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ABSTRACT. The study of certain differential operators between Sobolev spaces of sec-
tions of vector bundles on compact manifolds equipped with rough metric is closely
related to the study of locally Sobolev functions on domains in the Euclidean space.
In this paper we present a coherent rigorous study of some of the properties of locally
Sobolev-Slobodeckij functions that are especially useful in the study of differential op-
erators between sections of vector bundles on compact manifolds with rough metric.
Results of this type in published literature generally can be found only for integer order
Sobolev spaces Wm,p or Bessel potential spaces Hs. Here we have presented the rele-
vant results and their detailed proofs for Sobolev-Slobodeckij spaces W s,p where s does
not need to be an integer. We also develop a number of results needed in the study of
differential operators on manifolds that do not appear to be in the literature.
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2 A. BEHZADAN AND M. HOLST

1. INTRODUCTION

It is well-known that Sobolev spaces play a key role in the study of elliptic partial
differential equations (PDEs) on domains in Rn. There are many resources for properties
of integer order Sobolev spaces of functions and their applications in PDEs (see e.g., [1,
25, 13]). Also, there are variety of resources for properties of real order Sobolev spaces of
functions and their applications, see e.g., classical references such as [23, 31, 15, 28, 20]
or more recent works such as [21, 17, 22, 34]. Likewise, the study of elliptic PDEs on
manifolds naturally leads to the study of Sobolev spaces of functions and more generally
Sobolev spaces of sections of vector bundles on manifolds. As it turns out, the study
of certain differential operators between Sobolev spaces of sections of vector bundles
on manifolds equipped with rough metric and the study of low regularity geometry on
Riemannian and semi-Riemannian manifolds is closely related to the study of spaces of
locally Sobolev functions on domains in the Euclidean space (see e.g., [14, 5, 7]).

In this paper we focus on certain properties of spaces of locally Sobolev functions
that are particularly useful in the study of differential operators on manifolds. Our work
can be viewed as a continuation of the excellent work of Antonic and Burazin [2]; their
work is mainly concerned with the properties of spaces of locally Sobolev functions with
integer smoothness degree. In particular, they study the following fundamental questions
for Sobolev spaces with integer smoothness degree:

• Topology, metrizability
• Density of smooth functions
• Reflexivity, the nature of the dual
• Continuity of differentiation between certain spaces of locally Sobolev functions

Our main goal here is to provide a self-contained manuscript in which the known re-
sults are collected and stated in the general setting of Sobolev-Slobodeckij spaces and
then develop certain other results that are useful in the study of differential operators on
manifolds. In particular, we will discuss

• General embedding results
• Pointwise multiplication
• Invariance under composition

Results of this type and other related results have been used in the literature -particularly
in the study of Einstein constraint equations on manifolds equipped with rough metric-
without complete proof. This paper should be viewed as a part of our efforts to fill
some of the gaps. Interested readers can find other results in this direction in [5, 7, 4].
Our hope is that the detailed presentation of this manuscript, along with these other
four manuscripts, will help in better understanding the structure of the proofs and the
properties of Sobolev-Slobodeckij spaces and locally Sobolev functions.

2. NOTATION AND CONVENTIONS

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and N0 denotes the set of nonnegative integers. For any nonnegative real num-
ber s, the integer part of s is denoted by ⌊s⌋. The letter n is a positive integer and stands
for the dimension of the space. For all k ∈ N, GL(k,R) is the set of all k × k invertible
matrices with real entries.

Ω is a nonempty open set in Rn. The collection of all compact subsets of Ω will be
denoted by K(Ω). If F(Ω) is any function space on Ω and K ∈ K(Ω), then FK(Ω)
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denotes the collection of elements in F(Ω) whose support is inside K. Also,

Fcomp(Ω) =
⋃

K∈K(Ω)

FK(Ω) .

If Ω′ ⊆ Ω and f : Ω′ → R, we denote the extension by zero of f to the entire Ω by
ext0Ω′,Ωf : Ω → R, that is,

ext0Ω′,Ωf(x) =

{
f(x) if x ∈ Ω′

0 otherwise
.

Lipschitz domain in Rn refers to a nonempty bounded open set in Rn with Lipschitz
continuous boundary. We say that a nonempty open set Ω ⊆ Rn has the interior Lip-
schitz property provided that for each compact set K ∈ K(Ω) there exists a bounded
open set Ω′ ⊆ Ω with Lipschitz continuous boundary such that K ⊆ Ω′.

Each element of Nn
0 is called a multi-index. For a multi-index α = (α1, · · · , αn) ∈ Nn

0 ,
we let |α| := α1 + · · · + αn. Also for sufficiently smooth functions u : Ω → R (or for
any distribution u) we define the αth order partial derivative of u as follows:

∂αu :=
∂|α|u

∂xα1
1 · · · ∂xαn

n

.

We use the notation A ⪯ B to mean A ≤ cB, where c is a positive constant that
does not depend on the non-fixed parameters appearing in A and B. We write A ≃ B if
A ⪯ B and B ⪯ A.

If X and Y are two topological spaces, we use the notation X ↪→ Y to mean X ⊆ Y
and the inclusion map is continuous.

3. BACKGROUND MATERIAL

In this section we collect some useful tools and facts we will need from topology
and analysis. Statements without proof in this section are mainly taken from Rudin’s
functional analysis [27], Grubb’s distributions and operators [16], excellent presentation
of Reus [26], Treves’ topological vector spaces [29], and [7] or are direct consequences
of statements in the aforementioned references.

3.1. Topological Vector Spaces.

Definition 3.1. A topological vector space is a vector space X together with a topology
τ with the following properties:

i) For all x ∈ X , the singleton {x} is a closed set.
ii) The maps

(x, y) 7→ x+ y (from X ×X into X) ,

(λ, x) 7→ λx (from R×X into X) ,

are continuous where X ×X and R×X are equipped with the product topology.

Definition 3.2. Suppose (X, τ) is a topological vector space and Y ⊆ X .

• Y is said to be convex if for all y1, y2 ∈ Y and t ∈ (0, 1) it is true that ty1+(1− t)y2 ∈
Y .
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• We say Y is bounded if for any neighborhood U of the origin (i.e. any open set contain-
ing the origin), there exits t > 0 such that Y ⊆ tU .

Definition 3.3. Let (X, τ) be a topological vector space. X is said to be metrizable if
there exists a metric d : X ×X → [0,∞) whose induced topology is τ . In this case we
say that the metric d is compatible with the topology τ .

Theorem 3.4. [16, 27] Let (X, τ) be a topological vector space. The following are
equivalent:

• X is metrizable.
• There exists a translation invariant metric d on X whose collection of open sets

is the same as τ . Translation invariant means

∀x, y, a ∈ X d(x+ a, y + a) = d(x, y) .

• X has a countable local base at the origin.

(Recall that a subcollection B of τ is said to be a local base at the origin if for any open
set U containing the origin there is B ∈ B such that 0 ∈ B ⊆ U .)

Remark 3.5. It can be shown that if d1 and d2 are two translation invariant metrics that
induce the same topology on X , then the Cauchy sequences of (X, d1) will be exactly the
same as the Cauchy sequences of (X, d2).

Definition 3.6. Let (X, τ) be a topological vector space. We say (X, τ) is locally convex
if it has a convex local base at the origin.

Definition 3.7. Let (X, τ) be a metrizable locally convex topological vector space. Let
d be any translation invariant metric on X that is compatible with τ . We say that X is
complete if and only if the metric space (X, d) is a complete metric space. A complete
metrizable locally convex topological vector space is called a Frechet space.

Definition 3.8. A seminorm on a vector space X is a real-valued function p : X → R
such that

i. ∀x, y ∈ X p(x+ y) ≤ p(x) + p(y),
ii. ∀x ∈ X ∀α ∈ R p(αx) = |α|p(x).

If P is a family of seminorms on X , then we say P is separating provided that for all
x ̸= 0 there exists at least one p ∈ P such that p(x) ̸= 0 (that is if p(x) = 0 for
all p ∈ P , then x = 0). It easily follows from the definition that any seminorm is a
nonnegative function.

Theorem 3.9. Suppose that (X, ∥.∥X) is a normed space. Let p : X → R be a seminorm
on X . If p is continuous, then there exists a constant C > 0 such that

∀x ∈ X p(x) ≤ C∥x∥X .

Proof. p is continuous at 0 so there exists δ > 0 such that if ∥x∥X ≤ δ then |p(x)| < 1.
If x ̸= 0, then δ x

∥x∥X
has norm equal to δ and so for all x ̸= 0, p(δ

x

∥x∥X
) < 1. Hence for

all x ̸= 0 we have

p(x) ≤ 1

δ
∥x∥X .

Since p(0) = 0, clearly the above inequality also holds for x = 0. □
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Definition 3.10. Suppose P is a separating family of seminorms on a vector space X .
The natural topology induced by P is the smallest topology on X that is translation
invariant and with respect to which every p ∈ P is continuous function from X to R.
(Recall that translation invariant means if U ⊆ X is open, then U + x is open for every
x ∈ X .)

Remark 3.11. Suppose that P and P ′ are two separating family of seminorms on a
vector space X . Let τ and τ ′ be the corresponding natural topologies on X . It follows
immediately from the definition that if 1)p : (X, τ ′) → R is continuous for each p ∈ P
and 2) p′ : (X, τ) → R is continuous for each p′ ∈ P ′, then τ = τ ′.

The following theorem can be viewed as an extension of Theorem 3.9.

Theorem 3.12 ([26], Page 157). Let X be a vector space and suppose P is a separating
family of seminorms on X . Equip X with the corresponding natural topology. Then a
seminorm q : X → R is continuous if and only if there exist C > 0 and p1, · · · , pm ∈ P
such that for all x ∈ X

q(x) ≤ C
(
p1(x) + · · ·+ pm(x)

)
.

Theorem 3.13. [16, 27] Suppose P is a separating family of seminorms on a vector space
X and τ is the corresponding natural topology on X . Then (X, τ) is a locally convex
topological vector space. Moreover, if P = {pk}k∈N is countable, then the locally convex
topological vector space (X, τ) is metrizable and the following translation invariant
metric on X is compatible with τ :

d(x, y) =
∞∑
k=1

1

2k
pk(x− y)

1 + pk(x− y)
.

Corollary 3.14. Suppose P is a countable separating family of seminorms on a vector
space X and τ is the corresponding natural topology on X . Then (X, τ) is a Frechet
space if and only if it is complete.

Theorem 3.15 ([19], Sections 6.4 and 6.5). Let (X, τ) be a locally convex topological
vector space. Then there exists a separating family of seminorms on X whose corre-
sponding natural topology is τ .

Theorem 3.16 ([27], Page 28). Suppose P is a separating family of seminorms on a
vector space X and τ is the corresponding natural topology on X . Then a set E ⊆ X is
bounded if and only if p(E) is a bounded set in R for all p ∈ P .

Corollary 3.17. Suppose P is a separating family of seminorms on a vector space X
and τ is the corresponding natural topology on X . It follows from Theorem 3.12 and
Theorem 3.16 that if E ⊆ X is bounded, then for any continuous seminorm q : (X, τ) →
R, q(E) is a bounded set in R.

Theorem 3.18 ([16], Page 436, [19], Section 6.6). Let (X, τ) be a topological vector
space. Suppose Q is a separating family of seminorms on a vector space Y and τ ′ is
the corresponding natural topology on Y . Then a linear map T : (X, τ) → (Y, τ ′) is
continuous if and only if for each q ∈ Q, q ◦ T is continuous on X .

Theorem 3.19. [16] Let X be a Frechet space and let Y be a topological vector space.
When T is a linear map of X into Y , the following two properties are equivalent

(1) T is continuous.
(2) xn → 0 in X =⇒ Txn → 0 in Y .
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Theorem 3.20. [16, 27] Let X and Y be two vector spaces and suppose P and Q are
two separating families of seminorms on X and Y , respectively. Equip X and Y with
the corresponding natural topologies. Then

(1) A sequence xn converges to x in X if and only if for all p ∈ P , p(xn − x) → 0.

(2) A linear operator T : X → Y is continuous if and only if

∀ q ∈ Q ∃ c > 0, k ∈ N, p1, · · · , pk ∈ P such that ∀x ∈ X |q ◦ T (x)| ≤ c max
1≤i≤k

pi(x) .

(3) A linear operator T : X → R is continuous if and only if

∃ c > 0, k ∈ N, p1, · · · , pk ∈ P such that ∀x ∈ X |T (x)| ≤ c max
1≤i≤k

pi(x) .

Definition 3.21. Let (X, τ) be a locally convex topological vector space.

• The weak topology on X is the natural topology induced by the separating family of
seminorms {pF}F∈X∗ where

∀F ∈ X∗ pF : X → R, pF (x) := |F (x)| .
It can be shown that this topology is the smallest (weakest) topology with respect to
which all the linear maps in [(X, τ)]∗ are continuous. A sequence {xm} converges to
x in X with respect to the weak topology if and only if F (xm) → F (x) in R for all
F ∈ X∗. In this case we may write xm ⇀ x. We denote the weak topology on X by
σ(X,X∗). It can be shown that [(X, τ)]∗ is the same set as [(X, σ(X,X∗))]∗.

• The weak∗ topology on X∗ is the natural topology induced by the separating family of
seminorms {px}x∈X where

∀x ∈ X px : X
∗ → R, px(f) := |f(x)| .

It can be shown that this topology is the weakest topology with respect to which all
the linear maps {f 7→ f(x)}x∈X (from X∗ to R) are continuous. A sequence {fm}
converges to f in X∗ with respect to the weak∗ topology if and only if fm(x) → f(x) in
R for all x ∈ X . We denote the weak∗ topology on X∗ by σ(X∗, X).

• The strong topology on X∗ is the natural topology induced by the separating family of
seminorms {pB}B⊆Xbounded where for any bounded subset B of X

pB : X∗ → R pB(f) := sup{|f(x)| : x ∈ B} .
(It can be shown that for any bounded subset B of X and f ∈ X∗, f(B) is a bounded
subset of R; see Theorem 3.16 and Theorem 3.28)

Remark 3.22.

(1) If X is a normed space, then the topology induced by the norm

∀ f ∈ X∗ ∥f∥op = sup
∥x∥X=1

|f(x)|

on X∗ is the same as the strong topology on X∗ ([29], Page 198).

(2) In this manuscript, unless otherwise stated, we consider the topological dual of
a locally convex topological vector space with the strong topology. Of course, it
is worth mentioning that for many of the spaces that we will consider (including
X = E(Ω) or X = D(Ω) where Ω is an open subset of Rn) a sequence in X∗

converges with respect to the weak∗ topology if and only if it converges with respect
to the strong topology (for more details on this see the definition and properties of
Montel spaces in section 34.4, page 356 of [29]).
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Theorem 3.23. Let (X, τ) be a locally convex topological vector space. Then the evalu-
ation map

J : (X, τ) → X∗∗ := [(X∗, strong topology)]∗, J(x)(F ) := F (x)

is a well-defined injective linear map. X∗∗ is called the bidual of X .

Definition 3.24. Let (X, τ) be a locally convex topological vector space. Let τ ′ denote
the strong topology on X∗∗ as the dual of (X∗, strong topology).

• If the evaluation map J : (X, τ) → (X∗∗, τ ′) is bijective, then we say that (X, τ) is
a semireflexive space.

• If the evaluation map J : (X, τ) → (X∗∗, τ ′) is a linear topological isomorphism,
then we say that (X, τ) is a reflexive space.

Theorem 3.25 ([24], Pages 16 and 17).
• Strong dual of a reflexive topological vector space is reflexive.
• Every semireflexive space whose topology is defined by the inductive limit of a

sequence of Banach spaces is reflexive.
• Every semireflexive Frechet space is reflexive.

Theorem 3.26. Let (X, τX) and (Z, τZ) be two locally convex topological vector spaces.
For all x ∈ X , let lx : X∗ → R be the linear map defined by lx(f) = f(x). Then

(1) A linear map T : (Z, τZ) → (X, σ(X,X∗)) is continuous if and only if for all
F ∈ [(X, τX)]

∗, the linear map F ◦ T : (Z, τZ) → R is continuous.
(2) A linear map T : (Z, τZ) → (X∗, σ(X∗, X)) is continuous if and only if for all

x ∈ X , the linear map lx ◦ T : (Z, τZ) → R is continuous.

Theorem 3.27 ([26], Page 163, [16], Page 46). Let X and Y be locally convex topolog-
ical vector spaces and suppose T : X → Y is a continuous linear map. Either equip
both X∗ and Y ∗ with the strong topology or equip both with the weak∗ topology. Then

(1) the map
T ∗ : Y ∗ → X∗ ⟨T ∗y, x⟩X∗×X = ⟨y, Tx⟩Y ∗×Y

is well-defined, linear, and continuous. (T ∗ is called the adjoint of T .)

(2) If T (X) is dense in Y , then T ∗ : Y ∗ → X∗ is injective.

Theorem 3.28 ([27], Page 70). Let (X, τ) be a locally convex topological vector space.
Then a set E ⊆ X is bounded with respect to τ if and only if it is bounded with respect
to σ(X,X∗).

Corollary 3.29. If (X, τ) is a locally convex topological vector space and xn ⇀ x (i.e.
xn converges to x with respect to σ(X,X∗)), then {xn} is bounded with respect to both
τ and σ(X,X∗).

Theorem 3.30. Let (X, τX) and (Y, τY ) be two locally convex topological vector spaces.
If T : (X, τX) → (Y ∗, σ(Y ∗, Y )) is continuous, then T : (X, σ(X,X∗)) → (Y ∗, σ(Y ∗, Y ))
is continuous. In particular, if un ⇀ u (i.e. un converges to u with respect to σ(X,X∗)),
then T (un) → T (u) in (Y ∗, σ(Y ∗, Y )).

Proof. For all y ∈ Y , let ly : Y ∗ → R be the map ly(F ) = F (y). By Theorem 3.26
T : (X, σ(X,X∗)) → (Y ∗, σ(Y ∗, Y )) is continuous if ly ◦ T : (X, σ(X,X∗)) → R is
continuous for all y ∈ Y . Let y ∈ Y .
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(1) By definition of the weak∗ topology on Y ∗, we know that the linear map ly : Y ∗ →
R is continuous.

(2) By assumption T : (X, τX) → (Y ∗, σ(Y ∗, Y )) is a continuous linear map.

Therefore, ly ◦ T belongs to [(X, τX)]
∗. Since σ(X,X∗) is the weakest topology on

X that makes all elements of [(X, τX)]
∗ continuous, we can conclude that ly ◦ T :

(X, σ(X,X∗)) → R is continuous. □

Theorem 3.31 ([33], Page 13). Let (X, τ) be a Frechet space. Then X is reflexive if and
only if every bounded set E in X is relatively weakly compact (i.e. the closure of E w.r.t
σ(X,X∗) is compact w.r.t σ(X,X∗) ).

Theorem 3.32 ([10], Page 167). Let (X, τ) be a separable Frechet space. If E ⊆ X
is relatively weakly compact, then every infinite sequence in E has a subsequence that
converges in (X, σ(X,X∗)).

The next theorem is an immediate consequence of the previous theorems.

Theorem 3.33. Suppose that (X, τ) is a separable reflexive Frechet space. Then every
bounded sequence in (X, τ) has a weakly convergent subsequence, that is, a subsequence
that converges w.r.t σ(X,X∗).

Theorem 3.34 ([11], Page 61). Let X and Y be two Banach spaces. Let T : X → Y be
a linear map. Then T is continuous if and only if it is weak-weak continuous, that is, T :
(X, ∥.∥X) → (Y, ∥.∥Y ) is continuous if and only if T : (X, σ(X,X∗)) → (Y, σ(Y, Y ∗))
is continuous.

Theorem 3.35. Let X be a Banach space and Y be a closed subspace of X with the
induced norm. Suppose that ym is a sequence in Y and y ∈ Y . If ym → y in
(X, σ(X,X∗)), then ym → y in (Y, σ(Y, Y ∗)).

Proof. This is a direct consequence of the fact that the following two topologies on the
space Y are the same (see [11], Page 70):

(1) the topology induced by σ(X,X∗),
(2) the topology σ(Y, Y ∗).

□

Definition 3.36. LetX be a vector space and let {Xα}α∈I be a family of vector subspaces
of X with the property that

• for each α ∈ I , Xα is equipped with a topology that makes it a locally convex
topological vector space, and

•
⋃
α∈I Xα = X .

The inductive limit topology on X with respect to the family {Xα}α∈I is defined to be
the largest topology with respect to which

(1) X is a locally convex topological vector space, and
(2) all the inclusions Xα ⊆ X are continuous.

Theorem 3.37. [26] Let X be a vector space equipped with the inductive limit topology
with respect to {Xα} as described above. If Y is a locally convex vector space, then a
linear map T : X → Y is continuous if and only if T |Xα : Xα → Y is continuous for all
α ∈ I .
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Definition 3.38. Let X be a vector space and let {Xj}j∈N0 be an increasing chain of
subspaces of X:

X0 ⊊ X1 ⊊ X2 ⊊ · · · .
Suppose that

• each Xj is equipped with a locally convex topology τj;
• for each j, the inclusion (Xj, τj) ↪→ (Xj+1, τj+1) is a linear topological embed-

ding with closed image.
Then the inductive limit topology on X with respect to the family {Xj}j∈N0 is called a
strict inductive limit topology.

Theorem 3.39. [26] Suppose that X is equipped with the strict inductive limit topology
with respect to the chain {Xj}j∈N0 . Then a subset E of X is bounded if and only if there
exists m ∈ N0 such that B is bounded in Xm.

3.2. Function Spaces and Distributions.

Definition 3.40. Let Ω be a nonempty open set in Rn and m ∈ N0.

C(Ω) = {f : Ω → R : f is continuous}
Cm(Ω) = {f : Ω → R : ∀ |α| ≤ m ∂αf ∈ C(Ω)} (C0(Ω) = C(Ω))

BC(Ω) = {f : Ω → R : f is continuous and bounded on Ω}
BCm(Ω) = {f ∈ Cm(Ω) : ∀ |α| ≤ m ∂αf is bounded on Ω}

C∞(Ω) =
⋂
m∈N0

Cm(Ω), BC∞(Ω) =
⋂
m∈N0

BCm(Ω)

C∞
c (Ω) = {f ∈ C∞(Ω) : support of f is an element of K(Ω)}

Let 0 < λ ≤ 1. A function F : Ω ⊆ Rn → Rk is called λ-Holder continuous if there
exists a constant L such that

|F (x)− F (y)| ≤ L|x− y|λ ∀x, y ∈ Ω .

Clearly a λ-Holder continuous function on Ω is uniformly continuous on Ω. 1-Holder
continuous functions are also called Lipschitz continuous functions or simply Lipschitz
functions. We define

BCm,λ(Ω) = {f : Ω → R : ∀ |α| ≤ m ∂αf is λ-Holder continuous and bounded}
= {f ∈ BCm(Ω) : ∀ |α| ≤ m ∂αf is λ-Holder continuous} ,

and
BC∞,λ(Ω) :=

⋂
m∈N0

BCm,λ(Ω) .

Theorem 3.41. [16] Let Ω be a nonempty open set in Rn and let K ∈ K(Ω). There
is a function ψ ∈ C∞

c (Ω) taking values in [0, 1] such that ψ = 1 on a neighborhood
containing K.

Theorem 3.42 (Exhaustion by compact sets). [16] Let Ω be a nonempty open subset of
Rn. There exists a sequence of compact subsets (Kj)j∈N such that ∪j∈NK̊j = Ω and

K1 ⊆ K̊2 ⊆ K2 ⊆ · · · ⊆ K̊j ⊆ Kj ⊆ · · · .
Moreover, as a direct consequence, if K is any compact subset of the open set Ω, then
there exists an open set V such that K ⊆ V ⊆ V̄ ⊆ Ω.
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Theorem 3.43. [16] Let Ω be a nonempty open subset of Rn. Let {Kj}j∈N be an exhaus-
tion of Ω by compact sets. Define

V0 = K̊4, ∀ j ∈ N Vj = K̊j+4 \Kj .

Then

(1) Each Vj is an open bounded set and Ω = ∪jVj .
(2) The cover {Vj}j∈N0 is locally finite in Ω, that is, each compact subset of Ω has

nonempty intersection with only a finite number of the Vj’s.

(3) There is a family of functions ψj ∈ C∞
c (Ω) taking values in [0.1] such that suppψj ⊆

Vj and ∑
j∈N0

ψj(x) = 1 for all x ∈ Ω .

Let Ω be a nonempty open set in Rn. For all φ ∈ C∞(Ω), j ∈ N and K ∈ K(Ω) we
define

∥φ∥j,K := sup{|∂αφ(x)| : |α| ≤ j, x ∈ K} .
For all j ∈ N and K ∈ K(Ω), ∥.∥j,K is a seminorm on C∞(Ω). We define E(Ω) to be
C∞(Ω) equipped with the natural topology induced by the separating family of semi-
norms {∥.∥j,K}j∈N,K∈K(Ω). It can be shown that E(Ω) is a Frechet space.

For all K ∈ K(Ω) we define EK(Ω) to be C∞
K (Ω) equipped with the subspace topology.

SinceC∞
K (Ω) is a closed subset of the Frechet space E(Ω), EK(Ω) is also a Frechet space.

We define D(Ω) =
⋃
K∈K(Ω) EK(Ω) equipped with the inductive limit topology with re-

spect to the family of vector subspaces {EK(Ω)}K∈K(Ω). It can be shown that if {Kj}j∈N0

is an exhaustion by compacts sets of Ω, then the inductive limit topology on D(Ω) with
respect to the family {EKj

}j∈N0 is exactly the same as the inductive limit topology with
respect to {EK(Ω)}K∈K(Ω).

Remark 3.44. Suppose Y is a topological space and the mapping T : Y → D(Ω) is such
that T (Y ) ⊆ EK(Ω) for some K ∈ K(Ω). Since EK(Ω) ↪→ D(Ω), if T : Y → EK(Ω) is
continuous, then T : Y → D(Ω) will be continuous.

Theorem 3.45 (Convergence and Continuity for E(Ω)). Let Ω be a nonempty open set
in Rn. Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {φm} converges to φ in E(Ω) if and only if ∥φm−φ∥j,K → 0 for all j ∈ N
and K ∈ K(Ω).

(2) Suppose T : E(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
• For every q ∈ Q, there exist j ∈ N and K ∈ K(Ω), and C > 0 such that

∀φ ∈ E(Ω) q(T (φ)) ≤ C∥φ∥j,K .
• If φm → 0 in E(Ω), then T (φm) → 0 in Y .

(3) In particular, a linear map T : E(Ω) → R is continuous if and only if there exist j ∈ N
and K ∈ K(Ω), and C > 0 such that

∀φ ∈ E(Ω) |T (φ)| ≤ C∥φ∥j,K .
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(4) A linear map T : Y → E(Ω) is continuous if and only if

∀ j ∈ N, ∀K ∈ K(Ω) ∃C > 0, k ∈ N , q1, · · · , qk ∈ Q such that ∀ y ∥T (y)∥j,K ≤ C max
1≤i≤k

qi(y) .

Theorem 3.46 (Convergence and Continuity for EK(Ω)). Let Ω be a nonempty open set
in Rn and K ∈ K(Ω). Let Y be a topological vector space whose topology is induced by
a separating family of seminorms Q.

(1) A sequence {φm} converges to φ in EK(Ω) if and only if ∥φm − φ∥j,K → 0 for all
j ∈ N.

(2) Suppose T : EK(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
• For every q ∈ Q, there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) q(T (φ)) ≤ C∥φ∥j,K .

• If φm → 0 in EK(Ω), then T (φm) → 0 in Y .

Theorem 3.47 (Convergence and Continuity for D(Ω)). Let Ω be a nonempty open set
in Rn. Let Y be a topological vector space whose topology is induced by a separating
family of seminorms Q.

(1) A sequence {φm} converges to φ in D(Ω) if and only if there is a K ∈ K(Ω) such that
suppφm ⊆ K and φm → φ in EK(Ω).

(2) Suppose T : D(Ω) → Y is a linear map. Then the followings are equivalent
• T is continuous.
• For all K ∈ K(Ω), T : EK(Ω) → Y is continuous.
• For every q ∈ Q and K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) q(T (φ)) ≤ C∥φ∥j,K .

• If φm → 0 in D(Ω), then T (φm) → 0 in Y .

(3) In particular, a linear map T : D(Ω) → R is continuous if and only if for every
K ∈ K(Ω), there exists j ∈ N and C > 0 such that

∀φ ∈ EK(Ω) |T (φ)| ≤ C∥φ∥j,K .

Remark 3.48. Let Ω be a nonempty open set in Rn. Here are two immediate conse-
quences of the previous theorems and remark:

(1) The identity map
iD,E : D(Ω) → E(Ω)

is continuous (that is, D(Ω) ↪→ E(Ω) ).

(2) If T : E(Ω) → E(Ω) is a continuous linear map such that supp(Tφ) ⊆ suppφ for all
φ ∈ E(Ω) (i.e. T is a local continuous linear map), then T restricts to a continuous
linear map from D(Ω) to D(Ω). Indeed, the assumption supp(Tφ) ⊆ suppφ implies
that T (D(Ω)) ⊆ D(Ω). Moreover T : D(Ω) → D(Ω) is continuous if and only if
for K ∈ K(Ω) T : EK(Ω) → D(Ω) is continuous. Since T (EK(Ω)) ⊆ EK(Ω), this
map is continuous if and only if T : EK(Ω) → EK(Ω) is continuous (see Remark
3.44). However, since the topology of EK(Ω) is the induced topology from E(Ω), the
continuity of the preceding map follows from the continuity of T : E(Ω) → E(Ω).

Theorem 3.49. Let Ω be a nonempty open set in Rn. Then D(Ω) is separable.
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Definition 3.50. Let Ω be a nonempty open set in Rn. The topological dual of D(Ω),
denoted D′(Ω) (D′(Ω) = [D(Ω)]∗), is called the space of distributions on Ω. Each
element of D′(Ω) is called a distribution on Ω. The action of a distribution u ∈ D′(Ω)
on a function φ ∈ D(Ω) is sometimes denoted by ⟨u, φ⟩D′(Ω)×D(Ω) or simply ⟨u, φ⟩.
Remark 3.51. Every function f ∈ L1

loc(Ω) defines a distribution uf ∈ D′(Ω) as follows

∀φ ∈ D(Ω) uf (φ) :=

∫
Ω

fφdx . (3.1)

In particular, every function φ ∈ E(Ω) defines a distribution uφ. It can be shown that the
map i : E(Ω) → D′(Ω) which sends φ to uφ is an injective linear continuous map ([26],
Page 11). Therefore we can identify E(Ω) with a subspace of D′(Ω); we sometimes refer
to the map i as the “identity map”.

Theorem 3.52 ([16], Page 47). Let Ω be a nonempty open set in Rn. Equip D′(Ω) with
the weak∗ topology. Then under the above identification, C∞

c (Ω) is dense in D′(Ω).

Theorem 3.53 ([29], Page 302). Let Ω be a nonempty open set in Rn. Equip D′(Ω) with
the strong topology. Then under the identification described in Remark 3.51, C∞

c (Ω) is
sequentially dense in D′(Ω).

Remark 3.54.

• Clearly sequential density is a stronger notion than density. So C∞
c (Ω) is dense in

(D′(Ω), strong topology).

• Recall that, according to Remark 3.22, a sequence converges in (D′(Ω),weak∗) if
and only if it converges in (D′(Ω), strong topology). This together with the fact that
weak∗ topology is weaker than the strong topology implies that convergent sequences
in both topologies converge to the same limit. Therefore it follows from Theorem 3.53
that C∞

c (Ω) is sequentially dense in (D′(Ω),weak∗). Hence Theorem 3.52 can be
viewed as a corollary of Theorem 3.53.

Theorem 3.55 ([26], Page 9). D(Ω) is reflexive. So [(D′(Ω), strong topology)]∗ can be
identified with the topological vector space D(Ω).

Definition 3.56 (Restriction of a Distribution). Let Ω be an open subset of Rn and V be
an open susbset of Ω. We define the restriction map resΩ,V : D′(Ω) → D′(V ) as follows

⟨resΩ,V u, φ⟩D′(V )×D(V ) := ⟨u, ext0V,Ωφ⟩D′(Ω)×D(Ω) .

This is well-defined; indeed, resΩ,V : D′(Ω) → D′(V ) is a continuous linear map as
it is the adjoint of the continuous map ext0V,Ω : D(V ) → D(Ω). Given u ∈ D′(Ω), we
sometimes write u|V instead of resΩ,V u.

Definition 3.57 (Support of a Distribution). Let Ω be a nonempty open set in Rn. Let
u ∈ D′(Ω).

• We say u is equal to zero on some open subset V of Ω if u|V = 0.

• Let {Vi}i∈I be the collection of all open subsets of Ω such that u is equal to zero on Vi.
Let V =

⋃
i∈I Vi. The support of u is defined as follows

suppu := Ω \ V .

Note that suppu is closed in Ω but it is not necessarily closed in Rn.

Theorem 3.58. [26] Let Ω be a nonempty open set in Rn and let u ∈ D′(Ω). If φ ∈ D(Ω)
vanishes on a neighborhood containing suppu, then u(φ) = 0.
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Theorem 3.59. [26] Let {ui} be a sequence in D′(Ω), u ∈ D(Ω), and K ∈ K(Ω) such
that ui → u in D′(Ω) and suppui ⊆ K for all i. Then also suppu ⊆ K.

Theorem 3.60 ([9], Page 38). Let Ω be a nonempty open set in Rn. Suppose that {Ti} is
a sequence in D′(Ω) with the property that for all φ ∈ D(Ω), limi→∞⟨Ti, φ⟩D′(Ω)×D(Ω)

exists. Then there exists T ∈ D′(Ω) such that

∀φ ∈ D(Ω) ⟨T, φ⟩D′(Ω)×D(Ω) = lim
i→∞

⟨Ti, φ⟩D′(Ω)×D(Ω) .

Definition 3.61 (Sobolev-Slobodeckij spaces). Let Ω be a nonempty open set in Rn. Let
s ∈ R and p ∈ (1,∞).

• If s = k ∈ N0,

W k,p(Ω) = {u ∈ Lp(Ω) : ∥u∥Wk,p(Ω) :=
∑
|ν|≤k

∥∂νu∥Lp(Ω) <∞} .

• If s = θ ∈ (0, 1),

W θ,p(Ω) = {u ∈ Lp(Ω) : |u|W θ,p(Ω) :=
( ∫ ∫

Ω×Ω

|u(x)− u(y)|p

|x− y|n+θp
dxdy

) 1
p <∞} .

• If s = k + θ, k ∈ N0, θ ∈ (0, 1),

W s,p(Ω) = {u ∈ W k,p(Ω) : ∥u∥W s,p(Ω) := ∥u∥Wk,p(Ω) +
∑
|ν|=k

|∂νu|W θ,p(Ω) <∞} .

• W s,p
0 (Ω) is defined as the closure of C∞

c (Ω) in W s,p(Ω).
• If s < 0,

W s,p(Ω) = (W−s,p′
0 (Ω))∗ (

1

p
+

1

p′
= 1) .

• For all compact sets K ⊂ Ω we define

W s,p
K (Ω) = {u ∈ W s,p(Ω) : suppu ⊆ K}

with ∥u∥W s,p
K (Ω) := ∥u∥W s,p(Ω). Note that for s < 0, W s,p(Ω) can be viewed

as a subspace of D′(Ω) (see Theorem 3.68) and the support of u ∈ W s,p(Ω) is
interpreted as the support of a distribution.

• W s,p
comp(Ω) :=

⋃
K∈K(Ω)W

s,p
K (Ω). W s,p

comp(Ω) is equipped with the inductive limit
topology with respect to the family of vector subspaces {W s,p

K (Ω)}K∈K(Ω). It
can be shown that if {Kj}j∈N0 is an exhaustion by compacts sets of Ω, then the
inductive limit topology onW s,p

comp(Ω) with respect to the family {W s,p
Kj

(Ω)}j∈N0 is
exactly the same as the inductive limit topology with respect to {W s,p

K (Ω)}K∈K(Ω).

Theorem 3.62. Let Ω be a nonempty open set in Rn, s ≥ 1 and 1 < p < ∞. Then

u ∈ W s,p(Ω) if and only if u ∈ Lp(Ω) and for all 1 ≤ i ≤ n,
∂u

∂xi
∈ W s−1,p(Ω).

Proof. We consider two cases:

• Case 1: s = k ∈ N

u ∈ W k,p(Ω) ⇐⇒ u ∈ Lp(Ω) and ∂αu ∈ Lp(Ω) ∀ 1 ≤ |α| ≤ k

⇐⇒ u ∈ Lp(Ω) and ∂β
[ ∂u
∂xi

]
∈ Lp(Ω) ∀ 0 ≤ |β| ≤ k − 1, 1 ≤ i ≤ n

⇐⇒ u ∈ Lp(Ω) and
∂u

∂xi
∈ W k−1,p(Ω) ∀ 1 ≤ i ≤ n .
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• Case 2: s = k + θ, k ∈ N, 0 < θ < 1

u ∈ W s,p(Ω) ⇐⇒ u ∈ W k,p(Ω) and
∂νu(x)− ∂νu(y)

|x− y|
n
p
+θ

∈ Lp(Ω× Ω) ∀ |ν| = k

⇐⇒ u ∈ Lp(Ω) and
∂u

∂xi
∈ W k−1,p(Ω) ∀ 1 ≤ i ≤ n and

∂νu(x)− ∂νu(y)

|x− y|
n
p
+θ

∈ Lp(Ω× Ω) ∀ |ν| = k

⇐⇒ u ∈ Lp(Ω) and
∂u

∂xi
∈ W k−1,p(Ω) and

∂β ∂u
∂xi (x)− ∂β ∂u

∂xi (y)

|x− y|
n
p
+θ

∈ Lp(Ω× Ω) ∀ |β| = k − 1 ∀ 1 ≤ i ≤ n

⇐⇒ u ∈ Lp(Ω) and
∂u

∂xi
∈ W s−1,p(Ω) ∀ 1 ≤ i ≤ n .

□

Remark 3.63. Let Ω be a nonempty open set in Rn, s ∈ R and 1 < p < ∞. Clearly
for s ≥ 0, C∞

c (Ω) ⊆ W s,p(Ω). For s < 0, it is easy to see that for all φ ∈ C∞
c (Ω),

the map lφ : W−s,p′
0 (Ω) → R which sends u ∈ W−s,p′

0 (Ω) to
∫
Ω
uφ dx belongs to

[W−s,p′
0 (Ω)]∗ = W s,p(Ω). The map φ 7→ lφ is one-to-one and we can use it to identify

C∞
c (Ω) with a subspace of W s,p(Ω); we sometimes refer to the map that sends φ to lφ as

the “identity map”. So we can talk about the identity map from C∞
c (Ω) to W s,p(Ω) for

all s ∈ R.

Theorem 3.64. [7] Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Then
W s,p(Ω) is a reflexive Banach space.

Corollary 3.65. Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. A closed
subspace of a reflexive space is reflexive, so W s,p

0 (Ω) is reflexive. Dual of a reflexive
Banach space is a reflexive Banach space, so W−s,p′(Ω) is a reflexive Banach space.

Remark 3.66. Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Since
W s,p

0 (Ω) is reflexive, it can be identified with [W s,p
0 (Ω)]∗∗ and we may write [W−s,p′(Ω)]∗ =

W s,p
0 (Ω) and talk about the duality pairing ⟨u, f⟩W s,p

0 (Ω)×W−s,p′ (Ω). To be more precise,
we notice that, the identification of [W s,p

0 (Ω)]∗∗ and W s,p
0 (Ω) is done by the evaluation

map
J : W s,p

0 (Ω) → [W s,p
0 (Ω)]∗∗ J(u)[f ] = f(u) .

Therefore, for all u ∈ W s,p
0 (Ω) and f ∈ W−s,p′(Ω),

⟨u, f⟩W s,p
0 (Ω)×W−s,p′ (Ω) = ⟨J(u), f⟩[W s,p

0 (Ω)]∗∗×W−s,p′ (Ω) = f(u) = ⟨f, u⟩W−s,p′ (Ω)×W s,p
0 (Ω) .

Theorem 3.67. Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Then
C∞
c (Ω) is dense in W−s,p′(Ω). We may write this as W−s,p′

0 (Ω) = W−s,p′(Ω).

Proof. Our proof will be based on a similar argument given in page 65 of [1]. Let φ 7→ lφ
be the mapping introduced in Remark 3.63. Our goal is to show that the set

V := {lφ : φ ∈ C∞
c (Ω)}

is dense in W−s,p′(Ω). To this end it is enough to show that if F ∈ [W−s,p′(Ω)]∗ is such
that F (lφ) = 0 for all φ ∈ C∞

c (Ω), then F = 0. Indeed, let F be such an element. By
reflexivity of W s,p

0 (Ω) there exists f ∈ W s,p
0 (Ω) such that

∀ v ∈ W−s,p′(Ω) F (v) = v(f) .

Thus for all φ ∈ C∞
c (Ω) we have

0 = F (lφ) = lφ(f) =

∫
Ω

f(x)φ(x) dx .
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So, by the fundamental lemma of the calculus of variations (see [11], Page 110), we have
f = 0 (as an element of W s,p(Ω) ⊆ L1

loc(Ω)) and therefore F = 0. □

Theorem 3.68. Let Ω be a nonempty open set in Rn, s ∈ R, and 1 < p < ∞. Equip
D′(Ω) with weak∗ topology or strong topology. Then

D(Ω) ↪→ W s,p(Ω) ↪→ D′(Ω) .

Proof. Recall that the convergent sequences in D′(Ω) equipped with strong topology are
exactly the same as the convergent sequence of D′(Ω) equipped with the weak∗ topology
(see Remark 3.22). This together with the Theorem 3.19 imply that in the study of the
continuity of the inclusion map from W s,p(Ω) to D′(Ω), it does not matter whether we
equip D′(Ω) with the strong topology or weak∗ topology. In the proof, as usual, we
assume D′(Ω) is equipped with the strong topology. We consider two cases:

• Case 1: s ≥ 0 The continuity of the embedding D(Ω) ↪→ W s,p(Ω) has been studied
in [7]. Also clearly W s,p(Ω) ↪→ Lp(Ω) ↪→ D′(Ω). The former continuous em-
bedding holds by the definition of W s,p(Ω) and the latter embedding is continuous
because if um → 0 in Lp(Ω), then for all φ ∈ D(Ω)

|⟨um, φ⟩D′(Ω)×D(Ω) − 0| = |
∫
Ω

umφdx| ≤ ∥um∥p∥φ∥∞ → 0 .

So, um → 0 in D′(Ω). This implies the continuity of the inclusion map from Lp(Ω)
to D′(Ω) by Theorem 3.19.

• Case 2: s < 0 Since W−s,p′
0 (Ω) ↪→ W−s,p′(Ω), it follows from previous case

that W−s,p′
0 (Ω) ↪→ D′(Ω). Also since D(Ω) ⊆ W−s,p′

0 (Ω) is dense in D′(Ω) (see
Theorem 3.52, Theorem 3.53, and Remark 3.54), it follows that the inclusion map
from W−s,p′

0 (Ω) to D′(Ω) is continuous with dense image. Thus, by Theorem 3.27,
D(Ω) ↪→ W s,p(Ω). Here we used the facts that 1) the strong dual of the normed space
W−s,p′

0 (Ω) is W s,p(Ω) and that 2) the dual of (D′(Ω), strong topology) is D(Ω) (see
Theorem 3.55). It remains to show that W s,p(Ω) ↪→ D′(Ω). It follows from Case
1 that D(Ω) ↪→ W−s,p′

0 (Ω) and by definition D(Ω) is dense in W−s,p′
0 (Ω). So, by

Theorem 3.27, W s,p(Ω) ↪→ D′(Ω).

□

Remark 3.69. Note that for s ≤ 0,W s,p
0 (Ω) is the same asW s,p(Ω). For s > 0,W s,p

0 (Ω)
is a subspace ofW s,p(Ω) which containsC∞

c (Ω). So it follows from the previous theorem
that

D(Ω) ↪→ W s,p
0 (Ω) ↪→ D′(Ω) .

To be more precise, we should note that for s < 0, we identify φ ∈ D(Ω) with the
corresponding distribution inD′(Ω). Under this identification, for all s ∈ R the “identity
map” i : D(Ω) → W s,p

0 (Ω) is continuous with dense image and so its adjoint i∗ :
[W s,p

0 (Ω)]∗ → D′(Ω) will be an injective continuous map (Theorem 3.27) and we have

⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, i φ⟩[W s,p
0 (Ω)]∗×W s,p

0 (Ω) = ⟨u, φ⟩[W s,p
0 (Ω)]∗×W s,p

0 (Ω) .

We usually identify [W s,p
0 (Ω)]∗ with its image under i∗ and view [W s,p

0 (Ω)]∗ as a subspace
of D′(Ω). So, under this identification, we can rewrite the above equality as follows:

∀u ∈ [W s,p
0 (Ω)]∗ ∀φ ∈ D(Ω) ⟨u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩[W s,p

0 (Ω)]∗×W s,p
0 (Ω) .
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Finally, noting that for all s ∈ R and 1 < p < ∞, [W s,p
0 (Ω)]∗ = W−s,p′

0 (Ω) (see
Definition 3.61, Theorem 3.67, and Corollary 3.65), we can write

∀u ∈ W−s,p′
0 (Ω) ∀φ ∈ D(Ω) ⟨u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩

W−s,p′
0 (Ω)×W s,p

0 (Ω)
.

Theorem 3.70. Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p <∞. Then

(1) The mapping F 7→ F |C∞
c (Ω) is an isometric isomorphism betweenW−s,p′(Ω) and

[C∞
c (Ω), ∥.∥s,p]∗.

(2) Suppose u ∈ D′(Ω). If u : (C∞
c (Ω), ∥.∥−s,p′) → R is continuous, then u ∈

W s,p
0 (Ω) (more precisely, there is a unique element in W s,p

0 (Ω) whose corre-
sponding distribution is u). Moreover,

∥u∥W s,p
0 (Ω) = sup

0̸≡φ∈C∞
c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−s,p′ (Ω)

.

Proof. The first item has been studied in [7]. Here we will prove the second item. Since
u : (C∞

c (Ω), ∥.∥−s,p′) → R is continuous, it can be extended to a continuous linear map
ũ : W−s,p′(Ω) → R. So ũ ∈ [W−s,p′(Ω)]∗. However, W s,p

0 (Ω) is reflexive, therefore
there exists a unique v ∈ W s,p

0 (Ω) such that ũ = J(v) where J(v) : W−s,p′(Ω) → R is
the evaluation map defined by J(v)(F ) = ⟨F, v⟩W−s,p′ (Ω)×W s,p

0 (Ω). To finish the proof, it
is enough to show that v = u as elements of D′(Ω). For all φ ∈ C∞

c (Ω) we have

⟨v, φ⟩D′(Ω)×D(Ω) =

∫
Ω

vφ dx
Remark 3.63

= ⟨φ, v⟩W−s,p′ (Ω)×W s,p
0 (Ω)

= J(v)(φ) = ũ(φ) = u(φ) = ⟨u, φ⟩D′(Ω)×D(Ω) .

Also,

∥u∥W s,p
0 (Ω) = ∥v∥W s,p

0 (Ω) = ∥J(v)∥[W−s,p′ (Ω)]∗

= ∥ũ∥[W−s,p′ (Ω)]∗ = sup
0̸≡φ∈C∞

c (Ω)

⟨ũ, φ⟩D′(Ω)×D(Ω)

∥φ∥W−s,p′ (Ω)

= sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−s,p′ (Ω)

.

□

Corollary 3.71. Let Ω be a nonempty open set in Rn, s ≥ 0, and 1 < p < ∞. Suppose
that u ∈ D′(Ω). As a direct consequence of Theorem 3.70 we have

• If sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W s,p(Ω)

<∞, then u ∈ W−s,p′(Ω) and

∥u∥W−s,p′ (Ω) = sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W s,p(Ω)

.

• If sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−s,p′ (Ω)

<∞, then u ∈ W s,p
0 (Ω) and

∥u∥W s,p(Ω) = sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−s,p′ (Ω)

.
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That is, for any e ∈ R and 1 < q < ∞, in order to show that u ∈ D′(Ω) belongs to
W e,q

0 (Ω), it is enough to prove that

sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−e,q′ (Ω)

<∞ ,

and in fact ∥u∥W e,q(Ω) = sup
0̸≡φ∈C∞

c (Ω)

⟨u, φ⟩D′(Ω)×D(Ω)

∥φ∥W−e,q′ (Ω)

.

Theorem 3.72. Let Ω be a nonempty open set in Rn, s ∈ R, and 1 < p < ∞. Suppose
that K ∈ K(Ω). Then W s,p

K (Ω) is a closed subspace of W s,p(Ω).

Proof. It is enough to show that if {ui} is a sequence of elements in W s,p
K (Ω) such that

ui → u in W s,p(Ω), then u ∈ W s,p
K (Ω), i.e., suppu ⊆ K. By Theorem 3.68, we have

ui → u in D′(Ω). Now it follows from Theorem 3.59 that suppu ⊆ K. Note that for any
s ≥ 0, we have W s,p(Ω) ⊆ Lp(Ω) ⊆ L1

loc(Ω); in this proof we implicitly used the fact
that for functions in L1

loc(Ω), the usual definition of support agrees with the distributional
definition of support. □

Next we list several embedding theorems for Sobolev-Slobodeckij spaces.

Theorem 3.73 ([30], Section 2.8.1). Suppose 1 < p ≤ q < ∞ and −∞ < t ≤ s < ∞
satisfy s − n

p
≥ t − n

q
. Then W s,p(Rn) ↪→ W t,q(Rn). In particular, W s,p(Rn) ↪→

W t,p(Rn).

Theorem 3.74. [8, 4] Let Ω be a nonempty bounded open subset of Rn with Lipschitz
continuous boundary. Suppose 1 ≤ p, q <∞ (p does NOT need to be less than or equal
to q) and 0 ≤ t ≤ s satisfy s− n

p
≥ t− n

q
. If s ̸∈ N0, additionally assume that s ̸= t. Then

W s,p(Ω) ↪→ W t,q(Ω). Furthermore, if s > t, then the embedding W s,p(Ω) ↪→ W t,p(Ω)
is compact.

Theorem 3.75. [7] Let Ω ⊆ Rn be an arbitrary nonempty open set.

(1) Suppose 1 ≤ p ≤ q < ∞ and 0 ≤ t ≤ s satisfy s − n
p
≥ t − n

q
. Then W s,p

K (Ω) ↪→
W t,q
K (Ω) for all K ∈ K(Ω).

(2) For all k1, k2 ∈ N0 with k1 ≤ k2 and 1 < p <∞, W k2,p(Ω) ↪→ W k1,p(Ω).

(3) If 0 ≤ t ≤ s < 1 and 1 < p <∞, then W s,p(Ω) ↪→ W t,p(Ω).

(4) If 0 ≤ t ≤ s <∞ are such that ⌊s⌋ = ⌊t⌋ and 1 < p <∞, thenW s,p(Ω) ↪→ W t,p(Ω).

(5) If 0 ≤ t ≤ s <∞, t ∈ N0, and 1 < p <∞, then W s,p(Ω) ↪→ W t,p(Ω).

Theorem 3.76. [15] Let Ω be a nonempty bounded open subset of Rn with Lipschitz
continuous boundary or Ω = Rn. If sp > n, then W s,p(Ω) ↪→ L∞(Ω) ∩ C0(Ω) and
W s,p(Ω) is a Banach algebra.

In the next several theorems we will list certain multiplication properties of Sobolev
spaces. Suppose φ ∈ C∞(Ω) and u ∈ W s,p(Ω). If s ≥ 0, then the product φu has a
clear meaning. What if s < 0? In this case, u|D(Ω) is a distribution and by the prod-
uct φu we mean the distribution (φ)(u|D(Ω)); then φu is in W s,p(Ω) if (φ)(u|D(Ω)) :
(C∞

c (Ω), ∥.∥−s,p′) → R is continuous. Because then it possesses a unique extension to
a continuous linear map from W−s,p′

0 (Ω) to R and so it can be viewed as an element of
[W−s,p′

0 (Ω)]∗ = W s,p(Ω). See Theorem 3.70 and Corollary 3.71. Also see Remark 3.89.
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Theorem 3.77 (Multiplication by smooth functions I, [32], Page 203). Let s ∈ R, 1 <
p <∞, and φ ∈ BC∞(Rn). Then the linear map

mφ : W s,p(Rn) → W s,p(Rn), u 7→ φu

is well-defined and bounded.

Theorem 3.78 (Multiplication by smooth functions II, [7]). Let Ω be a nonempty bounded
open set in Rn with Lipschitz continuous boundary.

(1) Let k ∈ N0 and 1 < p < ∞. If φ ∈ BCk(Ω), then the linear map W k,p(Ω) →
W k,p(Ω) defined by u 7→ φu is well-defined and bounded.

(2) Let s ∈ R and 1 < p < ∞. If φ ∈ BC∞(Ω), then the linear map W s,p(Ω) →
W s,p(Ω) defined by u 7→ φu is well-defined and bounded.

Theorem 3.79 (Multiplication by smooth functions III, [7]). Let Ω be any nonempty
open set in Rn. Let p ∈ (1,∞).

(1) If 0 ≤ s < 1 and φ ∈ BC0,1(Ω) (that is, φ ∈ L∞(Ω) and φ is Lipschitz), then

mφ : W s,p(Ω) → W s,p(Ω), u 7→ φu

is a well-defined bounded linear map.

(2) If k ∈ N0 and φ ∈ BCk(Ω), then

mφ : W k,p(Ω) → W k,p(Ω), u 7→ φu

is a well-defined bounded linear map.

(3) If −1 < s < 0 and φ ∈ BC∞,1(Ω) or s ∈ Z− and φ ∈ BC∞(Ω), then

mφ : W s,p(Ω) → W s,p(Ω), u 7→ φu

is a well-defined bounded linear map.

Theorem 3.80 (Multiplication by smooth functions IV, [7]). Let Ω be a nonempty open
set in Rn, K ∈ K(Ω), p ∈ (1,∞), and −1 < s < 0 or s ∈ Z− or s ∈ [0,∞). If
φ ∈ C∞(Ω), then the linear map

W s,p
K (Ω) → W s,p

K (Ω), u 7→ φu

is well-defined and bounded.

Theorem 3.81 (Multiplication by smooth functions V, [7]). Let Ω be a nonempty bounded
open set in Rn with Lipschitz continuous boundary. Let K ∈ K(Ω). Suppose s ∈ R and
p ∈ (1,∞). If φ ∈ C∞(Ω), then the linear mapW s,p

K (Ω) → W s,p
K (Ω) defined by u 7→ φu

is well-defined and bounded.

In the next definition we introduce the notion of smooth multiplication triple which
will play a key role in several theorems that will follow.

Definition 3.82 (Smooth multiplication triple). Let Ω be a nonempty open set in Rn,
s ∈ R and 1 < p <∞.

• We say that the triple (s, p,Ω) is a smooth multiplication triple if for all φ ∈
C∞
c (Ω), the map

mφ : W s,p(Ω) → W s,p(Ω) u 7→ φu

is well-defined and bounded.
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• We say that the triple (s, p,Ω) is an interior smooth multiplication triple if for
all φ ∈ C∞

c (Ω) and K ∈ K(Ω), the map

mφ : W s,p
K (Ω) → W s,p

K (Ω) u 7→ φu

is well-defined and bounded.

Remark 3.83.

• Every smooth multiplication triple is also an interior smooth multiplication triple.

• It is a direct consequence of theorems 3.77, 3.78, and 3.79 that
(1) if Ω = Rn or Ω is bounded with Lipschitz continuous boundary, then for all

s ∈ R and 1 < p <∞, (s, p,Ω) is a smooth multiplication triple.
(2) if Ω is any open set in Rn, 1 < p < ∞, and s ∈ R is not a noninteger with

magnitude greater than 1, then (s, p,Ω) is a smooth multiplication triple.

• It is a direct consequence of Theorem 3.80 and Theorem 3.81 that
(1) if Ω = Rn or Ω is bounded with Lipschitz continuous boundary, then for all

s ∈ R and 1 < p <∞, (s, p,Ω) is an interior smooth multiplication triple.
(2) if Ω is any open set in Rn, 1 < p < ∞, and s ∈ R is not a noninteger less than

−1, then (s, p,Ω) is an interior smooth multiplication triple.

• If (s, p,Ω) is a smooth multiplication triple andK ∈ K(Ω), thenW s,p
K (Ω) ⊆ W s,p

0 (Ω)
(see the proof of Theorem 7.31 in [7]). Of course, if s < 0, then W s,p(Ω) = W s,p

0 (Ω)
and so W s,p

K (Ω) ⊆ W s,p
0 (Ω) holds for all s < 0, 1 < p <∞ and open sets Ω ⊆ Rn.

Theorem 3.84. Let Ω be a nonempty open set in Rn, s ≥ 0 and 1 < p < ∞. If (s, p,Ω)
is a smooth multiplication triple so is (−s, p′,Ω).

Proof. Let φ ∈ C∞
c (Ω). For all u ∈ W−s,p′(Ω) = W−s,p′

0 (Ω) and ψ ∈ D(Ω) we have

|⟨φu, ψ⟩D′(Ω)×D(Ω)| = |⟨u, φψ⟩D′(Ω)×D(Ω)|
Remark 3.69

= |⟨u, φψ⟩W−s,p′ (Ω)×W s,p
0 (Ω)|

≤ ∥u∥W−s,p′ (Ω)∥φψ∥W s,p(Ω)

⪯ ∥u∥W−s,p′ (Ω)∥ψ∥W s,p(Ω) .

The last inequality holds because (s, p,Ω) is a smooth multiplication triple. It follows
from Corollary 3.71 that φu ∈ W−s,p′

0 (Ω) and ∥φu∥W−s,p′ (Ω) ⪯ ∥u∥W−s,p′ (Ω), that is,
mφ : W−s,p′(Ω) → W−s,p′(Ω) is well-defined and continuous. □

Theorem 3.85. Let Ω be a nonempty open set in Rn, s ∈ R and 1 < p < ∞. If s < 0,
further assume that (−s, p′,Ω) is a smooth multiplication triple. Suppose that Ω′ ⊆ Ω
and K ∈ K(Ω′). Then

(1) for all u ∈ W s,p
K (Ω), ∥u∥W s,p(Ω) ≃ ∥u|Ω′∥W s,p(Ω′),

(2) for all u ∈ W s,p
K (Ω′), ∥ext0Ω′,Ωu∥W s,p(Ω) ≃ ∥u∥W s,p(Ω′).

Proof. The claim follows from the argument presented in the proofs of Corollary 7.39
and Theorem 7.46 in [7]. □

Theorem 3.86 (([8], Pages 598-605), ([15], Section 1.4)). Let s ∈ R, 1 < p < ∞, and
α ∈ Nn

0 . Suppose Ω is a nonempty open set in Rn. Then

(1) the linear operator ∂α : W s,p(Rn) → W s−|α|,p(Rn) is well-defined and bounded;

(2) for s < 0, the linear operator ∂α : W s,p(Ω) → W s−|α|,p(Ω) is well-defined and
bounded;
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(3) for s ≥ 0 and |α| ≤ s, the linear operator ∂α : W s,p(Ω) → W s−|α|,p(Ω) is
well-defined and bounded;

(4) if Ω is bounded with Lipschitz continuous boundary, and if s ≥ 0, s− 1
p
̸= integer

(i.e. the fractional part of s is not equal to 1
p
), then the linear operator ∂α :

W s,p(Ω) → W s−|α|,p(Ω) for |α| > s is well-defined and bounded.

Theorem 3.87.
Assumptions:

• Ω = Rn or Ω is a bounded domain with Lipschitz continuous boundary
• si, s ∈ R, si ≥ s ≥ 0 for i = 1, 2
• 1 < pi ≤ p <∞ for i = 1, 2

• si − s ≥ n(
1

pi
− 1

p
)

• s1 + s2 − s > n(
1

p1
+

1

p2
− 1

p
)

Claim: If u ∈ W s1,p1(Ω) and v ∈ W s2,p2(Ω), then uv ∈ W s,p(Ω) and moreover the
pointwise multiplication of functions is a continuous bilinear map

W s1,p1(Ω)×W s2,p2(Ω) → W s,p(Ω) .

Remark 3.88. A number of other results concerning the sufficient conditions on the ex-
ponents si, pi, s, p that guarantee the multiplication W s1,p1(Ω)×W s2,p2(Ω) ↪→ W s,p(Ω)
is well-defined and continuous are discussed in detail in [4].

Remark 3.89. Suppose that (s, p,Ω) is a smooth multiplication triple with s ≥ 0.
W−s,p′(Ω) = W−s,p′

0 (Ω) is the dual of W s,p
0 (Ω) and ⟨u, f⟩

W−s,p′
0 (Ω)×W s,p

0 (Ω)
is the ac-

tion of the functional u on the function f . As it was discussed before, if ψ is a func-
tion in C∞

c (Ω), (ψ)(u|D(Ω)) is defined as a product of a smooth function and a dis-
tribution. Since (s, p,Ω) is a smooth multiplication triple, (−s, p′,Ω) will also be a
smooth multiplication triple, and that means (ψ)(u|D(Ω)) : (C∞

c (Ω), ∥.∥s,p) → R is
continuous (see the Note right after Theorem 3.76). We interpret ψu as an element of
W−s,p′(Ω) = [W s,p

0 (Ω)]∗ to be the unique continuous linear extension of ψ(u|D(Ω)) to
the entire W s,p

0 (Ω). It is easy to see that, this unique linear extension is given by

⟨ψu, f⟩W−s,p′ (Ω)×W s,p
0 (Ω) := ⟨u, ψf⟩W−s,p′ (Ω)×W s,p

0 (Ω) ,

that is, the above map is linear continuous and its restriction to D(Ω) is the same as
ψ(u|D(Ω)). (Note that since (s, p,Ω) is a smooth multiplication triple, ψf is indeed an
element of W s,p

0 (Ω).)

Theorem 3.90. [12] Let s ∈ [1,∞), 1 < p <∞, and let

m =

{
s, if s is an integer
⌊s⌋+ 1, otherwise

.

If F ∈ Cm(R) is such that F (0) = 0 and F, F ′, · · · , F (m) ∈ L∞(R) (in particular,
note that every F ∈ C∞

c (R) with F (0) = 0 satisfies these conditions), then the map
u 7→ F (u) is well-defined and continuous from W s,p(Rn) ∩W 1,sp(Rn) into W s,p(Rn).

Corollary 3.91. Let s, p, and F be as in the previous theorem. Moreover suppose sp > n.
Then the map u 7→ F (u) is well-defined and continuous from W s,p(Rn) into W s,p(Rn).
The reason is that when sp > n, we have W s,p(Rn) ↪→ W 1,sp(Rn).
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In the remaining of this section we will state certain useful properties of the topological
vector space W s,p

comp. The properties we will discuss here echo the ones stated in [24] for
spaces Hs

comp.

Theorem 3.92. Let Ω be a nonempty open set in Rn, s ∈ R, and 1 < p < ∞. Then
D(Ω) is continuously embedded in W s,p

comp(Ω).

Proof. For all K ∈ K(Ω) we have

EK(Ω) ↪→ D(Ω) ↪→ W s,p(Ω) .

This together with the fact that the image of EK(Ω) under the identity map is inside
W s,p
K (Ω), implies that

EK(Ω) ↪→ W s,p
K (Ω) . (3.2)

Also, by the definition of the inductive limit topology on W s,p
comp(Ω), we have

W s,p
K (Ω) ↪→ W s,p

comp(Ω) . (3.3)

It follows from ( 3.2) and ( 3.3) that for all K ∈ K(Ω)

EK(Ω) ↪→ W s,p
comp(Ω) ,

which, by Theorem 3.37, implies that D(Ω) ↪→ W s,p
comp(Ω). □

Theorem 3.93. Let (s, p,Ω) be a smooth multiplication triple. Then C∞
c (Ω) is dense in

W s,p
comp(Ω).

Proof. We will follow the proof given in [24] for spaces Hs
comp. Let u ∈ W s,p

comp(Ω). It is
enough to show that there exists a sequence in C∞

c (Ω) that converges to u in W s,p
comp(Ω)

(this proves sequential density which implies density). By Meyers-Serrin theorem there
exists a sequence φm ∈ C∞(Ω) ∩ W s,p(Ω) such that φm → u in W s,p(Ω). Let χ ∈
C∞
c (Ω) be such that χ = 1 on a neighborhood containing suppu (see Theorem 3.41).

Let K = suppχ. Since (s, p,Ω) is a smooth multiplication triple, multiplication by χ
is a linear continuous map on W s,p(Ω) and so χφm → χu in W s,p(Ω). Now we note
that χu = u and for all m, χφm are in C∞

c (Ω) with support inside K. Consequently,
χφm → u in W s,p

K (Ω). Now since W s,p
K (Ω) ↪→ W s,p

comp(Ω) we may conclude that χφm is
a sequence in C∞

c (Ω) that converges to u in W s,p
comp(Ω). □

Remark 3.94. As a consequence, if (s, p,Ω) is a smooth multiplication triple, then
[W s,p

comp(Ω)]
∗ (equipped with the strong topology) is continuously embedded in D′(Ω).

More precisely, the identity map i : D(Ω) → W s,p
comp(Ω) is continuous with dense image,

and therefore, by Theorem 3.27, the adjoint i∗ : [W s,p
comp(Ω)]

∗ → D′(Ω) is a continuous
injective map. We have

⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, i φ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω) = ⟨u, φ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω) .

We usually identify [W s,p
comp(Ω)]

∗ with its image under i∗ and view [W s,p
comp(Ω)]

∗ as a sub-
space of D′(Ω). So, under this identification, we can rewrite the above equality as fol-
lows:

∀u ∈ [W s,p
comp(Ω)]

∗ ⟨u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω) .

Next we will prove that if (s, p,Ω) is a smooth multiplication triple, then W s,p
comp(Ω) is

separable. To this end, we need the following lemma.

Lemma 3.95. Let (X, τ) and (Y, τ ′) be two topological spaces. Suppose that

(1) A is dense in (X, τ),
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(2) T : (X, τ) → (Y, τ ′) is continuous,

(3) T (X) is dense in (Y, τ ′).

Then T (A) is dense in (Y, τ ′).

Proof. It is enough to show that T (A) intersects every nonempty open set in (Y, τ ′). So
let O ∈ τ ′ be nonempty. Since T (X) is dense in (Y, τ ′), we have O ∩ T (X) ̸= ∅ and so
T−1(O) is nonempty. Also, since T is continuous, T−1(O) ∈ τ . A is dense in (X, τ), so
A ∩ T−1(O) ̸= ∅. Therefore,

T (A) ∩O ⊇ T (A ∩ T−1(O)) ̸= ∅ .
□

Theorem 3.96. Let (s, p,Ω) be a smooth multiplication triple. Then W s,p
comp(Ω) is sepa-

rable.

Proof. According to theorems 3.92 and 3.93,D(Ω) is continuously embedded inW s,p
comp(Ω)

and it is dense in W s,p
comp(Ω). Since D(Ω) is separable, it follows from Lemma 3.95 that

W s,p
comp(Ω) is separable.

□

Theorem 3.97. Let (s, p,Ω) be an interior smooth multiplication triple. Let {ψj}j∈N0 be
the partition of unity introduced in Theorem 3.43. Let S be the collection of all sequences
whose terms are nonnegative integers. For all sequences a = (a0, a1, · · · ) ∈ S define
qa,s,p : W

s,p
comp(Ω) → R by

qa,s,p(u) =
∞∑
j=0

aj∥ψju∥W s,p(Ω) .

Then {qa,s,p}a∈S is a separating family of seminorms onW s,p
comp(Ω) and the natural topol-

ogy induced by this family on W s,p
comp(Ω) is the same as the inductive limit topology on

W s,p
comp(Ω).

Proof. Note that support of every u ∈ W s,p
comp is compact, so for each u only finitely

many of ψju’s are nonzero. Thus the sum in the definition of qa,s,p is a finite sum. Now
it is not hard to show that each qa,s,p is a seminorm and {qa,s,p}a∈S is separating. Here
we will show that the topologies are the same. Let’s denote the inductive limit topology
onW s,p

comp(Ω) by τ and the natural topology induced by the given family of seminorms τ ′.

In what follows we implicitly use the fact that both topologies are locally convex and
translation invariant.

• Step 1: (τ ′ ⊆ τ ) We will prove that for eachK ∈ K(Ω),W s,p
K (Ω) ↪→ (W s,p

comp(Ω), τ
′).

This together with the definition of τ (the biggest topology with this property) implies
that τ ′ ⊆ τ . Let K ∈ K(Ω). By Theorem 3.18 it is enough to show that for all
a ∈ S, qa,s,p ◦ Id : W s,p

K (Ω) → R is continuous. Since K is compact, there are only
finitely may ψj’s such that K ∩ suppψj ̸= ∅; let’s call them ψj1 , · · · , ψjl . So, for all
u ∈ W s,p

K (Ω),

qa,s,p(u) = aj1∥ψj1u∥W s,p(Ω) + · · ·+ ajl∥ψjlu∥W s,p(Ω) .

By assumption (s, p,Ω) is an interior smooth multiplication triple, so for each j ∈
{j1, · · · , jl} the mapping u 7→ ∥ψju∥W s,p(Ω) from W s,p

K (Ω) → R is continuous.
Hence qa,s,p ◦ Id : W s,p

K (Ω) → R must be continuous.
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• Step 2: (τ ⊆ τ ′) Since (W s,p
comp(Ω), τ) is a locally convex topological vector space,

there exists a separating family of seminorms P whose corresponding natural topol-
ogy is τ (see Theorem 3.15). We will prove that for all p̃ ∈ P , p̃ : (W s,p

comp(Ω), τ
′) →

R is continuous. This together with the fact that τ is the smallest topology with this
property, shows that τ ⊆ τ ′. Let p̃ ∈ P . By Theorem 3.12, it is enough to prove that
there exists a ∈ S such that

∀u ∈ W s,p
comp(Ω) p̃(u) ≤ qa,s,p(u) .

For all u ∈ W s,p
comp(Ω) we have p̃(u) = p̃

(∑
j

ψj u
)
. Since u has compact support,

only finitely many terms in the sum are nonzero, and so by the finite subadditivity of
a seminorm we get

p̃(u) = p̃
(∑

j

ψj u
)
≤

∑
j

p̃(ψj u) .

Now note thatψju belongs to the normed spaceW s,p
suppψj

(Ω). Since p̃ : (W s,p
comp(Ω), τ) →

R is continuous andW s,p
suppψj

(Ω) ↪→ (W s,p
comp(Ω), τ), we can conclude that p̃ : W s,p

suppψj
(Ω) →

R is continuous. Thus, by Theorem 3.9, there exists a positive integer aj such that

∀u ∈ W s,p
comp(Ω) p̃(ψju) ≤ aj∥ψju∥W s,p(Ω) .

It follows that for all u ∈ W s,p
comp(Ω)

p̃(u) ≤
∑
j

p̃(ψj u) ≤
∑
j

aj∥ψju∥W s,p(Ω) = qa,s,p(u)

where a = (a0, a1, · · · ).
□

4. SPACES OF LOCALLY SOBOLEV FUNCTIONS

Let s ∈ R, 1 < p <∞. Let Ω be a nonempty open set in Rn. We define

W s,p
loc (Ω) := {u ∈ D′(Ω) : ∀φ ∈ C∞

c (Ω) φu ∈ W s,p(Ω)} .
We equip W s,p

loc (Ω) with the natural topology induced by the separating family of semi-
norms {|.|φ,s,p}φ∈C∞

c (Ω)} (see Definition 3.10) where

∀u ∈ W s,p
loc (Ω) φ ∈ C∞

c (Ω) |u|φ,s,p := ∥φu∥W s,p(Ω) .

When s and p are clear from the context, we may just write |u|φ or pφ(u) instead of
|u|φ,s,p. It is easy to show that for all φ ∈ C∞

c (Ω), |.|φ,s,p is a seminorm on W s,p
loc (Ω).

The fact that the family of seminorms {|.|φ,s,p}φ∈C∞
c (Ω)} is separating will be proved in

Theorem 5.3.

Remark 4.1. Note that, by item 1. of Theorem 3.20, ui → u in W s,p
loc (Ω) if and only if

φui → φu in W s,p(Ω) for all φ ∈ C∞
c (Ω).

Remark 4.2. Clearly if (s, p,Ω) is a smooth multiplication triple, then W s,p(Ω) ⊆
W s,p
loc (Ω).

An equivalent description of locally Sobolev functions is described in the following
theorem.

Theorem 4.3. Suppose that (s, p,Ω) is a smooth multiplication triple. Then u ∈ D′(Ω)
is in W s,p

loc (Ω) if and only if for every precompact open set V with V̄ ⊆ Ω there is
w ∈ W s,p(Ω) such that w|V = u|V .
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Proof. (⇒) Suppose u ∈ W s,p
loc (Ω) and let V be a precompact open set such that V̄ ⊆ Ω.

Let φ ∈ C∞
c (Ω) be such that φ = 1 on a neighborhood containing V̄ . Let w = φu. u is

a locally Sobolev function, so w ∈ W s,p(Ω); also clearly w|V = u|V .
(⇐) Suppose u ∈ D′(Ω) has the property that for every precompact open set V with
V̄ ⊆ Ω there is w ∈ W s,p(Ω) such that w|V = u|V . Let φ ∈ C∞

c (Ω). We need to show
that φu ∈ W s,p(Ω). Note that suppφ is compact, so there exists a bounded open set V
such that

suppφ ⊆ V ⊆ V̄ ⊆ Ω .

By assumption there exists w ∈ W s,p(Ω) such that w|V = u|V . It follows from the
hypothesis of the theorem that φw ∈ W s,p(Ω). Clearly φw = φu on Ω. Therefore
φu ∈ W s,p(Ω). □

5. OVERVIEW OF THE BASIC PROPERTIES

Material of this section is mainly an adaptation of the material presented in the excel-
lent work of Antonic and Burazin [2], which is restricted to integer order Sobolev spaces,
and Peterson [24], which is restricted to Hilbert spacesHs. We have added certain details
to the statements of the theorems and their proofs to ensure all the arguments are valid
for both integer and noninteger order Sobolev-Slobodeckij spaces.

Definition 5.1. If A is a subset of C∞
c (Ω) with the following property:

∀x ∈ Ω ∃φ ∈ A such that φ ≥ 0 and φ(x) ̸= 0 ,

then we say A is an admissible family of functions.

Remark 5.2. Note that if A is an admissible family of functions, then for all m ∈ N, the
set {φm : φ ∈ A} is also an admissible family of functions.

Theorem 5.3. Let (s, p,Ω) be an interior smooth multiplication triple. If A is an admis-
sible family of functions then

(1) W s,p
loc (Ω) = {u ∈ D′(Ω) : ∀φ ∈ A φu ∈ W s,p(Ω)}.

(2) The collection {|.|φ : φ ∈ A} is a separating family of seminorms on W s,p
loc (Ω).

(3) The natural topology induced by the separating family of seminorms {|.|φ : φ ∈
A} is the same as the topology of W s,p

loc (Ω).

Proof.

(1) Let u ∈ D′(Ω) be such that φu ∈ W s,p(Ω) for all φ ∈ A. We need to show that if
ψ ∈ C∞

c (Ω), then ψu ∈ W s,p(Ω). By the definition of A, for all x ∈ suppψ there
exists φx ∈ A such that φx(x) > 0. Define

Ux := {y ∈ Ω : φx(y) > 0} .

Clearly, x ∈ Ux, and since φx is continuous, Ux is an open set. {Ux}x∈suppψ is an
open cover of the compact set suppψ. So there exist points x1, · · · , xk such that
suppψ ⊆ U := Ux1 ∪ · · · ∪ Uxk . If y ∈ U , then there exists 1 ≤ i ≤ k such that
y ∈ Uxi and so φxi(y) > 0. So the smooth function

∑k
i=1 φxi is nonzero on U .

Thus on U we have

ψu =
ψ∑k

i=1 φxi

( k∑
i=1

φxiu
)
.
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Indeed, if we define

ξ(z) =

{
ψ(z)∑k

i=1 φxi (z)
if z ∈ U

0 otherwise
,

then ξ is smooth with compact support in U and

ψu = ξ
k∑
i=1

φxiu

on the entire Ω. Now note that for each i, φxiu is in W s,p(Ω) (because by assump-
tion φu ∈ W s,p(Ω) for all φ ∈ A). So

∑k
i=1 φxiu ∈ W s,p(Ω). Since ξ ∈ C∞

c (Ω)

and
∑k

i=1 φxiu has compact support and (s, p,Ω) is an interior smooth multiplica-
tion triple, it follows that ξ

∑k
i=1 φxiu ∈ W s,p(Ω).

(2) Now we prove that {|.|φ : φ ∈ A} is a separating family of seminorms. We
need to show that if u ∈ W s,p

loc (Ω) has the property that for all φ ∈ A |u|φ =
∥φu∥W s,p(Ω) = 0, then u = 0. By definition of locally Sobolev functions, u is an
element of D′(Ω). So, in order to show that u = 0, it is enough to prove that for
all η ∈ C∞

c (Ω), ⟨u, η⟩D′(Ω)×D(Ω) = 0. We consider two cases:
• Case 1: A = C∞

c (Ω).
Let φ ∈ A be such that φ = 1 on a neighborhood containing supp η. By
assumption φu = 0 in W s,p(Ω) and so it is zero in D′(Ω). Now we have

⟨u, η⟩D′(Ω)×D(Ω) = ⟨u, φη⟩D′(Ω)×D(Ω) = ⟨φu, η⟩D′(Ω)×D(Ω) = 0

which is exactly what we wanted to prove.
• Case 2: A ⊂ C∞

c (Ω).
We claim that if ∥φu∥W s,p(Ω) = 0 for all φ ∈ A, then for any ψ ∈ C∞

c (Ω),
∥ψu∥W s,p(Ω) = 0 and so this case reduces to the previous case. Indeed, if ψ is
an arbitrary element of C∞

c (Ω), then by what was proved in item (1),

ψu = ξ
k∑
i=1

φxiu ,

where, by assumption, for each i, φxiu is zero as an element of W s,p(Ω).
Hence ψu = 0 in W s,p(Ω).

(3) Finally we show that the natural topology τP induced by P = {|.|φ : φ ∈ A}
is the same as the natural topology τQ induced by Q = {|.|φ : φ ∈ C∞

c (Ω)}.
Obviously P is a subset of Q, so it follows from the definition of natural topology
induced by a family of seminorms (see Definition 3.10) that τP ⊆ τQ. In order
to show that τQ ⊆ τP , it is enough to prove that for all ψ ∈ C∞

c (Ω), the map
|.|ψ : (W s,p

loc (Ω), τP ) → R is continuous. By what was shown in item (1), we can
write

∀u ∈ W s,p
loc (Ω) |u|ψ = ∥ψ u∥W s,p(Ω) = ∥ξ

k∑
i=1

φxiu∥W s,p(Ω)

⪯
k∑
i=1

∥φxiu∥W s,p(Ω) =
k∑
i=1

|u|φxi
,
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where the implicit constant does not depend on u. In the last inequality we used
the assumption that (s, p,Ω) is an interior smooth multiplication triple. Now it
follows from Theorem 3.20 that |.|ψ : (W s,p

loc (Ω), τP ) → R is continuous.

□

Lemma 5.4. There exists an admissible family A ⊆ C∞
c (Ω) that has only countably

many elements.

Proof. Let {Kj}j∈N be an exhaustion by compact sets for Ω. For each j ∈ N, let φj ∈
C∞
c (Ω) be a nonnegative function such that φj = 1 on Kj and φj = 0 outside K̊j+2.

Clearly A = {φj}j∈N is a countable admissible family of functions. □

Corollary 5.5. Let (s, p,Ω) be an interior smooth multiplication triple. Considering
Theorem 3.13, it follows from the previous lemma and Theorem 5.3 that W s,p

loc (Ω) is
metrizable. Indeed, if A = {φj}∞j=1 is a countable admissible family, then

d(u, v) =
∞∑
j=1

1

2j
|u− v|φj

1 + |u− v|φj

(5.1)

is a compatible translation invariant metric on W s,p
loc (Ω).

Theorem 5.6. Let (s, p,Ω) be an interior smooth multiplication triple. Then W s,p
loc (Ω) is

a Frechet space.

Proof. By Corollary 3.14 it is enough to show that W s,p
loc (Ω) equipped with the metric

in (5.1) is complete. Note that all admissible families result in equivalent topologies in
W s,p
loc (Ω). So we can choose the functions φj’s in the definition of d to be the partition of

unity introduced in Theorem 3.43. Now suppose {um} is a Cauchy sequence with respect
to d. In what follows we will prove that {um} converges to a distribution u in D′(Ω).
For now let’s assume this is true. We need to show that u is an element of W s,p

loc (Ω), that
is we need to show that for all j, φj u ∈ W s,p(Ω).
It follows from the definition of d that for each j ∈ N, {φjum}m∈N is a Cauchy sequence
in W s,p(Ω). Since W s,p(Ω) is a Banach space, there exists fj in W s,p(Ω) such that
φjum → fj in W s,p(Ω). Note that W s,p(Ω) ↪→ D′(Ω), so φjum → fj in D′(Ω) and thus
for all ψ ∈ D(Ω) we have

⟨fj, ψ⟩D′(Ω)×D(Ω) = lim
m→∞

⟨φj um, ψ⟩D′(Ω)×D(Ω) = lim
m→∞

⟨um, φjψ⟩D′(Ω)×D(Ω)

= ⟨u, φjψ⟩D′(Ω)×D(Ω) = ⟨φju, ψ⟩D′(Ω)×D(Ω) .

Hence φju = fj in D′(Ω). Since fj ∈ W s,p(Ω) we can conclude that φju ∈ W s,p(Ω).
It remains to show that {um} converges in D′(Ω). To this end it is enough to show
that for all ψ ∈ D(Ω), the sequence {⟨um, ψ⟩} converges in R (see Theorem 3.60). Let
ψ ∈ D(Ω). Since suppψ is compact, there are only finitely many of φj’s that are nonzero
on the support of ψ (see Theorem 3.43) which we denote by φj1 , · · · , φjl . So for each
x ∈ suppψ, φj1(x) + · · ·+ φjl(x) = 1. We have

⟨um, ψ⟩ = ⟨um, (φj1+· · ·+φjl)ψ⟩ = ⟨(φj1+· · ·+φjl)um, ψ⟩ = ⟨φj1um, ψ⟩+· · ·+⟨φjlum, ψ⟩ .
limm→∞⟨φj1um, ψ⟩, · · · , limm→∞⟨φjlum, ψ⟩ all exist (sinceφjrum is Cauchy inW s,p(Ω),
it is convergent inW s,p(Ω), and so it is convergent inD′(Ω)). Therefore limm→∞⟨um, ψ⟩
exists. □

Theorem 5.7. Let (s, p,Ω) be a smooth multiplication triple (so we know thatW s,p(Ω) ⊆
W s,p
loc (Ω) and W s,p

loc (Ω) is metrizable). Then W s,p(Ω) ↪→ W s,p
loc (Ω).
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Proof. Since both spaces are metrizable, it suffices to show that if ui → u in W s,p(Ω),
then ui → u in W s,p

loc (Ω). To this end, let φ be an arbitrary element of C∞
c (Ω). We need

to show that if ui → u inW s,p(Ω), then φui → φu inW s,p(Ω). But this is a consequence
of the fact that (s, p,Ω) is a smooth multiplication triple. □

Theorem 5.8. Let Ω be a nonempty open set in Rn, s ∈ R and 1 < p < ∞. Then E(Ω)
is continuously embedded in W s,p

loc (Ω), i.e., the “identity map” from E(Ω) to W s,p
loc (Ω) is

continuous.

Proof. By Theorem 3.45 it is enough to show that if φm → 0 in E(Ω), then φm → 0 in
W s,p
loc (Ω), that is, for all ψ ∈ C∞

c (Ω), ψφm → 0 in W s,p(Ω).
Let ψ ∈ C∞

c (Ω) and let mψ denote multiplication by ψ. Multiplication by smooth
functions is a continuous linear operator on E(Ω) ([26]). So mψ : E(Ω) → E(Ω) is
continuous. The range of this map is in the subspace Esuppψ(Ω). So mψ : E(Ω) →
Esuppψ(Ω) is continuous. However, Esuppψ(Ω) ↪→ D(Ω). Hence mψ : E(Ω) → D(Ω) is
continuous. As a consequence, since φm → 0 in E(Ω), ψ φm → 0 in D(Ω). Finally,
since D(Ω) ↪→ W s,p(Ω), we can conclude that ψφm → 0 in W s,p(Ω). □

Corollary 5.9. Since D(Ω) ↪→ E(Ω), it follows that under the hypotheses of Theo-
rem 5.8, D(Ω) is continuously embedded in W s,p

loc (Ω).

Theorem 5.10. Let (s, p,Ω) be a smooth multiplication triple. Then C∞
c (Ω) is dense in

W s,p
loc (Ω).

Proof. Let u ∈ W s,p
loc (Ω). It is enough to show that there exists a sequence {ψj} in

C∞
c (Ω) such that ψj → u in W s,p

loc (Ω), i.e.,

∀ ξ ∈ C∞
c (Ω) ξψj → ξu in W s,p(Ω) .

First note that, since (s, p,Ω) is a smooth multiplication triple, for all ξ ∈ C∞
c (Ω), there

exists a constant Cξ,s,p,Ω such that

∀ v ∈ W s,p(Ω) ∥ξ v∥W s,p(Ω) ≤ Cξ,s,p,Ω∥v∥W s,p(Ω) .

Let {φj}j∈N be the admissible family introduced in the proof of Lemma 5.4. For each
ξ ∈ C∞

c (Ω), there exists a number Jξ such that for all j ≥ Jξ, φj = 1 on supp ξ. So,

∀ j ≥ Jξ φj ξ = ξ .

Clearly, by definition of W s,p
loc (Ω), for each j, φju ∈ W s,p(Ω), also φju has compact

support, so φju ∈ W s,p
0 (Ω) (see Remark 3.83). Hence for each j, there exists ψj ∈

C∞
c (Ω) such that ∥ψj − φju∥ < 1

j
. We claim that ξψj → ξu in W s,p(Ω). Indeed, given

ϵ > 0 and ξ ∈ C∞
c (Ω), let J > Jξ be such that 1

J
< ϵ

Cξ,s,p,Ω
. Then for j ≥ J we have

∥ξψj − ξu∥W s,p(Ω) = ∥ξψj − ξφju∥W s,p(Ω) = ∥ξ(ψj − φju)∥W s,p(Ω)

≤ Cξ,s,p,Ω∥ψj − φju∥W s,p(Ω) < Cξ,s,p,Ω
1

J
< ϵ .

□

Remark 5.11. As a consequence, if (s, p,Ω) is a smooth multiplication triple, then
[W s,p

loc (Ω)]
∗ (equipped with the strong topology) is continuously embedded in D′(Ω).

More precisely, the identity map i : D(Ω) → W s,p
loc (Ω) is continuous with dense image,

and therefore, by Theorem 3.27, the adjoint i∗ : [W s,p
loc (Ω)]

∗ → D′(Ω) is a continuous
injective map. We have

⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, i φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω) = ⟨u, φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω) .
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We usually identify [W s,p
loc (Ω)]

∗ with its image under i∗ and view [W s,p
loc (Ω)]

∗ as a subspace
of D′(Ω). So, under this identification, we can rewrite the above equality as follows:

∀u ∈ [W s,p
loc (Ω)]

∗ ⟨u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω) .

Theorem 5.12. Let (s, p,Ω) be a smooth multiplication triple. Then W s,p
loc (Ω) is separa-

ble.

Proof. D(Ω) is continuously embedded in W s,p
loc (Ω) and it is dense in W s,p

loc (Ω). Since
D(Ω) is separable, it follows from Lemma 3.95 that W s,p

loc (Ω) is separable. □

As a direct consequence of the definitions, locally Sobolev functions and Sobolev
functions with compact support are both subsets of the space of distributions. The next
two theorems establish a duality connection between the two spaces. But first we need
to state a simple lemma.

Lemma 5.13. Let X and Y be two topological spaces. Suppose that Y is Hausdorff. Let
f : X → Y and g : X → Y be two continuous functions that agree on a dense subset A
of X . Then f = g everywhere. (So, in particular, in order to show that two continuous
mappings from X to Y are equal, we just need to show that they agree on some dense
subset.)

Proof. Suppose that there exists x0 ∈ X such that f(x0) ̸= g(x0). Since Y is Hausdorff,
there exist open neighborhoods U and V of f(x0) and g(x0), respectively, such that
U ∩V = ∅. f−1(U)∩ g−1(V ) is a nonempty (x0 is in it) open set in X so its intersection
with A is nonempty. Let z be a point in the intersection of f−1(U) ∩ g−1(V ) and A.
Clearly f(z) ∈ U and g(z) ∈ V ; but since z ∈ A, we have f(z) = g(z). This contradicts
the assumption that U ∩ V = ∅. □

Theorem 5.14. Suppose that (s, p,Ω) and (−s, p′,Ω) are smooth multiplication triples.
Define the mapping T : W−s,p′

loc (Ω) → [W s,p
comp(Ω)]

∗ by

∀u ∈ W−s,p′
loc (Ω) ∀ f ∈ W s,p

comp(Ω) [T (u)](f) := ⟨ψfu, f⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)
,

where ψf is any function in C∞
c (Ω) that is equal to 1 on a neighborhood containing the

support of f . Then

(1) [T (u)](f) does not depend on the choice of ψf .
(2) For all u ∈ W−s,p′

loc (Ω), T (u) is indeed an element of [W s,p
comp(Ω)]

∗.
(3) T : W−s,p′

loc (Ω) → [W s,p
comp(Ω)]

∗ is bijective.
(4) Suppose [W s,p

comp(Ω)]
∗ is equipped with the strong topology. Then the bijective

linear map T : W−s,p′
loc (Ω) → [W s,p

comp(Ω)]
∗ is a topological isomorphism, i.e.

it is continuous with continuous inverse. So [W s,p
comp(Ω)]

∗ can be identified with
W−s,p′
loc (Ω) as topological vector spaces.

Proof. (1) For the first item, it is enough to show that if ψ ∈ C∞
c (Ω) is equal to zero on

a neighborhood U containing the supp f , then ⟨ψu, f⟩
W−s,p′

0 (Ω)×W s,p
0 (Ω)

= 0. Note
that f is not necessarily in C∞

c (Ω), so we cannot directly apply the duality pairing
identity stated in Remark 3.69. Let {fm} be sequence in C∞

c (Ω) such that fm → f
in W s,p

0 (Ω). Let ξ ∈ C∞
c (Ω) be such that ξ = 1 on supp f and ξ = 0 outside U .

By assumption (s, p,Ω) is a smooth multiplication triple and so ξfm → ξf = f in
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W s,p
0 (Ω). Since elements of dual are continuous, we have

⟨ψu, f⟩
W−s,p′

0 (Ω)×W s,p
0 (Ω)

= lim
m→∞

⟨ψu, ξfm⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)

Remark 3.69
= lim

m→∞
⟨ψu, ξfm⟩D′(Ω)×D(Ω)

= lim
m→∞

⟨u, ψξfm⟩D′(Ω)×D(Ω) = lim
m→∞

u(0) = 0 .

Note that ξfm is zero outside U and ψ = 0 in U , so ψξfm = 0 everywhere.

(2) In order to show that T (u) is an element of [W s,p
comp(Ω)]

∗, we need to prove that
T (u) : W s,p

comp(Ω) → R is linear and continuous. Linearity is obvious. In order to
prove continuity, we need to show that for all K ∈ K(Ω), T (u)|W s,p

K (Ω) is continu-
ous (see Theorem 3.37). Let K ∈ K(Ω) and fix a function ψ ∈ C∞

c (Ω) which is
equal to 1 on a neighborhood containing K. For all f ∈ W s,p

K (Ω) we have

|[T (u)](f)| = |⟨ψu, f⟩
W−s,p′

0 (Ω)×W s,p
0 (Ω)

| ≤ ∥ψu∥W−s,p′ (Ω) × ∥f∥W s,p(Ω) ,

which proves the continuity of the linear map T (u).

(3) In order to prove that T is bijective we give an explicit formula for the inverse.
Recall that by definition W−s,p′

loc (Ω) is a subspace of D′(Ω) and by Remark 3.94,
[W s,p

comp(Ω)]
∗ can also be viewed as a subspace of D′(Ω). More precisely, if we let

i : D(Ω) → W s,p
comp(Ω) be the “identity map” and i∗ : [W s,p

comp(Ω)]
∗ → D′(Ω) be

the adjoint of i, then i∗ is a continuous injective linear map and

∀u ∈ [W s,p
comp(Ω)]

∗ ∀φ ∈ D(Ω) ⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω) .
(5.2)

Moreover, if K ∈ K(Ω), then W s,p
K (Ω) ↪→ W s,p

comp(Ω) and therefore if u ∈
[W s,p

comp(Ω)]
∗, then u|W s,p

K (Ω) ∈ [W s,p
K (Ω)]∗ and

∀ g ∈ W s,p
K (Ω) ⟨u, g⟩[W s,p

comp(Ω)]∗×W s,p
comp(Ω) = ⟨u|W s,p

K (Ω), g⟩[W s,p
K (Ω)]∗×W s,p

K (Ω) .

Now we claim that the image of i∗ is inW−s,p′
loc (Ω) and in fact i∗ is the inverse of T .

Let us first prove that the image of i∗ is in W−s,p′
loc (Ω). Let u ∈ [W s,p

comp(Ω)]
∗. We

need to show that for all φ ∈ C∞
c (Ω), (φ)(i∗u) ∈ W−s,p′(Ω). To this end we make

use of Corollary 3.71. Let φ ∈ C∞
c (Ω) and let K = suppφ. For all ψ ∈ D(Ω) we

have∣∣⟨φi∗u, ψ⟩D′(Ω)×D(Ω)

∣∣ = ∣∣⟨i∗u, φψ⟩D′(Ω)×D(Ω)

∣∣ = ∣∣⟨u, φψ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω)

∣∣
=

∣∣⟨u|W s,p
K (Ω), φψ⟩[W s,p

K (Ω)]∗×W s,p
K (Ω)

∣∣
≤ ∥u|W s,p

K (Ω)∥[W s,p
K (Ω)]∗∥φψ∥W s,p

K (Ω)

= ∥u|W s,p
K (Ω)∥[W s,p

K (Ω)]∗∥φψ∥W s,p(Ω)

⪯ ∥u|W s,p
K (Ω)∥[W s,p

K (Ω)]∗∥ψ∥W s,p(Ω) ,

which, by Corollary 3.71, proves that φi∗u ∈ W−s,p′(Ω).
Now we prove i∗ is the inverse of T . Note that for all u ∈ W−s,p′

loc (Ω) ⊆ D′(Ω)



30 A. BEHZADAN AND M. HOLST

and φ ∈ D(Ω),

⟨(i∗ ◦ T )(u), φ⟩D′(Ω)×D(Ω)
Equation 5.2

= ⟨T (u), φ⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω)

Definition of T
= ⟨ψφu, φ⟩W−s,p′

0 (Ω)×W s,p
0 (Ω)

Remark 3.69
= ⟨ψφu, φ⟩D′(Ω)×D(Ω)

= ⟨u, ψφφ⟩D′(Ω)×D(Ω)

= ⟨u, φ⟩D′(Ω)×D(Ω) .

Therefore, i∗ ◦ T is identity. Next we show that for all v ∈ [W s,p
comp(Ω)]

∗, (T ◦
i∗)(v) = v. Note that (T ◦ i∗)(v) and v both are in [W s,p

comp(Ω)]
∗ and so they are

continuous functions from W s,p
comp(Ω) to R. Since D(Ω) is dense in W s,p

comp(Ω),
according to Lemma 5.13 it is enough to show that for all f ∈ D(Ω) we have
[(T ◦ i∗)(v)](f) = v(f).

⟨(T ◦ i∗)(v), f⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω)
Definition of T

= ⟨ψf (i∗v), f⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)

Remark 3.69
= ⟨ψf (i∗v), f⟩D′(Ω)×D(Ω)

= ⟨i∗v, ψff⟩D′(Ω)×D(Ω)

= ⟨i∗v, f⟩D′(Ω)×D(Ω)

Equation 5.2
= ⟨v, f⟩[W s,p

comp(Ω)]∗×W s,p
comp(Ω) .

(4) Let’s denote the topology ofW−s,p′
loc (Ω) by τ and the strong topology on [W s,p

comp(Ω)]
∗

by τ ′. Our goal is to show that T : (W−s,p′
loc (Ω), τ) → ([W s,p

comp(Ω)]
∗, τ ′) and also

T−1 = i∗ : ([W s,p
comp(Ω)]

∗, τ ′) → (W−s,p′
loc (Ω), τ) are both continuous maps. To

this end we make use of Theorem 3.20. Recall that τ is induced by the family of
seminorms {pφ : W−s,p′

loc (Ω) → R}φ∈C∞
c (Ω) where pφ(u) = ∥φu∥W−s,p′ (Ω). Also τ ′

is induced by the family of seminorms {p′B : [W s,p
comp(Ω)]

∗ → R} where B varies
over all bounded sets in W s,p

comp(Ω) and p′B(u) = supf∈B |u(f)|.

• Step 1: Let B be a bounded subset of W s,p
comp(Ω). Since B is bounded, there

exists K ∈ K(Ω) such that B is bounded in W s,p
K (Ω) (See Theorem 3.39;

note that the topology of W s,p
comp(Ω) can be constructed as the inductive limit

of W s,p
Kj

(Ω) where {Kj} is an increasing chain of compact subsets of Ω). So
there exists a constant C such that for all f ∈ B, ∥f∥W s,p(Ω) ≤ C. Let ψ be a
function in C∞

c (Ω) which is equal to 1 on a neighborhood containing K. For
all u ∈ W−s,p′

loc (Ω) we have

(p′B ◦ T )(u) = sup
f∈B

|[T (u)](f)| Definition of T
= sup

f∈B
|⟨ψu, f⟩

W−s,p′
0 (Ω)×W s,p

0 (Ω)
|

≤ sup
f∈B

∥ψu∥W−s,p′ (Ω)∥f∥W s,p(Ω)

≤ Cpψ(u) .

It follows from Theorem 3.20 that T : (W−s,p′
loc (Ω), τ) → ([W s,p

comp(Ω)]
∗, τ ′) is

continuous.

• Step 2: Let φ ∈ C∞
c (Ω). Let K be a compact set whose interior contains

suppφ. Since (s, p,Ω) is a smooth multiplication triple, there exists a constant
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Cφ > 0 such that for all f ∈ W s,p(Ω) we have ∥φf∥W s,p(Ω) ≤ Cφ∥f∥W s,p(Ω).

We have

(pφ ◦ i∗)(u) = ∥φi∗u∥W s,p
0 (Ω) = ∥φi∗u∥

[W−s,p′
0 (Ω)]∗

= sup
ξ∈C∞

c (Ω),∥ξ∥Ws,p(Ω)≤1

|⟨φi∗u, ξ⟩
W s,p

0 (Ω)×W−s,p′
0 (Ω)

|

= sup
ξ∈C∞

c (Ω),∥ξ∥Ws,p(Ω)≤1

|⟨φi∗u, ξ⟩D′(Ω)×D(Ω)|

= sup
ξ∈C∞

c (Ω),∥ξ∥Ws,p(Ω)≤1

|⟨i∗u, φξ⟩D′(Ω)×D(Ω)|

≤ sup
η∈C∞

supp φ(Ω),∥η∥Ws,p(Ω)≤Cφ

|⟨i∗u, η⟩D′(Ω)×D(Ω)|

Equation 5.2
= sup

η∈C∞
supp φ(Ω),∥η∥Ws,p(Ω)≤Cφ

|⟨u, η⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω)| .

So, if we let B be the ball of radius 2Cφ centered at 0 in W s,p
K (Ω) (clearly B is

a bounded set in W s,p
comp(Ω)), we get

(pφ ◦ i∗)(u) ≤ sup
f∈B

|⟨u, f⟩[W s,p
comp(Ω)]∗×W s,p

comp(Ω)|

= p′B(u) .

□

Corollary 5.15. Suppose that (s, p,Ω) and (−s, p′,Ω) are both smooth multiplication
triples. By the previous Theorem [W−s,p′

comp (Ω)]
∗ can be identified with W s,p

loc (Ω). Also,
by Remark 3.94, [W−s,p′

comp (Ω)]
∗ is continuously embedded in D′(Ω). Therefore W s,p

loc (Ω)
is continuously embedded in D′(Ω). Since W s,p

loc (Ω) is a Frechet space, it follows from
Theorem 3.19 and Remark 3.22 that the preceding statement remains true even if we
consider D′(Ω) equipped with the weak∗ topology. So,

W s,p
loc (Ω) ↪→ (D′(Ω), strong topology) and W s,p

loc (Ω) ↪→ (D′(Ω),weak∗ topology) .

Theorem 5.16. Suppose that (s, p,Ω) and (−s, p′,Ω) are smooth multiplication triples.
Define the mapping R : W−s,p′

comp (Ω) → [W s,p
loc (Ω)]

∗ by

∀u ∈ W−s,p′
comp (Ω) ∀ f ∈ W s,p

loc (Ω) [R(u)](f) := ⟨u, ψuf⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)
,

where ψu is any function in C∞
c (Ω) that is equal to 1 on a neighborhood containing the

support of u. Then
(1) [R(u)](f) does not depend on the choice of ψu.
(2) For all u ∈ W−s,p′

comp (Ω), R(u) is indeed an element of [W s,p
loc (Ω)]

∗.
(3) R : W−s,p′

comp (Ω) → [W s,p
loc (Ω)]

∗ is bijective.
(4) Suppose [W s,p

loc (Ω)]
∗ is equipped with the strong topology. Then the linear map R

is bijective and continuous. In particular, [W s,p
loc (Ω)]

∗ and W−s,p′
comp (Ω) are isomor-

phic vector spaces.

Proof. (1) Note that since (s, p,Ω) is a smooth multiplication triple, ψuf is inW s,p
0 (Ω).

Also by assumption (−s, p′,Ω) is a smooth multiplication triple. Therefore for
each K ∈ K(Ω), W−s,p′

K (Ω) ↪→ W−s,p′
0 (Ω) and hence W−s,p′

comp (Ω) ↪→ W−s,p′
0 (Ω).

So the pairing in the definition of [R(u)](f) makes sense. The fact that the output
is independent of the choice of ψu follows directly from Theorem 3.58.
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(2) Clearly R(u) is linear. Also R(u) is continuous (so it is an element of [W s,p
loc (Ω)]

∗).
The reason is as follows: for all f ∈ W s,p

loc (Ω) we have

|[R(u)](f)| = |⟨u, ψuf⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)
| ≤ ∥u∥

W−s,p′
0 (Ω)

∥ψuf∥W s,p
0 (Ω) .

That is, for all f ∈ W s,p
loc (Ω) we have |[R(u)](f)| ⪯ ∥ψuf∥W s,p(Ω). It follows from

Theorem 3.20 that R(u) : W s,p
loc (Ω) → R is continuous.

(3) In order to prove that R is bijective we give an explicit formula for the inverse.
Recall that by Remark 5.11, [W s,p

loc (Ω)]
∗ can also be viewed as a subspace ofD′(Ω).

More precisely, if we let i : D(Ω) → W s,p
loc (Ω) be the “identity map” and i∗ :

[W s,p
loc (Ω)]

∗ → D′(Ω) be the adjoint of i, then i∗ is a continuous injective linear
map and

∀u ∈ [W s,p
loc (Ω)]

∗ ∀φ ∈ D(Ω) ⟨i∗u, φ⟩D′(Ω)×D(Ω) = ⟨u, φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω) . (5.3)

Now we claim that the image of i∗ is in W−s,p′
comp (Ω) and in fact i∗ is the inverse

of R. Let us first prove that the image of i∗ is in W−s,p′
comp (Ω). E(Ω) is contin-

uously and densely embedded in W s,p
loc (Ω) (continuity is proved in Theorem 5.8

and density is a direct consequence of the density of C∞
c (Ω) in W s,p

loc (Ω)). There-
fore i∗

(
[W s,p

loc (Ω)]
∗) is indeed a subspace of E ′(Ω) ⊆ D′(Ω) and so elements of

i∗
(
[W s,p

loc (Ω)]
∗) can be identified with distributions in D′(Ω) that have compact

support. It remains to show that if u ∈ [W s,p
loc (Ω)]

∗, then i∗u ∈ W−s,p′(Ω). To this
end we make use of Corollary 3.71. For all φ ∈ D(Ω) we have

|⟨i∗u, φ⟩D′(Ω)×D(Ω)|
Equation 5.3

= |⟨u, φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω)|
= |⟨u|W s,p(Ω), φ⟩[W s,p

0 (Ω)]∗×W s,p
0 (Ω)|

≤ ∥u|W s,p
0 (Ω)∥[W s,p

0 (Ω)]∗∥φ∥W s,p(Ω) .

So, by Corollary 3.71, we can conclude that u ∈ W−s,p′(Ω). In the above we used
the fact that W s,p

0 (Ω) ↪→ W s,p(Ω) ↪→ W s,p
loc (Ω) and so for u ∈ [W s,p

loc (Ω)]
∗ we have

u|W s,p
0 (Ω) ∈ [W s,p

0 (Ω)]∗.
Now we prove that i∗ : [W s,p

loc (Ω)]
∗ → W−s,p′

comp (Ω) is the inverse of R. For all
u ∈ W−s,p′

comp (Ω) and φ ∈ D(Ω) we have

⟨(i∗ ◦R)(u), φ⟩D′(Ω)×D(Ω)
Equation 5.3

= ⟨Ru, φ⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω)

Definition of R
= ⟨u, ψuφ⟩W−s,p′

0 (Ω)×W s,p
0 (Ω)

Remark 3.69
= ⟨u, ψuφ⟩D′(Ω)×D(Ω)

= ⟨ψuu, φ⟩D′(Ω)×D(Ω)

= ⟨u, φ⟩D′(Ω)×D(Ω) .

Therefore, (i∗ ◦R)(u) = u for all u ∈ W−s,p′
comp (Ω).

Now we prove that R ◦ i∗ is also the identity map. Considering Lemma 5.13, since
D(Ω) is dense in W s,p

loc (Ω)]
∗, it is enough to show that for all v ∈ [W s,p

loc (Ω)]
∗ and
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f ∈ D(Ω), [R ◦ i∗(v)](f) = v(f). We have

⟨(R ◦ i∗)v, f⟩[W s,p
loc (Ω)]∗×W s,p

loc (Ω)
Definition of R

= ⟨i∗v, ψi∗vf⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)

Remark 3.69
= ⟨i∗v, ψi∗vf⟩D′(Ω)×D(Ω)

= ⟨ψi∗vi∗v, f⟩D′(Ω)×D(Ω)

= ⟨i∗v, f⟩D′(Ω)×D(Ω)

Equation 5.3
= ⟨v, f⟩[W s,p

loc (Ω)]∗×W s,p
loc (Ω) ,

which shows R ◦ i∗(v) = v.

(4) Let’s denote the topology ofW−s,p′
comp (Ω) by τ and the strong topology on [W s,p

loc (Ω)]
∗

by τ ′. Our goal is to show that R : (W−s,p′
comp (Ω), τ) → ([W s,p

loc (Ω)]
∗, τ ′) is con-

tinuous. To this end we make use of Theorem 3.20. Recall that τ is induced
by the family of seminorms {qa,−s,p′ : W−s,p′

comp (Ω) → R}a∈S where qa,−s,p′(u) =∑
j aj∥ψju∥W−s,p′ (Ω) (here we are using the notations introduced in Theorem 3.97).

Also τ ′ is induced by the family of seminorms {pB : [W s,p
loc (Ω)]

∗ → R} where B
varies over all bounded sets in W s,p

loc (Ω) and pB(u) = supf∈B |u(f)|.
Let B be a bounded subset of W s,p

loc (Ω). Since B is bounded, for all φ ∈ C∞
c (Ω),

the set {∥φf∥W s,p(Ω) : f ∈ B} is bounded in R (see Theorem 3.16). Thus
for all φ ∈ C∞

c (Ω) there exists a positive integer aφ such that for all f ∈ B,
∥φf∥W s,p(Ω) < aφ. Recall that {ψj} in the definition of qa,−s,p′ denotes a fixed
partition of unity. For each j let φj be a function in C∞

c (Ω) which is equal to 1 on
a neighborhood containing the support of ψj . For all u ∈ W−s,p′

comp (Ω) we have

(pB ◦R)(u) = (pB ◦R)(
∑
j

ψj u) ≤
∑
j

(pB ◦R)(ψju) = sup
f∈B

|(R(ψju))(f)|

Definition of R
=

∑
j

sup
f∈B

|⟨ψju, φjf⟩W−s,p′
0 (Ω)×W s,p

0 (Ω)
|

≤
∑
j

sup
f∈B

∥ψju∥W−s,p′ (Ω)∥φjf∥W s,p(Ω)

≤
∑
j

aφj
∥ψju∥W−s,p′ (Ω)

= qa,−s,p′(u) ,

where a = (aφ1 , aφ2 , · · · ). Note that the inequality (pB ◦R)(
∑

j ψj u) ≤
∑

j(pB ◦
R)(ψju) holds because u has compact support and so only finitely many terms in
the sum are nonzero, so we can use the subadditivity of the seminorm and linearity
of R.
It follows from Theorem 3.20 thatR : (W−s,p′

comp (Ω), τ) → [W s,p
loc (Ω)]

∗ is continuous.
□

Remark 5.17. According to the previous two theorems, we have the following

• When u ∈ W−s,p′
loc (Ω) is viewed as an element of [W s,p

comp(Ω)]
∗ we have

∀ f ∈ W s,p
comp(Ω) u(f) = ⟨ψfu, f⟩W−s,p′

0 (Ω)×W s,p
0 (Ω)

,

where ψf is any function in C∞
c (Ω) that is equal to 1 on a neighborhood containing

supp f .
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• When u ∈ W−s,p′
comp (Ω) is viewed as an element of [W s,p

loc (Ω)]
∗ we have

∀ f ∈ W s,p
loc (Ω) u(f) = ⟨u, ψf⟩

W−s,p′
0 (Ω)×W s,p

0 (Ω)
,

where ψ is any function in C∞
c (Ω) that is equal to 1 on a neighborhood containing

suppu.

Corollary 5.18. Suppose that (s, p,Ω) and (−s, p′,Ω) are both smooth multiplication
triples. As a direct consequence of the previous theorems, the bidual of W s,p

comp(Ω) is
itself. So W s,p

comp(Ω) is semireflexive. It follows from Theorem 3.25 that W s,p
comp(Ω) is

reflexive and subsequently its dual W−s,p′
loc (Ω) is reflexive.

Now we put everything together to build general embedding theorems for spaces of
locally Sobolev-Slobodeckij functions.

Theorem 5.19 (Embedding Theorem I). Let Ω be a nonempty open set in Rn. If s1, s2 ∈
R and 1 < p1, p2 < ∞ are such that W s1,p1(Ω) ↪→ W s2,p2(Ω), then W s1,p1

loc (Ω) ↪→
W s2,p2
loc (Ω).

Proof. We have

u ∈ W s1,p1
loc (Ω) ⇐⇒ ∀φ ∈ C∞

c (Ω) φu ∈ W s1,p1(Ω)

=⇒ ∀φ ∈ C∞
c (Ω) φu ∈ W s2,p2(Ω)

⇐⇒ u ∈ W s2,p2
loc (Ω) .

So, W s1,p1
loc (Ω) ⊆ W s2,p2

loc (Ω). Now note that for all φ ∈ C∞
c (Ω)

|u|φ,s2,p2 = ∥φu∥W s2,p2 (Ω) ⪯ ∥φu∥W s1,p1 (Ω) = |u|φ,s1,p1 .
So, it follows from Theorem 3.20 that the inclusion map from W s1,p1

loc (Ω) to W s2,p2
loc (Ω) is

continuous. □

Theorem 5.20 (Embedding Theorem II). Let Ω be a nonempty open set in Rn that has
the interior Lipschitz property. Suppose that s1, s2 ∈ R and 1 < p1, p2 < ∞ are
such that W s1,p1(U) ↪→ W s2,p2(U) for all bounded open sets U with Lipschitz con-
tinuous boundary. If s1 < 0, further assume that (−s1, p′1,Ω) is a smooth multiplication
triple. If s2 < 0, further assume that (−s2, p′2,Ω) is a smooth multiplication triple. Then
W s1,p1
loc (Ω) ↪→ W s2,p2

loc (Ω).

Proof. Suppose u ∈ W s1,p1
loc (Ω) and φ ∈ C∞

c (Ω). Let Ω′ be an open set in Ω that contains
suppφ and has Lipschitz continuous boundary. We have

u ∈ W s1,p1
loc (Ω) =⇒ φu ∈ W s1,p1(Ω)

Theorem 3.85
=⇒ (φu)|Ω′ ∈ W s1,p1(Ω′)

=⇒ (φu)|Ω′ ∈ W s2,p2(Ω′)

Theorem 3.85
=⇒ φu ∈ W s2,p2(Ω) .

Since φ can be any element of C∞
c (Ω), we can conclude that if u ∈ W s1,p1

loc (Ω), then
u ∈ W s2,p2

loc (Ω). In order to prove the continuity of the inclusion map we can proceed as
follows: let φ ∈ C∞

c (Ω) and choose Ω′ as before.

|u|φ,s2,p2 = ∥φu∥W s2,p2 (Ω)
Theorem 3.85≃ ∥φu∥W s2,p2 (Ω′)

⪯ ∥φu∥W s1,p1 (Ω′)
Theorem 3.85≃ ∥φu∥W s1,p1 (Ω)

= |u|φ,s1,p1 .
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So, it follows from Theorem 3.20 that the inclusion map from W s1,p1
loc (Ω) to W s2,p2

loc (Ω) is
continuous. □

A version of compact embedding for spaces Hm
loc with integer smoothness degree has

been studied in [2]. In what follows we will state the corresponding theorem and its proof
for spaces of locally Sobolev-Slobodeckij functions.

Lemma 5.21. Suppose that (s, p,Ω) and (−s, p′,Ω) are smooth multiplication triples. If
um converges weakly to u in W s,p

loc (Ω) then

∀φ ∈ C∞
c (Ω) φum ⇀ φu in W s,p(Ω) .

Proof. The proof is based on the following well-known fact:
Fact 1: Let X be a topological space and suppose that x is a point in X . Let {xm} be a
sequence in X . If every subsequence of {xm} contains a subsequence that converges to
x, then xm → x.
Let φ ∈ C∞

c (Ω). By Fact 1, it is enough to show that every subsequence of φum has
a subsequence that converges weakly to φu in W s,p(Ω). Let φum′ be a subsequence of
φum. We have

um′ ⇀ u in W s,p
loc (Ω)

Corollary 3.29
=⇒ {um′} is bounded in W s,p

loc (Ω)

Corollary 3.17
=⇒ {φum′} is bounded in W s,p(Ω) .

Since W s,p(Ω) is reflexive, there exists a subsequence φum′′ that converges weakly to
some F ∈ W s,p(Ω). To finish the proof it is enough to show that F = φu. We have

um′′ ⇀ u in W s,p
loc (Ω) =⇒ um′′ → u in (D′(Ω),weak∗)

=⇒ φum′′ → φu in (D′(Ω),weak∗) .

In the first line we used Theorem 3.30 and the fact that W s,p
loc (Ω) ↪→ (D′(Ω),weak∗)

(see Corollary 5.15). In the second line we used the fact that multiplication by smooth
functions is a continuous operator on (D′(Ω),weak∗).
Similarly, since W s,p(Ω) ↪→ (D′(Ω),weak∗), it follows from Theorem 3.30 that

φum′′ ⇀ F in W s,p(Ω) =⇒ φum′′ → F in (D′(Ω),weak∗) .

Consequently, φu = F as elements of D′(Ω) and subsequently as elements of W s,p
0 (Ω).

□

Theorem 5.22 (Compact Embedding). Let Ω be a nonempty open set in Rn that has the
interior Lipschitz property. Suppose that (s1, p1,Ω) and (−s1, p′1,Ω) are smooth multi-
plication triples. If s2 < 0, further assume that (−s2, p′2,Ω) is a smooth multiplication
triple. Moreover, suppose that s1, s2, p1, and p2 are such thatW s1,p1(U) is compactly em-
bedded in W s2,p2(U) for all bounded open sets U with Lipschitz continuous boundary.
Then every bounded sequence in W s1,p1

loc (Ω) has a convergent subsequence in W s2,p2
loc (Ω).

Proof. The proof makes use of the following well-known fact:
Fact 2: Let X and Y be Banach spaces. Suppose that T : X → Y is a linear compact
operator. If the sequence xm converges weakly (i.e. with respect to the weak topology)
to x in X , then T (xn) converges to T (x) (with respect to the norm of Y ) in Y .
Let um be a bounded sequence in W s1,p1

loc (Ω). By Theorem 3.33, since W s1,p1
loc (Ω) is a

separable reflexive Frechet space, there exists u ∈ W s1,p1
loc (Ω) and a subsequence {um′}

such that um′ ⇀ u in W s1,p1
loc (Ω). We claim that {um′} converges to u in W s2,p2

loc (Ω), that
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is, for all φ ∈ C∞
c (Ω), φum′ → φu in W s2,p2

loc (Ω). Suppose that φ ∈ C∞
c (Ω) and let

K := suppφ. By Lemma 5.21 we have

φum′ ⇀ φu in W s1,p1(Ω) .

So, by Theorem 3.35,
φum′ ⇀ φu in W s1,p1

K (Ω) .

Let Ω′ be an open bounded set in Ω with Lipschitz continuous boundary such that
K ⊆ Ω′. By Theorem 3.85, the restriction map from W s1,p1

K (Ω) to W s1,p1(Ω′) is well-
defined and continuous. It follows from Theorem 3.34 that this restriction map is weak-
weak continuous. So φum′ ⇀ φu in W s1,p1

K (Ω) implies that φum′ ⇀ φu in W s1,p1(Ω′).
By assumption the identity map from W s1,p1(Ω′) to W s2,p2(Ω′) is compact, so it follows
from Fact 2 that φum′ → φu in W s2,p2(Ω′) which subsequently implies φum′ → φu in
W s2,p2(Ω) by Theorem 3.85. □

6. OTHER PROPERTIES

The main results of this section do not appear to be in the literature in the generality
appearing here and they play a fundamental role in the study of the properties of dif-
ferential operators between Sobolev spaces of sections of vector bundles on manifolds
equipped with nonsmooth metric (see [5, 7]).

Theorem 6.1. Let Ω be a nonempty open set in Rn, s ≥ 1 and 1 < p < ∞. Then

u ∈ W s,p
loc (Ω) if and only if u ∈ Lploc(Ω) and for all 1 ≤ i ≤ n,

∂u

∂xi
∈ W s−1,p

loc (Ω).

Proof.

u ∈ W s,p
loc (Ω) ⇐⇒ ∀φ ∈ C∞

c (Ω) φu ∈ W s,p(Ω)

Theorem 3.62⇐⇒ ∀φ ∈ C∞
c (Ω) φu ∈ Lp(Ω) and for all 1 ≤ i ≤ n,

∂(φu)

∂xi
∈ W s−1,p(Ω) .

Note that
∂(φu)

∂xi
=
∂φ

∂xi
u+ φ

∂u

∂xi
. Since

∂φ

∂xi
u ∈ W s,p(Ω) ↪→ W s−1,p(Ω), we have

∂(φu)

∂xi
∈ W s−1,p(Ω) ⇐⇒ φ

∂u

∂xi
∈ W s−1,p(Ω) .

Therefore,

u ∈ W s,p
loc (Ω) ⇐⇒ ∀φ ∈ C∞

c (Ω) φu ∈ Lp(Ω) and for all 1 ≤ i ≤ n, φ
∂u

∂xi
∈ W s−1,p(Ω)

⇐⇒ u ∈ Lploc(Ω) and for all 1 ≤ i ≤ n,
∂u

∂xi
∈ W s−1,p

loc (Ω) .

□

Theorem 6.2. Let Ω be a nonempty open set in Rn, k ∈ N and 1 < p < ∞. Then
u ∈ W k,p

loc (Ω) if and only if ∂αu ∈ Lploc(Ω) for all |α| ≤ k.

Proof. We prove the claim by induction on k. For k = 1 we have

u ∈ W 1,p
loc (Ω)

Theorem 6.1⇐⇒ u ∈ Lploc(Ω), ∀ 1 ≤ i ≤ n
∂u

∂xi
∈ Lploc(Ω)

⇐⇒ ∀ |α| ≤ 1 ∂αu ∈ Lploc(Ω) .
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Now suppose the claim holds for k = m. For k = m+ 1 we have

u ∈ Wm+1,p
loc (Ω)

Theorem 6.1⇐⇒ u ∈ Lploc(Ω), ∀ 1 ≤ i ≤ n
∂u

∂xi
∈ Wm,p

loc (Ω)

induction hypothesis⇐⇒ u ∈ Lploc(Ω), ∀ 1 ≤ i ≤ n ∀ 0 ≤ |α| ≤ m ∂α
[ ∂u
∂xi

]
∈ Lploc(Ω)

⇐⇒ u ∈ Lploc(Ω), ∀ 0 < |β| ≤ m+ 1 ∂βu ∈ Lploc(Ω)

⇐⇒ ∀ |β| ≤ m+ 1 ∂βu ∈ Lploc(Ω) .

□

Theorem 6.3. Let s ∈ R, 1 < p < ∞, and α ∈ Nn
0 . Suppose Ω is a nonempty bounded

open set in Rn with Lipschitz continuous boundary. Then

(1) the linear operator ∂α : W s,p
loc (Rn) → W

s−|α|,p
loc (Rn) is well-defined and continu-

ous;

(2) for s < 0, the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) is well-defined and

continuous;

(3) for s ≥ 0 and |α| ≤ s, the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) is

well-defined and continuous;

(4) if s ≥ 0, s − 1
p
̸= integer (i.e. the fractional part of s is not equal to 1

p
), then

the linear operator ∂α : W s,p
loc (Ω) → W

s−|α|,p
loc (Ω) for |α| > s is well-defined and

continuous.

Proof. This is the counterpart of Theorem 3.86 for locally Sobolev functions. Here we
will prove the first item. The remaining items can be proved using a similar technique.

• Step 1: First we prove by induction on |α| that if u ∈ W s,p
loc (Rn), then ∂αu ∈

W
s−|α|,p
loc (Rn). Let φ ∈ C∞

c (Rn); we need to show that φ∂αu ∈ W s−|α|,p(Rn). If
|α| = 0, there is nothing to prove. If |α| = 1, there exists 1 ≤ i ≤ n such that
∂α = ∂

∂xi
. We have

φ∂αu = φ
∂u

∂xi
=
∂(φu)

∂xi
− ∂φ

∂xi
u .

By assumption, φu ∈ W s,p(Rn), and so it follows from Theorem 3.86 that the
first term on the right hand side is in W s−1,p(Rn). Also, since u ∈ W s,p

loc (Rn),
the second term on the right hand side is in W s,p(Rn) ↪→ W s−1,p(Rn). Hence
φ∂αu ∈ W s−1,p(Rn). Now suppose the claim holds for all |α| ≤ k. Suppose α
is a multi-index such that |α| = k + 1. Clearly there exists 1 ≤ i ≤ n such that
∂α = ∂

∂xi
(∂β) where β is a multi-index with |β| = k. By the induction hypothesis,

∂βu ∈ W
s−|β|,p
loc (Rn) and so by the argument that was presented for the base case we

have ∂
∂xi
∂βu ∈ W

s−|β|−1,p
loc (Rn) = W

s−|α|,p
loc (Rn).
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• Step 2: In this step we prove the continuity. Again we use induction on |α|. Let
|α| = 1. Choose i as in the previous step. For every φ ∈ C∞

c (Rn) we have

∥φ ∂

∂xi
u∥s−1,p = ∥∂(φu)

∂xi
− ∂φ

∂xi
u∥s−1,p

≤ ∥∂(φu)
∂xi

∥s−1,p + ∥ ∂φ
∂xi

u∥s−1,p

⪯ ∥φu∥s,p + ∥ ∂φ
∂xi

u∥s,p .

On the right hand side we have sum of two of the seminorms that define the topology
of W s,p

loc (Rn). It follows from item 2. of Theorem 3.20 that ∂α : W s,p
loc (Rn) →

W s−1,p
loc (Rn) is continuous. Now suppose the claim holds for all |α| ≤ k. Suppose

α is a multi-index such that |α| = k + 1. Clearly there exists 1 ≤ i ≤ n such that
∂α = ∂

∂xi
(∂β) where β is a multi-index with |β| = k. We have

∥φ∂αu∥s−|α|,p = ∥φ ∂

∂xi
(∂βu)∥s−|α|,p

argument of the base case
⪯ ∥φ∂βu∥s−|α|+1,p + ∥ ∂φ

∂xi
∂βu∥s−|α|+1,p

⪯ ∥φ∂βu∥s−|β|,p + ∥ ∂φ
∂xi

∂βu∥s−|β|,p

induction hypothesis; Theorem 3.20
⪯ max(∥φ1u∥s,p, · · · , ∥φku∥s,p) + ∥ ∂φ

∂xi
∂βu∥s−|β|,p

induction hypothesis; Theorem 3.20
⪯ max(∥φ1u∥s,p, · · · , ∥φku∥s,p) + max(∥ψ1u∥s,p, · · · , ∥ψlu∥s,p)

⪯ max(∥φ1u∥s,p, · · · , ∥φku∥s,p, ∥ψ1u∥s,p, · · · , ∥ψlu∥s,p)

for some φ1, · · · , φk and ψ1, · · · , ψl in C∞
c (Rn). It follows from item 2. of Theorem

3.20 that ∂α : W s,p
loc (Rn) → W

s−|α|,p
loc (Rn) is continuous.

□

Next we want to establish a counterpart of Theorem 3.76 for locally Sobolev-Slobodeckij
spaces. To this end, first we state and prove a simple lemma.

Lemma 6.4. Let Ω be a nonempty open subset of Rn. Suppose u : Ω → R and ũ : Ω →
R are such that u = ũ a.e. If ũ is continuous then suppũ ⊆ suppu.

Proof by Contradiction. Suppose x ∈ suppũ\suppu. Since x belongs to the complement
of suppu, which is an open set, there exists ϵ > 0 such that Bϵ(x) ⊆ Ω and Bϵ(x) ∩
suppu = ∅. Since x ∈ suppũ, there exists y ∈ Bϵ/4(x) such that ũ(y) ̸= 0. ũ is
continuous, therefore there exists 0 < δ < ϵ

4
such that ũ(z) ̸= 0 for all z ∈ Bδ(y) ⊆

Bϵ(x). But u = 0 a.e. on Bϵ(x). This contradicts the fact that u = ũ a.e. □

Theorem 6.5. Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous
boundary or Ω = Rn. Suppose u ∈ W s,p

loc (Ω) where sp > n. Then u has a continuous
version.

Proof. Let {Vj}j∈N0 and {ψj}j∈N0 be as in Theorem 3.43. Note that u =
∑

j ψju. For
all j, ψju ∈ W s,p(Ω) so by Theorem 3.76 there exists ũj ∈ C(Ω) such that ψju = ũj
on Ω \ Aj where Aj is a set of measure zero. Also by Lemma 6.4 suppũj ⊆ suppψj .
Therefore for any x ∈ Ω only finitely many of ũj(x)’s are nonzero. So we may define
ũ : Ω → R by ũ =

∑
j ũj . Clearly ũ = u on Ω \ A where A = ∪Aj (so A is a set of

measure zero). Consequently ũ = u a.e. It remains to show that ũ : Ω → R is indeed
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continuous. To this end suppose am → a in Ω. We need to prove that ũ(am) → ũ(a).
Let ϵ > 0 be such that Bϵ(a) ⊆ Ω. So Bϵ(a) intersects only finitely many of suppũj’s;
let’s denote them by ũr1 , · · · , ũrl . Also since am → a there exists M such that for all
m ≥M , am ∈ Bϵ(a). Hence

ũ(a) =
∑
j

ũj(a) = ũr1(a) + · · ·+ ũrl(a) ,

∀m ≥M ũ(am) = ũr1(am) + · · ·+ ũrl(am) .

Recall that ũr1 + · · ·+ ũrl is a finite sum of continuous functions and so it is continuous.
Thus

lim
m→∞

ũ(am) = lim
m→∞

(ũr1 + · · ·+ ũrl)(am) = ũr1(a) + · · ·+ ũrl(a) = ũ(a) .

□

Remark 6.6. In the above proof the only place we used the assumption of Ω being Lip-
schitz was in applying Theorem 3.76. We can replace this assumption by the weaker as-
sumption that Ω has the interior Lipschitz property. Then, since supp (ψju) is compact,
there exists Ω′ with Lipschitz boundary that contains supp (ψju). Then by Theorem 3.85,
ψju ∈ W s,p(Ω′) and so it has a continuous version ûj ∈ C(Ω′). Since ψju = ûj almost
everywhere on Ω′ and ψju = 0 outside of the compact set suppψj , we can conclude that
ext0Ω′,Ωûj is in C(Ω) and it is almost everywhere equal to ψju. We set ũj = ext0Ω′,Ωûj .
The rest of the proof will be exactly the same as before.

Theorem 6.7. Let Ω = Rn or Ω be a bounded open set in Rn with Lipschitz continuous
boundary. Suppose s1, s2, s ∈ R and 1 < p1, p2, p <∞ are such that

W s1,p1(Ω)×W s2,p2(Ω) ↪→ W s,p(Ω) .

Then

(1) W s1,p1
loc (Ω)×W s2,p2

loc (Ω) ↪→ W s,p
loc (Ω).

(2) For all K ∈ K(Ω), W s1,p1
loc (Ω) ×W s2,p2

K (Ω) ↪→ W s,p(Ω). In particular, if f ∈
W s1,p1
loc (Ω), then the mapping u 7→ fu is a well-defined continuous linear map

from W s2,p2
K (Ω) to W s,p(Ω).

Remark 6.8. In the above theorem, since the locally Sobolev spaces on Ω are metrizable,
the continuity of the mapping

W s1,p1
loc (Ω)×W s2,p2

loc (Ω) → W s,p
loc (Ω), (u, v) 7→ uv

can be interpreted as follows: if ui → u in W s1,p1
loc (Ω) and vi → v in W s2,p2

loc (Ω), then
uivi → uv in W s,p

loc (Ω). Also since W s2,p2
K (Ω) is considered as a normed subspace of

W s2,p2(Ω), we have a similar interpretation of the continuity of the mapping in item 2.

Proof.

(1) Suppose u ∈ W s1,p1
loc (Ω) and v ∈ W s2,p2

loc (Ω). First we show that uv is in W s,p
loc (Ω).

Clearly the set A = {φ2 : φ ∈ C∞
c (Ω)} is an admissible family of test functions. So

in order to show that uv ∈ W s,p
loc (Ω), it is enough to show that for all φ ∈ C∞

c (Ω),
φ2uv = (φu)(φv) is in W s,p(Ω). This is clearly true because φu ∈ W s1,p1(Ω), φv ∈
W s2,p2(Ω), and by assumption

W s1,p1(Ω)×W s2,p2(Ω) ↪→ W s,p(Ω) .
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In order to prove the continuity of the map (u, v) 7→ uv, suppose ui → u in W s1,p1
loc (Ω)

and vi → v in W s2,p2
loc (Ω). We need to show that uivi → uv in W s,p

loc (Ω). That is, we
need to prove that for all φ ∈ C∞

c (Ω)

φ2uivi → φ2uv in W s,p(Ω) .

We have

ui → u in W s1,p1
loc (Ω) =⇒ φui → φu in W s1,p1(Ω) ,

vi → v in W s2,p2
loc (Ω) =⇒ φvi → φv in W s2,p2(Ω) .

By assumption, W s1,p1(Ω)×W s2,p2(Ω) ↪→ W s,p(Ω), so

(φui)(φvi) → (φu)(φv) in W s,p(Ω) .

(2) Suppose u ∈ W s1,p1
loc (Ω) and v ∈ W s2,p2

K (Ω). First we show that uv is in W s,p(Ω). To
this end, let φ ∈ C∞

c (Ω) be such that φ = 1 on a neighborhood containing K. We
have

uv = u(φv) = (φu)︸︷︷︸
∈W s1,p1 (Ω)

v︸︷︷︸
∈W s2,p2 (Ω)

∈ W s,p(Ω) .

Now we prove the continuity. Suppose ui → u inW s1,p1
loc (Ω) and vi → v inW s2,p2

K (Ω).
Let φ be as before. We have

ui → u in W s1,p1
loc (Ω) =⇒ φui → φu in W s1,p1(Ω) ,

vi → v in W s2,p2(Ω) .

This together with the assumption that W s1,p1(Ω) ×W s2,p2(Ω) ↪→ W s,p(Ω) implies
φuivi → φuv in W s,p(Ω). Since φv = v and φvi = vi, we conclude that uivi → uv
in W s,p(Ω).

□

Remark 6.9. In the above theorem the assumption that Ω is Lipschitz or Rn was used
only to ensure that we can apply Theorem 5.3 and to make sure that the locally Sobolev
spaces involved are metrizable. For item (1) we can use the weaker assumption that
(s1, p1,Ω), (s2, p2,Ω), and (s, p,Ω) are interior smooth multiplication triples. For item
(2) we just need to assume that (s1, p1,Ω) is an interior smooth multiplication triple.

Corollary 6.10. Let Ω be the same as the previous theorem. If sp > n, then W s,p
loc (Ω) is

closed under multiplication. Moreover, if

(f1)m → f1 in W s,p
loc (Ω), · · · , (fl)m → fl in W s,p

loc (Ω) ,

then
(f1)m · · · (fl)m → f1 · · · fl in W s,p

loc (Ω) .

The next theorem plays a key role in the study of differential operators on manifolds
equipped with nonsmooth metrics (see [5]).

Theorem 6.11. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lip-
schitz continuous boundary. Let s ∈ R and p ∈ (1,∞) be such that sp > n. Let
B : Ω → GL(k,R). Suppose for all x ∈ Ω and 1 ≤ i, j ≤ k, Bij(x) ∈ W s,p

loc (Ω). Then
(1) detB ∈ W s,p

loc (Ω).
(2) Moreover if for each m ∈ N Bm : Ω → GL(k,R) and for all 1 ≤ i, j ≤ k

(Bm)ij → Bij in W s,p
loc (Ω), then detBm → detB in W s,p

loc (Ω).
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Proof.

(1) By Leibniz formula we have

detB(x) =
∑
σ∈Sn

sgn(σ)Bσ(1),1 · · ·Bσ(k),k .

By assumption, for all 1 ≤ i ≤ k, Bσ(i),i is in W s,p
loc (Ω). Since sp > n, it follows from

Corollary 6.10 that detB ∈ W s,p
loc (Ω).

(2) Since (Bm)ij → Bij in W s,p
loc (Ω), it again follows from Corollary 6.10 that for all

σ ∈ Sn,

(Bm)σ(1),1 · · · (Bm)σ(k),k → Bσ(1),1 · · ·Bσ(k),k in W s,p
loc (Ω) .

Thus detBm → detB in W s,p
loc (Ω).

□

Theorem 6.12. Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lips-
chitz continuous boundary. Let s ≥ 1 and p ∈ (1,∞) be such that sp > n.

(1) Suppose that u ∈ W s,p
loc (Ω) and that u(x) ∈ I for all x ∈ Ω where I is some

interval in R. If F : I → R is a smooth function, then F (u) ∈ W s,p
loc (Ω).

(2) Suppose that um → u inW s,p
loc (Ω) and that for allm ≥ 1 and x ∈ Ω, um(x), u(x) ∈

I where I is some open interval in R. If F : I → R is a smooth function, then
F (um) → F (u) in W s,p

loc (Ω).
(3) If F : R → R is a smooth function, then the map taking u to F (u) is continuous

from W s,p
loc (Ω) to W s,p

loc (Ω).

Proof. The proof of part (1) generalizes the argument given in [18]. Let k = ⌊s⌋. First
we show that F (u) ∈ W k,p

loc (Ω). To this end we fix a multi-index |α| = m ≤ k and we
show that ∂α(F (u)) ∈ Lploc(Ω) (see Theorem 6.2).
It follows from the chain rule (and induction) that ∂α(F (u)) is a sum of the terms of the
form

F (l)(u)∂β1u · · · ∂βru
where l ∈ N and

∑r
i=1 |βi| = m. It is a consequence of Theorem 6.7 that if s1, s2 ≥

s3 ≥ 0 and s1+s2−s3 > n
p
, thenW s1,p

loc (Ω)×W s2,p
loc (Ω) ↪→ W s3,p

loc (Ω). As a consequence

W
s−|β1|,p
loc (Ω)×W

s−|β2|,p
loc (Ω) ↪→ W

s−|β1|−|β2|,p
loc (Ω) ,

W
s−|β1|−|β2|,p
loc (Ω)×W

s−|β3|,p
loc (Ω) ↪→ W

s−|β1|−|β2|−|β3|,p
loc (Ω) ,

...

W
s−|β1|−···−|βr−1|,p
loc (Ω)×W

s−|βr|,p
loc (Ω) ↪→ W

s−|β1|−···−|βr|,p
loc (Ω) = W s−m,p

loc (Ω) .

Considering this and the fact that ∂βiu ∈ W
s−|βi|,p
loc (Ω), we have

∂β1u · · · ∂βru ∈ W t,p
loc (Ω)

for all 0 ≤ t ≤ s−m. In particular, ∂β1u · · · ∂βru ∈ W 0,p
loc (Ω) = Lploc(Ω). Also, since F

is smooth and u is continuous, F (l)(u) ∈ L∞
loc(Ω). Therefore,

F (l)(u)∂β1u · · · ∂βru ∈ Lploc(Ω) .

So, F (u) ∈ W k,p
loc (Ω) where k = ⌊s⌋. Now, for noninteger s, we use a bootstrapping

argument to show that F (u) in fact belongs to W s,p
loc (Ω).
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F ′ is smooth, therefore F ′(u) ∈ W k,p
loc (Ω). Also ∂u

∂xi
∈ W s−1,p

loc (Ω) (note that s− 1 ≥ 0).
By Theorem 6.7 we have

W k,p
loc (Ω)×W s−1,p

loc (Ω) ↪→ W t−1,p
loc (Ω)

provided that

k ≥ t− 1 ≥ 0, s− 1 ≥ t− 1 ≥ 0, k + (s− 1)− (t− 1) >
n

p
.

Therefore, ∂
∂xi

(F (u)) = F ′(u) ∂u
∂xi

∈ W t−1,p
loc (Ω) for all 1 ≤ t ≤ s such that t < k +

(s − n
p
). Consequently F (u) ∈ W t,p

loc (Ω) for all 1 ≤ t ≤ s such that t < k + (s − n
p
)

(see Theorem 6.1). Now we can repeat this argument by starting with “F ′ is smooth,
therefore F ′(u) ∈ W t,p

loc (Ω) for all 1 ≤ t ≤ s such that t < k + (s− n
p
)”. This results in

F (u) ∈ W t,p
loc (Ω) for all 1 ≤ t ≤ s such that t < k + 2(s − n

p
). Repeating this a finite

number of times shows that F (u) ∈ W s,p
loc (Ω).

Our next goal is to prove items 2 and 3. First we note that if 0 ∈ I then WLOG we may
assume that F (0) = 0. Indeed, the constant function F (0) is an element of W s,p

loc (Ω). So,

F (um) → F (u) in W s,p
loc (Ω) ⇐⇒ F̃ (um) → F̃ (u) in W s,p

loc (Ω) ,

where F̃ (t) = F (t)− F (0). Thus WLOG we may assume that F (0) = 0.
Let {Kj}j∈N0 , {Vj}j∈N0 , and {ψj}j∈N0 be as in Theorem 3.43. Clearly {ψj} is an admis-
sible family of functions. Therefore in order to show that F (um) → F (u) in W s,p

loc (Ω) it
is enough to prove that

∀ r ∈ N0 ψr(F (um)− F (u)) → 0 in W s,p(Ω) as m→ ∞ .

Let ψr1 , · · · , ψrk be those admissible test functions whose support intersects the support
of ψr. So,

∀x ∈ suppψr
∑
j∈N0

ψju = ψr1u+ · · ·+ ψrku .

Consequently,

ψr(F (um)− F (u)) = ψrF (ψr1um + · · ·+ ψrkum)− ψrF (ψr1u+ · · ·+ ψrku) .

Since um → u in W s,p
loc (Ω), for all 1 ≤ i ≤ k we have

ψrium → ψriu in W s,p(Ω) ,

and so,
ψr1um + · · ·+ ψrkum → ψr1u+ · · ·+ ψrku in W s,p(Ω) .

Since W s,p(Ω) ↪→ L∞(Ω), we have

ψr1um + · · ·+ ψrkum → ψr1u+ · · ·+ ψrku in L∞(Ω) . (6.1)

Consequently, for the continuous representatives of ψr1um+· · ·+ψrkum and ψr1u+· · ·+
ψrku we have uniform convergence. From this point, we work with these continuous
versions. The continuous function ψr1u + · · · + ψrku attains its max and min on the
compact set suppψr which we denote by Amax and Amin, respectively. Note that

∀x ∈ suppψr (ψr1u+ · · ·+ ψrku)(x) = u(x) ∈ I .

So, Amax and Amin are in I (that is [Amin, Amax] ⊆ I). Let ϵ > 0 be such that [Amin −
2ϵ, Amax + 2ϵ] ⊆ I . By (6.1) there exists M such that

∀m ≥M, ∀x ∈ suppψr (ψr1um + · · ·+ ψrkum)(x) ∈ [Amin − ϵ, Amax + ϵ] ⊆ I .
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Let ξ ∈ C∞
c (R) be such that ξ = 1 on [Amin − ϵ, Amax + ϵ] and ξ = 0 outside of

[Amin − 2ϵ, Amax + 2ϵ] ⊆ I . Define F̂ : R → R by

F̂ (t) =

{
ξ(t)F (t) if t ∈ I

0 if t ̸∈ I
.

Clearly, F̂ : R → R is a smooth function and F̂ (0) = 0. Moreover, F̂ = F on
[Amin − ϵ, Amax + ϵ]. Also, for all x ∈ Ω and m ≥M we have

ψr(F (um)− F (u)) = ψrF (ψr1um + · · ·+ ψrkum)− ψrF (ψr1u+ · · ·+ ψrku)

= ψrF̂ (ψr1um + · · ·+ ψrkum)− ψrF̂ (ψr1u+ · · ·+ ψrku) .

Indeed, if x ̸∈ suppψr, then both sides are equal to zero. If x ∈ suppψr, then

(ψr1u+ · · ·+ ψrku)(x) ∈ [Amin, Amax] ,

(ψr1um + · · ·+ ψrkum)(x) ∈ [Amin − ϵ, Amax + ϵ] ,

and so,

F ((ψr1u+ · · ·+ ψrku)(x)) = F̂ ((ψr1u+ · · ·+ ψrku)(x)) ,

F ((ψr1um + · · ·+ ψrkum)(x)) = F̂ ((ψr1um + · · ·+ ψrkum)(x)) .

F̂ is a smooth function and its value at 0 is 0. Also, by assumption sp > n. Therefore,
the mapping v → ψrF̂ (v) from W s,p(Ω) to W s,p(Ω) is continuous. Hence

ψrF̂ (ψr1um + · · ·+ ψrkum) → ψrF̂ (ψr1u+ · · ·+ ψrku) in W s,p(Ω) .

That is,
ψr(F (um)− F (u)) → 0 in W s,p(Ω) .

So, we proved item 2. Finally we note that W s,p
loc (Ω) is metrizable. So continuity of

the mapping u → F (u) is equivalent to sequential continuity which was proved in item
2. □

7. CONCLUSION

Sobolev-Slobodeckij spaces play a key role in the study of elliptic differential opera-
tors in nonsmooth setting. The study of certain differential operators between Sobolev
spaces of sections of vector bundles on compact manifolds equipped with rough metric
is closely related to the study of locally Sobolev functions on domains in the Euclidean
space. In the present paper, we provided a self-contained rigorous study of certain fun-
damental properties of locally Sobolev-Slobodeckij spaces. In particular, by introduc-
ing notions such as “smooth multiplication triple” and “interior smooth multiplication
triple”, we rigorously studied completeness, separability, nature of the dual space, gen-
eral embedding results, continuity of differentiation, and invariance under composition
by smooth functions for locally Sobolev-Slobodeckij spaces.
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