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ON CERTAIN GEOMETRIC OPERATORS BETWEEN SOBOLEV SPACES
OF SECTIONS OF TENSOR BUNDLES ON COMPACT MANIFOLDS
EQUIPPED WITH ROUGH METRICS

A. BEHZADAN AND M. HOLST

ABSTRACT. The study of Einstein constraint equations in general relativity naturally
leads to considering Riemannian manifolds equipped with nonsmooth metrics. There
are several important differential operators on Riemannian manifolds whose definitions
depend on the metric: gradient, divergence, Laplacian, covariant derivative, conformal
Killing operator, and vector Laplacian, among others. In this article, we study the ap-
proximation of such operators, defined using a rough metric, by the corresponding op-
erators defined using a smooth metric. This paves the road to understanding to what
extent the nice properties such operators possess, when defined with smooth metric, will
transfer over to the corresponding operators defined using a nonsmooth metric. These
properties are often assumed to hold when working with rough metrics, but to date the
supporting literature is slim.
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1. INTRODUCTION

The study of Einstein constraint equations in general relativity naturally leads to con-
sidering Riemannian manifolds equipped with metrics that are not C* (see e.g. [8, 9, 16,
12, 4]). Some of the motivation for developing this understanding came from studies of
the Einstein evolution equation with rough metric [13, 14]. In order to fully understand
the implications of a rough metric, one needs to understand the impact of a nonsmooth
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2 A. BEHZADAN AND M. HOLST

metric on the various geometric and differential operators that arise in the formulation of
stationary and evolution problems on Riemannian manifolds. The questions we study in
this article fall into the following general form: Let (M™, g) be a compact Riemannian
manifold. Suppose g € W*P(T*M) where sp > n (it is reasonable to assume that the
metric is continuous; the condition sp > n guarantees that g has a continuous represen-
tative, and also it implies that W*P (M) is a Banach algebra, which plays an important
role in some of the calculations). Let {g,,} be a sequence of smooth Riemannian met-
rics on M such that g,, — g in W*?(T?M). For each m, let A,, be an operator whose
definition depends on the metric g,,. Let A be the corresponding operator that is defined
in terms of g. What can be said about the relationship between the operators that are
defined in terms of g, and those that are defined in terms of g? Does {A,,} converge to
A (in an appropriate norm)? In particular, we are interested in the gradient, Laplacian,
divergence, covariant derivative, and vector Laplacian operators. Additionally, we will
study the relationship between the corresponding Riemannian curvature tensors, Ricci
curvatures, and scalar curvatures.

One of the main applications of such results is in the study of elliptic partial differen-
tial equations on manifolds. An example of the type of question we hope to address is
the following: the Laplacian and vector Laplacian of a smooth metric on a compact Rie-
mannian manifold are Fredholm of index zero. Considering that the index of an operator
is locally constant, in order to see whether this useful property carries over to the case of
nonsmooth metrics we need to determine whether the Laplacian or vector Laplacian de-
fined using a nonsmooth metric can be approximated by corresponding operators defined
by smooth metrics. Results of this type and other related results have been used in litera-
ture without complete proof; they are well-motivated and reasonable assumptions in most
cases, but it seems that a careful study is missing in the literature. This is particularly true
in the case of noninteger Sobolev classes. In this manuscript, we have attempted to fill
some of the gaps. This paper can be viewed as a part of our efforts to build a more com-
plete foundation for the study of differential operators and Sobolev-Slobodeckij spaces
on manifolds through a sequence of related manuscripts [3, 5, 6, 7].

Outline of Paper. In Section 2 we summarize some of the basic definitions, notations
and conventions used throughout the paper. In Section 3 we go over some backround
material on analysis and differential geometry. In sections 4-14 we rigorously study the
aforementioned question of convergence for various geometric operators that appear in
the study of elliptic partial differential equations on compact manifolds.

2. NOTATION AND CONVENTIONS

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive
integers, and Ny denotes the set of nonnegative integers. For any nonnegative real num-
ber s, the integer part of s is denoted by |s|. The letter n is a positive integer and stands
for the dimension of the space. For all k£ € N, GL(k, R) is the set of all £ x k invertible
matrices with real entries.

(2 is a nonempty open set in R™. The collection of all compact subsets of 2 will be
denoted by K(€2). Lipschitz domain in R™ refers to a nonempty bounded open set in R"
with Lipschitz continuous boundary.

Each element of Ny is called a multi-index. For a multi-index o = (o, - -+ , o) € N,
we let |a] :== ay + -+ - + «,. Also for sufficiently smooth functions u : 2 — R (or for
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any distribution u) we define the ath order partial derivative of u as follows:
olely
Ox(* - - - 0xon
We use the notation A < B to mean A < ¢B, where c is a positive constant that

does not depend on the non-fixed parameters appearing in A and B. We write A ~ B if
A< Band B < A.

0%y =

We write L(X,Y") for the space of all continuous linear maps from the normed space
X to the normed space Y. We use the notation X — Y to mean X C Y and the inclu-
sion map is continuous.

Definition 2.1. Let Q) be a nonempty open set in R" and m € N,
C(Q) ={f:Q—R: fiscontinuous}
C"Q)={f:Q=R:V]ja|<m 0°feC(Q)} (C(Q) = C(Q))
BC(Q) ={f:Q — R: fis continuous and bounded on )}
BC™(Q)={feC™):V|a| <m 0°f is bounded on Q}
BC(Q)={f:Q—=R: fe BC(Q)and f is uniformly continuous on Q}
BC™ (Q) ={f:Q—=>R: feBC"Q),Y|a|<m 0%fis uniformly continuous on €)'}
Q= () C™Q). BC®(Q)= () BC™(Q), BC(Q)= () BC™({
m&ENg m&ENg meNg

Cx(Q) = {f € C(Q) : support of f is an element of K(2) }

Remark 2.2. [1]If f : Q@ — Ris in BC (Q), then it possesses a unique, bounded,
continuous extension to the closure ) of ().

Definition 2.3. Let 2 be a nonempty open set in R". Let s € Rand p € (1,00).
o Ifs=keN,

WhP(Q) = {u € L") : [lullwroo) = Y 10”ull o) < 00}

lv|<k

o Ifs=60¢€(0,1),

p 1
wer(Q) = IP . _ y)l dedy)? <
(@ = {ue 2 labyooioy 1= ([ [ =i oay)b < o)
e Ifs=k+0,keNy 0e(0,1),
WeP(Q) = {u € WH(Q) : ullwsae) = llullwrri) + D 10" ulwose) < oo}

lv|=k

e For all compact sets K C () we define
WP (Q) = {u e W*P(Q) : suppu C K}

with [[ullyr ) = [[ullwer ).
o WiP(9) is defined as the closure of C°(82) in W5P(Q).
o Jfs <,

W) = (W () (=4 =1)
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o Wie () == {u € D'(Q) : Vp € CZ(Q) pu € W(Q)} where D'(S) is
the space of distributions on Q0. WP () is equipped with the natural topology
induced by the separating family of seminorms {|.|,},cc )} where

Vue Wik(Q) ¢ eCX(Q)  luly = loulwer)

loc

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and
second countable. We usually use the letter M for manifolds. If M is an n-dimensional
smooth manifold, sometimes we use the shorthand notation M™ to indicate that M is
n-dimensional.

Definition 2.4.

o We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz
(GL) smooth atlas if the image of each coordinate domain in the atlas under the cor-
responding coordinate map is a nonempty bounded open set with Lipschitz boundary.

o We say that a smooth atlas for a smooth manifold M™ is a generalized geometrically
Lipschitz (GGL) smooth atlas if the image of each coordinate domain in the atlas
under the corresponding coordinate map is the entire R" or a nonempty bounded
open set with Lipschitz boundary.

o We say that a smooth atlas for a smooth manifold M" is a nice smooth atlas if the
image of each coordinate domain in the atlas under the corresponding coordinate
map is a ball in R™.

e We say that a smooth atlas for a smooth manifold M" is a super nice smooth atlas if
the image of each coordinate domain in the atlas under the corresponding coordinate
map is the entire R".

e We say that two smooth atlases {(Uy, o) Yacr and {(Us, $5)} ge.s for a smooth man-
ifold M" are geometrically Lipschitz compatible (GLC) smooth atlases provided
that each atlas is GGL and moreover for all o« € I and € J with U, N Ug # 0,
0o (U.NT, 3) and pg(UsN U 3) are nonempty bounded open sets with Lipschitz bound-
ary or the entire R".

Clearly every super nice smooth atlas is also a GGL smooth atlas; every nice smooth
atlas is also a GL smooth atlas, and every GL smooth atlas is also a GGL smooth atlas.
Also note that two arbitrary GL smooth atlases are not necessarily GLC smooth atlases
because the intersection of two Lipschitz domains is not necessarily Lipschitz (see e.g.
[2], pages 115-117).

The tangent space of a manifold M™ at point p € M is denoted by 7),M, and the
cotangent space by Ty M. If (U, ¢ = (x%)) is a local coordinate chart and p € U, we
denote the corresponding coordinate basis for 7, M/ by 0;|, while % « denotes the basis
for the tangent space to R" at x = ¢(p) € R™; that is

0
7 ox’
Note that for any smooth function f : M — R we have
-1 9 -1
Oif) o™ =75 (foe™)

- Ot
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The vector space of all k-covariant, [-contravariant tensors on 7, is denoted by
TF(T,M). So each element of T}* (T, M) is a multilinear map of the form

F:T;Mx---xT;]\{x\Tpr---pr]\{%R

~" Vv
[ copies k copies

Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a
smooth manifold £ together with a surjective smooth map 7 : £ — M such that

(1) foreachz € M, E, = 71'_1(13) is an r-dimensional (real) vector space.
(2) for each x € M, there exists a neighborhood U of z in M and a smooth map
p=(p', -+ ,p") from E|y := 7~} (U) onto R" such that
e forevery z € U, p|g, : E, — R" is an isomorphism of vector spaces
o &= (7|g,,p): Ey = U x R is a diffeomorphism.

The expressions ”F is a vector bundle over M”, or ”FE — M 1is a vector bundle”,
or ’m : £ — M is a vector bundle” are all considered to be equivalent. The space
E is called the fotal space of the vector bundle ©# — M. For each z € M, E, =
7 1(z) is called the fiber over x. We refer toboth ® : By — U x R" and p : By —
R"™ as a (smooth) local trivialization of E over U. We say that E|y is trivial. The
pair (U, p) (or (U, ®)) is sometimes called a vector bundle chart. 1t is easy to see that
if (U, p) is a vector bundle chart and () # V' C U is open, then (V,p|g, ) is also a
vector bundle chart for £. Moreover if V' is any nonempty open subset of M, then
Ey is a vector bundle over the manifold V. We say that a triple (U, ¢, p) is a total
trivialization triple of the vector bundle 7 : £ — M provided that (U, ¢) is a smooth
coordinate chart and p = (p*,--- ,p") : Ey — R" is a trivialization of E over U. A
collection {(U.,, ¢a, pa)} is called a total trivialization atlas for the vector bundle £ —
M provided that for each «, (U, ¢a, pa) is a total trivialization triple and {(U,, va)}
is a smooth atlas for M. A collection {(Uy, @a, Pa, Va) }1<a<n Of 4-tuples is called an
augmented total trivialization atlas for £ — M provided that {(U,, ¢a, pa) }1<a<n 18
a total trivialization atlas for £ — M and {v, } is a partition of unity subordinate to the
open cover {U,}.

Definition 2.5. Let M™ be a compact smooth manifold.

e We say that a total trivialization triple (U, ¢, p) is geometrically Lipschitz (GL) pro-
vided that p(U) is a nonempty bounded open set with Lipschitz boundary. A total
trivialization atlas is called geometrically Lipschitz if each of its total trivialization
triples is GL.

e We say that a total trivialization triple (U, o, p) is nice provided that p(U) is equal to
a ball in R™. A total trivialization atlas is called nice if each of its total trivialization
triples is nice.

e We say that a total trivialization triple (U, p, p) is super nice provided that ¢(U)
is equal to R™. A total trivialization atlas is called super nice if each of its total
trivialization triples is super nice.

e A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if
each of its total trivialization triples is GL or super nice.

e We say that two total trivialization atlases {(Un, 0o, po) }acr and {(Us, $3, p3)}ses
are geometrically Lipschitz compatible (GLC) if the corresponding atlases

{(Uaa (Pa)}ael and {([7/5, (,55)}56] are GLC.
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A section of avectorbundle 7 : E — M isamapu: M — E suchthat mou = Id),.
We denote the space of all sections of F by I'(M, E'). The space of all smooth sections of
E is denoted by C'°(M, E). Note that a section of the trivial vector bundle £ = M x R
can be identified with a scalar function on M. In fact, C*°(M, M x R) can be identified
with C*°(M) where C*°(M) is the collection of all smooth functions from M to R. We
are primarily interested in the bundle of ( l)—tensors on M whose total space is

TH (M) = || TH(T,M)

peEM

A section of this bundle is called a (¥)-tensor field. We set TFM = T¥(M). TM
denotes the tangent bundle of M and 7™M is the cotangent bundle of M. We set
7 (M) = C>(M,T}(M)) and x (M) = C>*(M, TM).

For certain vector bundles there are standard methods to associate with any given
smooth coordinate chart (U, ¢ = (2)) a total trivialization triple (U, ¢, p). We call such
a total trivialization triple the standard total trivialization associated with (U, ¢). For
example, consider £ = T}*(M). The collection of the following tensor fields on U form
a local frame for Ey; associated with (U, ¢ = (z')) in the sense that at each point p € U,
they form a basis for 7}*(T,,M):

0 . .
R X® ®d$31®_,_®dx]k

oz ozt

So given any atlas {(U,, @)} of a manifold M™, there is a corresponding total trivializa-

tion atlas for the tensor bundle 7;* (M), namely {(Us, ¢a, pa)} Where for each o, pq has

n**! components which we denote by (p,)7'/'. Forall F' € T'(M,T}(M)), we have
(P11 (F) = (Fa)i)

Here (Fa)ﬁf . denotes the components of /' with respect to the standard frame for TFU,

described above. When there is no possibility of confusion, we may write Fi]f,:j: instead

of (Fa)jl"'jz

A symmetric positive definite section of T2 is called a Riemannian metric on M.
If M is equipped with a Riemannian metric ¢, the combination (M, g) will be referred
to as a Riemannian manifold. The norm induced by g on each tangent space will be
denoted by ||.||,. We say that g is smooth (or the Riemannian manifold is smooth) if
g € C(M,T>M). d denotes the exterior derivative and grad : C>°(M) — T'(M, T M)
denotes the gradient operator which is defined by g(grad f, X) = d f(X) for all f €
C>(M) and X € C(M,TM).

Given a metric g on M, one can define the musical isomorphisms as follows:

flat, : T,M — Ty M
X=X =g(X, ),

sharp,, : TyM — T,M
¥ pf = flat ! (¥) .
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Using sharp, we can define the (0

2) -tensor field g—! (which is called the inverse metric
tensor) as follows

g~ (th1,12) = g(sharp, (1), sharp, (112)) .

Let {E;} be a local frame for the tangent bundle on an open subset U C M and {n'}
be the corresponding dual coframe. So we can write X = X'F; and ¢ = ;n'. It is
standard practice to denote the i component of flat, X by X; and the i component of

sharp,(¢)) by ¥":
flat,X = X;n', sharp i) = )'E; .
It is easy to show that
X; = gin] , Y= 9”1/11' )
where g;; = g(E;, E;) and g = g~ '(n*, 7). It is said that flat, X is obtained from X by
lowering an index and sharp, is obtained from ¢ by raising an index.

It can be shown that ([15]) if (M, g) is a Riemannian manifold, then there exists a unique
inner product on each fiber of 7}*(M) with the property that for all z € M, if {e;}
is an orthonormal basis of T, M with dual basis {7'}, then the corresponding basis of
T}(T, M) is orthonormal. We call this inner product the fiber metric on the bundle of ()
tensors and denote it by (.,.) p. The corresponding norm is denoted by |.|r. If A and B
are two tensor fields, then with respect to any local frame

(A, B>F = gi1r1 .. .gikrkgjlsl .. 'gjlslAjl"'lesl"'Sl

11l T Tk

Let (M, g) be a Riemannian manifold. Suppose for each m € Nand p € M, B,,(p) :
T,M — T,M is alinear map. Define f,, : M — R by

Ju) =l Bua(p) llop =" sup - [g(BuX,Y)]
IX]lg=I1Y [lg=1
We let
| B lloo:=I| frm ||L°°(M)
In particular note that for all X, Y € T),M

9(Brn X, Y)| <[l B llooll X llgll Y [l

3. BACKGROUND MATERIAL

Some background material on analysis, differential geometry, and function spaces and
their properties is presented in this section. We simply state the basic results we need for
the theorems we want to prove in the future sections. Almost all the theorems that are
cited here, with proofs or appropriate references for the proofs, can be found in [5] and

[6].

Theorem 3.1. Let (V, (., .)) be a finite dimensional (real) inner product space. If B : 'V x
V' — R is a bilinear form, then there exists a unique linear transformationl’ : V — V
such that

Ve,yeV  B(x,y) = (T(v),y)

Moreover if B is positive definite, then T’ is bijective. (Recall that a symmetric bilinear
form B is called positive definite if B(x,x) > 0 for all nonzero x.)
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Theorem 3.2. ([10],Page 154) Let B : V xV — R be a bilinear form on a normed space
V and let Q) be the associated quadratic form (Q(x) = B(x,z)). If B is symmetric and
bounded, then ||B|| = ||Q||, that is

|B|| := sup {|B(x, y)| - [|«]| = [lyll = 1} = sup{| B(z, )| : [|z]| = 1} = [|Q]]
Theorem 3.3. ([10],Page 155) Let A be a bounded linear operator on a Hilbert space

(H,(.,.)). Then the bilinear form defined by B(x,y) = (Az,y) is bounded and || A|| =
1Bl

Theorem 3.4. Let X, Y, and Z be normed spaces. Suppose A, — Ain L(X,Y) and
B, = Bin L(Y,Z). Then

B,oA, —+BoA in L(X,Z)
In particular, if A,, — Ain L(X,Y) and B € L(Y,Z), then Bo A, — Bo A.

Theorem 3.5. Let A : V. — W be a linear transformation between the Banach spaces
V and W. Suppose W' is reflexive. Then

| A Hop: sup (Y, Az)ww|

lzllv=1,llyllw==1

Proof.
| Allop= sup [ Az [[w= sup [ Az |[w+)= sup sup [{Az,y)mw=)xw+|
[|lz|[v=1 llzllv=1 llzllv=1 [lyllw*=1
= sup [(y, Az)wxw|

lzllv =1, [[yllw==1

0

Lemma 3.6. Let M be a compact smooth manifold. Suppose {U,}1<a<n is an open
cover of M. Suppose C'is a closed set in M (so C'is compact) which is contained in Ug
for some 1 < B < N. Then there exists a partition of unity {1, }1<a<n subordinate to
{Us}1<a<n such that g = 1 on C.

Theorem 3.7 (Multiplication by smooth functions). Let s € R, 1 < p < oo, and ¢ €
BC*(R"™). Then the linear map

my : WHP(R") — W*P(R"), U U
is well-defined and bounded.

Theorem 3.8. Let Q2 be a nonempty bounded open set in R™ with Lipschitz continuous
boundary. Let K € K(Q2). Suppose s € Rand p € (1,00). If ¢ € C®(Q), then the
linear map WP (Q2) — WP (Q) defined by u — pu is well-defined and bounded.

Theorem 3.9. Let s € R, 1 < p < 00, and o € Nj. Suppose () is a nonempty open set
in R™. Then

(1) the linear operator 0% : W*P(R") — W=~lel»(R") is well-defined and bounded;

(2) for s < 0, the linear operator 0% : W*P(Q) — W*~leb»(Q) is well-defined and
bounded;

(3) for s > 0 and |a| < s, the linear operator 0% : W*P(Q)) — W3~lalr(Q) is
well-defined and bounded;

(4) if 2 is bounded with Lipschitz continuous boundary, and if s > 0, s — % # integer
(i.e. the fractional part of s is not equal to % ), then the linear operator 0% :

WeP(Q) — Welelp(Q) for |a| > s is well-defined and bounded.
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Theorem 3.10. Let s € R, 1 < p < oo. Let ) be a nonempty open set in R". Either
assume ) = R" or Q) is Lipschitz or else assume s is not a noninteger less than —1. If A
is a subset of C'°()) with the following property:

VeeQ dpeA suchthat ¢ >0 and p(x)#0
then we say A is admissible. If A is an admissible family of functions then

WP(Q)={ueD'(Q):Vpe A pueWPQ)}

loc

Theorem 3.11. Let s € R, 1 < p < oo, and o € Njj. Suppose () is a nonempty bounded
open set in R™ with Lipschitz continuous boundary. Then

(1) the linear operator 0 : W:P(R™) — W, 1*"P(R") is well-defined and continu-
ous;

(2) for s < 0, the linear operator 9° : W:P(Q) — W;_1*"P(Q) is well-defined and
continuous;

(3) for s > 0 and |a| < s, the linear operator 0 : WiP(Q) — Wi P(Q) is
well-defined and continuous;

(4) if s > 0, s — Ilj =+ integer (i.e. the fractional part of s is not equal to Ilj ), then

the linear operator 8* : W2P(Q) — W 1*(Q) for |a| > s is well-defined and
continuous.

Theorem 3.12.
Assumptions:

e () = R" or ) is a bounded domain with Lipschitz continuous boundary
s, 5seR s;,>2s5s>0fori=1,2
o 1 <p;<p<oofori=1,2

s, —s>n(——-—
Di P)
1 1 1
s +so—s>n(—+———)
bpr p2 P

Claim: If u € W*P(Q) and v € W?52P2(Q), then uwv € W*P(Q) and moreover the
pointwise multiplication of functions is a continuous bilinear map

WHPL(Q) x Wo2P2(Q) — WP(12)

Remark 3.13. A number of other results concerning the sufficient conditions on the ex-
ponents s;, p;, S, p that guarantee the multiplication W21 (Q2) x W#2P2(Q) — W*P(2)
is well-defined and continuous are discussed in detail in [3].

Theorem 3.14. Let (2 = R" or () be a bounded open set in R™ with Lipschitz continuous
boundary. Suppose s1,S2,5 € Rand 1 < py,py,p < oo are such that

WHPL(Q) x WH2P2(Q) — WHP(Q)) .
Then
(1) WLPH(Q) x W2P(Q) — WP().

loc loc loc

(2) Forall K € K(Q), W IPH(Q) x WP (Q) — WP(Q). In particular, if [ €

loc

WP (Q), then the mapping u — fu is a well-defined continuous linear map

from W2P2(Q) to W*P(Q).
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Theorem 3.15. Let €2 be the same as the previous theorem. If sp > n, then W P(Q) is
closed under multiplication. Moreover, if

(f)m = fr inWRZ(Q), - (f)m — i in WI(Q)
then
(fOm (f)m = fr--- fir inWP(Q)

Theorem 3.16. Let () = R"™ or let () be a nonempty bounded open set in R™ with Lip-
schitz continuous boundary. Let s € R and p € (1,00) be such that sp > n. Let
B : Q — GL(k,R). Suppose forall x € Qand 1 <i,j <k, B;j(x) € W>?(Q). Then

(1) det B € WSP(9).

(2) Moreover if for each m € N B,, : Q@ — GL(k,R) and for all 1 < i,j < k
(Bu)ij > By in Wil (), then det B,y — det B in W, (<),

loc

Theorem 3.17. Let ) = R" or let () be a nonempty bounded open set in R"™ with Lips-
chitz continuous boundary. Let s > 1 and p € (1,00) be such that sp > n.

(1) Suppose that v € WP(Q)) and that uw(x) € I for all x € Q where I is some
interval in R. If F : I — R is a smooth function, then F'(u) € W2(Q).

loc

(2) Suppose that u,, — win W,)?(Q) and that forallm > 1and x € Q, up,(x),u(x) €

loc
I where I is some open interval in R. If F' : I — R is a smooth function, then

F(uy,) — F(u) in W2P(Q).

(3) If F : R — R is a smooth function, then the map taking u to F'(u) is continuous
from WP(Q2) to WP ().

loc

Theorem 3.18. Let E be a vector bundle of rank r over an n-dimensional compact
smooth manifold M. Then E admits a finite total trivialization atlas that is GL compat-
ible with itself. In fact, there exists a total trivialization atlas {(Uy, Pa, Pa) 1<a<n Such
that

o foralll < a < N, ¢,(U,) is bounded with Lipschitz continuous boundary, and,

o foralll < a, < N, U,NUg is either empty or else p, (U, NUg) and ¢3(U, NUp)
are bounded with Lipschitz continuous boundary.

Definition 3.19. Let M"™ be a compact smooth manifold. Let m : E — M be a vector
bundle of rank r. Let A = {(Ua, @, Pas Vo) }1<a<n be an augmented total trivializa-
tion atlas for E. — M. Fore € Rand q € (1,00), WI(M, E; A) is defined as the
completion of C*(M, E) with respect to the norm

N r
lullwesanzay = D> l(pa)' o (Yatr) o 03 lwea(pnwa))

a=1 =1

It can be proved that if e is not a noninteger less than —1, the above definition is
independent of the choice of the total trivialization atlas. Also if e is a noninteger less
than —1, the definition does not depend on A as long as it is assumed that A is GL
compatible with itself. So we set W*I(M, E) := W*Y(M, E;A) where if e is not a
noninteger less than —1

A = any augmented total trivialization atlas
and if e is a noninteger less than —1

A = any augmented total trivialization atlas that is GL compatible with itself
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Theorem 3.20. Let M" be a compact smooth manifold and E — M be a vector bundle
of rank r. Suppose N = {(Us, Pu, Pa, o) Y2_; is an augmented total trivialization atlas
for E — M. Let u be a section of E, e € R, and q € (1,00). If forall 1 < a < N and
1<7<r (pa)youoprt € Wil po(Uy)), thenu € WeI(M, E; N).

loc

Theorem 3.21. Let M" be a compact smooth manifold and E — M be a vector bundle
of rank r. Let e € R and q € (1,00). Suppose A = {(Un, Pas Pas Vo) Yo, is an
augmented total trivialization atlas for E — M. If e is a noninteger less than —1 further
assume that \ is GL compatible with itself. If a section u of the vector bundle F belongs
to WeU(M,E;N), then forall 1 < a < Nand1 < i < 1, (pa) ouo @, (ie
each component of the local representation of u with respect to (U, Vo, pa)) belongs to

Wi (0o (Uy)). Moreover, if § € C°(po(Uy)), then

loc

1€((pa)’ 0 wo o ") [lweatpaway = lullwea,en

where the implicit constant may depend on & but does not depend on u.

Theorem 3.22. Let M™ be a compact smooth manifold. Let 7 : E — M be a smooth
vector bundle of rank v over M equipped with fiber metric (., .) g (so it is meaningful to
talk about L>* (M, E)). Suppose s € R and p € (1,00) are such that sp > n. Then
WeP(M, E) — L*(M, E). Moreover, every element v in W*P(M, E) has a continuous
version.

Corollary 3.23. Let (M™, g) be a compact Riemannian manifold with g € W*P(T?M),
sp > n. Let {(Uy, Yo, Po) }1<a<n be a standard total trivialization atlas for T>*M — M.
Fix some « and denote the components of the metric with respect to (Uy, P, pa) by
Gij : Us = R (gi5 = (pa)ij © 9). As an immediate consequence of Theorem 3.21 we have

9ij © 0o’ € Wik(pa(Ua))

Theorem 3.24. Let (M™, g) be a compact Riemannian manifold with g € W*P(T?M),
sp>mn, s > 1. Let {(Uy, o, pa) f1<a<n be a GGL standard total trivialization atlas
for T>M — M. Fix some o and denote the components of the metric with respect to

(Uaa Qpa)pa) by Gij - Ua — R (92] = (pa)ij © g) Then
(1) det go, € WP (pa(Uy)) where go(x) is the matrix whose (i, j)-entry is g;; o .

oc

(2) Vdetg o, = /detga € Wil(¢a(Ua))
(3) Zzmaomr € Wil(a(Ua).

Theorem 3.25. Let (M™, g) be a compact Riemannian manifold with g € W*P(T?M),
sp>mn, s > 1. {(Uy, pa)}1<a<n be a GGL smooth atlas for M. Denote the standard
components of the inverse metric with respect to this chart by g” : U, — R. Then

gij © 90;1 S VVIZ?(SO@(UOK»

Also since

1 —
[ opy! = 59“(&'9;1 + 090 — Digij) © 5"

it follows from Corollary 3.23, Theorem 3.14, Theorem 3.1 1, and the fact that W*? (¢, (U,)) X
W (0o (Ua)) = WeTHP(0a(Ua)) that

Lfoea' € Wi (9a(Ua)
( Ffj ’s denote the Christoffel symbols.)
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Theorem 3.26. Let M™ be a compact smooth manifold and let m : 2 — M be a vector
bundle of rank r equipped with a fiber metric (., .)p. Let e € R and q € (1,00). Suppose
A = {(Us, Pas Pa, Vo) YN_, is an augmented total trivialization atlas for E — M. If e is
a noninteger whose magnitude is greater than 1 further assume that the total trivializa-
tion atlas in A is GL compatible with itself. Fix a positive smooth density 1, on M.
Consider the L? inner product on C*°(M, E) defined by

<u,v>2=/M<U,v>EM

Then
(i) {.,.)s extends uniquely to a continuous bilinear pairing (., .)o : W9 (M, E; ) x
Wet(M, E; N) — R. (We are using the same notation (i.e. {.,.)s) for the extended
bilinear map!)
(ii) The map S : W9 (M, E,\) — [W4(M, E; A)|* defined by S(u) = I, where

Ly : WM, E;N) = R, 1,(v) = (u,v)s

is a well-defined topological isomorphism.
In particular, WM, E; A)]* can be identified with W =9 (M, E; ).

4. PRELIMINARY RESULTS

Suppose (M™, g) is a compact Riemannian manifold with g € W*P(T?M), sp >
n, and s > 1. Suppose {g,,} is a sequence of smooth metrics that converges to g in
W*P(T?M). In this section we go over some of the immediate consequences of this
assumption which will be useful in the study of the main results presented in this work.
As it was pointed out in the introduction, the ultimate goal of this manuscript is to study
the relationship between various geometric operators (like Laplacian) that are defined in
terms of g,,,’s and those that are defined in terms of g. We will present two rather distinct
methods to accomplish this goal:

(1) The first approach works for a limited range of Sobolev spaces and follows (and
extends) the argument presented in [11] for the Laplace operator with the domain
H'(M) = W'2(M). This method is based on the notion of “metric distortion
tensor” and duality arguments.

(2) The second approach works for a wider range of Sobolev spaces and will be based
on the previously mentioned characterization of Sobolev spaces in terms of lo-
cal coordinates and theorems on multiplication properties of Sobolev spaces and
behavior of Sobolev functions under composition.

Let’s begin with the notion of metric distortion tensor. By Theorem 3.1 for each m and
ateach p € M there exists a linear operator A,,|, : T,M — T,M (when the basepoint is
clear from the context instead of A,,|, we just write A,,) such that

VXaYGTpM gm(Xay):g(AmXay)
A, is called the metric distortion tensor associated with g,,, (see [11]). We have
| Am = Id [[oo= ||| sup  [g((Am — 1) X, Y))[[[ oo (ar)

|XH9:HYH9:1

where Id, : T, M — T},M is the identity map. In particular, note that for all p € M and
XY el,M

19((Am = Id) X, Y))[ <[| Ay = L [Joo]| X [lg[1 Y Iy
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The following two theorems play a key role in the first approach mentioned above.

Theorem 4.1. Let M™ be a compact smooth manifold equipped with a smooth Riemann-
ian metric g. Denote the norm induced by the fiber metric on the bundle of (g) tensors
by |.|r. If S is a symmetric covariant tensor field of order 2, then

VpeM  sw{IS,(X. V)| X,Y € LM, || X [l=I Y ;= 1} < |S]#(p)

Note that the left hand side of the above inequality is the norm of S, as a bilinear form
on the inner product space (T,M, §,).

Proof. Let p € M. Let (U, ) be a normal coordinate neighborhood centered at p
(see [15] for a description of normal coordinate neighborhood; the assumption that g
is smooth is used in the construction of normal coordinate neighborhood). Let { E;} be
the orthonormal basis for 7),M that is used to define the normal chart (U, ). At p the
components of the metric with respect to (U, ¢) are given by g;; = ¢;;. We have

|S[5(p) = G 57°SijSrslp = 67 07°SijSyslp = Z Z S (p)
i=1 j=1

Now let A : T,M — T,,M be the unique linear transformation such that (see Theorem
3.1)

VX, Y e T,M Sp(X,Y) =g,(AX,Y)
If X € T,M is such that | X ||;7= 1 (note that since § = 0 at p, we have | X ||;=
gZ]XZX] = Z?:l ’XIP), then

[Sp(X, X)) = |3, (AX, X)|* <[ AX 5l X 3
=|| AX [l3=I] X*(AE:) |3

ZIXZI I AE; ||5)* ZIXZ Z I AE; [I3)
—ZH AE; ||5= Zng AE;, E;)* ZZ = |SIE(p)

=1 j=1 =1 j=1

Note that we used the fact that since { F;} is orthonormal

AE; = §,(AE, E))E; = |AE|2 =Y §,(AE, E;)?
Jj=1 j=1
Therefore,
sup{|S,(X, Y)|: X, Y €T, M, || X |3=] Y [|l;=1}

T {S,(X, X)] 1 X € TM, | X [ly= 1)
< |S|r(p)
O

Theorem 4.2. Let M"™ be a compact smooth manifold. Let {g,,} be a sequence of smooth
metrics on M. Let g € T'(M,T*M) be a metric on M that belongs to W*?(T*M) with
sp > nand s > 1. Suppose g,, — g in WP(T*>M). Denote the metric distortion tensor
associated with g,, by A,,. Then

(1) || Am — Id |2 9m — g |lsp- As a result, since || gm — g ||sp— 0, we have
| A — Id ||oo— 0.
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(2) If || Am, — Id ||oo— O, then
e det A,, — detld =1 (at almost allp € M)
o |A —Id||w — 0
o || Vdet A, At — Id ||— 0

(3) A, 'grad, = grad,

(4) dV,, = «/det A,,,dV, (dV, denotes the Riemannian density with respect to the metric

9)
Proof.

(1) Fix a smooth Riemannian metric g on M. Denote the norm induced by the corre-
sponding fiber metric on the bundle of (?) tensors by |.| .

1 9m =9 llsp = gm = g loe@zan =l lgm = glp [oeary (WP = L)

> sup g (X,Y) = g(X,Y)| [ zooan) (see Theorem 4.1)
[X1la=11Yllg=1

Since all norms on finite dimensional spaces are equivalent, we have

sup |gm(X7Y) _g(X7Y)| = sup ’gm<X7Y> _g(va)‘
IXllg=[1Ylg=1 X lg=IY1lg=1

Therefore

| gm =g llsp=ll  sup  |gn(X,Y) = g(X,Y)| [|Loo(an)

I X1lg=IYlg=1

= sup  |g(AnX,Y) — g(X,Y)| [[Lqar)
I XIlg=Ylg=1

= sup  |g((Am — Id)X,Y)| [z )
I X]lg=Y]lg=1

:H Ay —1d Hoo

Items (2)-(4) are discussed in [11] based on the assumption that | A, — Id ||.c— 0. O

The next theorem plays an important role in the second approach that was mentioned
in the beginning of this section.

Theorem 4.3. Let (M",g) be a Riemannian manifold. Let {g,,} be a sequence of
smooth metrics on M. Suppose ¢,, — g in W*P(T*M) with sp > n and s > 1.
Let {(Un, Pus pPa) }1<a<n and {(Ua, Yo, Pa) t1<a<n be GGL standard total trivialization
atlases for T? M and T, M, respectively. Then

(1) Forall1 <a < N,1<i,5<n:(gn)ijopst — gijo saa in WP (0a(Ua))
(2) Foralll1 <a < N,1<4,j<n:(gm)"op,t = g9 0t in WP (pa(Us))
(3) (gm)t — g Lin WHP(To M)

(4) Forall1 <i,j,k <n: (D)% 003t = (Tg)k 0 ot in Wi, Y2 (0o (U,))

loc
Proof. First let us define a suitable family of admissible test functions (see Theorem
3.10) on ¢, (U,). For each x € ¢, (U,), choose , > 0 such that
Br’z () € valUa)

Let V, = o, 1(B,,(z)). Clearly V, C V, C U,. Therefore by Lemma 3.6 there exists a
partltlon of unity {1/)5 »} subordinate to {Us}1<s<n such that ¢, , = 1 on V,. We define
Uy = Vaw © 05 {%}xe% (U is an admissible family of test functions on ¢, (Us,). So
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in order to prove that a sequence { f,, } converges to f in W;”(,(U,)) it is enough to
show that

Vo€ pa(Ua)  Gufm = uf in W (0a(Us))
(1) Let x € ¢,(U,). We have

N n
I gm =9 e =D > Nl (08)i5 © (Up2(gm — 9)) © 05" Wer(osws))

B=11i,j=1

N n
=N sal(gm)is — gis) 0 05" lworiosws)

B=11i,j=1

By assumption || g,, — g ||s,— 0 and so

VISBSN VIi<ij<n | Vs.2[(gm)is — 9is) © @5" llwsr(oswsn— 0

In particular,

V1<i,j<n | Yau[(gm)ij — 9is] © 0o’ [lwerpawan— 0

Considering that 1, , 0 @' = 1), we get

Vi<ig<n [ 9ul((gm)is = 9u) © 0a'l lweroawap = 0

Since © € ¢, (U,) is arbitrary and {@Ey}y@a(%) form an admissible family of test
functions we can conclude that

(gm)ij © o' = Gij o e i Wil (0a(Ua)).
(2) Let C = (OU) and Cm = ((Cm)”) where Cij = Gij © 30;1 and (Cm)w = (gm)z] o 9051.
Our goal is to show that

(Co D) — (C7Y in WP (0a(Uy))

m loc
Recall that
(-1
M,
detC Y
B (_1>i+j
((Cm)™)ij = TorC (My,)ig

(C™hi =

where M;; and (M,,);; are the determinants of the (n — 1) x (n — 1) matrices formed
by removing the j* row and i** column of C and C,,, respectively. By item 1 we
know that (C.,);; — Cij in WP (¢, (Uy)). So it follows from Theorem 3.16 that

loc

det Cm — det C, (Mm)ij — Mij in Ws’p((,Da(Ua))

loc

As a direct consequence of Theorem 3.17,

1 1
— in WP (o, (U,
det Cm detC m Wise (SO ( ))
Hence by Theorem 3.14 and Theorem 3.15 we can conclude that
(_1)i+j (_1)i+j
det C), detC

Mi; in Wie(pa(Ua))

loc

(Mpn)ij —
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(3) Let {#5}1<p<n be a partition of unity subordinate to {Us}1<s<n. We have

N n
1 (gm) ™ =g lsw =D D 11 (0((9m)7 — 97)) 095" lwsiosius))

B=11i,j=1
According to item 2, forall 1 < g < N,

(gm)7 005t = g7 oyt in Wil (0s(Us))
Therefore it follows from the definition of convergence in W;)”(¢3(Ug)) that

1 (05((gm)” — 97)) 0 5" llwsr(osws)— O

Hence || ()" —g7" [lsp— 0.
(4) Recall that

1
Ffj = §gkl(8igﬂ + 0,911 — O19i;)

(Tl = 5 (0 Ol + D5 (gm)a — 1l

By item 1 and item 2 we have

(g)" = ", (gm)it = gt (Gm)ia = gu,  (gm)ij = gij  in Wik (pa(Us))

By Theorem 3.11 partial differentiation with respect to any one of the variables is con-
tinuous from W (¢, (Us)) to Wi (¢ (Uy)). Also it follows from Theorem 3.14
that

Wil (a(Ua)) x WS_LP(‘PO&(UCY)) — WS_LP(‘:O&(U&))

loc loc loc

The claim of this item is a direct consequence of the above observations.

5. SHARP OPERATOR WITH ROUGH METRIC

Theorem 5.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T?M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls ) C R"
or for ) = R"

WHP(Q) x W) — WEI(Q)

Then sharp,, : (C*°(M,T*M), ||.|lc.q) — W4(T' M) is continuous and so it has a unique
extension to a continuous operator sharp,, : WI(T*M) — W(TM).

Proof. Let A = {(Uy, 9, pa) }Y_, be a standard total trivialization atlas for M and
A = {(Us, @a, pa) }N_, be a standard total trivialization atlas for 7* M. Without loss of
generality we may assume that each of A and A is nice (or super nice) and GL compatible
with itself (see Theorem 3.18 and [5]). Let {¢a}g:1 be a partition of unity subordinate to

the open cover {U, }N_,. Let ), = Eévf 7 Note that ngv:ll 7 ° ot € BO™®(pu(Uy)).
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We have

| sharp,w [lwe.a(ran = ZZ | Ya(pa) (sharp,w) o ot [lwew (oo (va)

a=1 =1
N n
~ S Yagwi o it llwespawa)
a=1 1=1
ZZ I 9297 w; 0 ot llwea(ga(vay
PR
Z D 1 Pag” 0 02" lwsrpa(va)) | Paws 093" llwes(onwa)
=1 i=1 j=1

=l g7 Nlwer@ornll @ llwea=an
Note that the inequality in the third line follows from Theorem 3.7 and Theorem 3.8. [
Theorem 5.2. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T*M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls ) C R"
or for () = R"
WeP(Q) x We(Q) — WI(Q)
Suppose {gn} is a sequence of smooth (C™) metrics on M such that g,, — g in
WP(T?M). Then
sharp, ~— sharp, in LOW*(T*M), W= (TM))

Proof.

sh — sharp )w [|we.
| sharp, ~— sharp, |l,,= sup I (sharp,,, Py )w [lwea(rar)
ol q70 | @ [lwea(rean

Let A = {(Ua,¢@a,pa)})_, be a standard total trivialization atlas for TM and A =

{(Uq, 0a, Pa) Y2, be a standard total trivialization atlas for 7M. Without loss of gen-
erality we may assume that each of A and A is nice (or super nice) and GL compatible
with itself. Let {¢})_, be a partition of unity subordinate to the open cover {U, }_,

Let ¢, = zﬁ“ . Note that o' € BOC™®(p4(Uy,)). We have

25:1 % ZB 1"/’2
N
| (sharpy,, — sharp,)w |lwe.a(ran= Z Z | Pa(pa) (sharp, — sharp,)w o v llwe.a(p. ()
a=1 i=1
N n ~
~ Y 1 Yalgh = 97w 0 03" llweatoaway
a=1 i=1

N n n
=D D> M algn = 97) 090! lwsoawapll aws 0 03" lweatgawa)

a=1 i=1 j=1
=l 9%1 - 9_1 ||WSvP(T2M)|| W ||We»q(T*M)
Now the claim follows from Theorem 4.3. [l

If F is a general covariant k-tensor field (k > 2), we let sharng to be a (kzl)—tensor
field defined by

sharp, F'(w, X, -+, Xp—1) 1= F(X3, -+, Xj—q, sharp, (w))
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In any local coordinate chart

(Sharng>gl"'ik—l = gleI'”ikfll

The proof of the next two theorems is completely analogous to the proof of Theorems 5.1
and 5.2 and will be omitted.

Theorem 5.3. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T*M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls ) C R"
or for ) = R"

W*P(Q) x We(Q) — WI(Q)
Then sharp, : (C®(M,T*M), ||.|lcq) — WeU(TF M) is continuous and so it has a
unique extension to a continuous operator sharp, : W(T* M) — Wed(TH1M).

Theorem 5.4. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T?M)
with sp > n and s > 1. Suppose e € R and p € (1, 00) are such that for balls 2 C R"
or for (1 = R"

WeP(Q) x We(Q) — WI(Q)
Suppose {gm} is a sequence of smooth (C*) metrics on M such that g,, — g in
WeP(T2M). Then

sharp, — sharp, in L(We’q(TkM), We,q(le—lM>>

6. GRADIENT WITH ROUGH METRIC

Let M be a compact smooth manifold and let g be a Riemannian metric on M. Let
f+ M — R be ascalar function. grad f is defined as sharp,(df). If (U, (")) is any local
coordinate chart, then

of . . Of 4 0

d - —d 4 d == ki -~ )= -

/ gt B f=lo (axl)} O’
Theorem 6.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T?*M)
with sp > n and s > 1. Suppose e € R and p € (1, 00) are such that for balls 2 C R"
or for ) = R"

WeP(Q) x We(Q) — WI(Q)
Suppose {gm} is a sequence of smooth (C*) metrics on M such that g,, — g in
WP(T?2M). Then
grad, — grad, in L(W**" (M), W*Y(TM))
Proof. First note that under the hypotheses of the theorem, grad, —and grad, belong to
L(Wetba(M), Wed(TM)) (see Appendix A).
|grad, — grad, || p(we+1.aweqy = |(sharp, — sharp,) o d||pwetta e
= |sharp, = — sharp, ||Lwea(rs ) weaany [|dl Lowerraan, wearary)

However, we have already proved that under the hypothesis of the theorem
||sharpgm — Sharpg||L(Wc,q(T*M)’We,q(TM)) —0

Also in Appendix A it is shown that d : Weth4(M) — We4(T*M) is continuous.
Therefore

|grad, — grad | pwettaweay — 0
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Alternatively, a rather special case of the above result can be proved using the tech-
nique introduced in [11] for H*(M). This will be the context of the following theorem.

Theorem 6.2. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T?M)

with sp > n, s > 1. Suppose {g} is a sequence of smooth (C°°) metrics on M such
that g,, — g in W*?(T?M). Then

grad, — grad, in L(W"(M), L(TM))

Proof. First note that since sp > n, W*P — L° and therefore for all 1 < ¢ < oo, we
have

WP x L1 — L

Thus, this theorem is indeed a special case of the previous theorem. Denote the distortion
tensor associated with g,, by A,,.

|| grad, =~ — grad, [lop

Theorem 3.5

sup{|(Y; (grad, —grad,)u)pq ol 1w € CT(M),Y € CF(TM), | u[l1q=[Y [lo=1}
= sup{| Mg(Y, (A — Id)grad,u) dVy| s u € C*(M),Y € C(TM), || u |14=] Y [l¢=1}

<sup{ll An! o [ 1Y ol gty Vy:ue %0, € C¥@M), u =] Y lg=1)

Now note that

/M 1Y[|gllgrad ully dV, <[| [[gradullg [|q[] [[Y]lg |4
S ulligll Y llg=1
Therefore
lgrad, — grad, [, =X A" — Id ||

Finally, notice that by Theorem 4.2, || A! — Id ||oc— 0 as m — oo. O

7. LINEAR CONNECTION WITH ROUGH METRIC

Given a Riemannian manifold (M, g), we denote the corresponding Levi-Civita con-
nection on T'M by V.

Theorem 7.1. Let (M™, g) be a compact Riemannian manifold. Let g €¢ W*?(T?M) with
sp > nand s > 1. Suppose e € R and q € (1,00) are such that

We=LP(R™) x WEHHI(R™) s WI(R™)
Also let X € WSP(T M) where § and p have the property that
WEP(R™) x WP=HP(R™) x WHDI(R™) — WI(R™)

In particular, X can be any smooth vector field.
Suppose {gm} is a sequence of smooth (C°°) metrics on M such that g,, — g in
WP(T?>M). Then

(Vau)x = (Vo)x =0 in LIVSH(TEM), W(TFM))
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Proof. In this proof we will not use the summation convention. Let A = {(U,, ¢a, pa) }2
be a standard total trivialization atlas for 7}*(M) — M. Without loss of generality We
may assume that A is super nice and GL compatible with itself. Let {1, }"_, be a par-

tition of unity subordinate to the open cover {U,}N_,. Let ¢, = ZNw—gw?’ Note that
B=17p
ﬁ o ot € BC*®(p,(U,)). Using techniques discussed in Appendix A, one can
B=17p

show that under the hypotheses of the theorem, (V,, )x and (V,)x indeed belong to
LW (TEM), W (TFM)).

(Vo )x F = (Vo) x Flleq

Vv —(V e+l,q(Tk ©q(Tk = su
1(Van)x = (Vo) x|l nowesraqrpan weacrp iy Pt pacee [ Fllet1,4
We have
(T 5 F = () Flla ™ 3 3 10T PV — (Y o 67 ety
a=1jz,i5

Recall that on U,
vgm)XF = Z XT(VQW)TF’ (VQ)XF = Z XT(VQ) F

and

e _ 0 _
((vgm)rF)ﬁg;ﬁ o (pal = a (szll 1J;f SDal)

k
+ZZ [F2 290 o [Py, Y 0 oatl = D Y IF2 0o [Ty, )%, 0 0a]
p

5=1 p 5=1

1° 9 j1°°°J. -
(Vo) FY2h o ! W(le...i,:om

k
+ Z DR o NI 0 0atl = D0 D IF s, o0 Tg), 0 va']

5=1 p s=1 p

Therefore

[((V DX P — (V) x F)I i o ot =

ZZZ "o o V(PP 0 o (D)3 0 0t — (D)3 0 0]

- Z Z Z o N 09 (T )i, 0 03t = (T, 093]

Thus

(Vg ) x F = (Vo) x Flle,q =
N

S [ dao s [ZZZ o g ) EIT I o o (T s 0 0t — (Tg)is 0 03]

a=1 jz,iz s=1 p r

- ZZZ To e NFL 0o (T, )P 0 0nt — (M), 0 02| lwes (pua))

§s=1 p r
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<2222 [H(wa 0 )X 0 o)l pll(Wa 0 03 ) (LT 0 o) let1q
1 0 02T )i 0 0 — (Tl o 0 J]
Y YYY W“ 0 02X 0 oz lanll (Yo 0 02 YEI - 0 0m ) lerr

(o 0 03Ty )i, 0 03" <Fg>$i§oso;11||s_1,p]

2

I
= ”X”ngﬁ(T]M)||F||We+1,q(le(1\/[) Z Z ZZ (Ya 0 <Pa Fgm)g‘% ° 90;1 - (Fg)iﬁp ° %0;1]||Ws*1,p(%(Ua))

a=135=1 p 7T

2
>

+ ||X||W§75(TM)||F||WE+1aq(le(M> ZZ (Ya 0 ‘Pa (T, n)fié o ‘P;l - (Fg)fié ° ‘P;l]HWS*I,P(APQ(UQ))
P T

et 1

Il
=

3

Therefore

N 1
Vo )xF — (V) x F|e _ o
B e * 22203 a0 wahTon)ty o wa” =Tt 0 o lwetrtoavy
erL,q —1 5=

ZZ (Va0 ot [(Tg,. )7, © pal— (Tg)ys, © @Eﬂ“wrlm(%wa))

|Mz‘
”M”‘

Since g, — ¢ in Ws’p, it follows from Theorem 4.3 that the right hand side goes to zero
as m — o0. U

8. COVARIANT DERIVATIVE WITH ROUGH METRIC
Let F € 7F(M). The map
VE 7' (M) x - x 7H{M) x x(M) x --- x x(M) — C®(M)
(W' WYL Y X)) = (U F) (Wl Y, V)
is C*°(M )-multilinear and so it defines a ( )—tensor field. The tensor field V F'is called

the (total) covariant derivative of F'. Note that in any local coordinates (in this section

we do not use the summation convention)
Ji-J JiJ
(VF)” ’L[i’l’ - (v F)zl 7,;7
9 k
_1 ...... —1 —1
= g Fllliopn!) + § Y FLET o ot (T, )0 0 0at — Fl s 0pa (D), 0 ¥a

§=1 p §=1 p

Theorem 8.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T?M)
with sp > n and s > 1. Suppose ¢ € R and q € (1, 00) are such that for balls 2 C R"
or for {1 = R"

Ws=bP(Q) x Werha(Q) — W1(Q)
In the case that the above multiplication property holds only for balls 2 C R™ and not R"™
itself, further assume that e and q are such that % c Werba(Q) — We(Q) (1 < j <n)
is continuous (see Theorem 3.9).

Suppose {gm} is a sequence of smooth (C*) metrics on M such that g,, — g in
WeP(T2M). Then

Vg, = Vg in LWH(TEM), WU(TFM))
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Proof. Let A = {(Uy, 00, pa)}Y_; and A = {(Us, P, pa)}Y_, be standard total trivi-
alization atlases for T}(M) — "M and T (M) — M, respectively. Without loss of

generality, we may assume that each of A and A is nice (or super nice) and GL com-
patible with itself. Let {@ba _, bea pamtlon of unity subordinate to the open cover

{UJN_|. Let ¢, = ZJBGZ% Note that s 1w2 ot € BC™(pa(Uy)). Also under

the hypotheses of the theorem, V,, and V, belong to L(We+L4(TFM), Wt (T M)
(see Example 5 in Appendix A).

vamF_ngHe,q

Vg, = Vg‘|L(We“‘q(Tz’“M)vWe’q(TzkHM)) B F;éosgle)cw [ Flle+1,

We have

N
Vg F = VFlleg =Y > [ €al(Vg, D), — (Vo) ] o 02! weapnwa)

a=1 jiiz,T

= Z > 1 al((Ve)r PV — (Vo) FYE 3 0 00 e (pna))

a=1 jziz,r

The exact same procedure as the one given in the proof of Theorem 7.1 shows that the
above expression is bounded by a constant times

[ Flle+1,4 Z Z Z Z (%0 0 3" )25;3 op,t — (Fgﬂfo © <F’a_l]”Wé‘*“’(soa(Ua))

a=1§=1 p
+ Z Z Z Z H wa o 9004 )ms 9004 (Fg)fzs o @gl]“ws—m(wa(%))}
a=15=1 p
Since g,,, — g in W*P_ it follows from Theorem 4.3 that the right hand side divided by
| F'||e+1,4 gOeS to zero as m — oo. O

9. CONTINUITY OF TRACE

It is well known that we can associate with any ( ) tensor field a corresponding field
of endomorphisms of tangent spaces. If F'is a (1) tensor field, then the trace of F’ at each
point p € M is defined as the trace of the corresponding endomorphism of 7,,M. So tr I
will be a scalar field on M. More generally, let F' be a (’;) -tensor field where k,[ > 1.
We can define the trace of F' with respect to the pair (r,s) (1 <r <[, 1 < s < k)as
follows: tr ' is a (}_|)-tensor field defined by

(tr F)(w!, .. W X X, X, -, X)) = tr G
where G € T}/(V) is given by
Gw, X):=FW', ..., wwt™ W Xy, X, X, X, Xa).
In this section, in computing trace we assume (7, s) = (I, k). With respect to any local
coordinate chart we have
(tI‘ F)Jl Ji—1 F]l Ji—1m

11 0g—1 i1 dg—1m "

Theorem 9.1. Let M™ be a compact smooth manifold. Let e € R and q € (1,00).
Suppose k,1 > 1. Then tr : (C=(M, TF(M)),|.|lcq) — WeUT}'(M)) is continu-
ous and so it has a unique extension to a continuous operator tr : WeI(TF(M)) —

WeU (T (M)).
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Proof. Let {(Ua, Pu, pa) }Y_, be a standard total trivialization atlas for T}*(M) — M
that is GL compatible with itself. Let {t, })_, be a partition of unity subordmate to the
open cover {U,}Y_,. Note that T}*(M) is a bundle of rank n**'. So for each «, p, has
n**! components which we denote by (p,)7'7'. For all F € T'(M, T}(M)), we have

AR

()3 (ha F) = ta(Fo)ld!
where F' = (F, )fll g;a R ®0;, ®dr" @---®dz" on the coordinate chart (Uy, ¢, ).
Therefore

e B 1ot iy = ZZ I ()it 0 (Watr F) 0 03" e o)

a=1 jz iz
= ZZ | al(tr F)a)i 22 0 00t Hyeagpaqway
a= 1]T,lr
= ZZ | ba(Fa)i f; O P et (oo ()
a= ljr,lr
< Z Z H 1/104 511 ZJi 11% 1 |’WEQ((pa(Ua)) (this sum has more terms comparing to the last)
a= 1jr iy
= ZZ | (o)l 0 (WaF) 0 02 iveaqpuiwn
a=1 jr,ir
_” F ||Weq (TF (M)

g

Note that in the above proof the trace was computed on the last pair of indices. Of
course, clearly the same procedure shows that taking trace on any pair of indices is
continuous.

10. DIVERGENCE WITH ROUGH METRIC

We begin with studying the divergence of a vector field. Then we will consider the
divergence of more general tensor fields.

Theorem 10.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T*M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls 2 C R™
or for (1 = R"

WHP(Q) x Weth(Q) «— Wethi(Q)

WeP(Q) x We(Q) — WI(Q)

Ws=bP(Q) x Wetha(Q) — W1(Q)
In the case that the above multiplication property holds only for balls () C R™ and not R"
itself, further assume that e and q are such that % L Werha(Q) — Wed(Q) (1 < j <n)
LS continuous.

Suppose {gm} is a sequence of smooth (C*°) metrics on M such that g,, — g in
WP(T?M). Then

div,, — div, in LWS(TM), We1(M))
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Proof. Let A = {(Uq, ¢a, pa) }Y_, be a standard total trivialization atlas for 7'M . With-
out loss of generality we may assume that A is nice (or super nice) and GL compatible
with itself. Let {1, }Y_, be a partition of unity subordinate to the open cover {U, }\_,.

Let , = =5, Note that —v-— 0 7' € BC®(pa(U,)). Also div,, and div,
2a=1¥3 23 1%5 @ "
belong to L(WeTH4(TM), We1(M)) (see Example 3 in Appendix A). We have

| divg,, — divy [|op= Sup | (div,,, — divy) X [lweaqan
[ Xlet1,4=1,X€C

Note that

| (div,,, — divy) X |[wea(an=~ ZH a((divy,, — divg) X) 0 0! [[weapu(wa)

= Z | (%0 0 03" ((divg,, X 0 @) — (divy X 0 1)) [[wea(pa(va))

Recall that (in what follows we will not use the summation convention)

- 1 0 : 0
div,X o p ! = _(+/det “IVWVW(X7 0t X7
g X 0@, ;@o¢;1<axj( etgop, ) osoa)+ax( op.h)

. 1 a . o )
div,, X o' =Y (y/det gm0 o ) (X7 0 o) + (X 0y
Vg © Pa j=1 detgm0¢g1(8x3< CLgm © Yo ))( ©Pa )+ 8:109( P

Therefore

divy, X o ol — ding opt=

> [ (g (VeRta o ) -

J=1

Let

1

0 j -1
Vo VA e )

Vdetg,, o

1 0 _
= Vag o pnt G VOt o ea)

1 0 _
= Vagopat o (V90 )
Since s > %, WP x We=1P — Ws=1P Considering this, it follows from Theorem 3.14,

Theorem 3.11, and Theorem 3.24 that B,, — B € V[/lf)c1 P Also note that X € Wetha,
So

(waOSOEI)(Bm_B) Vvliclp( a(Ua))
(Yo 093 )X 0 971) € Wil (pa(Ua))
By assumption W*=1P x Wetla s /¢4, Consequently we can write

N n
I (divg,, —divg) X [lweaan= DD I (¥a 0 2 )(Bm = B) (a0 02 ) (X7 0 03") lwea(pnway)

a=1j=1

23 Y @0 093" (Bm = B)llws10(pn wap 1 (e © 03 (X7 0 03 llwera on (va))

a=1j=1

= [|($a © 93" ) (B = B)llwe-10 (oo wa)) 1 X lwetra(ran)
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By assumlption Gm — g in W*P_ Therefore (g,)a — go in W,?. Consequently B,, —
. s—1, -1 1\ R ; -1

Bin W, " Thus (¢, 0 ¢ ') B — (Yo 0 ¢, ') B in WP, O

Theorem 10.2. Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T?M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls 2 C R™
or for (1 = R"

WE=2(Q) x Werha(Q) — We1(Q)
In the case that the above multiplication property holds only for balls 2 C R™ and not R"™
itself, further assume that e and q are such that 52 : Web1(Q) — We41(Q) (1 < j < n)
is continuous.

Suppose {gm} is a sequence of smooth (C*°) metrics on M such that g,, — g in
WeP(T?M). Assume k > 0 and | > 1. Then

div,, — divy in LOVTS(TEM), We(TF M)
Proof. The divergence of a tensor field F' is defined as the trace of the total covariant
derivative of F"
divF = tr(VF).
By Theorem 8.1
V. = Vg in LWH(TEM), WI(TFIM))

Also by Theorem 9.1, tr : W4T M) — We4(T}F M) is a linear continuous opera-
tor. Therefore by Theorem 3.4

troV,, —troV, in L(WY(TFM), WI(TF M))
O

For a general (g) -tensor field F' (k> 1), VF isa (kgl)—tensor field and sharp(V F) is
a (})- tensor field. Divergence of F is the (*;")-tensor field defined by
divF' := tr(sharp(V F))

Theorem 10.3. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T? M)

with sp > n and s > 1. Suppose { g, } is a sequence of smooth (C*°) metrics on M such
that g,, — g in WP(T*M). Suppose ¢ € R and q € (1,00) are such that either

WebP(R™) x WerL(R™) s W4(R™)

WHP(R™) x WEIR™) < WI(R")

, % L Werha(Q) — Wed(Q) (1 < j < n) is continuous and
WP (Q) x W(Q) — W(Q)
W=P(Q) x WI(Q) — W(Q)

or for balls 2 C R"

Assume k > 1. Then
div,, — div, in LW (TR, We (T M)
Proof. By Theorem 8.1
Vo = Vg in LWY(TEM), W (TH M)
By Theorem 5.4
sharp, — sharp, in L(W4(T* M), We4(T M))
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Also by Theorem 9.1, tr : We4(TFM) — We4(T* 1 M) is a linear continuous operator
(tr € LOWSY(TEM), We4(T*1M))). It follows from Theorem 3.4 that
trosharp, oV, — trosharp,oV,  in L(W*™HI(T* M), WI(T* ' M))
O

11. LAPLACIAN WITH ROUGH METRIC

Theorem 11.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T*M)
with sp > n and s > 1. Suppose { g, } is a sequence of smooth (C'*) metrics on M such
that g,, — g in W*P(T?M). Suppose ¢ € R and q € (1, 00) are such that either

WeP(R™) x WOU(R™) — WY(R")
WHP(R™) x WebI(R™) — We4(R™)
WoEP(R™) x WI(R™) < W HI(R™)
or for balls Q C R, 52 : We4(Q) — W 4(Q) (1 < j < n) is continuous and
WeP(Q) x We(Q) — WI(Q)
WHP(Q) x Weh4(Q) — WeH4(Q)
WE=2(Q) x WeI(Q) — W 4(Q)
Then
Ay, = Ay in LOW(M), We9(M))
Proof. Note that A = div o grad. By Theorem 6.1
grad, — grad,  in L(W*" (M) — W*I(TM))
Also by Theorem 10.1
div,,, — div,  in LWY(TM) — W 4(M))
Therefore it follows from Theorem 3.4 that
divy,, o grad, — divyograd,  in L(W9(M) — W HI(M))
O

As an alternative, for a certain range of Sobolev spaces, we may use the technique
employed in [11] to prove the following result.

Theorem 11.2. Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T? M)
with sp > n, s > 1. Further assume that

WHP(R™) x WHP(R™) — W 1P(R™)
Suppose {gm} is a sequence of smooth (C*) metrics on M such that g,, — g in
W#P(T?M). Then

Ay, = Dy in LW (M), W= (M)
Proof. First note that since sp > n, we have W*P(R") x W(R™) — W%(R™). This
together with the assumption that W*?(R™) x W~1P(R") — W~1P(R") ensures that
A,y = div, o grad, is a well-defined continuous operator from W"P(M) to W~P(M)

(see Appendix A).
Let A,, denote the metric distortion tensor associated with g,,,. By Theorem 4.2 we have

| Vdet AnAl —Id [|o— 0, A 'grad, = grad, , dV,, =\/detA,dV,
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So it is enough to show that

| Vdet A, ALt = Id [l 0 =] Ay, — Ay [l Lwro@n w10 = 0
For all  and v in C*° (M)

(U, Ay Wy scpy—10 = / (Ag, w)vdV,,  (see Theorem 3.26)
M

9gm(grad, u,grad, v)dV,, (integration by parts)

=

g(Amgrad, u,grad, v)y/detA,, dV,

—

M

9(An A, grad u, A, lgrad v)+/det A,, dV,,

T~

9(A,,'grad u, grad v)+/det A, dV,

In the last equality we used the fact that A,,, and A ! are symmetric. Also

(U, Agu i -1 = / (Agu)vdV, = — / g(grad,u, grad v) dV,
M M
Therefore
Theorem 3.5 1e%)
| Ag = Ag llop = sup{[(v, (Ag,, = Ag)u)| : u,v € CT (M), [[w [l1p=[l v [l1py=1}
= sup{| —/ g((Vdet A, A — Id)grad u, grad v) dVy| : u,v € CF (M), || u [[1p=[ v |l1,pr= 1}
M
< sup{|| Vdet A A" — 1d || / | gradu o] gradv llg dVy : u,v € CF(M), [l wll1p=] v [[1pr=1}
M

Now note that

/M lgrad, ullllgrad,v|[y dVy <[ llgrad,ully |, [lgradyvlly [l

=l grad,u [|,[| gradyv [l <[] w [lpll v [l1p=1

Hence
H Agm - Ag HOij \% detAmA;Ll - [d Hoo

12. CONFORMAL KILLING OPERATOR WITH ROUGH METRIC

Suppose (M, g) is a Riemannian manifold and V is the corresponding Levi-Civita
connection. For all vector fields X, Y, Z € C(T M) we have

(Lxg)(Y,Z) = X(9(Y,2)) — 9([X, Y], Z) — g(Y, [X, Z])
=9(VxY, Z) +g(Y,VxZ) = g([X, Y], Z) — g(Y,[X, Z])
=g(VxY = [X,Y], Z2) + g(Y,VxZ - [X, Z])
=9(Vy X, Z) 4+ g(Y,VzX).

Here Ly denotes the Lie derivative with respect to the vector field X. Therefore with
respect to any local coordinate chart we have

LXgij = lej -+ VJXZ .
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It follows that tr(Lxg) = 2div.X. Therefore we can decompose L x g into the pure trace
part and the trace-free part as follows:

Lxg= [%(ZdivX)g} + [Lxg — %(2divX)g} :

J/ J/

v~ ~~
pure trace trace-free

The conformal Killing operator, L , is defined as follows:
LX := the trace-free part of Lyg.

That is, with respect to any local chart (U, )

2

Note that
VX = (0: X'+ X*T )0,
Therefore
[ViX]; + [V X = gu[ViX]' + ga[V;X]
= gul0: X"+ X*T4] + gal0; X" + X*T%,)
Thus
2 .
(L£X)i; = gul0: X"+ X T3] + ga[0; X"+ XFT5,] — (divX)gi; (12.1)

Theorem 12.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T? M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls ) C R"
or for ) = R"

WE=P(Q) x Werba(Q) — We1(Q)
WHP(Q) x W(Q) — W(Q)
WHP(Q) x WeH1(Q) — Werba(Q)

In the case that the above multiplication properties hold only for balls ) C R" and
not R" itself, further assume that e and q are such that 52 : WeT4(Q) — We1(Q)
(1 < j < n) is continuous. Suppose {g,,} is a sequence of smooth (C*°) metrics on M
such that g,, — g in W*P(T*M). Then

L, — L, in LIWY(TM), W (T?M))

Proof. In this proof we do not use the summation convention. Let A = {(Uy, ¢a, pa )}y
and A = {(Us,, ¢a, fu) }2_, be standard total trivialization atlases for 7'M and T%M, re-
spectively. Without loss of generality we may assume that each of A and A is super nice
(or nice) and GL compatible with itself. Using Equation 12.1 and techniques discussed
in Appendix A, one can show that under the hypotheses of the theorem, £, and L,
indeed belong to L(Weh4(T M), We4(T*M)).

Let {1, }"_, be a partition of unity subordinate to the open cover {U,}Y_,. Let ¢, =

Ya__ Note that e BO™>(
N ©a(Us)). We have
2p=1¥3

_ 1 -
Zé\f:l d)% © 800[

L. — L)X
| Lo = Ly [lop= sup 1(Ly,, — L)X leq
X [le 41,470, X €Co [ X le41,q
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Note that

N
| (Lgn = L)X [lwear2an= ZZ | Pal(Lg, = Lg)X)ij 003" lwea(pa(Ua))

a=1 i

By equation 12.1 we have

(Lo X)ig = (Lo X)ig =D [(gm)jt — 950X + > [(9m)i1(Tg )ix — 950(Tg)in] X*
l k,l

+ ) [(gm)i — gulds X'+ [(gm)at (Do) in — gt (Do) 5] X* — %[(dngmX)(gm)ij — (divgX)gis]
l k,l

Therefore

| (Lg, — Lg)X |lwear2an=

N
DD Wallgm)i = 9210 X" 09 e

a=14j,k,l
+ 19al(9m)it(Ton )it — 951(To)in X* 0 03 leg
+ 1@al(gm)a = 905 X" 0 03 e + [dal(gm)i(Tan )i = 9a(To)iul X* 0 03 e
2,0~ .. .
+ —[|9al(divy, X)(gm)ij = (diveX)gis] © 05" e
Now we consider each summand separately:

(1

1al(gm)st = 9l X" © 9t lleq = N¥al(gm)it = 9] © 02 s plladiX" 0 031 leg

Note that

Hz/}aainO(palueq_ Hwa z< 080;1>||e,q

3 _ _ )
< gz (a0 0 D)X 0 03 )] lle + 7 (a0 02 X 0 92 e
=< [aX' 0 @ lex1q + 11X ey (see Theorem 3.21)

=X Net1q
Also
1al(gm)it = g © 05 s = gm = gl
(2)
1al(9m)t o )i = 91T i] X* 007 e

= [ Yal(9m)it(Tan )ik = 9it(Te)ia) © 05 s—1plla X 0 03 lerrg

= 1Wal(gm)it(Ty, )ik = 9it(Te)ial © 03 ls-1pll X llerq
3)

||@Z~)a[(gm)il - gz‘l]anl © 90;1||6,q = val(gm)a — gal © 99;1||s,p||¢aanl © ‘Palueq
= lgm — glls.pl| X|le+1,4 (see the procedure in item (1))
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“4)
1¥al(gum)it (T, )5 — 9a (L)l X* 0 05 e
= 1Wal(gm)a(Con)ie — 9a(To)jel 0 02 ls-1p1¥aX™ 0 03 ler1,4
= [al(gm)aTon)je — 9a(To)je) © 0o lsm1pll X llesrg
®)

[al(divg, X)(gm)i; — (divgX)gis] 0 05 lleq =
[al(divg, X)(gm)ij — (divgX) (gm)ij + (divgX)(gm)ij — (divgX)gij] © 05 [le,q
= H(dwgm ) — (divg X e, qua gm)ij °© ‘P;lezJ + HdngXHe,quja((gm)ij - gij) o 80;1’\3,1)

= ||(dlvgm) (dlvg)||0pHXHe+1,qH9m||S,p+ HlegHOpHXHeJrl,q 9”8,p
Consequently we have
[(£g,, = L) X]ley
1£g,. = Lgllop = sup 0 (2 + ||divgllop)l[gm — glls,
T o xec= IIX ey Z 2 gllopTism e

a=1147,k,l
+ [%al(gm)1(Cg,. ik = 951(Cg)i] © @ lls=1p + [Yal(gm)it(Ty, )k — 9(Tg)5] © ¢ lls—15
+ [[(divg,,) = (divg)llopllgm|ls.p

Now note that

e Under the hypotheses of this theorem, div,, : WH4(TM) — W*(M) is a continuous
linear operator (see Example 3 in Appendix A). Therefore ||div,||,, is a finite number.

e By assumption ||g,, — g||s,, — O.

e As a consequence of Theorem 4.3 we have

(gm)ito¢a’ = ginowa’  inWil(pa(Uas))

loc

Ty )imowa’ = (Tl owy’  in Wi P (0a(Ua))

loc

P Lp s—1,p
Since WP x W =P — W P we get

(gm)jt(Com)ie 00t = git(To)l o oat  in Wi P (0a(Ua))

loc

which implies that
1¥al(gm)it(Tu )ik = 951(Cg)ixl © 03 lls-15 — 0
Similarly

1a(gm)it(Ty, )i = 9t(T)jel © 05 ls—1p = 0
e It follows from Example 3 in Appendix A and Theorem 10.1 that

div,,, — div, in LW YT M), W*I(M))
Also since g, — g in WP (T?*M), ||gm|| s, is bounded.

Thus || L, — Ly|lop = 0 as m — oo. O

13. VECTOR LAPLACIAN WITH ROUGH METRIC

divL is sometimes called vector Laplacian and is denoted by Aj.
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Theorem 13.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T*M)
with sp > n and s > 1. Suppose e € R and q € (1, 00) are such that for balls 2 C R"
or for {1 = R"

WE=P(Q) x Werba(Q) — We1(Q)
WP (Q) x W) «— WI(Q)

WHP(Q) x Werh(Q) — Werba(Q)
WomhP(Q) x WeI(Q) — W H(Q)
WHP(Q) x Weh4(Q) — We4(Q)

In the case that the above multiplication properties hold only for balls {2 C R"™ and not
R” itself, further assume that e and q are such that 5% : Wer1(Q) — We4(QQ) and
S Wea(Q) — Weba(Q) (1 < j < n) are continuous.

Suppose {gm} is a sequence of smooth (C*°) metrics on M such that g,, — g in
WP(T?*M). Then

(AL)g,, = (AL)y in LIWTY(TM), W 9T M))
Proof. By Theorem 12.1
Ly, — L, in LWt Y(TM) — WeI(T*M))
Also by Theorem 10.3
div,, — div, in LOW®4(T?*M) — W H9(T M)
Therefore it follows from Theorem 3.4 that
div,, o L, —divyoL,  in L(WTH(TM) — W4T M))

14. CURVATURE WITH ROUGH METRIC

Let (M™, g) be a Riemannian manifold. The Riemannian curvature tensor is the co-
variant 4-tensor field defined by

Rm(X,Y, Z, W) =g(VxVyZ = VyVxZ =V ixy1Z,W)

With respect to any local chart (U, ¢) we have [0;, d;] = 0 and
ViV;0, = Vi(I%.0,) = 0i(T%,)0, 4 I %0,
= [0.1%, + 131010,

Therefore by subtracting the same expression with ¢ and j interchanged we get

ViV;0, = V;V0, = [&ka oLy, + 15,1, — T.I% }8
Subsequently

Rijr = Rm(0;, 0;, 0k, 0) = g(ViV;0p — V;V,0k, 0)
= gy [O,Th, — 0,1 + T, % — T3 I7
The Ricci tensor is the covariant 2-tensor field defined by
Ric = tr(sharp,Rm)

where the trace is on the leftmost covariant component and the only contravariant com-
ponent of sharp, Rm. With respect to any local coordinate chart

. . km
Ric;; := g™ Ryijm
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The scalar curvature Scal is the function defined as the trace of the Ricci tensor
Scal := tr (sharp, Ric)

Theorem 14.1. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T? M)
with sp > n, s > 2, and n > 2. Then Rm belongs to W*=2P(T*M), Ric belongs to
Ws=2P(T? M), and Scal belongs to W*~*P(M).

Proof. Let {(Uy, ¢a) }1<a<n be an atlas for M. By Theorem 3.20 it is enough to show
thatforeach1 <a < Nand1 <i,j,k,l<n

Rmyj 0 9" € Wi 2P (00 (Us))

loc

Recall that
Rmij © 9o = g [0 — 03T, + 5%, =TI | o g
By Corollary 3.23, Theorem 3.25, and Theorem 3.11 we have
g 0 Pat € Wil(0a(Ua)),  OiI" 0 0.t 010 0 ot € Wi P (00 (Us))

loc loc

Also considering Theorem 3.14, since W*™1P x Ws=1P < W22 we have

Dhlh o9t € Wi " (pa(Ua)), TiI% 0 prt € Wi P (pa(Ua))
Finally, since WP x W5=2P — W5=2P,

9pl [82-1“?,9 — oI, + I, — F;krj;r] o ,t € Wi P (pa(Ua))
SoRm € Ws=22(T4M).
Since WP x W5=2P — W5~ 2P it follows from Theorem 5.3 that sharp, : W*=2P(T*M) —
Ws=22(T3M) is well-defined and continuous. Also by Theorem 9.1, tr : W*=2P(T3M) —
W#=2P(T?M) is well-defined and continuous. Therefore Ric = tr(sharp,Rm) belongs

to W5=2(T2M).
The same argument shows that Scal := tr (sharp,, Ric) must belong to W*=*?(M). [

Theorem 14.2. Let (M™, g) be a compact Riemannian manifold. Assume g € W*P(T? M)
with sp > n, s > 2, andn > 2. . Suppose {gn} is a sequence of smooth (C™) metrics
on M such that g,, — g in WP (T*M). Then

Rm,,, — Rm, in W*2?(T*M)
Proof. In this proof we will not use the summation convention. Let {(U,, ¥a)}1<a<n

be a super nice atlas for M that is GL compatible with itself and {1, } be a subordinate
partition of unity. We have

N
IRmy,, —Rmg 25 ~ Y Y [[¢ha(Rmy,, —Rmg)ije 0 05 we2(00wa))

=114kl

N
<> > 1al(9m)ndiTe, ) = 90iTg)i) 0 0 w2 (onwa)

a=11i74.k,l,p,r
+ 190 ((9m)pi0; (Can )ik — 90105(Tg)ik) © 00 lwe—2p (pu(Ua)
+ 19a((Tg,) 5k (Tgn )i = T5I5) 0 00 Hlws 2 (g0 Ua))
+ 190 (g )ik (T )5 = TiT%) © 05 w2 (g (va))

We consider each term separately:
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(1) By Theorem 4.3 (T, )% 00t — (Tg)5, 00, in WM and (go)piown' — guows!

loc
in W;,". It follows from Theorem 3.11 that 9;(T'y,, )00, — 95(Ty)}.0p0, " in WS—2P
and subsequently since W*P x W5 2P s JV5~2P we get
(9m)p0i(Lg,, )?k © 90;1 - gplai(rg)gk ° 90;1 in WGSOZQ’p(SOa(Ua))
Therefore
“¢a((gm)plai(r‘gm)§k - gplai(rg);;k) © <F’a_lHWS*Z”’(«Da(Ua)) — 0 asm — o0
(2) Interchanging the roles of ¢ and j in the above argument shows that
190 ((9m)pm05 (Tg, Vi = 905 (L)) © 0ot llwe-2(pa(ay) — 0 asm — oo
(3) By Theorem 4.3
(Fgm);’k © 90;1 - (Fg);k o %0;1a (Fgm)z?r ° 80;1 - (Fg)fr ° 90;1 in VVlZ;Lp
Since W17 x Ws=1P s W5~2P we obtain
(Fgm );k(rgm )fr © (Pc_vl — (Fg)gk(rg)fr © 90;1 in WziZQ’p

Therefore

10 ((Tg, )5 Ty, )i — D) © 05 w2 (ou(way) — 0 asm — 00
(4) Interchanging the roles of 7 and j in the above argument shows that
1Wa((Tg, )ik (Cg )5 — Til%) © 00 lwe-2m(puway) = 0 asm — o0
Hence
[Rmy,, — Rmy|[;_2, — 0
0

Theorem 14.3. Let (M™, g) be a compact Riemannian manifold. Assume g € W*?(T? M)
with sp > n, s > 2, and n > 2. Suppose { g, } is a sequence of smooth (C*°) metrics on
M such that g,, — g in W*P(T?M). Then

Ric,,, — Ric, in W*™>P(T°M)

Proof. By Theorem 14.2, Rm,,, — Rm, in W* %P(T*M). Also it follows from the
hypotheses of the theorem that W*P? x W#*=2P — WW*=2P_ Thus by Theorem 5.4

sharp, ~— sharp, in L(W*~>P(T* M), W* >?(T} M))
Consequently

sharp, (Rmy,, ) — sharp,(Rmy) in WS=22(T3 M)

Now it follows from Theorem 9.1 that

trsharp, (Rmy,,) — trsharp, (Rm,) in W* *P(T?M)

That 1s
Ric,,, — Ric, in W*2?(T*M)
O

Theorem 14.4. Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T? M)
with sp > n, s > 2, and n > 2. Suppose { g, } is a sequence of smooth (C*°) metrics on
M such that g,, — g in W*P(T?M). Then

Scal,,, — Scal, in W**P(M)
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Proof. By Theorem 14.3, Ric,, — Ric, in W* 2P(T?M). Also it follows from the
hypotheses of the theorem that W*? x W*=2P — W*=2P, Thus by Theorem 5.4
sharp, ~— sharp, in L(W* >P(T?M), W* *?(T} M))
Consequently
sharp, (Ric,,, ) — sharp,(Ric,) in W*>?(T} M)
Now it follows from Theorem 9.1 that
trsharp, (Rmg,, ) — trsharp (Rm,) in WS=2P( M)

That is
Scal,,, — Scal, in W* 2?(M)
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APPENDIX A. DIFFERENTIAL OPERATORS ON COMPACT MANIFOLDS

First we recite sevefal definitions and facts from [5]. Let M"™ be a compact smooth
manifold. Let £ and E be two vector bundles over M of ranks 7 and 7, respectively. A
linear operator P : C*°(M, E) — I'(M, E) is called local if

Vue C®(M,E) supp Pu C supp u

As it is discussed in [5], if P is a local operator, then it is possible to have a well—def}ned
notion of restriction of P to open sets U C M, thatis, if P : C*°(M,E) — I'(M, E) is
local and U C M is open, then we can define a map
Ply : C=(U, Ey) — T(U, Ey)
with the property that
VUGCOO(M,E) (PU)‘U:P’U(U’U)

For any nonempty set V in R", let Func(V,R") denote the vector space of all func-
tions from V' to R’. By the local representation of P with respect to the total trivi-

alization triples (U, ¢, p) of E and (U, ¢, ) of E we mean the linear transformation
Q : C™(p(U),R") — Func(p(U), R"™) defined by

QUf)=poPp _10f090)090_1
If we denote the components of f € C*°(p(U),R") b
Q(ft, -, fr)y=(h',---  h") where forall 1 <k <
hk:’ﬂ'kOQ(fl,"',fr)legnearwkoQ(fl707”'70>+”'+7TkOQ(07”'707fT)

Soifforeachl < k < 7and 1 <i < rwedefine Qx; : C*°(p(U),R) — Func(p(U),R)
by

y (ft,---, f7), then we can write
7';;

Qki(g):WkOQ(07”'707 g 707"'70)
~~

th position

then we have

Q(flf"afr ZQM]H ZQMJM
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The proof of the following theorem can be found in [5]

Theorem A.1. Let M™ be a compact smooth manifold. Let P : C*(M, E) — I'(M, E)
be alocal operator. Let A = {(Uon Pas Pay wa)}lﬁaﬁN and]\ = {(Uom Pa, ﬁom wa)}lSOASN
be two augmented total trivialization atlases for E and E, respectively. Suppose the at-
las {(Uq, ¥a) }1<a<n is GL compatible with itself. For each 1 < a < N, let Q* denote
the local representation of P with respect to the total trivialization triples (U, 0o, po)
and (Uy, Yo, Po) of E and E, respectively. Suppose for each 1 < o < N, 1 <1 <7,
and1 < j <,

(1) Q%% : (C2(@a(Ua)), || -lleg) = WU (pa(Us)) is well-defined and continuous and
does not increase support, and

(2) if Q@ = pa(Uy,) or Q is an open bounded subset of p.(U,) with Lipschitz con-
tinuous boundary, then for all h € C>(Q) and n,v9 € C(pa(Uy)) with nh €
C*(Q2), we have

19[Q5, Yl hllweaw) = [Inhllwese) (A1)

where [QF, Y]h = Q% (Yh) — PQS;(h) (the implicit constant may depend on 1 and 1
but it does not depend on h).
Then
o P(C®(M,E)) C Wei(M, E;A)
o P : (C®(M,E),|.|leq) — W®I(M,E;A) is continuous and so it can be ex-
tended to a continuous linear map P : WeI(M, E; \) — W&I(M, E; A).

In the following examples we assume (M™, g) is a compact Riemannian manifold with
g€ WP(M, T°M ), sp > n, and s > 1. The local representations are all assumed to be
with respect to charts in a super nice total trivialization atlas that is GL compatible with
itself. The first example is taken from [5].

e Example 1: Differential Consider d : C>°(M) — C*°(T*M). The local representation
of dis Q : C*(p(U)) — C*(¢(U),R™) which is defined by

Q(f)(a)

po d(p_l ofop)o go_l(a)
_of ;
po (gilee1@nde’le-1@)
= (e 20
- axl as 761’" a
Here we used p = Id and the fact that if g : M — R is smooth, then

dgop™) i
(dg)(p) = Tlsﬂ(ﬁ)daj lp

Clearly each component of () is a continuous operator from (C°(¢(U)), |.|leq) to
We=L4(p(U)) (see Theorem 3.9; note that p(U) = R™). Also considering that

_ 0Oh A o
- %7 [Qzla¢]h - 8ZEZ

the required property for [Q;1, ] holds true.
Hence d can be viewed as a continuous operator from W®?(M) to W 14(T*M).

Vi<i<n Qii(h) h

e Example 2: Gradient Suppose e and ¢ are such that for balls {2 C R"” or for {2 = R"
WeP(Q) x We(Q) — WI(Q)
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In section 5 we proved that sharp, : W¢(T* M) — W4(T M) is well-defined and con-
tinuous. Also in the previous example we showed that for all e and ¢, d : Wetb4(M) —
We4(T*M) is well-defined and continuous. Consequently grad, : We*'4(M) —
We4(T M) defined by

grad, = sharp, o d
is also continuous.

Example 3: Divergence Consider div : C*°(T'M) — Func(M, R). Here we will show
that if e and ¢ are such that

WHP(R™) x WeI(R™) — WI(R™) (A2)
WeP(R™) x WebI(R™) — Web4(R™) (A.3)

then div can be considered as a continuous operator from W4(TM) to Web4(M).

The local representation of divergence with respect to the coordinate chart (U, ¢) is
Q : C=(p(U),R") — Func(p(U),R) defined by

Q(Y)=podiv(p oY oplop™t (Y:pU)—=R", Y= --,Y")
= diV((Y1 0p)di+ -+ (Y"o0¢)0,)o (pfl

Note that in the above, p = Id and
p Y op)=p ' (Y'op, Y op)=(Y' o)+ -+ (Y" 0 )0,

Moreover, we used the fact that for any vector field X defined on U

_ ~ a 1 %) _ —
(divX)ogp IZZ\/thogp—l@xj [(v/detgo ™) (X7 0]
=1

Also note that Q(Y) = Y7, Q1;(Y7) where Q15 : C=(p(U),R) — Func(p(U),R)
and for all f € C*(¢(U),R), Q1;(f) is the first (the only) component of

Q(O,...’O’ f ’07...70)
~~

4t position

That is,
1 0
VlS]STL Ql](f): \/WOQO_l&CEj [(vdetgogp_l)(f)}

Now suppose f € C°(¢(U)). Sothere exists K € K(p(U)) suchthat f € W2 (o(U)).
It follows from the hypotheses on e and q that (see Theorem 3.14)

Wie (0(U)) x Wg((U)) = W*(p(U))

loc

WP (p(U)) x Wi (p(U)) < We1(o(U))

loc

Also by Theorem 3.24 we know that /detg o ¢! and W are in WP (p(U)).
Hence we have the following chain of continuous maps

We7q — We7q — We_]-?q — We_]-vq

[ (Vdetgop™)f — %((\/detg o ) f) = \/th10 p= a(z,j((\/detg o™ f)
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which proves the continuity of Q1; : (C°(p(U)), ||.lleq) — W 14 (p(U)). Finally
considering that
W,

V1§]§n [Qlj:¢] 83:3

the required property for [Q;1, ] obviously holds true.

Remark A.2. Instead of A.2 and A.3, we may alternatively assume that for all balls
QCR"

WHP(Q) x WeI(Q) — W(Q)
WHP(Q) x Wel9(Q) — We9(Q)

and work with nice charts instead of super nice charts. However, if we do so, then we
need to additionally assume that e and q are such that % : Wed(Q) — Weba(Q)
(1 < 5 < n)is continuous (see Theorem 3.9).

Example 4: Lie Derivative Let X € W3P(TM). Consider Lx : C®(T*M) —
['(T*M). Here we will show that if e and ¢ are such that

WHP(R™) x WebYR™) — We4(R™) (A4)
WP (R?) x WUR") — WeH(R") (A.5)

then Ly can be considered as a continuous operator from We4(T* M) to We=L4(T*M).
The local representation of Ly with respect to the coordinate chart (U, ¢) is

Q : C(o(U),R"™)) — Func(p(U), R™")) defined by
QUF)=poLx(poFop)op™ (F:pU)—=R™, F=(F,.4)
In components

(Q(F))lllk = Piy-ig, © LX(p_l oFo 90) ° 90_1 = (Lx(p oFo 90))%1 ‘i 90_1
Recall that if 7" is any k-covariant tensor field on U then

(LxT)is, 097 = S0 p) 2 09 )
p

O(XPop™) - A(XP oyl )
Ox™ (Tpin-iy, © Dt T(Tir-ik_lp oy

Therefore

(QUF)iiy = Y (XP 0™ )—1+
I(Xrop™) D(X? 0 )

D piziy T T g i

Now note that
(QUE))iy iy = Z Q(i1~~ik)(j1"'jk)(Fjl"-jk)
J1-Jk
where
Qir-in) i) - O (p(U), R) = Func(p(U), R)

and for all f € C*(p(U),R), Q-ip)(j1-jr)([) s the (i1 - - - i})-component of Q(F)
with

F

P .
1k 0 otherwise

{f if iy =1, ik =
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Hence
i1 i - af
Q(il'“ik)(jl“']k) Z 0j) 5 . Xp °wv )8$p+
12 (3 a(le o SD ) 11 Tp—1 8<Xj1 ° 30_1)
0j3 5%Tf+”'+5jl“‘5jifle

Now suppose f € C(p(U)). So there exists K € IC(p(U)) suchthat f € W (p(U)).
It follows from the hypotheses on e and ¢ that (see Theorem 3.14)

Wit (p(U)) x Wi " (p(U) = W H4(p(U))

loc

Wise " (p(U) x W (p(U) = W H9(p(U))

loc

Also by Corollary 3.21 and Theorem 3.11 we know that for all p and ¢, X? o ¢! is in

A(XPop~! 1
WP and % isin W, "7 . Hence

Qir-in) i) * (CZ(@(U)), [ lleg) = W (p(U))
is continuous. Moreover,

1 ) a¢
[Q(h--m )(F1-dk) h 25 : 5k X?o 90 )axph

and so, as an immediate consequence, the required property for [Q;,...;,)(j,--j, ), ¥| holds
true.

Remark A.3. Instead of A.4 and A.5, we may alternatively assume that for all balls
QCR”

WP (Q) x Weh4(Q) — We4(Q)
“1P(Q) x WI(Q) — Weh(Q)

and work with nice charts instead of super nice charts. However, if we do so, then we
need to additionally assume that (see Theorem 3.9)

e 5and p are such that 5 : WP(Q) — W5 17(Q) (1 < j < n) is continuous.

e ¢ and q are such that L Wer(Q) — Weba(Q) (1 < j < n) is continuous.

Example 5: Covariant Derivative Consider V : C>(TM) — T(T}™ M). Here we
will show that if e and ¢ are such that

WP (RY) x WOIRY) < W 9(R") (A6)

then V can be considered as a continuous operator from W& (T M) to We=ba(T 1 M).
The local representation of covariant derivative with respect to the coordinate chart
(U, ) is Q : C=(p(U), R™"") — Func(o(U),R™"""") defined by

QF) = joV(p o Fog)op™ (F:pU)—R"

In components

(QE)d = plil oV(ptoFop)op™ = (V(p o Fop)llil op™

k+l)

F (Fjl Jl))

11
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Recall that if 7" is any (k) -covariant tensor field on U then

(VD)L o™ = (Vi) 00!

11 Zk
0 ;
= 5 (T 0w +Z TP 900 )T o ) oo+ (TP 0 o )T, 0 7 )
Z T o rf;“ o )k (TP o™ )(TP, 0™
Therefore

F Jiregr o 9 Fjr“jz
(Q( ))zl T ax,r G eerig

pJ j ) —1 Ji-Ji—1P ) —1

+ Z F1Z1 2’Lkl Fjlpo(p ) + (El ’Lk )(F"I]"ino(p )

Z FRINTP 0@ ) oo (B (I 0p7h)

Now note that

]1 g1 (1-41) J1 Jz) F]l i
( ’1 AT Z Q (31--igT) 21 zk ( 110k )
Js 7/.5

where o
Q(jl"'jl)(jlﬁ"'ji) : C®(o(U),R) — Func(p(U),R)

(d1-ir) (31 +1k)

and for all f € C*(o(U),R), lel j,ir)](ln ]’Z)k)(f) is the (i1 - - - ixr)U1"9)-component of
Q(F) with

it _ Joifa =, i =ik01=J1, 0=
Ltk 0 otherwise

Hence
(G130 Gr--d1) _ sin ik §71 . jli
Q(il"‘ikr)(il“‘%k)(f) o 551 5% 531 53'1 agﬂf
i Sk gT2 L. S0 J1 -1 v, Sikgi L g0t Ji -1
F O (AT 09T ) e G OG- G T ()T 00T

—51'2--~5Ek52'1---5§;(f)(r“ ) O St .5§;(f)(r% )

2 e 1 m k-1 J1 Tk
Now suppose f € C°(p(U)). So there exists K € K(p(U)) suchthat f € W (o(U)).
It follows from the hypotheses on e and ¢ that (see Theorem 3.14)

Wi P ((U)) x W(p(U)) = Wb (o(U))

loc

Also we know that for all a, b, and ¢, T'¢, o ¢! is in I/Vl‘zzl’p . Hence

QUL ) (C(P(U)), [ leg) = WM (1))
is continuous. Finally, considering that
[Q(Jl G0 (G1dr) w] _ 521 LSRG 5jza_¢h

(i1--apr) (i1 -+1k) ik J1 J Oxr

the required property for [QY"7) G-t ,w] clearly holds.

(i1--igr (11 U
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Remark A .4. Instead of A.6, we may alternatively assume that for all balls () C R"
W3 hP(Q) x We(Q) — W H4(Q)

and work with nice charts instead of super nice charts. However, if we do so, then we
need to additionally assume that e and q are such that 52 : W*(Q) — We14(Q)
(1 < 7 < n)is continuous (see Theorem 3.9).
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