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We describe a new finite element code which solves the fully general initial-value
problem using the York conformal decomposition formalism. The finite element ap-
proach allows for domains with complex topology, natural representation of bound-
ary surfaces, and provides a solid theoretical framework for analyzing the accuracy
of the resulting numerical approximations. The code employs adaptive mesh refine-
ment based on robust a posteriori error estimation and simplex bisection, coupled
with CG-like methods, multilevel methods, and Gummel/Newton methods. The
extremely efficient placement of nodes by the adaptive refinement procedure along
with the nearly optimal complexity of the multilevel methods allows these com-
putations to be performed on workstations rather than supercomputers. As an
example we compute the initial data corresponding to two “stars” in an approx-
imately circular orbit in the presence of a gravitational wave and on a slice on
which trK is non-zero.

1 The General Initial-Value Problem

We work in the ADM formalism and use the standard York conformal decom-
position of the 3–metric and extrinsic curvature 1. The initial value equations
in this form appear as four coupled quasi-linear elliptic equations for the con-
formal factor φ and a vector potential W a. In the standard notation and with
the usual conformal weighting these are

γ̂abD̂aD̂bφ =
1

8
R̂φ −

1

8
φ−7(Â∗
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The equations have been solved numerically many times in a variety of physical
settings (e.g., Mathews and Wilson 2). However, because of the complexity of
the operators and the nonlinear coupling of the equations it has been common
to make various simplifying assumptions, the most frequent of which are to
force γ̂ab to be flat and to let the initial slice be maximal (trK = 0). In addition,
the majority of previous work has been done with finite differences which create
well-known difficulties when the boundaries of the domain do not lie along
constant coordinate surfaces or when the coordinate system has singularities.

1



The code which we describe here allows us to solve the equations in three
dimensions without recourse to any of the above assumptions. The nature of
the finite element method is such that the placement of the nodes in space
is independent of the coordinate system in which the equations are written.
This permits the use of a non-singular coordinate system (if one exists) which
covers the entire computational domain and also makes handling boundaries
with complicated geometry or topology natural and automatic. Thus, supplied
with the necessary freely specifiable data and appropriate boundary conditions
on φ and W a, the code is, in principle, able to solve any initial value problem
in three dimensions. (In practice, on desktop machines, we are limited to
problems which require 50,000 nodes or less.)

2 Finite Element Discretization and Mesh Refinement

We employ a standard Galerkin finite element method in which the basis and
test functions are taken to be piecewise polynomials with local support over
disjoint polyhedral subregions of the underlying spatial domain. A weak for-
mulation of the original strong form equations (1)–(2) is required, obtained by
multiplication of the strong form equations by test functions u and va and inte-
gration by parts. The functions φ and W a are expanded in terms of the basis,
yielding linear and nonlinear algebraic equations for the expansion coefficients
(matrices which occur are very sparse due to the local support property of the
basis).

The underlying spatial domain is broken into disjoint polyhedra; we employ
simplices (tetrahedra in this setting), and the natural piecewise-linear basis. A
simplex may be divided into two (bisection) or eight (octasection) child sim-
plices in a recursive fashion such that all progeny remain non-degenerate 3,4.
Adaptive mesh refinement consists of marking certain simplices which are
deemed too large, and performing bisection or octasection to produce smaller
simplices covering the same region in space. The marking procedure is driven
by a posteriori error estimation 5. A conforming finite element method re-
quires a conforming mesh; a requirement for such a mesh is that it contains no
hanging vertices (vertices which lie along the middle of edges of one or more
simplices). Adaptive octasection always produces such hanging nodes, and
must be supplemented with bisection to produce conforming meshes.

The discrete coupled nonlinear algebraic system which arises from dis-
cretizing (1)–(2) with the finite element method is solved using a damped,
inexact-Newton procedure for linearization, coupled with a multilevel precon-
ditioned conjugate gradient iteration on the normal equations for solving the
resulting linear systems.
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3 Numerical Results

We compute initial data for the following (admittedly artificial) problem: two
spherical masses with constant density and velocity fields which put them in an
approximately circular orbit. The conformal metric is an axisymmetric Brill
wave with moderate amplitude and trK is a small, slightly oscillatory function
which is nonzero in the neighborhood of the masses and vanishes rapidly as
one moves towards the outer boundary. The masses have coordinate radius 1,
central separation 8, and the outer boundary has coordinate radius 100. The
following table gives results for a 200MHz Pentium Pro running Linux.

Error Indicator Unknowns CPU Seconds Newton Steps RAM

1.0e-1 516 55 18 1Mb
1.0e-2 3,312 399 24 4Mb
1.0e-3 25,032 4,385 31 19Mb
5.0e-4 48,136 13,725 43 34Mb
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