size of the diffusion ligand and non-electrostatic interaction
are not included. Currently, we are combining the continuum modeling method
and Brownian dynamics together for simulating the drug diffusion in the neu-
raminidase. According to Fig. 4, it must be noted that only a quite limited area
close to the active site has substantial concentration/free energy density gradi-
ent. Our new method singles out the active site to implement Brownian dynamics
while continuum method on other areas. The ultimate goal of this work is to de-
velop scalable methods and theories that will allow researchers to begin to study
biological macromolecules in a cellular context.

References
1. D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978).
2. S. H. Northrup, S. A. Allison and J. A. McCammon, J. Chem. Phys. 80, 1517 (1984).
3. N. Agmon and A. L. Edelstein, Biophys. J. 72, 1582 (1997).
4. R. R. Gabdoulline and R. C. Wade, Methods 14, 329 (1998).
5. J. R. Stiles and T. M. Bartol, Monte Carlo methods for simulating realistic synaptic

microphysiology using MCell, in Computational Neuroscience: Realistic Modeling
for Experimentalists, ed. E. D. Schutter (CRC Press, Inc., New York, 2000) pp. 87–
127.

6. J. L. Smart and J. A. McCammon, Biophys. J. 75, 1679 (1998).
7. M. G. Kurnikova, R. D. Coalson, P. Graf and A. Nitzan, Biophys. J. 76, 642 (1999).
8. Z. Schuss, B. Nadler and R. S. Eisenberg, Phys. Rev. E 6403 (2001).
9. Y. H. Song, Y. J. Zhang, C. L. Bajaj and N. A. Baker, Biophys. J. 87, 1558 (2004).

10. Y. H. Song, Y. J. Zhang, T. Y. Shen, C. L. Bajaj, A. McCammon and N. A. Baker,



October 10, 2008 5:16 Proceedings Trim Size: 9in x 6in cheng˙psb2009˙2

12

Biophys. J. 86, 2017 (2004).
11. K. S. Tai, S. D. Bond, H. R. Macmillan, N. A. Baker, M. J. Holst and J. A. McCammon,

Biophys. J. 84, 2234 (2003).
12. H. Berry, Biophys. J. 83, 1891 (2002).
13. D. Genest, Biopolymers 28, 1903 (1989).
14. M. J. Saxton, Biophys. J. 61, 119 (1992).
15. J. A. McCammon, Science 238, 486 (1987).
16. S. H. Northrup, J. O. Boles and J. C. L. Reynolds, Science 241, 67 (1988).
17. R. C. Wade, M. E. Davis, B. A. Luty, J. D. Madura and J. A. Mccammon, Biophys. J.

64, 9 (1993).
18. P. Eastman and S. Doniach, Proteins 30, 215 (1998).
19. L. Yeomans-Reyna and M. Medina-Noyola, Phys Rev E Stat Nonlin Soft Matter Phys.

64, p. 066114 (2001).
20. R. J. Russell, L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J.

Hay, S. J. Gamblin and J. J. Skehel, Nature 443, 45 (2006).
21. P. J. Collins, L. F. Haire, Y. P. Lin, J. F. Liu, R. J. Russell, P. A. Walker, J. J. Skehel,

S. R. Martin, A. J. Hay and S. J. Gamblin, Nature 453, 1258 (2008).
22. I. Chern, J. Liu and W. Wang, Methods Appl. Anal. 10, 309 (2003).
23. H. X. Zhou, J. Chem. Phys. 92, 3092 (1990).
24. H. X. Zhou, S. T. Wlodek and J. A. McCammon, Proc. Natl. Acad. Sci. U. S. A. 95,

9280 (1998).
25. H. X. Zhou, J. M. Briggs, S. Tara and J. A. McCammon, Biopolymers 45, 355 (1998).
26. M. F. Sanner, A. J. Olson and J. Spehner, Proc. 11th ACM Symp. Comp. Geom. C6-C7

(1995).
27. S. Tara, A. H. Elcock, J. M. Briggs, Z. Radić, P. Taylor and J. A. McCammon, Biopoly-
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