
ADAPTIVE MULTILEVEL FINITE ELEMENT SOLUTION OF THE
POISSON-BOLTZMANN EQUATION II: REFINEMENT AT SOLVENT

ACCESSIBLE SURFACES IN BIOMOLECULAR SYSTEMS

N. BAKER, M. HOLST, AND F. WANG

Abstract. We apply the adaptive multilevel finite element techniques described in [20] to the
nonlinear Poisson-Boltzmann equation (PBE) in the context of biomolecules. Fast and accurate
numerical solution of the PBE in this setting is usually difficult to accomplish due to presence of
discontinuous coefficients, delta functions, three spatial dimensions, unbounded domains, and rapid
(exponential) nonlinearity. However, these adaptive techniques have shown substantial improve-
ment in solution time over conventional uniform-mesh finite difference methods. One important
aspect of the adaptive multilevel finite element method is the robust a posteriori error estimators
necessary to drive the adaptive refinement routines. This paper discusses the choice of solvent
accessibility for a posteriori error estimation of PBE solutions and the implementation of such rou-
tines in the “Adaptive Poisson-Boltzmann Solver” (APBS) software package based on the “Manifold
Code” (MC) libraries. Results are shown for the application of this method to several biomolecular
systems.

1. Introduction

The Poisson-Boltzmann equation (PBE) is a nonlinear partial differential equation (PDE) funda-
mental to Debye-Hückel continuum electrostatic theory [13]. The PBE determines a dimensionless
electrostatic potential u(x) = ecΦ(x)/(kBT ) around a collection of charges immersed in a salt so-
lution, where Φ(x) is the electrostatic potential at x ∈ R3. For a 1 : 1 electrolyte, the PBE can be
written as

(1.1) −∇ · (ε(x)∇u(x)) + κ̄2(x) sinh(u(x)) =
4πe2

c

kBT

Nm∑
i=1

ziδ(x− x̄i).

This PDE is generally solved in some domain Ω ⊆ R3 with the condition u = ū on ∂Ω, the boundary
of Ω. The physical system corresponds to Ω = R

3 and ū = 0. In the PBE, the dielectric value
ε jumps by one or two orders of magnitude at the interface between the protein and the solvent.
Additionally, the modified Debye-Hückel parameter κ̄2 (a function of the ionic strength of the
solvent) is also discontinuous at an ion exclusion region surrounding the biological structure. The
structure itself (e.g., a biological molecule, or a membrane) is represented implicitly by ε and κ̄, as
well as explicitly by the Nm point charges qi = ziec at the positions x̄i (with the distributions δ(·)
reflecting the point-charge behavior).

The importance of this equation in biomolecular modeling is well-established; cf. [9, 36] for
thorough discussions. A number of papers have appeared in the literature in the last ten years
presenting various numerical techniques for approximating the solution to (1.1) accurately and
efficiently. These methods include uniform-mesh finite difference solutions [2, 14, 25, 27, 29, 32, 36,
35, 22, 18, 19], integral equation-based solutions (necessarily restricted to linearizations) [12, 14, 26,
29, 30, 36, 41], and non-adaptive finite element methods [10, 11]. Such non-adaptive finite element
techniques show a factor of two improvement in performance over uniform mesh techniques [11].
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An adaptive approach for an axi-symmetric case resulting in a two-dimensional problem appears
in [8]. The worked described in [20] for the full three-dimensional nonlinear problem combines
adaptive refinement driven by robust a posteriori error estimators with multilevel finite element
methods to illustrate that the completely general problem can be solved with orders of magnitude
reduction in solution time compared to uniform-mesh approaches.

We will use the adaptive multilevel finite element method of Reference [20] to solve the nonlinear
PBE around biomolecules. The a posteriori error estimation scheme will be described in the context
of the solvent accessible surface of these protein and nucleic acid systems. Specifically, we will show
how the discontinuous functions ε and κ̄2 can be used in to drive adaptive refinement routines.
Additionally, we will outline implementation of routines for the fast evaluation of these functions.

The core numerical procedures are implemented using the Manifold Code (MC) [17, 21, 20]
libraries, designed by one of the authors (M. Holst) over several years at Caltech and UC San
Diego. MC is designed to solve general weak formulations of nonlinear elliptic equations of tensor
equations on 2- and 3-manifolds [17], a general class of problems which includes the PBE. MC
employs a posteriori error estimation, adaptive simplex subdivision, unstructured algebraic mul-
tilevel methods, global inexact-Newton methods, and homotopy methods, for the highly accurate
numerical solution of this class of problems. The key features of MC, as well as its performance
with respect to alternative methods, are described in [17]. These include inexact-Newton multilevel
solvers, complex mesh data structures, adaptive refinement based on a posteriori error estimates,
and parallelization of the solution algorithm. The MC software and various supporting tools may
be found at the following web site:

http://www.scicomp.ucsd.edu/~mholst/codes/mc/

The specific features required to solve PDEs for biomolecular systems are implemented in the
“Adaptive Poisson-Boltzmann Solver” (APBS) software package, designed by one the of the authors
(N. Baker). This package uses the numerical routines from MC to efficiently solve the PBE for
proteins and nucleic acids. The software employs two different solvent accessibility algorithms,
implemented in two separate libraries. The first is the SAV algorithm of You and Bashford [42],
described briefly in §4.1. The second is the HASH algorithm developed by one of the authors (N.
Baker), described in some detail in §4.2.

Outline of the paper. In §2, we review the elements of the adaptive multilevel finite element
method [20] as applied to the PBE. A justification for error estimation and adaptive refinement
based on solvent-accessible surfaces is described in §3. Fast algorithms for evaluating solvent
accessibility are presented in §4. The methodology is tested on several protein systems in §5 and
the conclusions are presented in §6.

2. Review of the Adaptive Multilevel Finite Element Method for the

Poisson-Boltzmann Equation

For completeness, we will provide a basic outline of the adaptive multilevel finite element method.
Algorithmic details, more comprehensive discussions, and additional references are all presented in
the previous paper in this series [20].

2.1. Weak form of the Poisson-Boltzmann equation. The finite element method approxi-
mates the exact solution u as a combination of piecewise polynomial basis functions uh. For our
implementation, we choose the set of piecewise linear finite element basis functions. This basis
spans Vh, a subspace of the Sobolev space H1

0 (Ω), which includes all functions which are differen-
tiable one time under the integral. Clearly, the strong form of the PBE, as written in (1.1), requires
that the solution be twice differentiable for the equation to hold in the classical sense. Therefore, to
accommodate its solution by finite element methods, the equation is represented by the nonlinear
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form,

(2.1) 〈F (u), v〉 =
∫

Ω
(ε∇u) · ∇v + κ̄2 sinh(u)v − fv dx,

where v is a test function. To employ a Galerkin method, we begin by constructing an approxi-
mation ūh to the boundary potential function ū, and we then look for a Galerkin approximation
which satisfies the weak formulation of the PBE:

(2.2) Find uh ∈ ūh + Vh such that 〈F (uh), vh〉 = 0, ∀ vh ∈ Vh.

2.2. Methods for solving the discretized equation. The inexact-Newton method allows the
nonlinear problem (2.1) to be solved numerically for uh by iteratively solving linearized versions
of (2.1) for corrections to the solution until a desired error tolerance is reached. Not surprisingly,
the computational complexity of this method is dominated by the solution of the linear algebraic
equations in each iteration. Multilevel methods are the only known provably optimal or nearly
optimal methods for solving these types of linear algebraic equations, resulting from discretizations
of a large class of general linear elliptic problems [6, 15, 39]. These methods apply an interpolation
operator to the discretization of the linearized PBE to project it onto a coarser mesh. This coarser
discretization provides a fewer number of unknowns, making the problem easier to solve. Several
levels of this interpolation scheme leads to a small problem which can be solved exactly. The
approximate solution on the finest mesh can then be obtained by using the coarse solutions to
accelerate the convergence of iterative methods on the finer levels.

2.3. Error estimation and adaptive mesh refinement. Much activity has recently been cen-
tered on a posteriori error estimation and its use in adaptive mesh refinement algorithms [4, 3, 5,
37, 38, 40]. The challenge for a numerical method is to be as efficient as possible, and a posteriori
estimates are a basic tool in deciding which parts of the solution require additional attention. The
solve-estimate-refine structure in simplex-based adaptive finite element codes exploiting these a
posteriori estimators, is as follows:
Algorithm 2.1. (Adaptive multilevel finite element approximation)

• While (‖u− uh‖X > TOL) do:
(1) Find uh ∈ ūh + Vh such that < F (uh), vh >= 0,∀vh ∈ Vh
(2) Estimate ‖u− uh‖X over each element, set Q1 = Q2 = ∅.
(3) Place simplices with large error in “refinement” Q1
(4) Bisect all simplices in Q1 (removing them from Q1),

and place any nonconforming simplices created in Q2.
(5) Q1 is now empty; set Q1 = Q2, Q2 = ∅.
(6) If Q1 is not empty, goto (4).

• End while

The refinement scheme is driven by the error estimate in step 2. This adaptive method begins
with subdivision of elements with error estimates above a certain tolerance. The details of these
error estimates and their relationship to discontinuous coefficients in the PBE will be discussed
in §3. The subsequent simplex subdivision can take a variety of forms, as shown by Figure 1. This
figure illustrates a single subdivision of a 2-simplex or a 3-simplex using either 4-section (first figure
from left), 8-section (fourth figure from left), or bisection (third and sixth figures from left). All of
these methods for mesh refinement are available in MC [17, 21, 20]. The conformity loop (4)–(6),
required to produce a globally “conforming” mesh (described below) at the end of a refinement
step, is guaranteed to terminate in a finite number of steps (cf. [33, 34]), so that the refinements
remain local. A globally conforming simplex mesh is defined as a collection of simplices which meet
only at vertices and faces; for example, removing the dotted bisection in the third figure from the
left in Figure 1 produces a non-conforming mesh.
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Figure 1. Refinement of 2- and 3-simplices using 4-section, 8-section, and bisection.

3. Error estimation and adaptive refinement by solvent accessibility

An overview of adaptive error control in finite element methods was given in the companion
paper [20]. Briefly, the idea is to estimate the behavior of the actual solution to the problem
using only a previously computed numerical solution, referred to as a posteriori error estimation.
One then uses this estimate to build an improved numerical solution by increasing the polynomial
order (p-refinement) or refining the mesh (h-refinement) where appropriate. This procedure affects
not only approximation quality, but also solution complexity: if a target solution accuracy can be
obtained with fewer mesh points by their judicious placement in the domain, the cost of solving the
discrete equations is reduced (sometimes dramatically) because the number of unknowns is reduced
(again, sometimes dramatically). Generally speaking, if an elliptic equation has a solution with
local singular behavior, such as would result from the presence of abrupt changes in the coefficients
of the equation (e.g., the functions ε and κ̄ in the present case), then adaptive methods tend to
give dramatic improvements over non-adaptive methods in terms of accuracy achieved for a given
complexity price. In this section, we will give a brief overview of the residual-based a posteriori
error estimator that was derived in the companion paper [20], and will then discuss a new error
estimation approach for the Poisson-Boltzmann equation based on geometric solvent accessibility.

3.1. Nonlinear residual-based a posteriori error estimators. That one can estimate the
error in an approximation when the solution is unknown seems at first surprising, but in fact such
ideas are used even in basic numerical analysis (cf. Richardson extrapolation [24]). In our setting,
the main idea can be understood by considering an approximation ũ to the following linear equation
for some nonsingular operator A:

Au = f.

We can test the quality of our approximation by forming the residual:

r = f −Aũ.
Note that the error in the approximation e = u− ũ satisfies the error equation:

Ae = A(u− ũ) = Au−Aũ = f −Aũ = r.

Inverting A and taking norms of both sides gives

‖e‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.
If we have a mechanism for estimating or bounding ‖A−1‖, then we can detect when ‖e‖ is large
by monitoring ‖r‖.

This idea lies at the core of the derivation of the a posteriori error estimator in the companion
paper [20], although the derivation is somewhat more complex due to the fact that the equation
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we work with is a nonlinear integral weak form rather than a simple linear operator equation. The
somewhat technical derivation of the complete nonlinear residual-based error estimator employed
by MC can be found in Appendix A in [20], and the realization of the estimator in the specific case
of the Poisson-Boltzmann equation can be found in Appendix B in [20]. In the remainder of this
section, we will discuss the use of a second error estimator based on solvent-accessibility.

3.2. Geometric a posteriori error estimators based on solvent accessibility. The presence
of local singularities in the PBE coefficients leads to rapid changes in solution the neighborhood
of these discontinuities. When nonlinear residual-based error estimators are employed, these rapid
changes are detected in the jump term in the estimator (cf. the expressions in Appendices A and
B in [20]), and as a result almost all refinement occurs at the discontinuity interface. This is in
fact the desired refinement behavior; it is in these regions of change, generally associated with the
protein-solvent interface, that we wish to refine simplices to obtain higher levels of accuracy.

Rather than use the somewhat expensive residual-based error estimator in [20] to drive the
refinement at the dielectric boundary, we describe now a geometric error indicator which will
mark dielectric boundary elements for refinement more directly, resulting in a less expensive error
indicator. Note that in general, the functions ε(x) and κ̄2(x) are defined as

ε(x) =
{
εw x ∈ Γ
εp otherwise κ̄2(x) =

{
κ x ∈ Γ′

0 otherwise,(3.1)

where Γ′ ⊆ Γ ⊂ Ω are (often complicated) volumes in R3 and εs, εw, and κ are positive parameters.
While these discontinuous representations of ε and κ̄2 are widely used, there are multiple definitions
for Γ and Γ′ employed in PBE solvers.

The various choices for Γ and Γ′ can be distinguished with the aid of definitions from [42]. Let
P be the set of ordered pairs (x̄i, ri) representing the the centers and radii of all atoms, and let
ρ ≥ 0 be a probe molecule’s radius. The free volume F (ρ, P ) is simply the collection of acceptable
locations for the center of a probe sphere where there is no overlap between the probe and protein
atoms,

(3.2) F (ρ, P ) = {y ∈ Ω : dist(x̄i, y) ≥ ri + ρ, ∀(x̄i, ri) ∈ P},
where dist(a, b) is the distance between two points a and b. The solvent accessible volume S(ρ, P )
enlarges the free volume by the radii of the probe spheres in F (ρ, P ),

(3.3) S(ρ, P ) = {y ∈ Ω : dist(x, y) ≤ ρ, x ∈ F (ρ, P )}.
Both of these volume definitions are commonly used for Γ and Γ′, with ρ often taken as zero or
the radius of a solvent or ion probe. The APBS code allows the use of either of two “solvent
accessibility” algorithms (cf. §4), which efficiently determine whether a point lies in Γ or Γ′ .
Through the judicious use of these algorithms, APBS can efficiently handle any of the volume
definitions.

Adaptive refinement is implemented by bisection of those simplices which cross discontinuities
in ε or κ̄2. During the initial mesh generation and subsequent refinement, vertices are assigned
values for ε and κ̄2 using one of the methods in §4. Refinement is performed on any simplex with
differing values of these variables at its vertices. For efficiency, new vertices are labeled with ε and
κ̄2 only if they are associated with simplices falling across the discontinuous boundaries. A similar
treatment is used for the evaluation of quadrature points. The solvent accessibility algorithms are
called only if the quadrature point lies in a simplex with differing values of ε or κ̄2 at its vertices.
This method reduces the overhead associated with checking solvent accessibility.

3.3. Generating the initial meshes to start mesh refinement. Two methods have been
implemented in the APBS software to create initial meshes for the start of mesh refinement.

The first method constructs initial finite element triangulations by using the charge centers
within the molecule as a subset of the initial vertex locations. Additional nodal points are added
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to three spheres which enclose the biomolecule. The largest of these spheres is used to denote
the Dirichlet boundary of the computational domain. This outer sphere should made sufficiently
large so that a simple boundary condition can be assumed. The nodal points on the two interior
spheres are used to prevent excessively thin or otherwise badly shaped simplices. Application of
a Delaunay mesh generating routine to this set of charge and sphere vertices completes the initial
triangulation. While this method provides very accurate representation of the delta functions,
the non-optimal Delaunay algorithm can cause long initial setup times for large biomolecules and
generate meshes which are too large to be handled efficiently by the multilevel algorithm. Since
the molecules described in this paper are fairly small, this method will be used for the numerical
examples presented in this paper.

The second method starts with a very coarse triangulation of the problem domain and refines
those simplices containing more than a target number of delta functions (i.e., charges). This
algorithm is very fast and can be stopped at any desired target number of coarse mesh simplices.
However, this method requires the storage and look-up of the delta function locations which can
create additional time and memory overhead during the solve-estimate-refine stages of the PBE
solution.

4. Solvent Accessibility Algorithms

These algorithms attempt to rapidly evaluate the solvent accessibility of points in Ω for use in
quadrature and refinement routines. Both algorithms give exact results for their respective models
of solvent accessibility.

4.1. Solvent accessible volume (SAV) algorithm. The SAV algorithm, created by You and
Bashford [42], uses atomic radii and position to calculate a set of geometry objects which provide an
analytical representation of the solvent accessible volume S(ρ, P ), as defined in (3.3). Reference [42]
shows how particular combinations of conical, toroidal, tubular, and spherical shell regions can
exactly describe S(ρ, P ). Furthermore, they show that the complexity of describing the structure
and evaluating the solvent accessibility of points is linear in the number of atoms.

This algorithm begins by constructing a set of data structures for the analytical description of the
solvent-accessible volume. These structures include objects describing the geometry associated with
the shells, cones, and tubes described above. Although this initial construction of the structures is
time consuming, it only occurs in the initialization phase of SAV; subsequent evaluations of solvent
accessibility are much faster. By determining the location of a point with respect to a few of these
geometry objects, SAV can quickly assess whether a point lies within S(ρ, P ).

The SAV algorithm was provided by Dr. D. Bashford at the Scripps Research Institute as C++
code. This was modified from lattice to single point evaluation and wrapped in C before integration
into APBS.

4.2. Atomic hash list (HASH) algorithm. In many cases, the simpler F (ρ, P ) free volume
suffices for PBE calculations. While SAV can be used to calculate this volume (in the limit ρ →
0), less complicated methods are also available. One such method is based on the Verlet cell
index method common to large molecular dynamics simulations [31, 16, 1]. As used in molecular
dynamics, the cell method divides the computational domain into a collection of cells to aid in
the evaluation of neighbor lists, or atoms within a certain distance from each other. A similar
approach is used here in the HASH algorithm. The set of atoms in the molecule is divided into
lists associated with particular regions of space. These can then be used to quickly and accurately
evaluate the accessibility of any point in space.

The HASH algorithm begins with the creation of a hash table; our data structure associated
with the Verlet cell index lattice. Given a desired number of simplices, a uniform hexagonal mesh
is created to surround the biomolecule, leaving at least ρ space from the surface of all atoms. Next,
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a list of atoms is associated with each simplex in the mesh. Let

Ei(ρ, P ) = {y ∈ Ω : dist(y, x̄i) < ri + ρ}

be the solvent excluded volume due to atom i, such that F (ρ, P ) = Ω−
⋃N
i=1Ei(ρ, P ). Any simplex

which contains a portion of Ei(ρ, P ) will have atom i assigned to at least one of its vertex lists.
Like SAV, this initial assignment only needs to be performed once. Given a point y, accessibility
is determined by finding the simplex which contains y and evaluating dist(y, x̄i) < ri + ρ for each
atom i in the simplex list. If this inequality is false for all atoms in the simplex list, then y is in
F (ρ, P ).

This method has several parameters which can be adjusted to suit the particular system of
interest. Obviously, the number of simplices can be tuned to obtain a desired average number of
atoms per simplex. However, the hash table lattice can also be altered to fit the particular system.
Although APBS currently uses a uniform hexagonal lattice in the HASH implementation, any mesh
in which a point can be associated with a simplex in O(1) time is suitable for this algorithm.

5. Numerical test results

The use of adaptive multilevel finite element method to obtain solutions to the PBE was tested
by numerical experiments on various biomolecules. APBS and MC were compiled with gcc (flags
‘-g -O’) and run under Linux on a 500 MHz Intel Pentium III (256 MB RAM) computer. The
initial meshes were generated using the atomic coordinates and an outer sphere of 3 times the
biomolecular radius a. The value of a was taken to be the largest distance of any atom from the
protein center of geometry. The Dirichlet boundary condition ū on this outer sphere was calculated
from the free space solution of the linearized PBE for a spherical, non-polarizable ion located at x̄

(5.1) ū(x) =
(

e2
c

kBT

)
ze−κ(a−r)

εsε0(1 + κa) |x− x̄|
where z is the total protein charge, εs is the solvent dielectric, and κ is related to the ionic strength
of the salt solution [19]. Solutions were generated for both the linear (κ̄2 = 0 everywhere) and
nonlinear (κ̄2 chosen to represent 150 mM ionic strength) forms of the PBE at each level. The
preconditioned conjugate gradient method was applied using the algebraic multigrid method as the
preconditioner until an error of 0.01 per simplex was reached.

Each initial mesh underwent 7 levels of adaptive refinement according to a posterior error es-
timates of the PBE solution. The Delaunay generator naturally generates simplex elements near
and inside the biomolecule in the coarse meshes which are on the order of a few angstroms due
to the charge point separations in the data, which form the vertices of the simplex mesh. Since
the simplex elements touching the dielectric boundaries are always marked for refinement by the
solvent accessibility error indicator, the simplex diameters on the dielectric boundaries approach
2−7Å. We are not aware of any results in the literature which come anywhere close to this type
of resolution. For example, typical AChE finite difference methods evaluate the solution on a 110
Å3 uniform cubic mesh with a 1 Å resolution, requiring the evaluation of roughly 106 unknowns.
However, to obtain the roughly the same accuracy available at the 2−7 Å resolution of adaptive
methods, nearly 1026 unknowns would need to be determined. Clearly, this is a number too large
for even the most powerful of current supercomputing resources.

Four biomolecules were chosen for their different electrostatic properties. First, the neutral HIV
integrase dimer (HIV IN, Fig. 2c) offers the chance to observe biomolecular electrostatic fields
in the absence of a net charge. Mouse acetylcholinesterase (mAChE, Fig. 2d) was chosen for its
negative charge distribution, which has been implicated in the fast catalysis of positively charged
substrates [7]; while fasciculin-2 (FAS2, Fig. 2b) posses a net positive charge, which contributes to
its inhibition mAChE [28]. Finally, a DNA 36-mer (DNA, Fig. 2a) was chosen as a example of the
family of highly charged nucleic acids.
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Figure 2. Structures of the test biomolecules as generated by VMD [23]. Charged
groups are displayed as red spheres, other atoms as blue lines or by a protein back-
bone tube. The DNA 36-mer is shown in A, fasciculin-2 in B, HIV integrase in C,
and mouse AChE in D.

Some of the initial meshes generated using the Delaunay triangulation scheme described above
are shown in Figure 3. The solutions to the linear PBE were calculated using the APBS software
packages and the previously described refinement schemes. Although results for the nonlinear PBE
are presented, the solutions can be easily found with the APBS software package. Table 1 shows
the CPU time for refinement of the initial mesh and obtaining the solution to the linear PBE with
the HASH and SAV algorithms. This table also lists the number of atoms in each molecule, the
total charge, and the numbers of nodal points (vertices) on the finest level of refinement. Although
the HASH algorithm was able to compute solvent accessible volumes for the mAChE molecule,
discrepancies in the SAV code caused run-time errors which prevented a solution with the SAV
algorithm. The results of the PBE calculations are show in Figures 4 and 5. In Figure 4, contours
of the potentials generated for the DNA, HIV IN, and mAChE are shown. Figure 5 shows potential
contours for the FAS2 system as well as a slice through the finite element mesh.

6. Conclusions

We applied the adaptive multilevel finite element techniques described in [20] to the nonlinear
Poisson-Boltzmann equation in the context of biomolecules. While numerical solution of the PBE
in this setting is usually difficult to accomplish due to presence of discontinuous coefficients, delta
functions, three spatial dimensions, and rapid nonlinearity, we have shown here and in the com-
panion paper [20] that combining error estimation and adaptivity with the global inexact Newton-
multilevel methods presented in [22] yields a rapid and extraordinarily accurate approximation
technique. We also demonstrated here the effectiveness of solvent accessibility as an alternative
tool for a posteriori error estimation in the particular case of PBE solutions, where the dielectric
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Figure 3. Initial meshes from Delaunay triangulation of charge points for the
DNA 36-mer (A, viewed along DNA axis) and FAS2 (B).

Table 1. Numerical test results for linear problem. This lists the CPU time re-
quired to refine a precalculated mesh 7 times and obtain the multilevel solution of
the PBE on each refinement level. Please refer to the text for additional details.
∗Due to discrepancies in the SAV C++ code, we were unable to obtain conforming
results for this test case.

Molecule # Atoms Total charge (e) # Nodes Time (sec.)
HASH SAV HASH SAV

FAS2 906 +4 213601 182317 540 645
HIV IN 3008 0 408079 338140 1095 1829
mAChE 8340 -8 450759 397314 1393 −∗

DNA 2302 -70 510272 440072 1640 2188

boundary drives most of the refinement. We then gave a series of numerical experiments with the
implementation of such techniques in the “Adaptive Poisson-Boltzmann Solver” (APBS) software
package based on the “Manifold Code” (MC) libraries, together with the use of two solvent accessi-
bility libraries VSAV and HASH. Results were shown for the application of this method to several
biomolecular systems.
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