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Abstract. In this article we develop and analyze two-level and multi-level methods for the
family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order
elliptic problems with rough coefficients (exhibiting large jumps across interfaces in the domain).
These methods are based on a decomposition of the DG finite element space that inherently
hinges on the diffusion coefficient of the problem. Our analysis of the proposed preconditioners is
presented for both symmetric and non-symmetric IP schemes, and we establish both robustness
with respect to the jump in the coefficient and near-optimality with respect to the mesh size.
Following the analysis, we present a sequence of detailed numerical results which verify the
theory and illustrate the performance of the methods.
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1. Introduction

In this paper, we develop and analyze robust multilevel preconditioners for discontinuous
Galerkin (DG) discretizations of the second order elliptic equation with strongly discontinuous
coefficients: {

−∇ · (κ∇u) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ IRd is a bounded polygon (for d = 2) or polyhedron (for d = 3). The scalar
function κ = κ(x) denotes the diffusion coefficient which is assumed to be piecewise constant
with respect to an initial non-overlapping subdomain partition of the domain Ω, denoted TS =

{Ωm}Mm=1 with ∪Mm=1Ωm = Ω and
o

Ωm ∩
o

Ωn= ∅. Although the (polygonal or polyhedral) regions
Ωm ,m = 1 . . .M might have complicated geometry, we will always assume that there is an initial
triangulation T0 such that κT = κ(x)|T is a constant for all T ∈ T0. Problem (1.1) belongs to
the class of interface or transmission problems, which are relevant to many applications such as
groundwater flow [55], electromagnetics [54], semiconductor device modeling [32, 61], and fuel
cells [76, 78]. The coefficients in these applications might have large discontinuities across the
interfaces between different regions with different material properties.

Finite element discretizations of (1.1) lead to linear systems with badly conditioned stiffness
matrices; not only is the ill-conditioning with respect to the mesh size, but the condition num-
bers depend linearly on the largest jump in the coefficients. Much research has been devoted
to developing efficient and robust preconditioners for use with iterative methods for conforming
finite element discretizations of (1.1). The resulting preconditioners can be grouped into two
basic classes of methods: non-overlapping and overlapping methods. Both classes of precondi-
tioners have their advantages and disadvantages, and as a result it is desirable to have access
to robust and efficient methods from both classes. Domain decomposition Balancing Neumann-
Neumann [59], FETI-DP [56] and Bramble-Pasciak-Schatz preconditioners [12] belong to the
first class of methods (the non-overlapping methods). They have been shown to be robust with
respect to coefficient variations and mesh size (up to a logarithmic factor), in theory as well as
practice, but only if special coarse spaces and coarse solvers (such as those based on discrete
harmonic extensions [43, 60, 44, 67]) are constructed (see also a survey paper by Xu and Zou [81]
for many techniques and references).

The class of overlapping methods encompasses, among others, overlapping Schwarz meth-
ods, geometric multigrid, and more general Multivel methods, as such the Bramble-Pasciak-Xu
(BPX) preconditioner (see e.g. [13, 14, 79]). In practice, it has always been observed that all
these methods, when used as preconditioners in conjugate gradient iteration, result in efficient
algorithms that behave robustly with respect to the jump in the coefficients, independently of
the problem dimension. However, the first analyses show robustness only in certain particular
cases: quasi-monotonicity assumption on the coefficients [42]; space dimension d ≤ 2 [10]; or
when each subdomain Ωm touches the Dirichlet boundary [77, 63]. In general, these theories
predict a deterioration in the rate of convergence of multigrid and overlapping domain decom-
position methods, with respect to both the coefficients and the mesh size. An improvement in
the rate of convergence can be achieved by resorting to basis stabilization techniques [72], or by
employing energy minimizing coarse spaces [75].

However, we note that there is a discrepancy between these theoretical results and the con-
vergence rate actually observed in practice. This is due to the fact that the analysis approach
used in earlier works was based mainly on the standard theory of CG (see for example [52, The-
orem 9.4.12], or [65, Theorem 6.29]) which provides only bounds in the worst case scenario, and
does not exploit the spectral structure of particular preconditioned system. The preconditioned
system may actually have only a few small eigenvalues (depending on the coefficient distribution
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and mesh size), while the other eigenvalues are bounded nearly uniformly. This was first ob-
served by [49, 74] for the simple Jacobi preconditioner. By using a more sophisticated approach
to CG theory (see [6, Section 13.2], [7]) and considering the distribution of the spectrum of the
preconditioned system, it is possible to show that the small eigenvalues do not influence the
(observed) asymptotic convergence rate. This approach has been pursued in [80, 82], where it
is show that both standard multilevel and overlapping domain decomposition methods lead to
nearly optimal preconditioners for CG algorithms. See also [27] for further extensions in the
case of highly graded adaptive meshes.

While preconditioners for conforming discretizations have been considered by a number of
researchers, less work has focused on the construction of preconditioners for non-conforming
approximations of (1.1). In this article, we consider preconditioners when the family of Interior
Penalty (IP) Discontinuous Galerkin (DG) methods are used to approximate (1.1). DG methods
are designed to provide robust discretizations of partial differential equations of nearly any type,
and can even handle equations whose type changes within the computational domain. They are
naturally suited for multi-physics applications, and for problems with highly varying material
properties, such as problem (1.1). The development of efficient solvers for DG discretizations has
been pursued only in the last ten years; however, due to the growing importance of DG methods,
there is now considerable interest in this area. Examples of overlapping preconditioners for non-
conforming discretizations are found in [67, 66], where the analysis depends on the assumption
that the coefficient κ is quasi-monotone. Since the algorithms we develop here contain the
solution of systems corresponding to non-conforming discretizations of the model problem (1.1)
as a part of the preconditioning step, the analysis presented here gives bounds on the convergence
rate for two level and multilevel methods for the lowest order non-conforming Crouseix-Raviart
finite element discretizations.

While classical approaches have been successfully extended for second order elliptic prob-
lems, discontinuous nature of the underlying finite element spaces has motivated the creation
of new techniques for the design of solvers. Additive Schwarz methods (of overlapping and non-
overlapping type) are considered and analyzed in [45, 39, 2, 3, 4, 11]. Multigrid methods are
studied in [48, 21, 20, 19, 64, 31]. Two level methods are presented in [35, 23, 24]. More general
multi-level methods based on algebraic techniques are considered in [58, 57]. However, except
from several numerical experiments reported in [35, 34, 3, 36, 57], all these works deal with the
case of a smoothly or slowly varying diffusivity coefficient. For problem (1.1), only in [39, 40, 41]
the authors introduce and analyze non-overlapping BBDC and FETI-DP domain decomposition
preconditioners for a Symmetric Interior Penalty discretization of (1.1). The DG discretization
in only used on the skeleton of the subdomain partition, while a standard conforming approx-
imation is used in the interior of the subdomains. Robustness and quasi-optimality is shown
for the Additive and Hybrid BBDC [40] and FETI-DP [41] preconditioners, even for the case
of non-matching grids. The analysis of the first preconditioner requires an interface condition
relating the magnitude of the coefficient and the mesh-size.

The goal of this article is to design, and provide a rigorous analysis of, a simple multilevel
solver (belonging to the overlapping category), for the family of Interior Penalty methods for
approximating (1.1). Together with the family of IPDG methods (including symmetric and
non-symmetric methods), we consider the corresponding family of weakly penalized or IPDG-0
methods (called Type-0 in [9]). Our approach follows the ideas in [9], and it is based on a splitting
of the DG space into two components that are orthogonal in an energy inner product (more
precisely, in the energy inner product induced by the IPDG-0 methods). Roughly speaking,
the construction amounts to identifying a “low frequency” space (Crouzeix-Raviart elements)
and then defining a second complementary space. Such a decomposition turns out to be critical
to the design of robust preconditioners in the case of PDEs with rough coefficients, such as
problem (1.1). However, a notable difference takes place in the decomposition of the DG space
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introduced for the Laplace equation [25, 9]. For problem (1.1), a stable decomposition can be
obtained by introducing subspaces that depend on the coefficient κ, and this is certainly related
to the splittings used in algebraic multigrid (AMG [16]), where one seeks space decompositions
depending on the operator at hand. In addition, both components of the splitting have a locally
supported basis. As we will show, the analytical results and the preconditioning techniques
obtained through the decomposition introduced in [9] for the Laplace equation can be extended
to the case of problem (1.1) with jumps in the coefficients. With the orthogonal splitting of
the DG space at hand, the solution of problem (1.1) reduces to solving two sub-problems; a
non-conforming approximation to (1.1), and a problem in the complementary space containing
high oscillatory error components. We show that the latter problem is easy to solve, since it
is spectrally equivalent to its diagonal form, and therefore CG with a diagonal preconditioner
is a uniform and robust solver. For the former problem, that is the approximation in the low
frequency or Crouziex-Raviart space, we develop and analyze a two-level (overlapping) method
and a BPX preconditioner. In fact, the theory for the BPX type multilevel preconditioner
follows easily from the analysis of the two-level method.

We follow the approach taken in [80, 82] involving estimating the asymptotic rate of con-
vergence of the preconditioned system. Nevertheless, dealing simultaneously with the jump in
the coefficient κ and the non-nested character of the CR spaces presents extra difficulties in
the analysis which preclude from a simple extension of the works [80, 82]. We are able to es-
tablish nearly optimal convergence and robustness (with respect to both the mesh size and the
coefficient κ) for the two-level method and for the BPX preconditioner (up to a logarithmic
term depending on the mesh size). The resulting algorithms involve the use of a solver in the
CR space that is reduced to a smoothing step followed by conforming solver. Therefore, in
particular one can argue that any of the robust and efficient solvers designed for conforming
approximation of problem (1.1) could be used as a preconditioner here. The solvers are shown
to be robust and uniformly convergent for symmetric IPDG-1 methods. For the non-symmetric
IIPG and NIPG we propose two preconditioners; the symmetric part and a block-Jacobi-two
level method. For the former, we indicate how the theory for second order problems in [9] can be
successfully extended to cover problem (1.1), once the provisions given in this paper are taken
into account. Unfortunately, for the latter, in spite of its simplicity, we are not able to provide
a complete theory at this time, and it will be subject of future research.

Outline of the paper. The rest of the paper is organized as follows. We introduce the IPDG-1
and IPDG-0 methods for approximating (1.1) in §2 and revise some of their properties. The
space decomposition of DG finite element space is introduced in §3. Consequences of the space
splitting and solvers for the IPDG-0 methods are described in §4. The two-level and multi-level
methods for the Crouziex-Raviart approximation are constructed and analyzed in Section5.2
(see §5.3). Section 6 is devoted to the design and analysis of the solvers for both the IPDG-0
and IPDG-1 family. Numerical experiments are included in §7, to verify the theory and assess
the performance and robustness of the proposed preconditioners. The paper is completed with
an Appendix where we have collected proofs of several technical results required in our analyses.

2. Discontinuous Galerkin Methods

In this section, we introduce the basic notation and describe the DG methods we consider for
approximating problem (1.1). To begin, given a triangulation Th of the domain Ω, we denote
Eh := Eoh ∪ E∂h the set of all edges (2D) /faces (3D) of Th, where Eoh is the set of all interior

edges/faces, and E∂h is the set of all boundary edges/faces. Throughout the paper we shall use
the standard notation for Sobolev spaces and their norms. We denote H2(Th) as the set of
element-wise H2 functions, and denote L2(Eh) as the set of L2 functions defined on Eh. We will
also use the notation x1 . y1, and x2 & y2, whenever there exist constants C1, C2 independent
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of the mesh size h and the coefficient κ or other parameters that x1, x2, y1 and y2 may depend
on, and such that x1 ≤ C1y1 and x2 ≥ C2y2.

Trace Operators. Following [5], we recall the definition of the average and jump trace opera-
tors for scalar and vector-valued functions. Let T+ and T− be two neighboring elements, and
n+, n− be their outward normal unit vectors, respectively (n± = nT±). Let ζ± and τ± be the
restriction of ζ and τ to T±. We set:

{{ζ}} =
1

2
(ζ+ + ζ−), [[ζ]] = ζ+n+ + ζ−n− on e ∈ Eoh, (2.1)

{{τ}} =
1

2
(τ+ + τ−), [[τ ]] = τ+ · n+ + τ− · n− on e ∈ Eoh,

We also define the weighted average, {{·}}δ, for any δ = {δe}e∈Eoh , with δe ∈ [0, 1] ∀ e, :

{{ζ}}δ = δeζ
+ + (1− δe)ζ− , {{τ}}δ = δeτ

+ + (1− δe)τ− , on e ∈ Eoh . (2.2)

For e ∈ E∂h , we set

[[ζ]] = ζn, {{τ}} = {{τ}}δ = τ on e ∈ E∂h . (2.3)

We will also use the notation

(u,w)Th =
∑
T∈Th

∫
T
uwdx ∀ u,w ∈ L2(Ω), 〈u,w〉Eh =

∑
e∈Eh

∫
e
uw ∀u,w,∈ L2(Eh).

The DG approximation to the model problem (1.1) can be written as

Find uh ∈ V DG such that ADG(u,w) = (f, w)Th , ∀w ∈ V DG , (2.4)

where ADG(·, ·) is the bilinear form defining the method and can be of two different types. For
the Type-1 family of weighted IP methods (see [70]) we set ADG(·, ·) = A(·, ·) where:

A(uh, w) = (κ∇uh,∇w)Th − 〈{{κ∇uh}}βe , [[w]]〉Eh + θ〈[[uh]], {{κ∇w}}βe〉Eh
+ 〈αeh−1

e κe[[uh]], [[w]]〉Eh , ∀uh, w ∈ V DG .
(2.5)

The weight β = {βe}e∈Eoh , depends on the coefficient κ and therefore it might vary over all

interior edges/faces. For any e ∈ Eoh with e = ∂T+ ∩ ∂T−, we set βe as follows:

βe =
κ−

κ+ + κ−
where κ± = κ|T± , (2.6)

and we define the coefficient κe as the harmonic mean of κ+ and κ−:

κe :=
2κ+κ−

κ+ + κ−
. (2.7)

Remark 2.1. We remark that one could take κe as min{κ+, κ−} since both are equivalent:

min {κ+, κ−} ≤ κe =
2κ+κ−

κ+ + κ−
≤ 2 min {κ+, κ−} ≤ κ± . (2.8)

The equivalence relations in (2.8) show that the results on spectral equivalence and uniform
preconditioning given later on for (2.5) with κe defined in (2.7) (the harmonic mean), will
automatically hold for method (2.5) with κe := min {κ+, κ−}. To fix the notation and to
simplify the presentation we use the harmonic mean as κe [see (2.7)].

The symmetric method was first considered in [70] and later in [38, Section 4] for variable
coefficient (although there it was written using a slightly different notation and DG was only
used in the skeleton of the partition). It was later extended to advection-diffusion problems in
[26] and [33]. In (2.5), θ = −1 gives the SIPG(β); θ = 1 leads to NIPG(β); and θ = 0 gives the
IIPG(β) discretizations. The penalty parameter αe > 0 is set to a positive constant; and for
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θ 6= 1 should be taken large enough to ensure coercivity of the corresponding bilinear forms. We
also introduce the corresponding family of IP(β)-0 methods, which use mid point quadrature
rule for computing all the integrals in (2.5). That is, we set ADG(·, ·) = A0(·, ·) with

A0(uh, w) = (κ∇uh,∇w)Th − 〈{{κ∇uh}}βe , [[w]]〉Eh + θ〈[[u]], {{κ∇w}}βe〉Eh
+ 〈αeh−1

e κeP0
e ([[uh]]),P0

e ([[w]])〉Eh , ∀uh, w ∈ V DG .
(2.9)

where P0
e : L2(Eh) 7→ P0(Eh) is the L2-projection onto the piecewise constants on Eh. We note

that this projection satisfies ‖P0
e ‖L2(Eh) = 1.

Weighted Residual Formulation. Following [22] we can rewrite the two families of IP meth-
ods in the weighted residual framework: for all uh, w ∈ V DG,

A(uh, w) = (−∇ · (κ∇uh), w)Th + 〈[[κ∇uh]], {{w}}1−βe〉Eoh + 〈[[uh]],B1(w)〉Eh , (2.10)

A0(uh, w) = (−∇ · (κ∇uh), w)Th + 〈[[κ∇uh]], {{w}}1−βe〉Eoh + 〈[[uh]],P0
e (B1(w))〉Eh , (2.11)

where B1 is defined as:

B1(w) = θ{{κ∇w}}βe + αeh
−1
e κe[[w]], ∀ e ∈ Eh. (2.12)

Throughout the paper both the weighted residual formulation (2.10)-(2.11) and the standard
one (2.5)-(2.9) will be used interchangeably.

Continuity and Coercivity. The family of methods (2.5) and (2.9) can be shown to provide
an accurate and robust approximation to the solution of (1.1). We define the energy norm
|||·|||DG:

|||uh|||2DG :=
∑
T∈Th

κT ‖∇uh‖20,T +
∑
e∈Eh

κeh
−1
e ‖[[uh]]‖20,e. (2.13)

For the classical IP methods, the bilinear form A(·, ·) is continuous and coercive in the above
norm, with constants independent of the mesh size h and the coefficient κ:

Continuity: |A(uh, w)| . |||uh|||DG |||w|||DG , ∀uh , w ∈ V DG (2.14)

Coercivity: A(uh, uh) & |||uh|||2DG , ∀uh ∈ V DG . (2.15)

The proof of (2.15) and (2.14) is standard and could be found in [38]. We sketch it here for
completeness. Note first that for each e ∈ Eoh, such that e = ∂T+ ∩ ∂T−, the weighted average
{{κ∇u}}βe can be rewritten as:

{{κ∇u}}βe = βe(κ
+(∇u)+) + (1− βe)(κ−(∇u)−)

=
κ−

κ+ + κ−
κ+(∇u)+ +

κ+

κ+ + κ−
κ−(∇u)−

=
κ+κ−

κ+ + κ−
[(∇u)+ + (∇u)−] = κe{{∇u}} . (2.16)

The trace inequality [1], the inverse inequality [29], and (2.8) then imply the following bounds

he‖{{κ∇u}}βe‖20,e ≤ Ct(κe)2
(
‖∇u‖20,T+∪T− + h2|∇u|21,T+∪T−

)
≤ 2(κe)Ct(1 + C2

inv)
(
κ+‖∇u‖20,T+ + κ−‖∇u‖20,T−

) (2.17)
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Then, using Cauchy-Schwarz inequality, the estimate (2.17), and the arithmetic-geometric in-
equality we have

|〈{{κ∇u}}βe , [[w]]〉Eh | =

∣∣∣∣∣∣
∑
e∈Eh

∫
e
κe{{∇u}}[[w]]ds

∣∣∣∣∣∣
≤

∑
e∈Eh

1

αe
heκe‖{{∇u}}‖20,e

1/2∑
e∈Eh

αeh
−1
e κe‖[[w]]‖20,e


≤ 8Ct(1 + C2

inv)

αe

∑
T∈Th

κT ‖∇u‖20,T +
1

4

∑
e∈Eh

αeh
−1
e κe‖[[w]]‖20,e

Then, (2.14) follows from Cauchy-Schwarz inequality and the estimate (2.18). The inequality
(2.15) is proved by setting w = u in (2.5) and taking into account the estimate (2.18) (also with
w = u). We have,

A(u, u) =
∑
T∈Th

κT ‖∇u‖20,T + αe
∑
e∈Eh

κeh
−1
e ‖[[u]]‖20,e − (1− θ)〈{{κ∇u}}βe , [[u]]〉Eh

≥ |||u|||2DG − |1− θ| |〈{{κ∇u}}βe , [[u]]〉Eh |

≥
(

1− 8Ct(1 + C2
inv)

αe

) ∑
T∈Th

κT ‖∇u‖20,T +
4− |1− θ|

4
αe
∑
e∈Eh

κeh
−1
e ‖[[u]]‖20,e ,

and (2.15) follows immediately by taking αe large enough (if θ 6= 1). Moreover, notice that
both constants in (2.14) and (2.15) depend on the shape regularity of the mesh partition but
are independent of the coefficient κ.

For the IP-0 methods (2.9), similar properties can also be easily shown to hold following the
same arguments, albeit in a different energy norm, defined as:

|||u|||2DG0 :=
∑
T∈Th

κT ‖∇u‖20,T +
∑
e∈Eh

κeh
−1
e ‖P0

e ([[u]])‖20,e. (2.18)

For both families of methods, optimal error estimates in the energy norms (2.13) and (2.18) can
be shown, arguing as in [5]. See also [8] for further discussion on the L2-error analysis of these
methods.

We now establish the spectral equivalence between A(·, ·) and A0(·, ·).

Lemma 2.2. Let A(·, ·) be a bilinear form corresponding to a Type-1 IP(β) method (2.5) and
let A0(·, ·) be the corresponding Type-0 bilinear form as defined in (2.9). Then there exists a
positive constant c0 = c0(α), depending only on the shape regularity of the mesh and the penalty
parameter α (but independent of the coefficient κ and the mesh size h) such that,

A0(u, u) ≤ A(u, u) ≤ c0(α)A0(u, u) ∀u ∈ V DG. (2.19)

Proof. The lower bound follows immediately from the fact that the projection P0
e is an L2(e)-

orthogonal projection and therefore has norm 1.
To show the upper bound it is enough to show that∑

e∈Eh

αeh
−1
e κe‖[[u]]‖20,e ≤ C(

∑
T∈Th

κT ‖∇u‖20,T +
∑
e∈Eh

αeh
−1
e κe‖P0

e [[u]]‖20,e). (2.20)

Adding and subtracting P0
e [[u]] in the term on the left side above and using again that P0

e is the
L2(e)-orthogonal projection on the constant functions we have for each face e,

‖[[u]]‖20,e = ‖P0
e ([[u]])‖20,e + ‖[[u]]− P0

e ([[u]])‖20,e . (2.21)
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Hence, we only need to estimate the last term on the right side of the above inequality and show
that this term is bounded by the right side in the inequality given in (2.20). Observe that on
each e ∈ E , e = ∂T+ ∩ ∂T−,

‖[[u]]− P0
e ([[u]])‖20,e . ‖u+ − P0

e (u+)‖20,e + ‖u− − P0
e (u−)‖20,e .

In [9, Lemma 2.1] it was further shown that

h−1
e ‖u± − P0

e (u±)‖20,e . |u±|21,T± . ∀ e ∈ Eh
Thus, multiplying the above expression by the harmonic average κe and taking into account (2.8)
we arrive at∑

e∈Eh

αeh
−1
e κe‖[[u]]‖20,e ≤ C(α)

∑
T∈Th

κT ‖∇u‖20,T +
∑
e∈Eh

αeh
−1
e κe‖P0

e [[u]]‖20,e ,

which concludes the proof. �

3. Space decomposition of the V DG space

In this section we introduce a decomposition of the V DG-space that will play a key role in the
design of the solvers for the DG discretizations (2.5) and (2.9). In [9] (see also [25]) it is shown
that the discontinuous piecewise linear finite element space V DG admits the decomposition:
V DG = V CR

h ⊕Z where V CR
h denotes the standard Crouziex-Raviart space defined as

V CR
h =

{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th and P0

e ([[v]] · n) = 0 ∀ e ∈ Eoh
}
, (3.1)

and the complementary space Z is a space containing functions having zero averages at the
midpoints of the internal edges:

Z =
{
z ∈ L2(Ω) : z|T ∈ P1(T ) ∀T ∈ Th and P0

e {{v}} = 0, ∀ e ∈ Eoh
}
.

In [9] it was shown that this decomposition satisfies A0(v, z) = 0, for all v ∈ V CR
h and z ∈ Z.

We now modify the definition of Z above in order to account for the presence of a coefficient in
the problem (1.1); we define

Zβ =
{
z ∈ L2(Ω) : z|T ∈ P1(T ) ∀T ∈ Th and P0

e ({{z}}1−βe) = 0, ∀ e ∈ Eoh
}
, (3.2)

where the weight β was defined earlier in (2.6). Note that the weight β depends on the coefficient
κ, and, as a consequence, the space Zβ is also coefficient dependent. In what follows, we shall

show that Zβ is a space complementary to V CR
h in V DG and the corresponding decomposition

has properties analogous to the properties of the decomposition V DG = V CR
h ⊕ Z given in [9]

for the Poisson problem.
For any e ∈ Eh with e ⊂ T ∈ Th, let ϕe,T be the canonical Crouzeix-Raviart basis function on

T , which is defined by

ϕe,T |T ∈ P1(T ), ϕe,T (me′) = δe,e′ ∀e′ ∈ Eh(T ), and ϕe,T (x) = 0 ∀x 6∈ T,
where me is the mass center e. We will denote nT and nE as the number of simplices and faces
(or edges when d = 2) respectively. We also denote nBE as the number of boundary faces.

Proposition 3.1. For any u ∈ V DG there exists a unique v ∈ V CR
h and a unique zβe ∈ Zβ such

that u = v + zβe , that is

V DG = V CR
h ⊕Zβ. (3.3)

Proof. Throughout the proof, for simplicity, let us set β+ = βe, β
− = (1− βe), and ϕ±e = ϕe,T±

for any e ∈ Eoh with e = ∂T+∩∂T−. We also denote ϕe = ϕe,T for any e ∈ E∂h with e = ∂T ∩∂Ω.
Note that

dimV DG = (d+ 1)nT = 2nE − nBE ,
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and it is also obvious that {ϕ±e }e∈Eoh ∪{ϕe}e∈E∂h form a basis for V DG. Notice that β+ +β− = 1,

therefore we can express any u ∈ V DG as

u(x) =
∑
e∈Eoh

u+(me)ϕ
+
e (x) +

∑
e∈Eoh

u−(me)ϕ
−
e (x) +

∑
e∈E∂h

u(me)ϕe(x)

=
∑
e∈Eoh

(β−u+(me) + β+u−(me))(ϕ
+
e (x) + ϕ−e (x))

+
∑
e∈Eoh

(u+(me)− u−(me))(β
+ϕ+

e (x)− β−ϕ−e (x)) +
∑
e∈E∂h

u(me)ϕe(x)

=
∑
e∈Eoh

(
1

|e|

∫
e
{{u}}1−βeds

)
(ϕ+

e (x) + ϕ−e (x))

+
∑
e∈Eoh

(
1

|e|

∫
e
[[u]]n+ds

)
(β+ϕ+

e (x)− β−ϕ−e (x)) +
∑
e∈E∂h

(
1

|e|

∫
e
[[u]]nds

)
ϕe(x)

= v(x) + zβ(x).

Then for each e ∈ Eoh, we set

ϕCRe (x) := ϕ+
e (x) + ϕ−e (x), (3.4)

and let

ψze(x) := β+ϕ+
e (x)− β−ϕ−e (x) =

{
β+ϕ+

e (x), x ∈ T+

−β−ϕ−e (x), x ∈ T− , (3.5)

and ψze(x) := 0 for all x 6∈ T+∪T−. In the definition (3.5) of ψze(x), we have used ϕ−e (x) = 0 for
x ∈ T+ and ϕ+

e (x) = 0 for x ∈ T−. Finally, when e ∈ E∂h with e = ∂T ∩ ∂Ω for some T , we set

ψze(x) = ϕe(x), ∀x ∈ T. (3.6)

It is then straightforward to check that

V CR
h = span{ϕCRe }e∈Eoh , and Zβ = span{ψze}e∈Eh .

Hence, for all u ∈ V DG there are unique v ∈ V CR
h and zβe ∈ Zβ defined by

v =
∑
e∈Eoh

(
1

|e|

∫
e
{{u}}1−βeds

)
ϕCRe (x) ∈ V CR

h ,

zβ =
∑
e∈Eh

(
1

|e|

∫
e
[[u]]n+ds

)
ψze(x) ∈ Zβ.

such that u = v + zβ. This shows (3.3)and concludes the proof. �

Remark 3.2. As we pointed out in the introduction, the definition of the subspace Zβ clearly
depends on the coefficient κ since β depends κ. Such dependence is also often seen in algebraic
multigrid analysis, where the coarse spaces depend on the operator, and are in fact constructed
in this way, the aim being to increase robustness of the methods.

In the proof of Proposition 3.1 above we have introduced the basis in both V CR
h and Zβ. The

canonical Crouzeix-Raviart basis functions are denoted with {ϕCRe }e∈Eoh for non-conforming and
these functions are continuous at the mass centers me of the faces e ∈ Eoh. The basis in Zβ,
{ψze}e∈Eh consists of piecewise P1 functions, which are discontinuous across the faces in Eh. In
fact, for any z ∈ Zβ such that z =

∑
e∈Eh zeψ

z
e with ze ∈ IR for any e ∈ Eh, we have

([[z]]n+)(me′) = ze′ , ∀e′ ∈ Eh.
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To see this, evaluating the jump of z at me′ gives

([[z]]n+)(me′) =
∑
e∈Eh

ze([[ψ
z
e ]]n

+)(me′) = ze′([[ψ
z
e′ ]]n

+)(me′)

=

{
ze′(βe′ − (βe′ − 1)) = ze′ , e′ ∈ Eoh,
ze′ , e′ ∈ E∂h .

This relation will also be used later to obtain uniform diagonal preconditioners for the restric-
tions of A(·, ·) and A0(·, ·) on Zβ.

Remark 3.3. For mixed boundary value problems, that is, ∂Ω contains both Neumann boundary
ΓN 6= ∅ and Dirichlet boundary ΓD with ∂Ω = ΓD ∪ΓN , the definition of the basis functions on
the boundary faces [see (3.6)] need to be changed as:

ψCRe (x) = ϕe,T (x), e = ∂T ∩ ΓN , for all x ∈ T,
ψze(x) = ϕe,T (x), e = ∂T ∩ ΓD, for all x ∈ T. (3.7)

Thus, in case ΓN 6= ∅ the dimension of V CR
h is increased (by adding to it functions that

correspond to degrees of freedom on ΓN ) and the dimension of Zβ is decreased accordingly.

Clearly things balance out correctly: the identity V DG = V CR
h ⊕Zβ holds, and also the analysis

carries out with very little modification.

Next lemma is a simple but a key observation used in the design of efficient solvers and
preconditioners and it shows that the restriction of A0(·, ·) : V DG × V DG 7→ IR to V CR

h × Zβ
vanishes.

Lemma 3.4. Let u ∈ V DG be such that u = v + z with v ∈ V CR
h and z ∈ Zβ. Let A0(·, ·) be

the bilinear form defined in (2.9). Then,

A0(v, z) = 0 ∀ v ∈ V CR
h , ∀ z ∈ Zβ. (3.8)

Furthermore if A0(·, ·) is symmetric, then A0(v, z) = A0(z, v) = 0 for all v ∈ V CR
h , and for all

z ∈ Zβ and the decomposition (3.3) is A0-orthogonal, namely, V CR
h ⊥A0 Zβ.

Proof. From the weighted-residual form of A0(·, ·) given in (2.11), for all v ∈ V CR
h , and all

z ∈ Zβ we easily obtain

A0(v, z) = (−∇ · (κ∇v), z)Th + 〈[[κ∇v]], {{z}}1−βe〉Eoh + 〈[[v]],P0
e (B1(z))〉Eh = 0.

In the equation above, the first term is zero due to the fact that v is linear in each T and that
the coefficient κ is a constant on T ; the second term vanishes from the definition of Zβ (since
[[κ∇v]] is constant on each e ∈ Eoh) and last term vanishes as well independently of the choice of

θ (or equivalently the choice of B1(v)) from the definition of the space V CR
h . Moreover, in the

case when A0(·, ·) is symmetric and positive definite we have that A0(v, z) = A0(z, v), for all
v ∈ V CR

h and for all z ∈ Zβ. Thus, for the symmetric method A0(·, ·), the spaces V CR
h and Zβ

are indeed A0-orthogonal. The proof is complete. �

4. Solvers for IP-0 methods

In this section we show how Proposition 3.1 and Lemma 3.4 can be used in the design and
analysis of uniformly convergent iterative methods for the IP-0 methods. We follow the ideas
and analysis introduced in [9] and point out the differences. We first consider the approximation
to problem (1.1) with ADG(·, ·) = A0(·, ·). To begin, let A0 be the discrete operator defined by
(A0u,w) = A0(u,w) and let A0 be its matrix representation in the new basis (3.7). We denote
by u = [z,v]T , f = [fz, fv]T be the vector representation of the unknown function u and of the
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right hand side f , respectively, in this new basis. A simple consequence of Lemma 3.4 is that
the matrix A0 (in this basis) has block lower triangular structure:

A0 =

[
Azz0 0
Avz0 Avv0

]
. (4.1)

where Azz0 ,Avv0 are the matrix representation of A0 restricted to the subspaces Zβ and V CR,
respectively, and Avz0 is the matrix representation of the term that accounts for the coupling
(or non-symmetry) A0(ψz, ϕCR). As remarked earlier, for Type-0 SIPG(β) discretization, the
stiffness matrix A0 is block-diagonal.

Here, we have given a 2D example, with two squares Ω1 = [−0.5, 0]2 and Ω2 = [0, 0.5]2 inside
the domain Ω = [−1, 1]2. We set the coefficients κ(x) = 1 for all x ∈ Ω1 ∪ Ω2 and κ(x) = 10−3

when x ∈ Ω \ (Ω1 ∪ Ω2), see Figure 4.1. We choose the penalty parameter αe = 20 in (2.9).
Figure 4.2 shows the sparsity patterns of the Type-0 IP(β) methods with standard nodal basis,

Figure 4.1. Computational domain and unstructured mesh.

while Figure 4.3 shows the sparsity patterns of the stiffness matrices for the IP-0 (β) methods
after changing from the standard nodal basis to the basis (3.4)-(3.5) induced by the splitting
V DG = V CR

h ⊕Zβ.
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Figure 4.2. Non-zero pattern of the matrix representation in the standard
nodal basis of the operators associated with Type-0 IP methods. From left
to right: SIPG, NIPG and IIPG methods.

Clearly, as in the constant coefficient case, a simple algorithm based on a block version
of forward substitution provides an exact solver for the solution of the linear systems with
coefficient matrix A0. A formal description of this block forward substitution is given in the
next Algorithm.
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Figure 4.3. Non-zero pattern of the matrix representations according to the
basis (3.3) of the operator associated with Type-0 IP methods;i.e., A0. From left
to right: SIPG, NIPG and IIPG methods.

Algorithm 4.1. 1. Find z ∈ Zβ such that A0(z, ψ) = (f, ψ)Th for all ψ ∈ Zβ
2. Find v ∈ V CR such that A0(v, ϕ) = (f, ϕ)Th −A0(z, ϕ) for all ϕ ∈ V CR

3. Set u = z + v

Notice that the above algorithm requires the solution of A0(·, ·) on Zβ (Step 1. of the algo-

rithm) and the solution of A0(·, ·) on V CR
h (Step 2. of Algorithm 4.1). Unlike the situation in

[9], due to the jump coefficient in (1.1), the solution on V CR is more involved, and therefore we
postpone its discussion and analysis until Section 5. On the other hand, as we show in the next
section, the solution on Zβ (the space regarded as containing “high frequency” components)
can be handled efficiently using CG with a diagonal preconditioner.

4.1. Solution on Zβ. The first result in this section establishes the symmetry of the restrictions
of the bilinear forms (of both Type-0 and Type-1) on Zβ.

Lemma 4.2. Let A(·, ·) be the bilinear form of a non-symmetric Type-1 IP method as defined
in (2.5) and let A0(·, ·) be the corresponding Type-0 bilinear form. Then the restrictions to Zβ
of both A0(·, ·) and A(·, ·) are symmetric. Namely, for θ = −1, 0, 1 and for all z ∈ Zβ and
φ ∈ Zβ we have

A0(z, φ) = A0(φ, z) and A(z, φ) = A(φ, z).

Proof. If θ = −1 there is nothing to prove, since in this case both bilinear forms are symmetric.
Hence we only consider the cases θ = 0 or θ = −1. Integrating by parts and using the fact that
z ∈ Zβ and ψ ∈ Zβ are linear on each element T shows that

0 = (−∇ · (κ∇ψ),∇z)Th = (κ∇ψ,∇z)Th − 〈{{κ∇ψ}}βe , [[z]]〉Eh − 〈[[κ∇ψ]], {{z}}1−βe〉Eoh . (4.2)

Hence, from the definition (3.2) of the Zβ space, it follows that

(κ∇ψ,∇z)Th = 〈{{κ∇ψ}}βe , [[z]]〉Eh = 〈{{κ∇z}}βe , [[ψ]]〉Eh ∀ z, ψ ∈ Zβ. (4.3)

Substituting the above identity in the definition of the bilinear form (2.9) then leads to

A0(z, ψ) = θ〈[[z]], {{κ∇ψ}}βe〉Eh + 〈P0
e ([[z]]), κe[[ψ]]〉Eh

= θ(κ∇ψ,∇z)Th + 〈P0
e ([[ψ]]), κe[[z]]〉Eh = A0(ψ, z).

This shows the symmetry of A0(·, ·) on Zβ. The symmetry for A(·, ·) on Zβ then follows from the
result for A0(·, ·), since the difference between these bilinear forms is obviously symmetric. �
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We now study the conditioning of the bilinear forms A(·, ·) and A0(·, ·) on Zβ. For all z ∈ Zβ,
and for all φ ∈ Zβ with

z =
∑
e∈Eh

zeψ
z
e ∈ Zβ, and φ =

∑
e∈Eh

φeψ
z
e ∈ Zβ.

we introduce a weighted scalar product (·, ·)∗ : Zβ×Zβ 7→ IR and the corresponding norm ‖ · ‖∗,
defined as follows

(z, φ)∗ :=
∑
e∈Eh

|e|
he
κezeφe , ‖z‖2∗ := (z, z)∗. (4.4)

Observe that the matrix representation of the above weighted scalar product (in the basis given
in (3.5)), is in fact a diagonal matrix. The next result shows that the restrictions of A(·, ·) and
A0(·, ·) to Zβ are spectrally equivalent to the weighted scalar product (·, ·)∗ and therefore their
matrix representations are spectrally equivalent to a diagonal matrix.

Lemma 4.3. Let Zβ be the space defined in (3.2). Then for all z ∈ Zβ, the following estimates
hold

‖z‖2∗ . A0(z, z) . ‖z‖2∗, (4.5)

and also
‖z‖2∗ . A(z, z) . ‖z‖2∗. (4.6)

Proof. Let us fix z ∈ Zβ, z =
∑

e∈Eh zeψ
z
e . From the definition of P0

e ([[z]])‖20,e, it is immediate
to see that

‖P0
e ([[z]])‖20,e = |e|z2

e .

Thus, we have that ∑
e∈Eh

κeh
−1
e ‖P0

e ([[z]])‖20,e =
∑
e∈Eh

κe
|e|
he
z2
e . (4.7)

From this relation it is easy to show both estimates (4.5) and (4.6). First, to show (4.5), we
notice that taking into account (4.3) together with the estimate (2.8), it follows that∑

T∈Th

κT ‖∇z‖20,T = (κ∇z,∇z)Th = 〈{{κ∇z}}βe , [[z]]〉Eh = 〈κe{{∇z}},P0
e ([[z]])〉Eh

.

∑
T∈Th

κT ‖∇z‖20,T

1/2∑
e∈Eh

κe‖h−1/2
e P0

e ([[z]])‖20,e

1/2

and therefore, ∑
T∈Th

κT ‖∇z‖20,T .
∑
e∈Eh

κe‖h−1/2
e P0

e ([[z]])‖20,e = ‖z‖2∗, (4.8)

and since z ∈ Zβ was arbitrary, we have that A0(z, z) . ‖z‖2∗, for all z ∈ Zβ and this proves
the upper bound in (4.5).

To prove the lower bound, we use the coercivity estimate for the bilinear form A0(·, ·) in the

energy norm |||·|||2DG0 [see (2.18)]. For all z ∈ Zβ we have

A0(z, z) & |||z|||2DG0 =
∑
T∈Th

κT ‖∇z‖20,T +
∑
e∈Eh

κe‖h−1/2
e P0

e ([[z]])‖20,e

&
∑
e∈Eh

κe‖h−1/2
e P0

e ([[z]])‖20,e = ‖z‖2∗.

Since this is the desired bound we conclude the proof of (4.5).
The proof of (4.6) follows easily from the spectral equivalence between A(·, ·) and A0(·, ·)

given in Lemma 2.2. �
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Observe that last result guarantees that the linear systems on Zβ can be efficiently solved
by preconditioned CG (PCG) with a diagonal preconditioner. As a corollary of the result in
Lemma 4.3, the number of PCG iterations will be independent of both the mesh size and the
variations in the PDE coefficient.

We now show that in the particular case of IIPG-0 method, the matrix representation of
A0(·, ·) on Zβ is itself a diagonal matrix.

Lemma 4.4. Let A0(·, ·) be the bilinear form of the non-symmetric IIPG(β) Type-0 method
(2.9) with θ = 0. Let {ψze}e∈Eh be the basis for the space Zβ as defined in (3.5). Let Azz0 be the
matrix representation in this basis of the restriction to the subspace Zβ of the operator associated
to A0(·, ·). Then, Azz0 is diagonal.

Proof. Note that from the definition (2.9) of the method (θ = 0) together with (4.3) we have

A0(z, ψ) = (∇z,∇ψ)Th − 〈{{∇z}}βe , [[ψ]]〉Eh + 〈αeh−1
e κeP0

e ([[z]]),P0
e ([[ψ]])〉Eh

= 〈αeh−1
e κeP0

e ([[z]]),P0
e ([[ψ]])〉Eh ∀ z, ψ ∈ Zβ . (4.9)

Let {ψze}{e∈Eh} be the basis functions (3.5). To prove that Azz0 is diagonal it is enough to show
that for the basis functions (3.5), the following relation holds:

A0(ψze , ψ
z
e′) = ceδe,e′ ce 6= 0, ∀ e ∈ Eh , (4.10)

where δe,e′ is the delta function associated with the edge/face e. We now show (4.10). Observe
that the supports of ψze and ψze′ have empty intersection unless e, e′ ⊂ T for some T ∈ Th. Let
T ∩ ∂Ω = ∅ be an interior element, then from (4.9) and the mid-point integration rule, we have

A0(ψze , ψ
z
e′) = αeh

−1
e

∫
e
κeP0

e ([[ψze ]])P0
e ([[ψze′ ]]) = αeh

−1
e κe[2ψ

z
e(me)][2ψ

z
e′(me)]

= 4αeh
−1
e κeδe,e′ e, e′ ⊂ ∂T e, e′ ∈ Eoh ,

which shows (4.10) for interior edges with ce = 4αeh
−1
e κe. For boundary edges/faces the con-

siderations are essentially the same and therefore omitted. The proof is complete since the
relation (4.10) readily implies that the off-diagonal terms of Azz0 are zero. �

We remark that this lemma will be essential for proving the uniform convergence of the
iterative solvers for the non-symmetric methods.

5. Robust preconditioners on V CR
h

In this section we develop efficient and robust solvers for the solution in the CR space. By
virtue of the spectral equivalence between A and A0 given in Lemma 2.2, it is enough to focus
on the development of solvers for A0 restricted to the subspace V CR

h and this is what we do next.

Observe that the restriction of A0(·, ·) to the subspace V CR reduces to the P1-nonconforming
finite element discretization of (1.1)

Find u ∈ V CR
h : A0(u,w) = (κ∇u,∇w)Th = (f, w) ∀w ∈ V CR

h . (5.1)

We denote ACR0 as the operator induced by (5.1). For the analysis that follows, we need the
following semi-norms and norms for any v ∈ V CR

h :

|v|21,h,κ :=
∑
T∈Th

κT ‖∇v‖20,T , |v|21,h,Ωi
:=

∑
T∈Th , T⊆Ωi

‖∇v‖20,T , (5.2)

‖v‖20,κ : =
M∑
i=1

κ
∣∣
Ωi
‖v‖20,Ωi

, ‖v‖21,h,κ := ‖v‖20,κ + |v|21,h,κ . (5.3)

If the coefficient κ(x) is a constant or a smooth function; one can find some uniform precon-
ditioners in the literature (see the references in [9]). The case of jump coefficients κ has also
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been considered by several authors [67], [66], with the assumption on the quasi-uniformity in
the coefficients.

Since (5.1) is a symmetric problem, from the classical theory of PCG we know that the con-
vergence rates of the iterative method with preconditioner, say B, for ACR0 are fully determined,
in the worst case scenario, by the condition number of the preconditioned system: K(BACR0 ).
However, for problems with large jumps in the coefficient κ, it has also been observed in [50, 80]
that the spectrum σ(BACR0 ) might contain a few very small eigenvalues, which result in a ex-
tremely large value of K(BACR0 ) (independently of how fine is the mesh), but they seem to have
no influence on the efficiency of the preconditioner and the overall convergence of the iterative
method. Therefore, following the approach introduced in [80], we consider the asymptotic con-
vergence rate of the PCG algorithm, which is determined by the so-called effective condition
number, as defined below in Definition 5.1.

The setting that we need for the analysis require some more preliminaries. Let us first briefly
review few standard results for the PCG algorithm. Suppose that the spectrum of BACR0 ,
σ(BACR0 ), is divided in two sets: σ(BACR0 ) = σ0(BACR0 ) ∪ σ1(BACR0 ), where σ0(BACR0 ) =
{λ1, . . . , λm0} contains of all very small (often referred to as “bad”) eigenvalues and the re-
maining eigenvalues (bounded above and below) are in σ1(BACR0 ) = {λm0+1, . . . , λN} ; that is
λj ∈ [a, b] for j = m0 + 1, . . . , N , with N = dim(V CR

h ) = nE −nBE . Then, the error at the k-th
iterate of the PCG algorithm is bounded by (see e.g. [6, 52, 7]):

‖u− uk‖1,h,κ ≤ 2(K(BACR0 )− 1)m0

(√
b/a− 1√
b/a+ 1

)k−m0

‖u− u0‖1,h,κ . (5.4)

From the above estimate, one may conclude the following: If there are only a few small
eigenvalues of BACR0 in σ0(BACR0 ), then the asymptotic convergence rate of the resulting

PCG method will be dominated by the factor

√
b/a−1√
b/a+1

, i.e. by b/a where b = λN (BACR0 ) and

a = λm0+1(BACR0 ). The quantity (b/a) which determines the asymptotic convergence rate is
often called effective condition number and its formal definition follows.

Definition 5.1. Let V be a real N -dimensional Hilbert space, and A : V → V be a symmetric
positive definite linear operator, with eigenvalues 0 < λ1 ≤ · · · ≤ λN . The m0-th effective
condition number of A is defined by

Km0+1(A) :=
λN (A)

λm0+1(A)
.

We note that this characteristic was previously used in the context of deflation based precon-
ditioner (for determining the asymptotic convergence rate of PCG for semidefinite systems [46]).

In our analysis of two-level and multilevel preconditioners for problem (5.1), we will mainly
focus on estimating the effective condition number. Related works which derive estimates on
the effective condition number in the context of multigrid and domain decomposition methods
for conforming discretizations are [50, 80, 82]. To improve the flow of the discussion when
presenting the analysis of the multilevel preconditioner for the nonconforming discretizations,
we start by introducing a two level method and provide a detailed analysis and bounds of the
condition number of the preconditioned system.

5.1. Two level preconditioner for A0(·, ·) on V CR
h . In this subsection we will construct an

additive preconditioner (parallel subspace correction method) with a conforming space V conf
h̃

⊂
V CR
h as a coarse space plus a pointwise relaxation (point-Jacobi or Gauss-Seidel method). More

precisely to define the two level parallel subspace correction method, we consider the following
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overlapping space decomposition of V CR
h :

V CR
h = V CR

h + V conf
h̃

. (5.5)

Here, we allow for different h̃: one could set h̃ = h, or choose a coarser approximation i.e.,

h̃ = H > h. In addition we will assume here that the meshes Th and T
h̃

are nested. On V conf
h̃

we consider the standard conforming P1-approximation to (1.1): Find χ ∈ V conf
h̃

such that

a(χ, η) := A0(χ, η) =

∫
Ω
κ∇χ · ∇ηdx = (f, η), ∀ η ∈ V conf

h̃
. (5.6)

The bilinear form given above defines an “energy” scalar product and its naturally induced
weighted semi-norm is:

|χ|21,κ,D :=

∫
D
κ|∇χ|2dx , ∀χ ∈ H1(D), D ⊂ Ω. (5.7)

We next discuss the matrix form of the additive preconditioner and then its operator form.
The reason for discussing both these equivalent forms is that the matrix form is used to im-
plement the method, while the operator form is more suitable for the analysis and the spectral
equivalence results that we prove.

5.1.1. Definition of the preconditioner: Matrix notation. We begin by introducing the
necessary notation pertaining to vectors and matrices. We write ACR0 = Avv0 = D0 − L − Lt
where D0, and L are the diagonal and the strict lower triangular part of the stiffness matrix
ACR0 representing the restriction of A0(·, ·) on V CR

h . We use similar notation for the space V conf
h̃

denoting by AC the stiffness matrix representing the bilinear form a(·, ·) on the conforming space
V conf
h̃

. For v ∈ V CR
h , v(x) =

∑
e∈Eoh

veϕ
CR
e (x), we denote by v ∈ IRnCR the vector of degrees of

freedom of v(x), that is v has components {ve}e∈Eoh . Here nCR = nE − nBE is the dimension

of the space V CR
h and we shall denote by nC the dimension of V conf

h̃
. The latter dimension is

equal to the number of interior vertices in the triangulation with mesh size h̃. We then have
the following relation between stiffness matrices and bilinear forms and vector representations
of degrees of freedom:

(ACR0 v,w)`2 = A0(v, w), (ACχ,η)`2 = a(χ, η). (5.8)

These identities hold for all v ∈ V CR
h and w ∈ V CR

h and their vectors of degrees of freedom,

v ∈ IRnCR and w ∈ IRnCR , as well as for all χ ∈ V conf
h̃

, and all η ∈ V conf
h̃

and the respective

vectors of degrees of freedom χ ∈ IRnC and η ∈ IRnC .
Since the conforming finite element functions are in V CR

h , we may expand each of the canonical

basis functions from V conf
h̃

via the basis in V CR
h . The coefficients in such expansions form

a matrix Π ∈ IRnCR×nc which represents the natural inclusion operator V conf
h̃

⊂ V CR
h . The

additive preconditioner B : IRnCR 7→ IRnCR is then defined in the usual manner:

B := D−1
0 + Π(AC)−1Πt. (5.9)

Denoting by N0(T
h̃
) the set of interior vertices of T

h̃
we see that the following relation holds for

all p ∈ N0(T
h̃
) and p′ ∈ N0(T

h̃
):

[AC ]p,p′ = a(ϕp, ϕp′) =
[
ΠTACRΠ

]
p,p′

, i.e. AC = ΠTACRΠ. (5.10)
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5.1.2. Definition of the preconditioner: Operator notation. We first consider the opera-
tor R−1 corresponding to the Jacobi smoother. We note that the usual definition of the operator
associated with Jacobi relaxation requires additional notation, including introducing mass ma-
trices and other objects, which are not actually used in the implementation of the algorithms.
To avoid introducing these extra quantities, we will take a slightly different path and we define
R−1ACR0 instead of R−1. We set:

R−1ACR0 v =
∑
e∈Eoh

A0(v, ϕCRe )

A0(ϕCRe , ϕCRe )
ϕCRe =

∑
e

[ACR0 v]e

[ACR0 ]e,e
ϕCRe (5.11)

It is clear from this definition that the vector of degrees of freedom for the function R−1ACR0 v

is D−1
0 ACR0 v, which precisely shows that the matrix representation of R−1 is D−1

0 .
We next consider the operator corresponding to the correction from the conforming space

V conf
h̃

. For its definition we need to introduce the standard A0(·, ·)-orthogonal and L2(Ω)-

orthogonal projections on V conf
h̃

. Let us denote these projections with PC and QC , respectively.

They are defined for any v ∈ V CR
h and [PCv] ∈ V conf

h̃
and [QCv] ∈ V conf

h̃
are as follows:

a([PCv], η) = A0(v, η), ([QCv], η) = (v, η), ∀ η ∈ V conf
h̃

. (5.12)

The operator form of the preconditioner is then

B : V CR
h 7→ V CR

h , B := R−1 + (AC)−1QC . (5.13)

We also have the following identity, which follows directly from the definition of QC and PC :

QCACR0 = ACPC . (5.14)

Multiplying from the right the defining relation for B in (5.13) with ACR0 and using the above
relation (5.14) we have that

BACR0 := R−1ACR0 + PC . (5.15)

From the definitions given above it is immediate to show that the vector of degrees of freedom
corresponding to the function BACR0 v is BACR0 v, where v is the vector of degrees of freedom
for v(x). This together with (5.8) shows that the following identity holds for any v ∈ V CR

h :

(BACR0 v,ACR0 v)`2
(ACR0 v,v)`2

=
A0(BACR0 v, v)

A0(v, v)
(5.16)

Note that the left side of this identity uses the `2 inner product on IRnCR , while calculating the
right side is done through the bilinear form A0(·, ·).

5.1.3. Spectral equivalence results for the two level preconditioner. We recall definition
of the set of indices I of floating subdomains (see [71]) which are the subdomains where the
coefficient is constant and which do not touch the Dirichlet boundary:

I := { i : measd−1(∂Ω ∩ ∂Ωi) = 0 } . (5.17)

The role of the set I will be clear from the convergence analysis given later on in this section.
The main spectral equivalence result for the two level preconditioner is as follows.

Theorem 5.2. Let m0 = |I| be the total number of floating subdomains. Then, the effective
condition number Keff (BACR0 ) := Km0+1(BACR0 ) for the preconditioner B defined in (5.13) is
uniformly bounded:

Km0+1(BA0) . (1 + | log 2h̃/h|) ≤ C, for h̃ ≥ h ,

with C > 0 independent of the coefficients.
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The rest of the section is devoted to the proof of Theorem 5.2, which essentially involves
showing spectral equivalence of the form

A0(v, v) . (B−1v, v) . A0(v, v).

It can be shown (see Appendix B, Lemma B.2) that the inverse of B satisfies:

(B−1v, v) = inf
χ∈V conf

h̃

[R(v − χ, v − χ) + a(χ, χ)], (5.18)

where R(·, ·) is the bilinear form associated with the smoother and is defined as: R(v, w) :=
(Rv,w). In the Appendix B (see Lemma B.1) it will be shown that for all v ∈ V CR

h we have

R(v, v) =
∑
e∈Eoh

A0(ϕCRe , ϕCRe )v2
e(D0v,v)`2 . (5.19)

From the above considerations it is clear that the proof of Theorem 5.2 amounts to verifying
the following two conditions.

(F1) There exists a constant c1 such that for all v ∈ V CR
h we have

c−1
1 A0(v, v) . R(v, v).

(F2) For every v ∈ V CR
h there exists χv ∈ V conf

h̃
(depending on v), such that

R(v − χv, v − χv) + a(χv, χv) . c0A0(v, v).

We remark here that the identity (5.18) is a well known result regarding two level additive
Schwarz methods (cf. [79], [71], [69]).

The validation of last assumption (F2) is more intricate and we postpone it to the next
subsection, while the Lemma stated next shows that (F1) is true for our choice of R(·, ·), and
also gives an inequality which will later be used to verify (F2).

Lemma 5.3. Let R(·, ·) be the bilinear form defined via (5.19). Then we have the following
estimates

c−1
1 A0(v, v) . R(v, v) and R(v, v) ' h−2‖v‖20,κ , ∀ v ∈ V CR

h . (5.20)

Proof. To show that (F1) holds we set w =
∑

eweϕ
CR
e and Cauchy-Schwarz and the arithmetic-

geometric inequalities give

A0(v, v) =
∑
e

∑
e′

A0(ϕCRe , ϕCRe′ )veve′

≤
∑
e

∑
e′

√
A0(ϕCRe , ϕCRe )

√
A0(ϕCRe′ , ϕ

CR
e′ )veve′

≤ 1

2

∑
e

∑
e′

[
A0(ϕCRe , ϕCRe )v2

e +A0(ϕCRe′ , ϕ
CR
e′ )v2

e′
]

=
∑
e

∑
e′

A0(ϕCRe , ϕCRe )v2
e .

∑
e

A0(ϕCRe , ϕCRe )v2
e = R(v, v).

The constant hidden in the “.” above only depends on the number of neighboring faces e′, for
a given face e ∈ Eoh and this constant is bounded by 5 in 2D and 7 in 3D.

Notice that since the mesh is quasi-uniform, for any V CR
h 3 v =

∑
e veϕ

CR
e and T ∈ Th we

have

‖v‖20,κ,T '
∑
e⊂∂T

v2
e‖ϕCRe ‖20,κ,T . (5.21)



MG FOR DG WITH JUMP 19

On one hand, for any basis function ϕCRe by the inverse inequality (see [30]) we have that:
h−2‖ϕCRe ‖20,κ,T . ‖ϕCRe ‖20,κ,T . On the other hand, directly calculating the norms gives us the

following bound ‖∇ϕCRe ‖20,κ,T . h−2‖ϕCRe ‖20,κ,T . Hence,

h−2‖ϕCRe ‖20,κ,T ' ‖∇ϕCRe ‖20,κ,T . (5.22)

Therefore from the definition of R(·, ·) given in (5.19) and the equivalence relations (5.21)
and (5.22) we get

R(v, v) =
∑
e

v2
e‖∇ϕCRe ‖20,κ =

∑
e

v2
e

∑
∂T⊃e

‖∇ϕCRe ‖20,κ,T

=
∑
T∈Th

∑
e⊂∂T

v2
e‖∇ϕCRe ‖20,κ,T '

∑
T∈Th

∑
e⊂∂T

h−2v2
e‖ϕCRe ‖20,κ,T

' h−2
∑
T∈Th

‖v‖20,κ,T = h−2‖v‖20,κ.

�

5.2. A stable Decomposition. In this subsection we show that condition (F2) is satisfied

and the main tool is an operator P h̃h : V CR
h → V conf

h̃
, that will be shown to satisfy certain

approximation and stability properties as stated in the next Lemma.

Lemma 5.4. There exists an interpolation operator P h̃h : V CR
h → V conf

h̃
, that satisfies the

following approximation and stability properties:

Approximation: ‖(I − P h̃h )v‖0,κ ≤ Cah̃| log 2h̃/h|1/2‖v‖1,h,κ, ∀ v ∈ V CR
h , (5.23)

Stability: |P h̃h v|1,κ ≤ Cs| log 2h̃/h|1/2‖v‖1,h,κ ∀ v ∈ V CR
h , (5.24)

with constants Ca and Cs independent of the coefficient κ and mesh size.

The definition of such P h̃h and the proof of the above result is given in the Appendix A. We

would like to point out that the operator P h̃h is not used in the actual implementation of the

preconditioner B, as is plainly seen from (5.9). However, the operator P h̃h and its approximation
and stability properties play crucial role in the analysis.

We now discuss and display the main ingredients in the proof of condition (F2), with the
aid of Lemma (5.4). Observe that on the right hand side of (5.23) and (5.24), the bounds are
given in terms of the weighted full H1-norm ‖v‖1,h,κ. In general, one cannot replace the norm
‖v‖1,h,κ by the energy semi-norm |v|1,h,κ, unless some stronger conditions on the coefficients
(like quasi-monotonicity) are imposed. To be able to replace the full norm by the semi-norm,

we introduce the subspace Ṽ CR
h ⊂ V CR

h :

Ṽ CR
h :=

{
v ∈ V CR

h :

∫
Ωi

vdx = 0, ∀i ∈ I
}
, (5.25)

where I is the set of indexes of the floating subdomains as defined in (5.17). Recall that a floating
subdomain is a subdomain whose boundary does not intersect the Dirichlet boundary. The key
feature of the subspace we have just introduced is that the Poincaré-Friedrichs inequality for
the nonconforming finite element space [37, 18] holds on each subdomain, and this allows us to

replace the full norm ‖v‖1,h,κ by the energy semi-norm |v|1,h,κ, for any v ∈ Ṽ CR
h . We should

remark that the condition on the average, i.e.
∫

Ωi
vdx = 0, is not essential; other type of

conditions could be used (see [71]) as long as they allow for the application of a Poincarè-type
inequality.
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At this point we would like to mention that the dimension of Ṽ CR
h is related to the number

of floating subdomains and in fact, dim(Ṽ CR
h ) = dim(V CR

h )−m0. By restricting now the action

of the operator P h̃h to functions in Ṽ CR
h , we have the following result, as an easy corollary from

Lemma 5.4.

Corollary 5.5. Let Ṽ CR
h ⊂ V CR

h the subspace of the Crouziex-Raviart finite element space, as

defined in (5.25). Then, there exist an operator P h̃h : V CR
h → V conf

h̃
that is stable in the weighted

H1-broken semi-norm:

|P h̃h v|1,κ . | log 2h̃/h|1/2|v|1,h,κ , ∀ v ∈ Ṽ CR
h ,

and satisfies the following approximation property:

‖(I − P h̃h )v‖0,κ . h̃| log 2h̃/h|1/2|v|1,h,κ , ∀ v ∈ Ṽ CR
h .

Proof. The proof follows from Lemma 5.4 together with a standard application of the Poincarè-
Friedrichs type inequalities inequality for nonconforming functions, which allows for bounding
the norm ‖v‖1,h,κ by the semi-norm |v|1,h,κ. In fact, from the definition of ‖v‖1,h,κ:

‖v‖21,h,κ =
∑

Ωi⊆Ω

‖v‖21,h,κ,Ωi
=

∑
i/∈I

(
κ‖v‖20,Ωi

+ κ|v|21,h,Ωi

)
+
∑
i∈I

(
κ‖v‖20,Ωi

+ κ|v|21,h,Ωi

)
.

For the terms in both sums above, one can apply Poincarè-Friedrichs type inequalities. In the
first sum above, for i /∈ I each subdomain touches the boundary, and hence ‖v‖0,Ωi ≤ Cp|v|1,h,Ωi

.

For the terms in the second sum, since v ∈ Ṽ CR
h are functions with average zero on Ωi, we have

‖v‖0,Ωi ≤ Cp|v|1,h,Ωi
, i ∈ I. �

Remark 5.6. In particular, if we consider the case when the ratio h̃/h is a fixed constant (e.g.

h̃ = h) then the approximation and stability properties are:

‖(I − P h̃h )v‖0,κ ≤ C log (2)h|v|1,h,κ . h|v|1,h,κ,

|P h̃h v|1,κ ≤ C log (2)|v|1,h,κ . |v|1,h,κ.

With the aid of the result in Corollary 5.5, we are able to show that the stability condition

(F2) holds for functions from the subspace Ṽ CR
h .

Lemma 5.7. For any v ∈ Ṽ CR
h the stability condition (F2) holds, namely, there exist a constant

c0 > 0 and a function χ = P h̃h (v) ∈ V conf
h̃

such that

R(v − χ, v − χ) + a(χ, χ) ≤ c0|v|21,h,κ, c0 = C(1 + log
2h̃

h
) . (5.26)

Proof. Given any v ∈ Ṽ CR
h , let χ ∈ V conf

h̃
be defined as χ := P h̃h v. Taking into account the

approximation property of P h̃h (with h̃ = h) given in (5.5) together with Remark 5.6, we have

R(v − χ, v − χ) . h−2‖v − χ‖20,κ . h−2‖v − P h̃h v‖20,κ . |v|21,h,κ = A0(v, v).

The proof is now complete by using the stability of P h̃h v given in Corollary 5.5;

a(χ, χ) = |P h̃h v|21,κ . | log 2h̃/h||v|21,h,κ = | log 2h̃/h|A0(v, v).

�

We have now all ingredients to complete the proof of Theorem 5.2.
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Proof of Theorem 5.2. To estimate the maximum eigenvalue of BACR0 let χ ∈ V C
h and v ∈ V CR

h
be arbitrary. We set v0 = (v − χ), and hence v = v0 + χ. Applying the Cauchy-Schwarz
inequality, the arithmetic-geometric inequality, and (5.20) then yields

A0(v, v) = A0(v0 + χ, v0 + χ) = A0(v0, v0) +A0(χ, χ) + 2A0(v0, χ)

≤ 2A0(v0, v0) + 2A0(χ, χ) ≤ c1 (R(v0, v0) + a(χ, χ)) ,

Since χ ∈ V conf
h̃

was arbitrary, taking the infimum with respect to χ and using the definition of

(B−1v, v) (5.18) shows that

A0(v, v) . (B−1v, v).

This guarantees that the maximum eigenvalue λmax(BACR0 ) ≤ c1 is uniformly bounded inde-
pendently of the coefficient and the mesh size.

For the lower bound, by Lemma 5.7 we have that for any v ∈ Ṽ CR
h with χv = P h̃h v we have

R(v − χv, v − χv) + |χv|21,κ ≤ c0|v|21,h,κ = c0A0(v, v).

Then by the minimax principle (cf. [53, §90], [6, Lemma 3.13] or [47, Theorem 8.1.2]) and

noticing that dim(Ṽ CR
h ) = dim(V CR

h ) − m0, we have λm0+1 ≥ c−1
0 . Therefore, the effective

condition Km0+1(BACR0 ) can be bounded by

Km0+1(BACR0 ) ≤ c0c1,

with c0 given in (5.26). This completes the proof. �

Remark 5.8. All the results that we have proved above also hold for R−1 defined by the sym-
metric Gauss-Seidel method. This follows from the fact that the bilinear forms R(·, ·) defined
via Jacobi or symmetric Gauss-Seidel method are equivalent with constants independent of the
variations in the PDE coefficient. For a proof of such equivalence we refer to [73, Proposi-
tion 6.12] or [83, Lemma 3.3]. Thus, the two level (and also multilevel) preconditioners that use
Jacobi or Gauss-Seidel as smoother are equivalent and hence all the results here stated for the
Jacobi smoother also hold for the symmetric Gauss-Seidel smoother.

5.3. Multilevel Preconditioner for A0(·, ·) on V CR
h . We now introduce multilevel precon-

ditioner, using the two level theory developed before. The multilevel preconditioner corresponds
to replacing [AC ]−1 in (5.13) with a spectrally equivalent operator BC : V conf

h̃
7→ V conf

h̃
corre-

sponding to the additive BPX preconditioner (see e.g. [13, 14, 79]).
The space decomposition that we use to define the multilevel BPX preconditioner is:

V CR
h = V CR

h +
J∑
j=0

Wj =
J+1∑
j=0

Wj , (5.27)

where we have denoted Wj = V conf
hj

(j = 0, 1, · · · , J) the nested conforming spaces with mesh

sizes hj = 2jh and WJ+1 = V CR
h . Let us also denote by ACj the operators corresponding to the

restrictions of a(·, ·) on Wj for j = 0, · · · , J , namely

(ACj vj , wj) = a(vj , wj), ∀vj ∈Wj , ∀wj ∈Wj .

Without loss of generality, we assume that h ' 2−J , and therefore | log h| ' J . Then the
operator form of the multilevel preconditioner is:

BML : V CR
h 7→ V CR

h , BML := [AC0 ]−1QC0 +

J+1∑
j=1

R−1
j Qj (5.28)
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Here Qj : V CR
h 7→Wj is the L2-orthogonal projection on Wj , j = 0, . . . , J and we set QJ+1 = I.

We use exact solver on the coarsest grid. With all this notation in hand one can prove that

(B−1
MLv, v) = inf∑J+1

j=0 wj=v

a(w0, w0) +
J+1∑
j=1

Rj(wj , wj)

 . (5.29)

Here Rj(·, ·), j = 1, . . . , (J + 1) correspond to Jacobi or symmetric Gauss-Seidel smoother and
the proof of (5.29) is similar to the proof in the two level case.

Let us recall two results that we need later in our convergence analysis.

Lemma 5.9 ([80, Lemma 4.2]). Let Rj(·, ·) be a Jacobi or the symmetric Gauss-Siedel smoother
for the solution of the discretization (5.6) on Wj space. Then,

a(w,w) . Rj(w,w) . h−2
j ‖w‖

2
0,κ ∀w ∈Wj

We also need the following strengthened Cauchy Schwarz inequality.

Lemma 5.10 (Strengthened Cauchy Schwarz, cf. [79, Lemma 6.2]). Let j = 0, 1, · · · , J−1 and
j < l ≤ J there exists a constant γ ∈ (0, 1) such that

a(wl, wj) . γ
l−j(h−1

l ‖wl‖0,κ)(h−1
j ‖wj‖0,κ), ∀wl ∈Wl, and wj ∈Wj . (5.30)

The main result of this section is the following:

Theorem 5.11. Let BML be the multilevel preconditioner defined in (5.28) and let m0 denote
the number of floating subdomains (the cardinality of the set I defined in (5.17)). Then, the
following upper bound can be given for the effective condition number Km0+1(BMLA

CR
0 ) for the

multilevel preconditioner BML:

Km0+1(BMLA
CR
0 ) ≤ C| log h|2 . | log h|2 ,

where the constant C > 0 is independent of the coefficients and mesh size.

Proof. To estimate the effective condition number, we restrict our considerations to v ∈ Ṽ CR
h .

We first give a bound on the first relevant eigenvalue λm0+1(B−1
MLA

CR
0 ). From (5.29) we can see

that to estimate this eigenvalue we need to find a decomposition v =
∑J+1

j=0 wj which is stable.

To simplify the notation we set Pj := P
hj
h : Ṽ CR

h −→ Wj , for j = 0, . . . , J , and PJ+1 = I, and

P−1 = 0. Then for any v ∈ Ṽ CR
h , we set

v =
J+1∑
j=0

(Pj − Pj−1)v =

J∑
j=0

wj , where wj = (Pj − Pj−1)v.

Clearly, wj ∈ Wj for j = 1, · · · , (J + 1) and w0 = P0v ∈ W0. Now we show that this decom-

position is stable, namely that exist C0 > 0 such that for all v ∈ Ṽ CR
h decomposed as above,

a(w0, w0) +
J+1∑
j=1

Rj(wj , wj) ≤ C2
0A0(v, v) , (5.31)

To estimate RJ+1(wJ+1, wJ+1) we use (5.20) from Lemma 5.3, together with the approximation

result (with h̃ = h) from Corollary 5.5 and Remark 5.6. Then by the triangle inequality, with the
approximation and stability estimates of Pj from Corollary 5.5, and the fact that log hj/h ' j,
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gives

a(w0, w0) +
J+1∑
j=1

Rj(wj , wj) . |P0v|21,κ +
J+1∑
j=1

h−2
j ‖(Pj − Pj+1)v‖20,κ

≤ |P0v|21,κ,Ω + 2

J+1∑
j=1

h−2‖v − Pjv‖20,κ

. |v|21,h,κ
J+1∑
j=1

| log 2j | . J2|v|21,h,κ = A0(v, v) .

Hence, (5.31) is shown with C2
0 = J2 ' | log h|2, and so λm0+1(B−1

MLA
CR
0 ) ≥ C−2

0 .

We next give a bound on λmax(B−1
MLA

CR
0 ). Let v ∈WJ+1 = Ṽ CR

h be arbitrary and {wj}J+1
j=0 be

any decomposition of v, namely v =
∑J+1

j=0 wj , with wj ∈Wj . By strengthened Cauchy-Schwarz
inequality, we have

A0(v, v) = A0

J+1∑
j=0

wj ,
J+1∑
j=0

wj

 ≤ 3

A0(wJ+1, wJ+1) + a(w0, w0) + a

 J∑
j=1

wj ,
J∑
j=1

wj


= 3

A0(wJ+1, wJ+1) + a(w0, w0) +

J∑
i=1

J∑
j=1

a (wi, wj)

 .

By Lemma 5.9, the equivalence (5.20) and noticing that the spectral radius of the matrix

(γ|i−j|)J×J is uniformly bounded by (1− γ)−1 we get:

A0(v, v) . RJ+1(wJ+1, wJ+1) + a(w0, w0) +

J−1∑
i=0

J∑
j=1

γ|i−j|
(
h−1
i ‖wi‖0,κ

) (
h−1
j ‖wj‖0,κ

)

≤ C1

R(wJ+1, wJ+1) + a(w0, w0) +
J∑
j=1

Rj(wj , wj)


Since the decomposition was arbitrary, taking the infimum over all such decompositions together
with (5.29) then gives

A0(v, v) ≤ C1(B−1
MLv, v), ∀v ∈ V CR

h ,

which shows that λmax(BMLA
CR
0 ) ≤ C1, and the proof is complete. �

Remark 5.12. Similar results hold also for the multiplicative multilevel methods such as the
V -cycle and these results can be easily derived from estimates comparing multiplicative and
additive preconditioners given in [51, Theorem 4] or [28, Theorem 4.2].

6. Solvers for IP-1 Methods

We now introduce the different iterative methods for the solution of (2.5). As we will see,
most of these methods are based on the methods constructed previously for the solution of (2.9).
We begin by describing the general setting for the construction of the solvers. In all cases, we
follow the ideas from [9], and we will focus on the construction of a preconditioner (iterator)
denoted by BDG. For simplicity we consider the following linear iteration:

Algorithm 6.1. Given initial guess u0, for k = 0, 1 . . . until convergence:

1. Set ek = BDG(f −Auk);
2. Update uk+1 = uk + ek .
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Here A is the operator associated with to the bilinear form of any of the IP-1 methods.
We next discuss the construction and properties of the preconditioner (iterator) BDG for

symmetric and non-symmetric methods.

6.1. Solvers for the SIPG method. For the SIPG method (θ = −1 in (2.5)), BDG is used
in the PCG algorithm as a preconditioner. From the spectral equivalence between A(·, ·) and
A0(·, ·) given in Lemma 2.2, it follows that any of the preconditioners designed for A0(·, ·) result
in an efficient solver for A(·, ·). In particular, due to the block diagonal form of A0, we focus
on block-Jacobi preconditioners. We denote by Rz and [Rz0] the operator corresponding to the
diagonal of A(·, ·) and A0(·, ·), respectively restricted to Zβ. Using the decomposition (3.3) from
Proposition 3.1, we now define the following preconditioners:

Block-Jacobi: BDG
1 := [Rz]−1 + B̃QCR , (6.1)

Block-Jacobi for A0: BDG
0 := [Rz0]−1 + B̃0Q

CR ,. (6.2)

Here QCR : V DG 7→ V CR
h is the L2-orthogonal projection on V CR

h . Here B̃0 = BML as defined

in (5.28) and B̃ refers to the corresponding multilevel preconditioner for the symmetric SIPG-1
method (i.e., including the jump-jump term).

The next result is a simple consequence of the analysis given in the last two sections (Theorems
5.2 and 5.11) together with Lemma 2.2:

Theorem 6.2. Let BDG be the preconditioner defined through either (i) or (ii). Let m0 denote
the number of floating subdomains. Then, the following estimate holds for the effective condition
Km0+1(BDGA):

Km0+1(BDGA) ≤ C| log h|s . | log h|s ,
where s = 0 for the two level method and s = 2 for the multilevel method. The constant C > 0
above is independent of the variation in the coefficients and mesh size.

6.2. Solvers for the non-symmetric IIPG-1 and NIPG-1 methods. We now discuss two
possible choices for the preconditioner (iterator) BDG for solving the non-symmetric methods.
Since the operator notation is convenient in describing these preconditioners, for a given A(·, ·)
(corresponding to either IIPG-1 or NIPG-1 discretization) we define the operator A : V DG 7→
V DG in a standard way:

(Av,w) := A(v, w), ∀v ∈ V DG, ∀w ∈ V DG. (6.3)

6.2.1. Preconditioning with the symmetric part of A(·, ·). The first preconditioner we
consider is the inverse of the symmetric part of A, and is defined as follows:

BDG := A−1
S , where

(ASv, w) :=
1

2
[A(v, w) +A(w, v)], ∀v ∈ V DG, ∀w ∈ V DG.

(6.4)

We note that from this definition and (2.15), we immediately have that AS is symmetric and
positive definite and hence defines a norm, which we will refer to as the AS-norm and denote as
‖ · ‖AS

. We briefly discuss and justify now why the results given in [9] can be extended to the
jump coefficient problem and henceforth applied to the present situation. We mainly focus on
the IIPG method since the convergence results for NIPG can be deduced by little modification
of those for IIPG. We state the following result (which is an extension of [9, Theorem 5.1] to
the model problem (1.1), and show uniform convergence of the linear iteration in Algorithm 6.1
with iterator BDG given by (6.4)):
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Theorem 6.3. Let α∗ be a fixed value of the penalty parameter for which the IIPG-0 bilinear
form (2.9) A0(·, ·) is coercive. Let A(·, ·) be the bilinear form of the IIPG-1 method (2.5) with
penalty parameter α ≥ 4α∗. Let BDG = A−1

S be the iterator in the linear iteration 6.1 and let
uk and uk+1 be two consecutive iterates obtained via this algorithm. Then there exists a positive
constant Λ < 1 such that

‖u− uk+1‖DG ≤ Λ‖u− uk‖DG . (6.5)

We notice that the convergence is guaranteed under a technical (but mild) restriction on the
penalty parameter, namely it should be greater than 4α∗.

A basic step in the proof of the above Theorem is to provide a uniform bound for the skew-
symmetric part of A(·, ·), since ([BDG]−1u,w)−A(u,w) = ((AS − A)u,w)). This can be done
proceeding exactly as in [9, Lemma 5.6], only notational changes are involved. In the end, the
result relies on two ingredients: a strengthened Cauchy-Schwarz inequality that measures the
angle between the two spaces in the decomposition, namely Zβ and V CR

h , and a simple Lemma
that uses this strengthened Cauchy-Schwarz inequality to give a further bound for the term
A0(z, v) , z ∈ Zβ , v ∈ V CR

h . This is the step that gives rise to the technical condition on the
penalty parameter. Here the key result is the fact that the functions in Zβ are orthogonal with
respect to the inner product defined by A0(·, ·); or, equivalently, that the associated stiffness
matrix Azz0 is diagonal. This key result is given in Lemma 4.4 for the jump-coefficient problem.
We point out that the proofs of the Cauchy-Schwarz inequality and the simple Lemma mentioned
above can be carried out exactly as in [9, Lemma A & Lemma 5.1], respectively, with only small
changes in the notation. As such, we omit these proofs here.

6.2.2. Block Jacobi preconditioner. The second choice is simpler to implement and requires
less computational work to apply. It is defined below, and is naturally referred to as a block
Jacobi preconditioner.

BDG := D−1
S , where

(DSv, w) := (DS(vCR + ϕz), wCR + ψz) := (ASϕ
z, ψz) + (ASv

CR, wCR).
(6.6)

In the definition of DS here we have set v ∈ V DG, v = vCR +ϕz and w ∈ V DG, w = wCR +ψz,
and vCR, ϕz, wCR, and ψz are the components from the decomposition (3.3). As is easily seen
from the definition, DS is the block diagonal of AS . The corresponding matrix form of DS

is denoted by DS . According to the theoretical results stated and proved in Section 4 and in
Section 5, we can solve a linear system with respect to DS efficiently. We do not present a
similar result here for the preconditioner BDG given in (6.6). Although plausible, proving such
a result does not appear to be straightforward; such estimates are the subject of current and
future research. We refer to the numerical experiments Section 7 for further discussion and a
comparison of the two preconditioners.

7. Numerical Experiments

We consider the model problem (1.1) in the square Ω = [−1, 1]2 with coefficients:

κ(x) =

{
1.0, ∀x ∈ [−0.5, 0]2 ∪ [0, 0.5]2

ε, elsewhere.

In all of the following experiments, ε varies from 10−5 up to 105, covering a wide range of vari-
ations of the coefficients. In the experiments, we consider uniform refinement with a structured
initial triangulation on level 0 with 32 elements and mesh size h = 2−1. This initial mesh
resolves the jump interface of the coefficients. Each refined triangulation is then obtained by
subdividing each element of the previous level into four congruent elements. The number of
degrees of freedom N` in the DG discretizations on each level satisfies N` = 4`N0 for ` = 0, 1, 2, 3
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with N0 = 96. For convenience a list of all tables that we have used below and the corresponding
preconditioners is given in Table 7.1.

Table Methods
7.2 two level preconditioner for the CR problem
7.3 Diagonal preconditioner for the Z part in SIPG discretization
7.4 Diagonal preconditioner for the Z part in NIPG discretization

7.5 BDG
1 preconditioner for SIPG discretization

7.6 A-norm of E = (I −A−1
S A) for IIPG with K = 1, 2

7.7 A-norm of E = (I −A−1
S A) for IIPG with K = 4, 8

7.8 A-norm of E = (I −D−1
S A) for IIPG with K = 4, 8, 16

7.9 A-norm of E = (I −A−1
S A) for NIPG with K = 1, 2

7.10 A-norm of E = (I −A−1
S A) for NIPG with K = 4, 8, 16

7.11 A-norm of E = (I −D−1
S A) for NIPG with K = 4, 8, 16

7.12 GMRes with preconditioner A−1
S for IIPG

7.13 GMRes with preconditioner A−1
S for NIPG

Table 7.1. List of Tables. In the list we refer to several operators: list refers
to BDG

1 defined via (6.1); A, defined via (6.3); AS and DS , defined via (6.4) and
(6.6).

We have used the basis (3.4)-(3.5) for our numerical tests (for all of the IP discretiza-
tions). Whenever we have used preconditioned CG or preconditioned GMRES, the iterations
are stopped when the initial residual is reduced by seven orders of magnitude: namely, if r0 is
the initial residual and r` is the residual at iteration `, the iteration process (PCG or precon-
ditioned GMRES) is terminated at iteration k if ‖rk‖`2/‖r0‖`2 < 10−7. For the non-symmetric
discrete schemes (NIPG and IIPG), we have used GMRES with restart at every 10 iterations,
and the maximum number of iterations is set to 30. The experiments were carried out on an
IMAC (OS X) with 2.93 GHz Intel Core i7, and 8 GB 1333 MHz DDR3.

7.1. Solver for IP(β)-0 method. We first consider IP(β)-0 method. For this set of experi-
ments we have set the penalty parameter α = 8. We use algorithm 4.1 given in Section 4 to solve
the linear system arising from the IP(β)-0 discretization. Due to the block structure(4.1) of A0

(matrix representation of A0 in the basis (3.4)-(3.5)) we only need to numerically verify the
effectiveness of the solvers for each block; Avv0 and Azz0 . Recall that for any choice of θ = 0,±1,
the block Avv0 is the same (since it is the stiffness matrix of the Crouzeix-Raviart discretization
(5.1)), while the block Azz0 is different for different values of θ.

The system Avv0 arising from the restriction of A0(·, ·) to the Crouziex-Raviart space is solved
by a PCG algorithm with the two level preconditioner defined in (5.9). For the two level
preconditioner we use two symmetric Gauss-Seidel steps as smoother. In Table 7.2 we re-
port the estimated condition number K(BAvv0 ) and the effective condition number (denoted by
K1(BAvv0 )). Observe that the estimated condition number K(BAvv0 ) deteriorates with respect
to the magnitude of the jump in coefficient. In contrast, and as predicted by our theory, the
effective condition number K(BAvv0 ) is uniformly bounded with respect to both the mesh size
and the jump of the coefficient, as predicted by Theorem 5.2. To explain the deterioration of
K(BAvv0 ) with respect to the jump in the coefficient, we have shown in Figure 7.1, the spectrum
of the preconditioned system for ε = 10−5 and the mesh size h = 2−5. Note that there is only
one (very small) eigenvalue close to zero (which may be related to the fact that there are only 2
different values for the coefficients). The systems corresponding to Azz0 are solved by a PCG al-
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Figure 7.1. Eigenvalue distribution of BAvv0 for ε = 10−5 and h = 2−5.

gorithm using its diagonal Dz as a preconditioner. The estimated condition numbers of D−1
z Azz0

for Type-0 SIPG(β) and NIPG(β) discretizations are reported in Table 7.3 and Table 7.4, re-
spectively. Observe that the condition numbers of D−1

z Azz0 are uniformly bounded and close to
1, which confirms the result established in Lemma 4.3; i.e., that Azz0 is spectrally equivalent to
its diagonal.

7.2. Solvers for SIPG(β)-1. We now study the effectiveness and robustness of the proposed
solvers for the SIPG-1 discretization. As before, we have set the penalty parameter αe = 8 in
(2.5) for this set of experiments. We consider the BDG

1 defined via (6.1) in Section 6.1. The
matrix form of this preconditioner is denoted BDG1 .

Table 7.5 gives the estimated condition numbers of K(BDG1 A) and the number of PCG iter-
ations required for convergence. As can be seen from these two tables, the condition numbers
of the preconditioned system deteriorate rapidly when ε becomes smaller. In the same table
we give the effective condition numbers K1(BDG1 A), and observe that the effective condition
numbers are nearly uniformly bounded with respect to the coefficients and mesh size. These
results verify the theory predicted by Theorem 6.2.

7.3. Solvers for Nonsymmetric IP(β)-1 Methods. We now present some numerical tests
for the nonsymmetric IP(β)-1 methods: IIPG(β)-1 and NIPG(β)-1. We consider the linear
iteration given in 6.1 with the iterator BDG as defined in (6.4). As we shall see, the perfor-
mance of the preconditioners depends on the value of the penalty parameter. All the tests are
computed with α = Kα∗, with α∗ given at the beginning of §7.3. The value of α∗ is close to
the smallest value required for ensuring positive semi-definiteness of the symmetric part of A.
In the experiments, we take K = 1, 2, 4, 8, 16.

Since our examples involve a fixed domain (unit square), the value of α∗ can be well approxi-
mated. For the IIPG(β)-1 discretization with mesh size h = 2−1 we take α∗ = 0.9. For all other



28 B. AYUSO DE DIOS, M. HOLST, Y. ZHU, AND L. ZIKATANOV

(a) ε < 1

ε
levels 0 1 2 3
h 2−1 2−2 2−3 2−4

10−5 K(BAvv
0 ) 5.49e+04 (18) 4.65e+04 (24) 3.79e+04 (26) 3.24e+04 (26)

K1(BAvv
0 ) 4.71 4.01 3.6 3.47

10−4 K(BAvv
0 ) 5.49e+03 (16) 4.66e+03 (23) 3.79e+03 (23) 3.25e+03 (24)

K1(BAvv
0 ) 4.71 4.01 3.6 3.47

10−3 K(BAvv
0 ) 551 (15) 469 (20) 383 (21) 328 (21)

K1(BAvv
0 ) 4.69 4 3.6 3.47

10−2 K(BAvv
0 ) 57.2 (14) 49.5 (18) 41.2 (19) 36.2 (19)

K1(BAvv
0 ) 4.52 3.95 3.57 3.44

10−1 K(BAvv
0 ) 7.63 (13) 7.34 (16) 6.71 (17) 6.47 (17)

K1(BAvv
0 ) 3.48 3.54 3.32 3.27

(b) ε ≥ 1

ε
levels 0 1 2 3
h 2−1 2−2 2−3 2−4

1
K(BAvv

0 ) 2.58 (11) 2.77 (12) 2.79 (13) 2.94 (14)
K1(BAvv

0 ) 2.36 2.56 2.56 2.69

101
K(BAvv

0 ) 3.13 (10) 4.62 (15) 4.85 (16) 5.06 (16)
K1(BAvv

0 ) 2.16 3.51 3.41 3.4

102
K(BAvv

0 ) 3.73 (11) 6.06 (16) 7.13 (17) 8.3 (18)
K1(BAvv

0 ) 3.36 3.8 3.68 3.66

103
K(BAvv

0 ) 3.8 (11) 6.3 (16) 7.55 (18) 9.02 (18)
K1(BAvv

0 ) 3.39 3.84 3.71 3.69

104
K(BAvv

0 ) 3.8 (11) 6.32 (16) 7.59 (18) 9.09 (19)
K1(BAvv

0 ) 3.4 3.84 3.71 3.69

105
K(BAvv

0 ) 3.81 (11) 6.33 (16) 7.6 (18) 9.1 (20)
K1(BAvv

0 ) 3.4 3.85 3.71 3.69

Table 7.2. Estimated condition numbers K(BAvv0 ) (number of PCG iterations)
and effective condition numbers K1(BAvv0 ) for the block Avv0 in algorithm 4.1.

mesh sizes that we use in our numerical tests below (e.g. h = 2−2, h = 2−3 or h = 2−4) we take
α∗ = 1.3.

To verify the theory for Algorithm 6.1 with the symmetric part of A as an iterator, (6.4), we
have computed the A-norm of the error propagation operator. We denote this operator here
with E and define it in a usual manner:

E = I −BDGA = I −A−1
S A.

Below, we have tabulated ‖E‖2AS
for several values of the parameters of interest (e.g. ε, mesh

size, penalty parameter). This norm gives us the contraction number of the linear iteration in
Algorithm 6.1. That is, the estimate in Theorem 6.3 holds with Λ = ‖E‖2AS

. This norm is
computed as the maximum eigenvalue of the generalized eigenvalue problem given below:

(I −BDGA)TAS(I −BDGA)u = λASu,

where the corresponding definition of the operators A, AS , DS and the preconditioners BDG

was given earlier in (6.3), (6.4), and (6.6) respectively. For the IIPG-1 method, the AS-norms
of the error propagation operator with preconditioner (6.4) and (6.6) are given in Tables 7.6
and in Table 7.7, for the different values of K. Notice that for K = 1 (Table 7.6) the iteration
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(a) ε < 1

ε
levels h 10−5 10−4 10−3 10−2 10−1

0 2−1 1.73 (14) 1.73 (14) 1.73 (12) 1.73 (11) 1.73 (10)
1 2−2 1.72 (15) 1.72 (14) 1.72 (13) 1.72 (12) 1.72 (10)
2 2−3 1.72 (15) 1.72 (14) 1.72 (13) 1.72 (11) 1.72 (10)
3 2−4 1.72 (15) 1.72 (13) 1.72 (12) 1.72 (11) 1.71 (10)

(b) ε ≥ 1

ε
levels h 1 101 102 103 104 105

0 2−1 1.73 (9) 1.72 (10) 1.73 (11) 1.73 (12) 1.73 (13) 1.73 (13)
1 2−2 1.72 (10) 1.72 (10) 1.72 (11) 1.72 (12) 1.72 (13) 1.72 (14)
2 2−3 1.71 (10) 1.7 (10) 1.72 (11) 1.71 (12) 1.72 (14) 1.72 (15)
3 2−4 1.71 (10) 1.69 (10) 1.69 (11) 1.69 (12) 1.7 (14) 1.69 (16)

Table 7.3. Estimated condition numbers K(D−1
z Azz0 ) (number of PCG itera-

tions) for the block Azz0 in Type-0 SIPG(β) discretization.

(a) ε < 1

ε
levels h 10−5 10−4 10−3 10−2 10−1

0 2−1 1.4 (12) 1.4 (12) 1.4 (10) 1.4 (10) 1.4 (8)
1 2−2 1.4 (12) 1.4 (11) 1.4 (10) 1.4 (10) 1.4 (9)
2 2−3 1.4 (12) 1.4 (11) 1.4 (10) 1.39 (9) 1.39 (9)
3 2−4 1.4 (12) 1.39 (11) 1.39 (10) 1.39 (9) 1.38 (8)

(b) ε ≥ 1

ε
levels h 1 101 102 103 104 105

0 2−1 1.4 (7) 1.4 (8) 1.4 (9) 1.4 (10) 1.4 (11) 1.4 (11)
1 2−2 1.39 (8) 1.38 (8) 1.38 (9) 1.38 (10) 1.4 (11) 1.4 (12)
2 2−3 1.39 (8) 1.37 (8) 1.36 (9) 1.35 (10) 1.35 (12) 1.35 (13)
3 2−4 1.38 (8) 1.36 (8) 1.35 (9) 1.34 (10) 1.35 (12) 1.35 (13)

Table 7.4. Estimated condition numbers K(D−1
z Azz0 ) (number of PCG itera-

tions) for the block Azz0 in Type-0 NIPG(β) discretization.

with BDG = A−1
S is not convergent in AS-norm. For K ≥ 4 (as required by our theory for AS)

we have a convergent algorithm. As expected, (6.4) converges faster for larger α.
The same set of experiments is performed for the NIPG discretization. The estimates for

the A-norm of the error propagation operator corresponding to the iterator (6.4) are given in
Tables 7.9 and 7.10. As can be observed from these numerical results, a larger value of K (and so
of the penalty parameter) is needed than the one for the IIPG in order to produce a convergent
linear iteration. From the results reported in the tables, it can be observed that (provided
K ≥ 4 for IIPG and K ≥ 16 for NIPG) the number of iterations required for convergence does
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(a) ε < 1

ε
levels 0 1 2 3
h 2−1 2−2 2−3 2−4

10−5 K(BDG
1 A) 2.85e+04 (44) 3.37e+04 (44) 3.1e+04 (46) 2.85e+04 (46)

K1(BDG
1 A) 6.27 6.33 6.45 6.49

10−4 K(BDG
1 A) 2.85e+03 (37) 3.37e+03 (38) 3.1e+03 (39) 2.86e+03 (40)

K1(BDG
1 A) 6.26 6.32 6.45 6.48

10−3 K(BDG
1 A) 288 (33) 340 (34) 313 (34) 289 (32)

K1(BDG
1 A) 6.24 6.3 6.42 6.46

10−2 K(BDG
1 A) 32 (27) 37 (28) 34.5 (28) 32.3 (27)

K1(BDG
1 A) 6.08 6.1 6.21 6.25

10−1 K(BDG
1 A) 7.25 (22) 7.33 (22) 7.21 (22) 7.13 (22)

K1(BDG
1 A) 5.62 5.6 5.71 5.73

(b) ε ≥ 1

ε
levels 0 1 2 3
h 2−1 2−2 2−3 2−4

1
K(BDG

1 A) 5.53 (19) 5.76 (20) 5.8 (20) 5.83 (20)
K1(BDG

1 A) 5.17 5.45 5.46 5.46

101
K(BDG

1 A) 6.66 (22) 7.16 (23) 7.16 (23) 7.43 (23)
K1(BDG

1 A) 5.91 6.2 6.25 6.27

102
K(BDG

1 A) 6.88 (25) 8.65 (27) 10.3 (27) 12 (28)
K1(BDG

1 A) 6.32 6.48 6.55 6.55

103
K(BDG

1 A) 6.38 (27) 8.98 (30) 11.1 (31) 13.5 (32)
K1(BDG

1 A) 5.51 6.53 6.59 6.59

104
K(BDG

1 A) 6.91 (30) 9.02 (33) 11.2 (35) 13.7 (36)
K1(BDG

1 A) 6.38 6.54 6.6 6.59

105
K(BDG

1 A) 6.91 (33) 9.02 (36) 11.3 (39) 13.8 (40)
K1(BDG

1 A) 6.38 6.54 6.6 6.59

Table 7.5. Estimated condition number K(BDG1 A) (number of PCG iterations)
and the effective condition number K1(BDG1 A).

not grow with respect to the mesh size or the coefficient jump and that E = I−A−1
S A is uniform

contraction for such values of K.
Similar results hold for the block Jacobi preconditioner BDG = D−1

S described in§6.2.2. From
the rates presented in Table 7.8 and in Table 7.11 one may conclude that for the linear iteration
with the block Jacobi preconditioner DS , the error propagation operator E = I − D−1

S A is a
uniform contraction in the AS-norm. The numerical tests indicate that such estimates on the
rate of convergence hold for sufficiently large values of K (same values as for the preconditioning
with the symmetric part AS) and for both IIPG and NIPG discretizations.

Once we have numerically verified that the linear iteration converges (provided K ≥ 4 for
IIPG and K ≥ 16 for NIPG), we test the use of A−1

S as a GMRES preconditioner. We have
shown the number of GMRES iterations required for convergence for different values of K with
the preconditioner given by (6.4) in table 7.12. The symbol x in Table 7.12 means that GMRES
fail to converge with these parameters for > 30 iterations. It is clearly seen that preconditioned
GMRES converges uniformly with respect to the mesh size and robust with respect to the jump
in the coefficient, provided that K ≥ 4 for IIPG and K ≥ 16 for NIPG.
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(a) ‖E‖2AS
for IIPG: αe = α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 2.5 2.5 2.5 2.5 2.5 2.5 2.4 2.4 2.4 2.4 2.4
1 2−2 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0
2 2−3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

(b) ‖E‖2AS
for IIPG: αe = 2α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.53 0.53 0.53 0.53 0.53 0.53 0.51 0.52 0.52 0.52 0.52
1 2−2 0.33 0.33 0.33 0.33 0.34 0.34 0.33 0.34 0.34 0.34 0.34
2 2−3 0.37 0.37 0.37 0.37 0.37 0.37 0.36 0.37 0.37 0.37 0.37
3 2−4 0.39 0.39 0.39 0.39 0.39 0.39 0.38 0.39 0.39 0.39 0.39

Table 7.6. Norm of the error propagator E = (I −A−1
S A) for A corresponding

to IIPG discretization, with: (a) αe = α∗ and (b) αe = 2α∗.

(a) ‖E‖2AS
for IIPG: αe = 4α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19 0.19
1 2−2 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
2 2−3 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.16 0.16
3 2−4 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

(b) ‖E‖2AS
for IIPG: αe = 8α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
1 2−2 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
2 2−3 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
3 2−4 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07

Table 7.7. Norm of the error propagator E = (I −A−1
S A) for A corresponding

to IIPG discretization, with: (a) αe = 4α∗ and (b) αe = 8α∗.

We conduct the same set of experiments for NIPG(β) discretization. The number of GMRES
iterations required for convergence for different values of K with the preconditioner (6.4) is
shown in Table 7.13. Clearly with such a preconditioner the GMRES method is uniformly
convergent with respect to the problem parameters for K ≥ 16.
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(a) ‖E‖2AS
for IIPG: αe = 4α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.81 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.80 0.80
1 2−2 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
2 2−3 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
3 2−4 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68

(b) ‖E‖2AS
for IIPG: αe = 8α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.59 0.59 0.59 0.59 0.59 0.58 0.58 0.58 0.59 0.59 0.59
1 2−2 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
2 2−3 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56
3 2−4 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

(c) ‖E‖2AS
for IIPG: αe = 16α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.52 0.52 0.52 0.52 0.51 0.50 0.50 0.50 0.50 0.50 0.50
1 2−2 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50
2 2−3 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
3 2−4 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Table 7.8. Norm of the error propagator E = (I −D−1
S A) for A corresponding

to IIPG discretization, with: (a) αe = 4α∗, (b) αe = 8α∗ and (c) αe = 16α∗. .

Appendix A. Construction of the transfer operator P h̃h .

We now give the definition of an operator P h̃h that will be shown to satisfy the required
approximation and stability properties (5.23)-(5.24). We start by introducing some notation
required for our construction. For a given conforming triangulation Th, we denote by N (Th) the
set of vertices of the partition Th, and by C(Th) the set of barycenters of the elements T ∈ Th.

We still denote by Eh the set of edges/faces of Th. For each vertex p ∈ N , let ωp :=
⋃
T3p

T and

ωT =
⋃
p∈T

ωp for each T ∈ Th. Similarly, on the interface Op and Oe denote, respectively, the

local patches associated with the vertex p ∈ N and the edge/face e ∈ Eh on the interface. We

now start building the operator P h̃h ; it is constructed in several steps as the composition of a
particular inclusion operator and the Scott-Zhang quasi-interpolation operator. The first basic
idea is to embed V CR

h into a higher order conforming finite element space on the same mesh
Th. Following [17], we consider the space of piecewise quadratic polynomials on Th, which we

denote by V conf,2
h . To be able to use the results in [17] for the jump-coefficients problem, we

consider this inclusion at the subdomain level. Let Ei : V CR
h (Ωi) :→ V conf,2

h (Ωi) be the inclusion
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(a) ‖E‖2AS
for NIPG: αe = α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−2 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
1 2−3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
2 2−4 2.2 2.1 2.1 2.2 2.2 2.1 2.1 2.1 2.2 2.2 2.2

(b) ‖E‖2AS
for NIPG: αe = 2α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
1 2−2 0.98 0.98 0.98 0.98 0.99 0.99 0.97 0.98 0.99 0.99 0.99
2 2−3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
3 2−4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Table 7.9. Norm of the error propagator E = (I −A−1
S A) for A corresponding

to NIPG discretization, with: (a) αe = α∗ and (b) αe = 2α∗.

operator defined on each subdomain Ωi by:

Ei[v(p)] =
1

|ωp|
∑
T∈ωp

vT (p) ∀p ∈ N (Th(Ωi)) ∪ C (Th(Ωi)) . (A.1)

The above definition applies for all interior points p ∈ N (Th(Ωi)) ∪ C (Th(Ωi)). We introduce
the set Ξip := {T ∈ Th : p ∈ ∂T and measd−1(∂T ∩ ∂Ωi) > 0} and we note that the cross-points
do not belong to this set. At the boundary vertices p ∈ ∂Ωi, we define Ei in the following way:

(Eiv)(p) =
1

|Ξip|
∑
T∈Ξi

p

vT (p) ∀p ∈ N (Th(∂Ωi)) ∪ C (Th(∂Ωi)) .

Observe that, with this construction, we have that ηi = Eiv ∈ V conf,2
h (Ωi) is conforming at each

subdomain. However, the global function η|Ωi := ηi will generally be multi-valued at the cross
points. The modification of the definition of Ei at boundary points is done to guarantee that
the global function η will be at least conforming every non-cross point of the partition and so,
in particular, in the interior of the boundary of each subdomain. The next result is taken from
[17], where the author studies uniform preconditioners and solvers for the CR discretization of
the Poisson problem. It guarantees the stability and approximation properties of the inclusion
operator Ei. The proof can be found in [17]:

Lemma A.1. There exists a linear operator Ei : V CR
h (Ωi) :→ V conf,2

h (Ωi) defined on each

subdomain Ωi such that for any v ∈ V CR
h

(i) |Eiv|1,Ωi
' |v|1,h,Ωi

(ii) ‖v − Eiv‖0,Ωi
. h |v|1,h,Ωi

We note that V conf
h̃

⊂ V conf,2
h and therefore a standard restriction operator would allow us

to represent the constructed η as a function in V conf
h̃

(except at cross-points). However, to

guarantee that the constructed operator satisfies (5.23)-(5.24), we use the Scott-Zhang quasi-
interpolation operator, again at the subdomain level and also at the interior of the interfaces, say
Γ = ∂Ωi ∩ ∂Ωj i 6= j, between any pair of subdomains. We denote by Qi : H1(Ωi)→ V conf

h̃
(Ωi)
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(a) ‖E‖2AS
for NIPG: αe = 4α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.66 0.66 0.66 0.66 0.66 0.66 0.64 0.64 0.64 0.64 0.64
1 2−2 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.49 0.49 0.49 0.49
2 2−3 0.54 0.54 0.54 0.54 0.54 0.53 0.52 0.53 0.54 0.54 0.54
3 2−4 0.56 0.56 0.56 0.56 0.56 0.55 0.55 0.56 0.56 0.56 0.56

(b) ‖E‖2AS
for NIPG: αe = 8α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.32 0.32 0.32 0.32 0.32 0.32 0.31 0.31 0.31 0.31 0.31
1 2−2 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
2 2−3 0.27 0.27 0.27 0.27 0.27 0.26 0.26 0.27 0.27 0.27 0.27
3 2−4 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.28 0.28 0.28 0.28

(c) ‖E‖2AS
for NIPG: αe = 2α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15
1 2−2 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
2 2−3 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13
3 2−4 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Table 7.10. Norm of the error propagator E = (I−A−1
S A) for A corresponding

to NIPG discretization, with: (a) αe = 4α∗; (b) αe = 8α∗; and (c) αe = 16α∗.

the Scott-Zhang quasi-interpolation operator in Ωi and we let QΓ : L2(Γ) → V conf
h̃

(Γ) be the

corresponding Scott-Zhang operator on Γ ⊂ ∂Ωi. We now recall the definition and the main
properties of these interpolators. For any p ∈ N

(
T
h̃
(Ωi)

)
, choose some1 T ⊂ ωp. Let {λT,i :

i = 1, · · · , d+ 1} be the barycentric coordinates of T and let denote by {θT,i : i = 1, · · · , d+ 1}
its L2-dual basis, i.e., (λT,i, θT,j)T = δi,j . Let {φp}p∈N(Th̃(Ωi)) denote the set of nodal basis of

V conf
h̃

(Ωi). Then, the Scott-Zhang quasi-interpolation operator is defined by

Qiη =
∑

p∈N(Th̃(Ωi))

(∫
T
θpη

)
φp ,

The operator QΓ is defined similarly. Both operators enjoy the following approximation and
stability properties:

Lemma A.2. For any η ∈ H1(Ωi), the quasi-interpolation operators Qi : H1(Ωi)→ V conf
h̃

(Ωi)

and QΓ : L2(Γ)→ V conf
h̃

(Γ) with Γ ⊂ ∂Ωi, satisfy the following properties:

‖Qiη‖0,T . ‖η‖0,ωT , ‖Qiη‖1,T . ‖η‖1,ωT , ‖QΓη‖0,F . ‖η‖0,OF
. (A.2)

1Note that the choice of T is not unique
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(a) ‖E‖2AS
for NIPG: αe = 4α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
1 2−2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
2 2−3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
3 2−4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

(b) ‖E‖2AS
for NIPG: αe = 8α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1 2−2 0.83 0.83 0.83 0.83 0.83 0.83 0.82 0.83 0.83 0.83 0.83
2 2−3 0.86 0.86 0.86 0.86 0.86 0.86 0.85 0.86 0.86 0.86 0.86
3 2−4 0.88 0.88 0.88 0.88 0.88 0.88 0.87 0.88 0.88 0.88 0.88

(c) ‖E‖2AS
for NIPG: αe = 16α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.68 0.68
1 2−2 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60
2 2−3 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61
3 2−4 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61

Table 7.11. Norm of the error propagator E = (I−D−1
S A) for A corresponding

to NIPG discretization, with: (a) αe = 4α∗, (b) αe = 8α∗ and (c) αe = 16α∗. .

‖h̃−1(I −Qiη)‖0,T . ‖η‖1,ωT , ‖h̃−1(I −QΓη)‖0,F . ‖η‖1,OF
. (A.3)

Furthermore, both operators are linear preserving; i.e. if η ∈ V conf
h̃

(ωT ), then Qiη(x) ≡ η(x),

and similarly if η ∈ V conf
h̃

(Oe), then QΓη(x) ≡ η(x).

We refer to [62, 68] for a proof of the above result.

By using Qi and QΓ, we can now define our local interpolation operator P h̃h , for which the
properties (5.23)-(5.24) can be shown. The definition is inspired on the ideas from [15] for the
weighted L2-projection. To define such an operator, we treat the interior of each subdomain and

the interfaces differently. We define the interpolation operator P h̃h : V CR
h → V conf

h̃
as follows:

P h̃h v =

 QiEiv, at vertices inside the subdomain Ωi

QΓEiv, at vertices inside each face Γ of the subdomain Ωi

0, at vertices elsewhere (cross-points).
(A.4)

The next result guarantees that the operator P h̃h defined above does satisfy the approximation
and stability properties (5.23)-(5.24):
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(a) Preconditioned GMRES for IIPG: αe = α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 x x 6 5 4 3 3 2 2 2 1
1 2−2 x 6 5 4 3 2 2 2 2 2 2
2 2−3 x x 5 4 3 3 2 2 2 2 2
3 2−4 x x 5 4 3 3 2 2 2 2 2

(b) Preconditioned GMRES for IIPG: αe = 2α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 x 4 3 3 2 2 2 1 1 1 1
1 2−2 x 4 3 2 2 2 2 1 1 1 1
2 2−3 x 4 3 3 2 2 2 2 2 1 1
3 2−4 x 4 3 3 2 2 2 2 2 2 2

(c) Preconditioned GMRES for IIPG: αe = 4α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 4 3 3 2 2 1 1 1 1 1 1
1 2−2 30 3 2 2 2 1 1 1 1 1 1
2 2−3 16 3 2 2 2 2 1 1 1 1 1
3 2−4 11 3 2 2 2 2 1 1 1 1 1

Table 7.12. Number of GMRES iterations with the preconditioner A−1
S for

IIPG, with: (a) αe = α∗; (b) αe = 2α∗; and (c) αe = 4α∗.

Lemma A.3. For any v ∈ V CR
h , the operator P h̃h : V CR

h → V conf
h̃

satisfies

‖(I − P h̃h )v‖0,κ . h̃| log 2h̃/h|1/2‖v‖1,h,κ, (A.5)

|P h̃h v|1,κ . | log 2h̃/h|1/2‖v‖1,h,κ . (A.6)

The proof follows the ideas from [15, Lemma 4.6].

Proof. We start showing the approximation estimate. Using standard triangle inequality, the
stability and approximation properties of Ei given in Lemma A.1, together with the approxi-
mation result (A.3) of the Qi from Lemma A.2, we have

‖v − P h̃h v‖0,Ωi ≤ ‖v −QiEiv‖0,Ωi + ‖QiEiv − P h̃h v‖0,Ωi

. ‖v − Eiv‖0,Ωi + ‖(I −Qi)Eiv‖0,Ωi + ‖QiEiv − P h̃h v‖0,Ωi

. h|v|1,h,Ωi
+ h̃‖Eiv‖1,Ωi + ‖QiEiv − P h̃h v‖0,Ωi ,

. h|v|1,h,Ωi
+ h̃‖v‖1,h,Ωi

+ ‖QiEiv − P h̃h v‖0,Ωi , (A.7)

Hence, to conclude we only need to estimate ‖QiEiv − P h̃h v‖0,Ωi . To simplify the notation,

throughout the proof we set χ = P κ
h̃
v ∈ V conf

h̃
as defined in (A.4), and denote χi := QiEiv.
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(a) Preconditioned GMRES for NIPG: αe = 8α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 4 3 3 2 2 2 1 1 1 1 1
1 2−2 x 3 3 2 2 2 1 1 1 1 1
2 2−3 x 3 3 2 2 2 2 1 1 1 1
3 2−4 x 3 3 2 2 2 2 2 1 1 1

(b) Preconditioned GMRES for NIPG: αe = 16α∗

ε
levels h 10−5 10−4 10−3 10−2 10−1 1 101 102 103 104 105

0 2−1 3 3 2 2 2 1 1 1 1 1 1
1 2−2 5 3 2 2 2 1 1 1 1 1 1
2 2−3 3 3 2 2 2 1 1 1 1 1 1
3 2−4 4 3 2 2 2 1 1 1 1 1 1

Table 7.13. Number of GMRES iterations with the preconditioner A−1
S for

NIPG, with: (a) αe = 8α∗ and (b) αe = 16α∗.

Then by using discrete L2 norm, we have

‖QiEiv − P h̃h v‖0,Ωi = ‖χ− χi‖20,Ωi
(A.8)

.
∑

p∈∂Ωi∩Nh̃
(Ωi

h̃d(χ− χi)2(p)

.
∑

Γ⊂∂Ωi

∑
p∈Γ

h̃d(χ− χi)2(p)

.
∑

Γ⊂∂Ωi

∑
p∈Γ

h̃d (χi −QΓEiv)2 (p) +
∑
p∈∂Γ

h̃dχ2
i (p)


.
∑

Γ∈∂Ωi

(∑
e⊂Γ

h̃‖(χi −QΓEiv)‖20,e + h̃2‖χi‖20,∂Γ

)
. (A.9)

We need to bound the two terms appearing in the last expression. Taking into account that QΓ

is linear preserving (cf. Lemma A.2) and also using its L2-stability property (A.2), the standard
trace inequality, and the local approximation property of the Scott-Zhang interpolationQi (A.3),
we find for the first term

h̃‖χi −QΓEiv‖20,e = h̃‖QΓχi −QΓEiv‖20,e . h̃‖χi − Eiv‖20,Oe

. h̃ (diam(ωp))−1 ‖Eiv −QiEiv‖20,ωp
+ h̃diam(ωp)|Eiv −QiEiv|21,ωp

. h̃diam(ωp)‖Eiv‖21,ωp
,

where Oe ⊂ ∂Ωi is the local patch associated with e ∈ T
h̃
|∂Ωi

on the interface, and ωp ⊂ Ωi is

the patch associated with the vertex p ∈ e. Note that diam(ωp) = 2h̃.
Summing up the above inequality for all edges/faces, we obtain that∑

Γ⊂∂Ωi

∑
e⊂Γ

h̃‖χi −QΓEiv‖20,e . h̃diam(ωp)‖Eiv‖21,Ωi
. h̃diam(ωp)‖v‖21,h,Ωi

. (A.10)
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To bound the second term in (A.9) we have to distinguish between the 2D and 3D cases. In the
2D case, Γ is one-dimensional, (it is a set of “edges”) and so ∂Γ reduces to its two endpoints,
say {p, q}. Hence,

‖χi‖20,∂Γ = (|χi(p)|2 + |χi(q)|2) ≤ ‖χi‖20,∞,ωp
+ ‖χi‖20,∞,ωq

, ∂Γ = {p, q} ,

To bound each of the above two terms on the right side, we use the two-dimensional discrete
Sobolev inequality [15, Lemma 2.3];

‖χi‖0,∞,ωp ≤ C
(

log
diam(ωp)

h

)1/2

‖χi‖1,ωp , (A.11)

and so summing over all Γ ∈ ∂Ωi the resulting estimate, and using the stability (A.2) from
Lemma A.2 of Qi together with the stability and approximation properties of Ei given in
Lemma A.1, we finally get∑

Γ∈∂Ωi

‖χi‖20,∂Γ .
∑

Γ∈∂Ωi

∑
p⊂∂Γ

log

(
diam(ωp)

h

)
‖χi‖21,ωp

. log

(
2h̃

h

)
‖χi‖21,Ωi

= log

(
2h̃

h

)
‖QiEiv‖21,Ωi

. log

(
2h̃

h

)
‖v‖21,Ωi

. (A.12)

Next, we give the corresponding estimate for the 3-dimensional case. In 3D, any Γ ⊂ ∂Ωi is a
set of faces and edges. Notice however, that it is enough to consider the case when Γ is two-
dimensional (face), since the other case reduces to the estimate already done for 2D. Γ being
a “face”, ∂Γ reduces to a set of edges, {e : e ⊂ ∂Γ}. Hence, defining the set ωe := {T ∈ T

h̃
:

T ∩ e 6= ∅ e ⊂ ∂Γ} and using now the discrete Sobolev inequality [15, Lemma 2.4] (instead of
(A.11)), we find

‖χi‖20,∂Γ =
∑
e⊂∂Γ

‖χi‖20,e .
∑
e⊂∂Γ

log

(
diam(ωe)

h

)
‖χi‖21,ωe

.

Summing the above estimate over all Γ ∈ ∂Ωi and using, as before, the stability (A.2) from
Lemma A.2 of Qi together with the stability and approximation properties of Ei given in Lemma
A.1, we find,∑

Γ∈∂Ωi

‖χi‖20,∂Γ .
∑

Γ∈∂Ωi

∑
e⊂∂Γ

log

(
diam(ωe)

h

)
‖χi‖21,ωe

. log

(
2h̃

h

) ∑
Γ∈∂Ωi

∑
e⊂∂Γ

‖χi‖21,ωe

. log

(
2h̃

h

)
‖χi‖21,Ωi

. log

(
2h̃

h

)
‖v‖21,Ωi

.

Now, substituting into (A.9) the above estimate (or correspondingly (A.12)) together with
(A.10) we finally get

‖QiEiv − P h̃h v‖20,Ωi
= ‖χ− χi‖20,Ωi

≤ C2Ch̃2‖v‖21,h,Ωi
+ Ch̃2 log

(
2h̃

h

)
‖v‖21,Ωi

.

Inserting this estimate in (A.7), the proof of the approximation property is concluded by using
now the definition of the H1-weighted norm.

Finally we show the stability of P h̃h (A.6). From the definition of the norm

‖P h̃h v‖21,κ,Ω =
∑

Ωi⊂Ω

κ‖P h̃h v‖21,Ωi
, ‖P h̃h v‖21,Ωi

=
∑

T⊂Ωi,
⋃
T=Ωi

‖P h̃h v‖21,T .
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Note that P h̃h v ∈ V conf
h̃

and v ∈ V CR
h . To deal with possibly different mesh sizes we consider

the local L2-projection PT : L2(T ) −→ P1(T ) for any T ∈ T
h̃
. For h̃ > h, such an element is

the union of other subelements in the partition Th. Then, adding and subtracting PT v, triangle
inequality together with inverse inequality and the approximation property (A.5), gives

|P h̃h v|1,T ≤ |P h̃h v − PT v|1,T + |PT v|1,T ≤ C(h̃)−1‖P h̃h v − PT v‖0,T + |PT v|1,T

≤ C(h̃)−1
(
‖P h̃h v − v‖0,T + ‖v − PT v‖0,T

)
+ C|v|1,T ≤ C(h̃)−1‖P h̃h v − v‖0,T + C‖v‖1,T .

The Stability now follows immediately, by summing over all elements T ⊂ Ωi, using the definition
of the weighted H1-semi-norm and the weighted L2-norm together with the approximation result
already shown:

|P h̃h v|1,κ,Ω ≤ Ch̃−1‖P h̃h v − v‖0,κ,Ω + ‖v‖1,h,κ,Ω ≤ Ch̃−1h̃

(
log

(
2h̃

h

))1/2

‖v‖1,h,κ,Ω + ‖v‖1,h,κ,Ω

.

(
log

(
2h̃

h

))1/2

‖v‖1,h,κ,Ω ,

and the proof is complete. �

Appendix B. Proof of (5.19) and (5.18)

Since the results in this section concern only the space V CR
h , we will omit the superscript CR

and write A0 instead of ACR0 , ϕe instead of ϕCRe , etc. We also point out that the two Lemmas
that follow are cases of much more general theorem on additive methods which can be found in
many texts (see e.g. [79], [71], [69]).

We first prove the identity for the Jacobi method (5.19).

Lemma B.1. Let R−1 be defined via the expression

R−1A0v =
∑
e∈Eoh

A0(v, ϕe)

A0(ϕe, ϕe)
ϕe.

Then for all w ∈ V CR
h the following relation holds:

(Rw,w) =
∑
e∈Eoh

A0(ϕe, ϕe)w
2
e . (B.1)

Proof. Given w ∈ V CR
h , by setting X = [R−1A0]−1 we obtain that

w = R−1A0[R−1A0]−1w = R−1A0(Xw) =
∑
e∈Eoh

A0(Xw,ϕe)

A0(ϕe, ϕe)
ϕe.

In other words, we have w =
∑

e∈Eoh
weϕe, with we = A0(Xw,ϕe)

A0(ϕe,ϕe) . We then easily obtain the

desired result by the following, rather straightforward, computations:∑
e∈Eoh

A0(ϕe, ϕe)w
2
e =

∑
e∈Eoh

[A0(Xw,ϕe)]
2

A0(ϕe, ϕe)
=
∑
e∈Eoh

A0(Xw,ϕe)

A0(ϕe, ϕe)
A0(Xw,ϕe)

=
∑
e∈Eoh

weA0(Xw,ϕe) = A0(Xw,
∑
e∈Eoh

weϕe) = A0(Xw,w)

= (A0[R−1A0]−1w,w) = (Rw,w).

�
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The following Lemma verifies the identity for (B−1v, v) given in (5.18).

Lemma B.2. Let B be defined as in (5.13). We then have

(B−1v, v) = inf
χ∈V conf

h̃

[R(v − χ, v − χ) + a(χ, χ)].

Proof. Let χ ∈ V conf
h̃

be arbitrary and η = (AC)−1QCB−1v. It is clear that ACη = QCB−1v

and moreover,

v − η = v − (AC)−1QCB−1v = BB−1v − PCA−1B−1v = (B − (AC)−1QC)B−1v = R−1B−1v.

Setting η0 = χ− η, so that χ = η + η0, then shows that

R(v − χ, v − χ) = (R(v − η − η0), v − η − η0)

= (R−1(RB−1v − η0), (RB−1v − η0))

= (RB−1v,B−1v)− 2(η0, B
−1v) + (R−1η0, η0),

and also

a(χ, χ) = a(η + η0), η + η0)

= a(η, η) + 2a(η, η0) + a(η0, η0)

= (ACη, η) + 2(ACη, η0) + a(η0, η0)

= (QCB−1v, (AC)−1QCη) + 2(B−1v, η0) + a(η0, η0).

Adding the last two identities and using the fact that a(η0, η0) ≥ 0 and (Rη0, η0) ≥ 0, and
applying the definitions of QC and B (in that order) then gives

R(v − χ, v − χ) + a(χ, χ) ≥ (RB−1v,B−1v) + (QCB−1v, (AC)−1QCB−1v)

= (B−1v,RB−1v) + (B−1v, (AC)−1QCB−1v)

= (B−1v, (R+ (AC)−1QC︸ ︷︷ ︸
B

)B−1v) = (B−1v, v)

The proof is complete because χ was arbitrary and moreover, equality holds if and only if
η0 = 0. �
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