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Abstract.

Two natural and efficient stopping criteria are derived for conjugate gradient (CG)
methods, based on iteration parameters. The derivation makes use of the inner prod-
uct matrix B defining the CG method. In particular, the relationship between the
eigenvalues and B-norm of a matrix is investigated, and it is shown that the ratio of
largest to smallest eigenvalues defines the B-condition number of the matrix. Upper
and lower bounds on various measures of the error are also given. The compound
stopping criterion presented here is an obvious “default” in software packages because
it does not require any additional norm computations. Key words: stopping criteria,
conjugate gradient methods, B-normal matrices

1 Introduction

Unlike a direct method, an iterative method for solving a linear system Ax = b
must be told when to stop. The choice of stopping criterion is important. If it is too
stringent, the iteration will expend unnecessary effort computing (or attempting to
compute) an excessively accurate approximation to the solution. On the other hand,
if the stopping criterion is too lax, a poor approximation may be returned.
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In most implementations of an iterative method, the iteration is halted when some
norm of either the residual or relative residual is reduced to a user-specified tolerance.
This stopping criterion is often convenient: The residual is readily available and its
norm is easily computed. However, in many conjugate gradient (CG) iterations, this
norm computation represents an additional expense. That is, the norm of the residual
is not needed for the iteration, but only for the stopping criterion. For example,
in the preconditioned conjugate gradient (PCG) method [8], the inner product 〈r, s〉 is
available, but not ‖r‖2 or ‖s‖2. (Here r is the residual and s = Cr is the preconditioned
residual, defined in §2.) It would be more efficient to employ a stopping criterion that
makes use of only previously computed iteration quantities. Moreover, stopping criteria
based on the residual are not necessarily the most desirable. One might prefer to stop
when the error is reduced (in some norm) to some tolerance.

In this paper we derive several bounds that give rise to stopping criteria based on
the error. In each case, an estimate of a condition number of a matrix (or a related
quantity) is required. Although this may seem prohibitive, modern computer codes
are capable of computing such estimates dynamically, especially for conjugate gradient
methods because of their relationship to the Lanczos procedure. In particular, we will
introduce an inexpensive stopping criterion based on the same norm used to define the
CG optimization property. An algorithm using this stopping criterion would halt after
the quantity being minimized was brought below some threshold. Such an inexpensive
stopping criterion based on the relative error would be a good default criterion in a
software package of iterative methods.

1.1 Preliminaries

In this section we establish some notation and terminology. We denote the Euclidean
inner product and spectral condition number by 〈·, ·〉 and κ(·), respectively. In addition,
‖ ·‖ will denote both the Euclidean vector norm and the corresponding spectral matrix
norm, depending on the context. If B is an Hermitian positive definite (hpd) matrix,
it may be used to define a new inner product, norm, and condition number, namely,
〈B·, ·〉, ‖·‖B ≡ 〈B·, ·〉1/2, and κB(G) = ‖G‖B‖G−1‖B . In comparing different condition
numbers, we will sometimes refer to κ(·) as the I-condition number to emphasize the
underlying inner product matrix.

Throughout this paper we make use of the theoretical framework for CG methods
that was developed in [6]. In particular, we assume that the reader is familiar with
the concepts of B-normality and B-definiteness. The former is simply a generalization
of the usual definition of a normal matrix to the B-inner product. The matrix G is
B-normal (for some B) if and only if it has a complete set of B-orthogonal eigenvectors.
If, in addition, the matrix has collinear eigenvalues, it is said to be B-normal(1). The
matrix G is B-self-adjoint (i.e., self-adjoint with respect to the B-inner product) if and
only if BG is Hermitian, a property that is easily verified. Thus, G is B-self adjoint if
〈Gu, v〉B = 〈u,Gv〉B , i.e., 〈Gu,Bv〉 = 〈u, BGv〉 or G∗B = BG. We also remark that
the matrix G is B-normal(1) if and only if it has the form eiθ(irI +H), where r is real
and H is B-self-adjoint. (See the paper of Faber and Manteuffel for details [14].)

Another important concept is that of definiteness. The matrix G is B-definite if and
only if BG is definite, that is, 0 6∈ FB(G), where FB(G) = {〈BGv, v〉/〈Bv, v〉 : v 6= 0}
is the B-field of values. Also, A is B-indefinite if BG is indefinite. The field of values
of G is the I-field of values of G, and G is definite if it is I-definite. Also observe as an
incidental fact that G is not necessarily B-definite if it is definite, and conversely: For
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G =

[
1 1
0 1

]
, B =

[
1 0
0 1/4

]
, v =

[
1

−2

]
, G is definite, whereas 〈v,BGv〉 =

0. A useful relationship is that if a matrix G is B-normal, then FB(G) = H(G), where
H(G) denotes the convex hull of the eigenvalues of G (usually shortened to convex hull.
See [6, 20, 21] for a detailed discussion of B-normality and B-definiteness.

Here is an overview of the paper. In the next section we briefly review the theory
of conjugate gradient methods, paying particular attention to the importance of the
inner product. In §3 we review several well-known bounds and introduce a few variants.
We explore the relationship between the B- and Euclidean inner products in §4, and
establish several results which relate the norms, spectral radii, and condition numbers
defined by the two inner products. In §5, these relationships are used to derive a
general result that is the basis for the “natural” stopping criterion we propose. An
alternative criterion is presented in §6 and condition number estimation is discussed in
§7. Other approaches are surveyed in §8; we see that our estimates are generalizations
of those in the literature. Our stopping criteria are instantiated for twelve CG methods
in §9. Results of numerical experiments are given in §10, where we see that a practical
criterion based on eigenvalue estimates is not a strict upper bound in the early stages
of an iteration. In §11, we summarize our results and propose future work concerning
improvements in the upper bound on which our (primary) criterion is based.

2 CG methods

It was shown in [6] that any conjugate gradient method is characterized by just three
matrices: an hpd inner product matrix B, a left preconditioning matrix C, and the
original system matrix A. The resulting method, denoted by CG(B,C,A), minimizes
the B-norm of the error over a translated Krylov subspace. To be precise, at step i it
minimizes

‖ei‖B ≡ 〈Bei, ei〉
1/2(2.1)

over
x0 +Ki(Cr0, CA)

where
Ki(Cr0, CA) ≡ sp{Cr0, CACr0, (CA)2Cr0, . . . , (CA)i−1Cr0}.(2.2)

Note that the matrix B is used to define a norm in which minimization is sought.
To implement this method, one must employ an algorithm. The optimality property

is usually realized by enforcing an equivalent orthogonality condition. In the most
commonly used algorithms, Orthodir and Orthomin [31], this requires a Gram-Schmidt-
like procedure for generating a B-orthogonal basis for the Krylov subspace. For general
matrices, this would entail storage of all past basis vectors, which is prohibitive when
A is large. However, if the preconditioned matrix CA is B-normal(1), one may use an
efficient three-term recursion [14]. For such matrices, Orthodir and Orthomin simplify,
yielding algorithms we call Odir and Omin (Fig. 2.1). The former is the most faithful
implementation of a three-term CG method: it converges whenever CA is B-normal(1).
The latter is cheaper, but is more restrictive in its application: it converges whenever
CA is B-normal(1) and BCA is definite. A particular CG method is obtained by
specifying B and C, which must be chosen so that the resulting method is computable,
i.e., expressible in terms of known quantities. For example, if A is hpd, then B = A
and C = I yields the original CG method of Hestenes and Stiefel [19], which we call
CGHS. For A Hermitian, the choice B = A2 and C = I gives the conjugate residual
(CR) method. It is computable because 〈Bei, pi〉 = 〈ri, pi〉. Several other choices are
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Odir Omin

p0 = Cr0 p̂0 = Cr0

αi = 〈Bei, pi〉/〈Bpi, pi〉 α̂i = 〈Bei, p̂i〉/〈Bp̂i, p̂i〉

xi+1 = xi + αipi xi+1 = xi + α̂ip̂i

ri+1 = ri − αiApi ri+1 = ri − α̂iAp̂i

si+1 = Cri+1 si+1 = Cri+1

γi = 〈BCApi, pi〉/〈Bpi, pi〉

σi = 〈BCApi, pi−1〉/〈Bpi−1, pi−1〉 βi = −〈BCri+1, p̂i〉/〈Bp̂i, p̂i〉

pi+1 = CApi − γipi − σipi−1 p̂i+1 = si+1 + βip̂i

Figure 2.1: Odir and Omin implementations of CG(B,C,A)

shown in Table 2.1. For each method, B must be hpd, which imposes a restriction on
the class of matrices for which the Odir algorithm is applicable.1 We remark that the
algorithms given in Fig. 2.1 may be rewritten to avoid unnecessary inner products and
matrix-vector products. The most efficient implementation depends on the particular
method, that is, the choice of B, C, and A. See [6] for details.

For some methods, additional restrictions may be required to guarantee the conver-
gence of the more efficient Omin algorithm, as in the conjugate residual (CR) method.
The methods PCG and PCR are preconditioned variants of CGHS and CR, respectively.
The methods PCGCA and PPCG are polynomial preconditioned CG methods. The
former is obtained by applying CGHS to C(A)A and the latter is simply PCG with
C = C(A). As we will see, we can exploit the commutativity of C(A) and A to obtain
efficient stopping criteria. The last six methods are all variants of the (preconditioned)
normal equations. In Table 1 and elsewhere, the matrix M stands for some approxi-
mation to A whereas C is the total preconditioner. See [6] for a thorough discussion
of each of these methods and their underlying patterns.

3 Error bounds and stopping criteria

The simplest and most common stopping criteria are based on the absolute and
relative residual:

‖ri‖ ≤ ε(3.1)

and
‖ri‖

‖b‖
≤ ε(3.2)

where ε > 0 is a user-provided error tolerance. Since one usually prefers a relative
stopping criterion in practice, we will focus on (3.2). Observe that the first criterion
can be obtained from the second by an appropriate scaling of ε by ‖b‖.

Despite its simplicity, this stopping criterion has two disadvantages. First, it is
biased toward the large eigenvalues of the matrix A. This subtle fact, which is often

1For simplicity we list sufficient conditions in the Table 2.1. See [6] for necessary and
sufficient conditions.
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Table 2.1: Twelve CG methods.

Method B CA Odir Restrictions Omin Restrictions

CGHS A A A hpd A hpd

CR A2 A A herm A hpd

PCG A CA A hpd, C herm A hpd, C hpd

PCR ACA CA A herm, C hpd A hpd, C hpd

PCGCA C(A)A C(A)A C(A)A hpd C(A)A hpd

PPCG A C(A)A A hpd A hpd, C(A) hpd

CGNR A∗A A∗A none none

CGNE I A∗A none none

PCGNS (M−1A)∗M−1A (M−1A)∗M−1A none none

PCGNE I (M−1A)∗M−1A none none

PCGNR A∗A (M∗M)−1A∗A none none

PCGNM M∗M (M∗M)−1A∗A none none

overlooked, can skew one’s conclusions about the results of a numerical investigation.
Second, although the residual is usually available, its norm may not be, as in the PCG

method. To implement (3.2) would require an additional norm computation, which
might add significantly to the overall cost of the iteration.

To overcome the first deficiency, we prefer stopping criteria based on the relative
error. Unfortunately, this quantity is generally not known, and so we must base our
stopping criterion on an error bound that is easily computed from available iteration
parameters. To elucidate this point, let S be an arbitrary hpd matrix (not necessarily
related to the CG inner product matrix). Then the following bounds on the relative
error in the S-norm are easily derived:

κ−1
S (A)

‖ri‖S

‖b‖S
≤

‖ei‖S

‖x‖S
≤ κS(A)

‖ri‖S

‖b‖S
(3.3)

and

κ−1
S (CA)

‖si‖S

‖Cb‖S
≤

‖ei‖S

‖x‖S
≤ κS(CA)

‖si‖S

‖Cb‖S
.(3.4)

The former is based on the original matrix A and residual ri; the latter is based on
their preconditioned counterparts, CA and si. To obtain a stopping criterion, one halts
when the right hand side of (3.3) or (3.4) is less than a tolerance ε. Of course, such a
stopping criterion requires an estimate for κS(A) or κS(CA). As we will show in §7,
estimates for κS(CA) can be obtained from the CG iteration parameters when S = B
by exploiting the relationship between CG and Lanczos.

An obvious choice is S = I, in which case we obtain upper bounds on the relative
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error in the Euclidean norm,
‖ei‖

‖x‖
≤ κ(A)

‖ri‖

‖b‖
(3.5)

and
‖ei‖

‖x‖
≤ κ(CA)

‖si‖

‖Cb‖
.(3.6)

Unfortunately, to implement a stopping criterion based on either bound, one might
need to compute an inner product (e.g., a norm) that would not otherwise be needed
to execute the iteration. For example, in the PCG method, the inner product 〈ri, si〉
is available, but not ‖ri‖

2 = 〈ri, ri〉 or ‖si‖
2 = 〈si, si〉. Of course, one could explicitly

compute either norm, but that would represent a 20% increase in the amount of vector-
vector work in a typical CG algorithm (assuming the stopping criterion were checked at
every step). More important, it is difficult to estimate either κ(A) or κ(CA). Contrary
to popular belief, the CG–Lanczos relationship cannot be exploited. The reason is this:
although one can estimate easily the extreme eigenvalues of CA (but not those of A,
in general), their ratio does not necessarily yield the spectral condition number of CA.
Instead, this ratio defines the B-condition number, as we will explain below. Thus,
neither (3.5) nor (3.6) is an attractive stopping criterion. Instead, we wish to devise a
stopping criterion that makes use of quantities already computed during the course of
the iteration.

4 Relationships between the B- and Euclidean inner products

In the context of conjugate gradient methods, it is natural to consider S = B, where
B is the inner product matrix defining the method. (Recall that a CG method mini-
mizes the B-norm of the error at each step of the iteration over a certain subspace.)
Since B varies with the CG method, the stopping criterion will depend on the method.
Although this makes it difficult to compare different methods, it does enable an inex-
pensive and natural stopping criterion that would be a reasonable default in software
packages.

Since CG(B,C,A) is defined with respect to the B-inner product, we will need to
generalize several familiar results to this new inner product. Recall that if the matrix
G is normal (with respect to the Euclidean inner product), then its spectral matrix
norm is given by its spectral radius, ρ(G). The following lemma generalizes this result
to the B-inner product.

Lemma 4.1. If G is B-normal, then ‖G‖B = ρ(G).
Proof. Since B is hpd, we have

‖G‖B = ‖B1/2GB−1/2‖ = σmax(B1/2GB−1/2) = ρ1/2(B−1/2G∗BGB−1/2)

where σmax denotes the largest singular value. Since G is B-normal, G = QJQ−1 for
some diagonal J and B-orthogonal Q (i.e., Q∗BQ = I). Thus,

B−1/2G∗BGB−1/2 = B−1/2Q−∗J∗JQ−1B−1/2 = B1/2QJ∗JQ−1B−1/2

which is similar to J∗J . Therefore, ‖G‖B = ρ(J) = ρ(G).
In what follows, let σ(G) denote the spectrum of the matrix G.
Corollary 4.2. If G is B-normal, then κB(G) = maxλ∈σ(G) |λ|/minλ∈σ(G) |λ|.
Proof. The result follows from Lemma 4.1 applied to G and G−1.
In other words, if a matrix G is B-normal, the ratio of its largest to smallest eigen-

value is the B-condition number of G. It is important to emphasize that this ratio
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is, in general, different from the spectral condition number of G—unless the matrix
happens also to be I-normal.

The distinction between the B- and I-condition numbers is an important one and is
crucial to the choice of stopping criteria. Despite this, it has been largely ignored in
the literature. One reason is this: they are the same for some of the most common CG

methods. To see this, we will first prove a few results, and then show in §9 that their
hypotheses are satisfied by several well-known CG methods.

Lemma 4.3. Let B be hpd. If either B1/2G = G∗B1/2 or B1/2G = GB1/2, then
‖G‖B = ‖G‖. Consequently, κB(G) = κ(G).

Proof. Recall from the proof of Lemma 4.1 that ‖G‖B = ‖B1/2GB−1/2‖. If either
hypothesis holds, the result follows immediately.

Remark: The first condition means that G is B1/2-self-adjoint. However, note that
if G is merely B-self-adjoint, then in general ‖G‖B 6= ‖G‖. For example, consider

G =

(
1 5
0 2

)
and B =

(
1 0
−5 1

)(
1 −5
0 1

)
.

The matrix G is B-self-adjoint, but 2 = ‖G‖B 6= ‖G‖ ≈ 5.5. Also note that if the
second hypothesis of Lemma 4.3 is true, then G is B-self-adjoint if and only if it is
B1/2-self-adjoint.

The next result, which follows from the preceding lemma, provides a simple and
useful sufficient condition under which a B-normal matrix is also I-normal.

Corollary 4.4. If either G = q(B) or B = q2(G), where q is a polynomial with
real coefficients, then κB(G) = κ(G).

Proof. If either hypothesis holds, then B1/2G = GB1/2. The result then follows
from Lemma 4.3.

Although the hypotheses of these results may seem opaque, one or all are satisfied
for some of the familiar conjugate gradient methods. We will revisit this point when
we discuss stopping criteria for particular CG methods.

Finally, note that while the Euclidean and B-norms of the relative error are not, in
general, equal, they are equivalent. Precise bounds are given in the following lemma.

Lemma 4.5. Let B be hpd. Then the relative errors in the B- and Euclidean norms
satisfy:

κ−1/2(B)
‖ei‖B

‖x‖B
≤

‖ei‖

‖x‖
≤ κ1/2(B)

‖ei‖B

‖x‖B
.(4.1)

Proof. For any y, ‖y‖B = 〈By, y〉1/2 ≤ ‖B‖1/2‖y‖. Similarly,

‖y‖ = 〈y, y〉1/2 = 〈B−1B1/2y,B1/2y〉1/2 ≤ ‖B−1‖1/2‖y‖B .

Combining the two inequalities appropriately for y = x and y = ei yields (4.1).
Note. For many important problems, 1 � κ(B); for example, if A results from the

solution of a PDE and B = A∗A, then κ(B) = O
(
1/h4

)
, h � 1. If this is the case,

then a CG algorithm based on B may not be the best choice of an iterative method
when the user wants to make ‖ei‖/‖bi‖ small.

5 A natural stopping criterion when BCA is definite

We will now derive a stopping criterion that uses only previously computed iteration
parameters. Here we assume that BCA is definite (i.e., CA is B-definite), in which
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case the Omin algorithm (Fig. 2.1) is applicable. The key quantity is the numerator
of α̂i, the current steplength. This is given by

〈Bei, p̂i〉(5.1)

where p̂i is the current direction vector. (The p̂j , j = 0, . . . , i, form a B-orthogonal
basis for Ki+1.) Since the error ei is unknown, one must be careful to choose B and C so
that this quantity is computable, that is, expressible in terms of known quantities. We
regard ri as the basic known quantity and consider A and b to be the basic irreducible
entities. One may show that (5.1) is computable whenever C∗Bei is computable [6].
For instance, it is a standard CG equality [6, Cor. 4.1] that

〈Bei, p̂i〉 = 〈C∗Bei, ri〉.(5.2)

This quantity, which is computed during the course of the Omin iteration, is used
in the following theorem to establish bounds that are the basis for our “natural” CG

stopping criterion.
Theorem 5.1. If CA is B-normal and B-definite then2

(
φ−1

B (CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣
)1/2

≤
‖ei‖B

‖x‖B
≤

(
φB(CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣
)1/2

,(5.3)

where

φB(CA) =
ρ(CA)

ψB(CA)
, and ψB(CA) = min

λ∈FB(CA)
|λ|.

Proof. Although the proof follows directly from the definition of FB(CA), we give
the details because they are important in the sequel. Since CA is B-definite (i.e.,
〈CAv,Bv〉 6= 0 if v 6= 0), we have for any nonzero z,

0 < min
λ∈FB(CA)

|λ| ≤

∣∣∣∣
〈BCAz, z〉

〈Bz, z〉

∣∣∣∣ ≤ max
λ∈FB(CA)

|λ|.(5.4)

(Unless CA is B-definite, the lower bound is zero.) Since CA is B-normal, we have
FB(CA) = H(CA), where again H(CA) denotes the convex hull of CA. Thus,
maxλ∈FB(CA) |λ| = ρ(CA). Then, from the definition of ψB(CA) and the fact |〈BCAz, z〉| =
|〈Bz,CAz〉|, we have

|〈Bei, CAei〉|

ρ(CA)
≤ 〈Bei, ei〉 ≤

|〈Bei, CAei〉|

ψB(CA)

and
|〈Bx,CAx〉|

ρ(CA)
≤ 〈Bx, x〉 ≤

|〈Bx,CAx〉|

ψB(CA)

for z = ei and z = x, respectively. Combining these two inequalities gives

ψB(CA)

ρ(CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣ ≤
〈Bei, ei〉

〈Bx, x〉
≤

ρ(CA)

ψB(CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣ .

The result now follows from the definition of φB(CA).

2Although we are usually interested in B-normal(1) matrices—for which three-term CG
methods are possible—many of our results hold for the more general B-normal case.
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Figure 5.1: In (a), Corollary 5.2 fails: For K a real Hermitian indefinite matrix, the

convex hull of eigenvalues of CA = I − iK is a vertical line segment through z = 1 in

the complex plane. The point on this line of smallest absolute value is neither extreme

eigenvalue but z = 1. Thus ψB(CA) = minλ∈FB(CA) |λ| is attained at an interior

point. In (a), the Corollary holds if 1 is an eigenvalue. In (b), the Corollary holds:

The upper horizontal line segment is the convex hull of eigenvalues of a matrix of the

form CA = iI +H where H is hpd. The point of smallest absolute value is closest to

the origin. Also the Corollary holds for eiθCA. The convex hull of eiθCA is shown for

θ = −π/4.

In the important special case of a B-self-adjoint matrix, the last theorem simplifies.
Corollary 5.2. If CA is B-self-adjoint and B-definite then

(
κ−1

B (CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣
)1/2

≤
‖ei‖B

‖x‖B
≤

(
κB(CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣
)1/2

.(5.5)

Proof. The assumptions imply that the eigenvalues of CA are real and either all
positive or all negative. (Recall that CA is B-self-adjoint if and only if BCA is Hermi-
tian.) Therefore, ψB(CA) = minλ∈FB(CA) |λ| = minλ∈σ(CA) |λ|, where σ(CA) denotes
the spectrum of CA. This implies that φB(CA) = maxλ∈σ(CA) |λ|/minλ∈σ(CA) |λ|,
and the result follows from Corollary 4.2.

Remark: Bound (5.5) for the case B = A appears in [23]. The Corollary does not hold
for B-definite B-normal(1) matrices in general. Although such matrices have collinear
eigenvalues, the line segment connecting the extreme eigenvalues (i.e., the convex hull)
is such that ψB(CA) may be attained at an interior point. Here is a simple example:
CA = I − iK, where K is a real Hermitian indefinite matrix. However, the Corollary
does hold for matrices of the form CA = eiθ(irI + H), where H is hpd; see Fig. 5.1.
One final observation: It might fortuitously happen that the minimum occurs at an
interior point. If so, then this interior point is also an eigenvalue, i.e., |λi| = ψB(CA),
where λi is an eigenvalue. Also in this case, the Corollary holds. For example, if in (a)
of Fig. (5.1), 1 is an eigenvalue, then the Corollary holds.

The bound (5.5) involves the B-condition number of CA rather than the usual spec-
tral condition number. Nonetheless, this is the “correct” quantity to use in at least
two respects. First, it is defined by the ratio of the largest to smallest eigenvalue of
CA, which is easily estimated via the CG iteration parameters (§7). Second, since
CG(B,C,A) minimizes the B-norm of the error, it is appropriate to have a bound
based on this norm. Nevertheless, if one prefers the I-norm, the following bound from
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(4.1) may be used if an estimate for κ(B) is available:

‖ei‖

‖x‖
≤ κ1/2(B)

‖ei‖B

‖x‖B
≤

(
κ(B)κB(CA)

∣∣∣∣
〈C∗Bei, ri〉

〈C∗Bx, b〉

∣∣∣∣
)1/2

.(5.6)

This bound is different from (5.5) by a factor of κ1/2(B). The advantage of this bound
over (3.5) is that it does not require the norm of the residual, which may not be readily
available. On the other hand, it does require an estimate for κ(B). We emphasize that
the bounds (5.3) and (5.5) require that BCA be definite, under which condition the
Omin algorithm will not break down. We also remark that the bounds (5.3) and (5.5)
are sharp for any B, C, and A. As explained earlier, we obtain our stopping criterion
by halting the iteration when the upper bound is less than the user-specified tolerance.

Finally, note that C∗Bx in (5.3) or (5.5) is computable if and only if C∗Be is
computable, and so the bound is always computable. In addition, the inner product
〈C∗Bx, b〉 needs to be computed just once at the beginning of the iteration. In some
methods, this computation may be redundant when x0 = 0 (i.e., b = r0).

6 An alternative stopping criterion

In this section we present an inexpensive stopping criterion that is more general than
the one given in the preceding section, but perhaps somewhat less robust, which we
discuss in the next paragraph. Consider (3.4) with S = B:

κ−1
B (CA)

‖si‖B

‖Cb‖B
≤

‖ei‖B

‖x‖B
≤ κB(CA)

‖si‖B

‖Cb‖B
.(6.1)

The upper bound yields a stopping criterion for any matrix CA. As with our other
criteria, it requires an estimate for κB(CA), but it also requires ‖si‖B . At first glance
this seems to require an additional inner product, which is the very expense we are
trying to avoid. However, it so happens that we can compute this quantity from
previously computed iteration parameters, as we will now show.

Suppose, first, that CA isB-normal(1) and we are using the Omin algorithm (Fig. 2.1),
and that it does not breakdown (e.g., because CA is B-definite). In general, Omin is
subject to breakdown and is not as robust as Odir. We have

p̂i = si + βi−1p̂i−1.

Since the direction vectors are mutually B-orthogonal, we obtain

‖si‖
2
B = ‖p̂i‖

2
B + |βi−1|

2‖p̂i−1‖
2
B(6.2)

and so the B-norm of the preconditioned residual can be calculated from previously
computed iteration parameters. (Recall that ‖p̂i‖

2
B = 〈Bp̂i, p̂i〉 is the denominator of

α̂i.)
Next, suppose we are using the Odir algorithm because BCA is indefinite. Here

the calculation of ‖si‖B requires greater effort. One may use induction or the matrix
formulation developed in [3, 4] to show

si = −αi−1pi + ξi−1pi−1

and therefore
‖si‖

2
B = |αi−1|

2‖pi‖
2
B + |ξi−1|

2‖pi−1‖
2
B(6.3)
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where

ξi−1 =
〈Bsi, pi−1〉

〈Bpi−1, pi−1〉
= e2iθ 〈Bei, pi〉

〈Bpi−1, pi−1〉

which again is in terms of previously computed quantities. Recall that a B-normal(1)
matrix has the form eiθ(irI +H).

Finally, observe that the bounds in (6.1) are weaker than those in (5.5). The former
can vary by as much as κ2

B(CA), whereas the latter vary by no more than κB(CA).

7 Estimating φB(CA) and κB(CA)

The bounds derived in the previous sections require estimates either for φB(CA) or
κB(CA). It is possible to estimate these quantities from the CG iteration parameters
by exploiting the “equivalence” of the CG and Lanczos methods. We will consider three
cases: when CA is B-self-adjoint and B-definite, when CA is B-normal and B-definite,
and when CA is B-normal but B-indefinite.

When CA is B-self-adjoint and B-definite, Corollary 5.2 is applicable, and we wish
to estimate φB(CA) = κB(CA). Since κB(CA) = λmax/λmin, we can estimate this
condition number by estimating the extreme eigenvalues of CA. We may obtain such
estimates by computing the extreme eigenvalues of a small tridiagonal matrix, Hk,
whose entries consist of the CG iteration parameters. For example, in the case of the
Omin algorithm, we have [6]

Hk = tridiag

(
−

(
δ̂j−1

δ̂j−2

)1/2
1

α̂j−2
, Re

(
1 + βj−1

α̂j−1

)
, −

(
δ̂j

δ̂j−1

)1/2
1

α̂j−1

)
,(7.1)

where δ̂j = 〈Bp̂j , p̂j〉. We shall summarize some results from [25]. The eigenvalues of
this matrix, ηj , are the roots of the B-orthogonal polynomials that generate the CG

direction vectors. A second set of estimates, νj , can be obtained from the roots of the
underlying residual polynomials. They are the eigenvalues of

Gk = tridiag

(
1 − ρj−1

µj−1ρj−1
,

1

µj−1
,−

1

ρj−1µj−1

)
,(7.2)

where

µj =
α̂j α̂j−1

α̂j−βj−1
and ρj = 1 +

α̂jβj−1

α̂j−1
.(7.3)

In both (7.1) and (7.2), the tridiagonal elements are from row j. Both sets of eigenvalues
are guaranteed to lie in the convex hull of CA when CA is B-self-adjoint. Moreover,
in either case, successive sets of eigenvalues interlace one another, and so the condition
number estimates are monotonically nondecreasing. See [4, 6, 25] for details. We will
use the approximation

κB(CA) ≥
max{|ηj |, |νj |}

min{|ηj |, |νj |}
.(7.4)

Although the estimated condition number is less than the true value, it can still be
used effectively in a stopping criterion as will be seen in §10.

When CA is B-normal(1) and B-definite (which is not needed until the end of this
paragraph) but not necessarily B-self adjoint, the eigenvalues of CA lie on a line
segment in the complex plane, which we denote by its endpoints: [λ1, λn]. The roots
of the B-orthogonal polynomials of degree k will be the eigenvalues of the matrix Hk

in (7.1) and will also lie in this line segment (see [25]), say [η1, ηk]. The roots of
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the residual polynomials do not in general lie on this line segment. We approximate
κB(CA) by the same bound as given in (7.4), using both sets of roots. However, when
estimating φB(CA), we used the line segment [η1, ηk], i.e.,

φB(CA) ≈
max{|η1|, |ηk|}

minα∈[0,1]{|αη1 + (1 − α)ηk|}
.

The denominator is the distance from [η1, ηk] to the origin, which is nonzero since CA
is B-definite.

The third case, when CA is B-normal(1) but B-indefinite, is the most difficult. Since
Theorem 5.1 is not applicable, we will use the bound (6.1) as the basis for our stopping
criterion. (Note that the quantity φB(CA) is undefined because its denominator is
zero.) As described earlier, one can compute ‖si‖B without expending any unneces-
sary inner products, but we still must estimate κB(CA). This can be done using the
roots of the orthogonal and residual polynomials, in much the same fashion as before.
Specifically, we will use the approximation

κB(CA) ≥
max{|ηj |}

min{|νj |}
.(7.5)

It is shown in [25] that in this case an ηi may be zero. No νj may ever equal zero
because the νj ’s are the roots of a residual polynomial: A residual polynomial is, by
definition, a polynomial that is 1 at the origin, i.e., 0 is not a root; also again see [25].
When CA is B-normal(1) and B-indefinite, H(CA) is a line segment passing through
the origin, but we can still use (7.5) to estimate κB(CA).

Remark: In each of the cases above, we underestimate κB(CA). Nonetheless, it is our
numerical experience that these estimates are fairly accurate, and so we recommend
their use in practical stopping criteria. However, if the tolerance ε is relatively large,
the iteration may be halted too soon because it will not have had sufficient time to find
reasonable eigenvalue estimates. This is a consequence of the CG–Lanczos connection.
We shall discuss this further in §10.

7.1 When to update the estimates

The simplest course is to update the estimate for φB(CA) or κB(CA) at every step,
but this is unnecessary. It should be updated when the stopping criterion using the
current approximation is satisfied. For example, if (5.5) is used, the approximation
for κB(CA) need be updated only when the right-hand side of (5.5) is less than the
tolerance ε. If this inequality is still satisfied using the new approximation for the
B-condition number, then the iteration may be stopped. (Recall that the interlac-
ing property of the Lanczos estimates guarantees that successive condition number
estimates will be nondecreasing.)

It is also possible to have a compound stopping criterion. For example, if CA is
B-normal(1) and definite, then either (5.3) or (6.1) can be used to cheaply bound the
relative error in the B-norm. Instead of choosing one over the other, both can checked.
If either is satisfied, we may consider stopping. Specifically, we would update the
estimate for φB(CA) and recheck the criterion. If it is still satisfied, the iteration may
be halted. The advantage of this approach is that it may permit us to halt sooner than
would a simple stopping criterion, thereby saving the cost of unwarranted iterations.

Finally, we wish to emphasize that the extreme eigenvalues of the small tridiagonal
matrices yield an estimate for φB(CA), but not necessarily for its Euclidean coun-
terpart. Since the B-norm is less than intuitive in many cases, one would prefer to
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interpret the results in some equivalent norm that is more readily understood. The
following results are helpful in this respect and will be used in the next section.

Lemma 7.1. If G is both B1-normal and B2-normal, then κB1
(G) = κB2

(G).
Proof. The result follows immediately from Lemma 4.1.
Lemma 7.2. Let F be hpd. Then G is G∗FG-normal if and only if G is F -normal.
Proof. Recall that G is G∗FG-normal if and only if it has a complete set of G∗FG-

orthogonal eigenvectors, {vi}. That is, 〈G∗FGvi, vj〉 = 0 for i 6= j. Since

〈G∗FGvi, vj〉 = 〈FGvi, Gvj〉 = λi|λj |〈Fvi, vj〉

G also has a complete set of F -orthogonal eigenvectors, and so G is F -normal. The
reverse direction is similarly proved.

8 General Remarks and Other Approaches

In our approach to stopping criteria, we emphasize the B-norm since CG minimizes
the error with respect to this, but there are many other norms (see (3.3, 3.4)) and
criteria. We shall survey some of these.

Many criteria are based on aspects of an engineering or scientific problem. As an
example, one scientific group may stop an iteration when ‖D−1Aek‖2 is small, where
D is the diagonal of A because for certain applications it has more physical meaning
than when the residual is used. Another group may use the `1 norm, normalized
by dividing by the number of unknowns because it is thought to work better when
maintaining material balances. Often several criteria are watched, with the max norm
(`∞), normalized `1 and `2 norms applied to the residual vector. With large engineering
budgets dependent on accuracy, a numerical approximation is accepted only when all
criteria are satisfied, an example of a compound stopping criterion.

There is some preference for the max norm on the principle that it is the value of
at least one component whereas the `2 norm in averaging over all components blurs
individual component values. The view that individual components are important finds
expression in the work of Arioli, Duff and Ruiz [2] which starts from the backward error
analysis of Oettli and Prager [26], also Skeel [27, 28], on componentwise backward error
analysis. Arioli, Duff and Ruiz recommend stopping when

‖rk‖∞/(‖A‖∞‖xk‖1 + ‖b‖∞) ≤ ε.

Their views are strongly stated: “[We recommend] . . . this stopping criteria be used
as the standard one in the context of the current efforts to standardize the interface
and environment for iterative solvers.” They also recommend terminating the iteration
when this bound “increases or oscillates significantly.” Unfortunately, the max norm
may be difficult to estimate either if the system is preconditioned or if an explicit
matrix is not available.

In their treatise on iterative methods, Hageman and Young use B-norms (B = I in
(8.1) below) in their discussions of stopping criteria [18]. They recommend a criterion
equivalent to stopping when

〈Bei, CAei〉/λ1 ≤ ε‖xi‖(8.1)

where λ1 is the smallest eigenvalue of CA and ε is the user tolerance [18, p. 149].
(We have simplified things: The authors use a symmetrizing matrix W to transform
one system to another, equivalent to a preconditioning transformation. The results are
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extended in [13] to a skew-symmetric matrix Z.) In order to estimate λ1, they use a
tridiagonal matrix in the same way we use Hk in §7.

To compare this criterion to ours, we shall modify an inequality of Hageman and
Young [18, (7-5.2) p. 148] to get

‖ei‖B

‖x‖B
≤

(〈Bei, CAei〉/λ1)
1/2

‖xi‖B
.(8.2)

(Also see [24, 32].) For the convenience of the reader, we state (a part of) (5.5) here
for a side-by-side comparison with (8.2):

‖ei‖B

‖x‖B
≤

(
κB(CA)

|〈C∗Bei, ri〉|

|〈C∗Bx, b〉|

)1/2

.(8.3)

Inequality (8.2) improves (8.3) through using only λ1 instead of the larger value
κB(CA) = λN/λ1. Estimating ‖x‖B by ‖xi‖B in the denominator of (8.3) is the
key to dispensing with the larger eigenvalue λN . Although this does not in general
preserve the inequality, the approximation is accurate in the pivotal decision period
when xi is close to x. Moreover, if x0 = 0, the inequality is in fact preserved for
the B-norm since ‖xi‖B ≤ ‖x‖B in this case. If x0 6= 0, then b can be replaced by
b −Ax0 to obtain an equivalent system for which the initial guess is zero, at the cost
of an extra matrix vector multiplication. Note that in the case of the B-norm as with
other norms, approximating λ1 with a larger quantity, which occurs with the Lanczos
algorithm, still affects the inequality.

Experiments show (later below in §11 we report on this) that the bound in (8.2)
floats well below the bound given by (the exact value of) κB(CA) in (8.3). Thus, there
is an improvement but at a cost, this being the computation of the B-norm of the
current iterate. In general the gain in accuracy does not justify a criterion based on
the right side of (8.3), if ‖xi‖B is used at every step: the savings in stopping early is
less than the extra cost. However, if the matrix is large and dense (cases that do arise),
then the extra cost would be negligible compared to the savings in stopping early.

The difficulties due to the possibility that ‖xi‖B > ‖x‖B are handled in an elegant
way in a paper of Kaaschieter [22]. (The analysis is also valid for norms not induced
by an inner product, such as the max norm.) He looks at the effect not only of
approximating ‖x‖B but also of approximating λ1. To summarize, we shall consider
only the effect of approximating ‖x‖B . Kaaschieter’s analysis yields

‖ei‖B

‖x‖B
≤

δ

1 − δ

where

δ =
(〈Bei, CAei〉/λ1)

1/2

‖xi‖B
.

This result shows that the factor 1/(1 − δ) is just the factor by which the right side of
(8.2) must be increased for the inequality to hold.

Next we come to a different approach to estimating the error, as proposed in [10, 11,
15]. The common idea in these papers is to use the orthogonal polynomials generated
by the conjugate gradient method in a Gaussian quadrature formula to approximate
the inner product 〈ek, Bek〉, which may be viewed as a quadrature with respect to
a weight function defined by the initial error. A difficulty with this approach is in
estimating the initial error; see [15] for an interesting treatment based on continued
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fractions and their relation to orthogonal polynomials. For another approach based on
continued fractions see [30]. Many interesting ideas may also be found in [16, 17].

Finally on the topic of upper bounds we mention that inequality (3.3) appears also
in a paper of Vuik on GMRES applied to the Navier-Stokes equation [29]. The author
recommends this inequality with an estimate for κM (A).

Although we mainly discuss upper bounds, (5.5) includes a lower bound. One valu-
able property of a good lower bound is of course in showing how accurate the upper
bound is by providing an interval in which the (relative) error lies. There is a useful
suggestion due to Auchmuty [7] that improves (5.5). It is

‖rk‖
2
B/‖A

∗rk‖B ≤ ‖ek‖B(8.4)

where A∗ is the Hermitian transpose of A. The inequality results from

〈rk, Aek〉B = 〈A∗rk, ek〉B ≤ ‖A∗rk‖B ‖ek‖B

which follows by Schwarz’s inequality. Experiments confirm that Auchmuty’s lower
bound is an improvement albeit at significant extra cost.

9 Stopping criteria for twelve CG methods

In this section we instantiate the results of §5 for the twelve CG methods given in
Table 2.1. We assume that the Odir restrictions on C and A listed in the table are
satisfied. It is easy to verify that, under these conditions, CA is B-self-adjoint for each
of the methods. Initially, we will assume also that the stricter Omin restrictions are
met, in which case BCA is hpd and Corollary 5.2 is applicable. (We defer the BCA
indefinite case to the end of the section.)

9.1 The BCA definite case

The primary stopping criterion for each method is then

‖ei‖B

‖x‖B
≤

(
κB(CA)

|〈C∗Bei, ri〉|

|〈C∗Bx, b〉|

)1/2

≤ ε(9.1)

from (5.5) of Corollary 5.2. This criterion, which bounds the B-norm of the relative
error, is always inexpensive to implement because it uses a previously computed inner
product, namely, the numerator of α̂i. (Recall that C∗Bx is computable whenever
C∗Bei is computable.) Since B varies with the method, so will the stopping criterion.
We will point out where the B-condition number of the matrix (necessary for the
stopping criterion) coincides with the more familiar I-condition number. Whenever
feasible, we will also give the stopping criterion (5.6), which is based on the Euclidean
norm of the relative error. Of course, in some cases, this criterion will coincide with
(3.5) or its preconditioned counterpart. We emphasize that the quantities appearing as
the bounding expressions in the following inequalities are inexpensively computed as
stopping criteria, despite their complex appearance. Specifically, in each of the methods
below, the numerator of α̂i is the key quantity in the upper bound that comprises the
stopping criterion. We also wish to point out that many of these results generalize to
the more general B-normal case when full recursions (i.e., Orthomin) are used. Finally,
we remind the reader that the alternative criterion (6.1) is also available, but since it
is easily interpreted, there is no need to instantiate it for each of the methods.
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CGHS. Here B = A and C = I and so BCA is hpd. By Corollary 4.4, we have
κB(A) = κ(A), and so (9.1) becomes

‖ei‖A

‖x‖A
≤ κ1/2(A)

‖ri‖

‖b‖
≤ ε.(9.2)

If one prefers the Euclidean norm, (3.5) may be used.
PCG. As with CGHS, B = A, but now C 6= I, and so in general, κB(CA) 6= κ(CA).

(See PPCG for the special case of polynomial preconditioned CG.) If C is hpd, as is
usually the case, BCA is hpd, and (9.1) becomes

‖ei‖A

‖x‖A
≤ κ

1/2
A (CA)

‖ri‖C

‖b‖C
≤ ε.(9.3)

Unfortunately, since κ(A) is not generally available, we cannot use (5.6) or (3.5) to
obtain an inexpensive bound on the relative error in the Euclidean norm. Note that it
is an option to compute the A-norm of the residual occasionally but that the estimate
is a way to avoid this expensive step.

PPCG. In this variant of PCG (B = A), we employ a polynomial preconditioner,
C = C(A), where C(λ) is a polynomial with real coefficients. In this special case,
κB(C(A)A) = κ(C(A)A), from Corollary 4.4. Moreover, it is possible to estimate both
κ(A) and κ(C(A)A). If the preconditioning polynomial is chosen appropriately, then
C(A) is hpd—even when the polynomial is dynamically determined [5]. Thus, BCA
is hpd and the stopping criteria

‖ei‖A

‖x‖A
≤ κ1/2(C(A)A)

‖ri‖C

‖b‖C
≤ ε(9.4)

and
‖ei‖

‖x‖
≤ κ1/2(A)κ1/2(C(A)A)

‖ri‖C

‖b‖C
≤ ε(9.5)

are both cheap to implement.
PCGCA. In this polynomial preconditioned CG method we have B = C(A)A and

C = C(A), and so again the B- and I-condition numbers of C(A)A are the same. The
stopping criteria are

‖ei‖C(A)A

‖x‖C(A)A

≤ κ1/2(C(A)A)
‖C(A)ri‖

‖C(A)b‖
≤ ε(9.6)

and
‖ei‖

‖x‖
≤ κ(C(A)A)

‖C(A)ri‖

‖C(A)b‖
≤ ε.(9.7)

Observe that if C(A) is a good preconditioner, then C(A)A ≈ I, and the two criteria
are nearly the same.

CR. Here B = A∗A and C = I. If A is hpd, BCA = A3 is hpd. Once again
κB(A) = κ(A), and so (9.1) becomes

‖ri‖

‖b‖
≤ κ1/2(A)

‖ri‖A

‖b‖A
≤ ε.(9.8)

Observe that the A2-norm of the relative error is the same as the I-norm of the relative
residual for Hermitian A. Here we see that unlike the previous cases, the B-norm of
the error is computable. However, even if possible to compute, it is still an extra
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computation, as we pointed out in our discussion of (3.2). If a bound on the relative
error in the Euclidean norm is needed, one may use the stopping criterion

‖ei‖

‖x‖
≤ κ3/2(A)

‖ri‖A

‖b‖A
≤ ε(9.9)

derived from (9.1) and (5.6). Alternatively, one may use (3.5), but this requires an
extra inner product per stopping criterion evaluation to compute the Euclidean norm
of the residual.

PCR. In this preconditioned variant of CR we have B = ACA, which is hpd if and
only if the preconditioner C is hpd. If, in addition, A is definite, then BCA is definite
(i.e., CA is B-definite) and (9.1) is applicable. It gives the stopping criterion

‖ri‖C

‖b‖C
≤ κ

1/2
ACA(CA)

‖Cri‖A

‖Cb‖A
≤ ε.(9.10)

Since κ(A) and κ(ACA) are not generally available, we cannot use (3.5) or (5.6) to
obtain an inexpensive bound on the relative error in the Euclidean norm. Note the
similarity with PCG in this respect: the use of a preconditioner precludes the use of
these simple stopping criteria.

CGNR. In this variant of the normal equations, B = A∗A and C = A∗, and so
κB(A∗A) = κ(A∗A) = κ2(A). The inequalities (9.1) and (5.6) become

‖ri‖

‖b‖
≤ κ(A)

‖A∗ri‖

‖A∗b‖
≤ ε(9.11)

and
‖ei‖

‖x‖
≤ κ2(A)

‖A∗ri‖

‖A∗b‖
≤ ε(9.12)

respectively.
CGNE. This version of the normal equations, which is also known as Craig’s method [9],

minimizes the Euclidean norm of the error at each step of the iteration. That is, B = I
and C = A∗. Here the inequalities (9.1) and (5.6) coincide:

‖ei‖

‖x‖
≤ κ(A)

‖ri‖

‖b‖
≤ ε.(9.13)

PCGNR. Here B = A∗A and C = (M∗M)−1A∗. In general, the B- and I-condition
numbers of CA are not the same. The inequality (9.1) gives

‖ri‖

‖b‖
≤ κ

1/2
A∗A((M∗M)−1A∗A)

‖(AM−1)∗ri‖

‖(AM−1)∗b‖
≤ ε.(9.14)

The use of inequality (5.6) is practicable when the condition number of A∗A is known.
PCGNM. Here B = M∗M and C = (M∗M)−1A∗. In general, κB(CA) 6= κ(CA).

The inequality (9.1) gives

‖Mei‖

‖Mx‖
≤ κ

1/2
M∗M ((M∗M)−1A∗A)

‖ri‖

‖b‖
≤ ε.(9.15)

If M ≈ A, this stopping criterion halts when the approximate relative residual is small
enough. The use of inequality (5.6) is practicable when κ(M∗M) is unknown.
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PCGNE. Here B = I and C = (M∗M)−1A, and so (9.1) yields

‖ei‖

‖x‖
≤ κ(A∗M−1)

‖M−∗ri‖

‖M−∗b‖
≤ ε.(9.16)

PCGNS. Here B = (M−1A)∗M−1A and C = (M−1A)∗M−1. By Corollary 4.4, we
have κB(CA) = κ(CA). Thus, (9.1) gives

‖M−1ri‖

‖M−1b‖
≤ κ(M−1A)

‖(M−1A)∗M−1ri‖

‖(M−1A)∗M−1b‖
≤ ε.(9.17)

Since κ(B) = κ2(M−1A), we also have

‖ei‖

‖x‖
≤ κ2(M−1A)

‖(M−1A)∗M−1ri‖

‖(M−1A)∗M−1b‖
≤ ε.(9.18)

Observe that if M ≈ A, then M−1A ≈ I and M−1ri ≈ ei.

9.2 The BCA indefinite case

When BCA is indefinite, one must use the Odir or an Odir/Omin hybrid algorithm
for a robust implementation of a CG method. An indefinite BCA is allowed in four of
the twelve methods in Table 2.1: PCG, PPCG, CR, and PCR. However, Corollary 5.2
no longer holds because ψB(CA) = 0. Consequently, the stopping criterion (9.1)
is unavailable and one must use the alternative (6.1) or a more expensive stopping
criterion. An indefinite BCA is rare in the case of PCG and PPCG (because one usually
has an hpd preconditioner), but is encountered in CR and PCR when the matrix A is
Hermitian indefinite.

To use (6.1), one must be able to compute ‖si‖B and to estimate κB(CA). In §6, we
showed how one can use formula (6.3) to compute ‖si‖B without expending additional
inner products. In §7, we described how one can estimate κB(CA) by computing the
roots of the orthogonal and residual polynomials; see equation (7.5). Recall that these
roots are the eigenvalues of two small tridiagonal matrices, the entries of which are
derived from the CG iteration parameters.

10 Numerical Experiments

All experiments were run using MATLAB 4.2a. The initial vector was the zero
vector. The true solution was computed using the MATLAB command rand, such
that each usage begins with the same seed, and the right hand side computed from a
matrix vector multiplication. The initial guess is taken to be zero. We shall describe
our test matrices and experiments next.

In our experiments two sets of matrices begin either with a matrix generated from
the centered difference approximation to

−(e−xyux)x − (exyuy)y + δ[(x+ y)uy + ((x+ y)u)y] + [1/(1 + x+ y)]u

or with a complex symmetric matrix resulting from the finite element approximation to
Maxwell’s equation in 3D. The latter is a 125×125 matrix. The first case is an example
due to Elman [12], and the second arises in the solution of a scattering problem. Also we
used a diagonal matrix obtained as follows. We start with an n×n diagonal matrix D
for which the diagonal elements are the first n positive integers. Then we let A = D2.5

and use A for a test matrix. (The exponent disperses the uniform spectrum of D.)
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Figure 10.1: Estimated upper bound for the relative error in the Elman example. The

estimated bound converges to the true (upper) bound.

We shall use the classical conjugate gradient method (CGHS) to solve an hpd system.
The matrices in either Elman’s example or the scattering problem are not hpd. In
both cases, we arrive at an hpd matrix by the practical means of solving a system for
which the matrix is the Hermitian part of the system matrix. (If M is a matrix, the
Hermitian part of M is defined to be (M +M∗)/2.) In both cases, the Hermitian part
is positive definite. The Hermitian part could then be used as a preconditioner for the
non-Hermitian system. Finally, in the case of the scattering problem, we obtain a third
test matrix by forming the normal equations, A∗Ax = A∗b.

Our stopping criterion is to halt when the right inequality in (9.1) is satisfied. In the
case of CGHS, when C = I, B = A and Bei = ri, this criterion reduces to (stopping
when):

κ(A)1/2 ‖ri‖

‖b‖
≤ ε.(10.1)

We shall refer to the left side of (10.1) as the (relative error) true (upper) bound.
We estimate the condition number using the Lanczos algorithm, which yields an

estimate κ̃(A) that is less that the true value of the condition number: κ̃(A) < κ(A).
In turn the approximate value yields the criterion (to stop when)

κ̃(A)1/2 |‖ri‖

‖b‖
≤ ε(10.2)

We shall refer to the left side of (10.2) as the (relative error) estimated (upper) bound.
One concern is whether the relative error estimated bound is in fact an upper bound,

i.e., whether
‖ei‖B

‖x‖B
≤ κ̃(A)1/2 |‖ri‖

‖b‖
(≤ ε)(10.3)
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Figure 10.2: Convergence of the estimated upper bound to the true upper bound.

The system is the normal equations for the solution of a system with the matrix from

a scattering problem.

is true. We shall look at this question as well as the general question of whether the
estimated upper bound is too pessimistic.

In Fig. 10.1, with the Elman matrix, we see that when the iteration starts, the early
Lanczos approximation causes the estimated bound to be slightly less than the relative
error. In the later stages of the iteration, when the approximation may be satisfactory
and a stopping criteria ready to apply, the Lanczos approximation to κ1/2(A) is so
accurate that the estimated bound is the same as the true bound. In experiments for
which the matrix arises from taking the Hermitian part of the scattering problem, the
same results hold as for the Elman matrix.

In Fig. 10.2, the system matrix is A∗A where A results from the scattering problem.
We see the same behavior of the estimated bound converging to the true bound in a
region where a stopping criterion would be applied. However, in the earlier stages,
the estimated upper bound fails to be an upper bound. In our judgment, despite
this, the estimated (upper) bound yields a practical stopping criterion. This situation,
here and with the Elman matrix, has been commented upon elsewhere. Kaaschieter
observed (with respect to a condition guaranteeing that (8.2) holds for CGHS) “. . . it
can be concluded that the termination criterion . . . is very reliable, provided that the
conjugate gradient process is not stopped in a too early phase . . . ” [22, p. 321].

11 Summary and Future Work

We have presented two efficient stopping criteria for conjugate gradient methods.
These criteria can be evaluated inexpensively using parameters already computed dur-
ing the course of the iteration. Moreover, they are based on the B-norm of the relative
error, which is the same norm used to define the CG optimization property. Conse-
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quently, a CG algorithm employing either criterion would halt when the quantity being
minimized was brought below the specified tolerance. Such a criterion would be a good
default in software featuring iterative methods.

We began with a review of twelve well-known conjugate gradient methods (Table 2.1),
each of which can be characterized by just three matrices: an hpd inner product matrix
B, a left preconditioning matrix C, and the system matrix A. After discussing stopping
criteria, we analyzed the relationship between the B- and Euclidean inner products.
Some intermediate results were obtained, including relationships between the B-norm
of a matrix and its spectral radius, between the B-condition number of a matrix and
its extreme eigenvalues, and between the B- and Euclidean norms of the relative error.
Our analysis bears on a common misconception: the ratio of the extreme eigenvalues
of CA do not necessarily yield the Euclidean condition number of CA, but rather the
B-condition number of CA.

Following this analysis, the main results were given in Theorem 5.1 and Corollary 5.2,
which provide bounds on the B-norm of the relative error. The upper bound is the
basis for the first proposed stopping criterion. When CA is B-normal and definite, the
criterion requires an estimate for φB(CA), the ratio of the largest to the smallest point
in theB-field of values. WhenCA is B-self-adjoint andB-definite, this quantity reduces
to κB(CA), the B-condition number of CA. Since neither quantity is usually known
a priori, we described how they may be estimated dynamically from the CG iteration
parameters. All other quantities needed to evaluate the bounds are already available
from the CG iteration. We surveyed other approaches and theories before giving a
detailed discussion on implementing our criteria. The particular form that this stopping
criterion takes for each of the twelve CG methods of Table 2.1 also was discussed. For
each method, the resulting bound was derived and found to be inexpensive to compute,
requiring no additional vector work. In a set of numerical experiments we found that
our criterion is satisfactory when Lanczos eigenvalue estimates are used.

We also presented an alternative upper bound on the B-norm of the relative error,
one based on the B-norm of the preconditioned residual. At first glance this seems to
require an additional norm computation, but we showed how one could express this
quantity in terms of previously computed iteration parameters. We recommend that
the two criteria be combined into a compound stopping criterion. This natural and
efficient criterion would be more reliable than either of its constituent criteria taken
alone.

This concludes our summary. As a final topic, we report on an observation proposed
for further investigation. In principle the estimated (upper) bound for the relative error
is less than the true bound but in our experience the estimated bound often converges
so quickly to the true bound that the two coincide. It would be an advantage if they did
not since the true upper bound is often an order of magnitude larger than the relative
error. One approach to reducing the estimated upper bound is to reduce the estimate
of κB(CA). Recall that we estimated κB(CA) by taking the maximum and minimum
of the extreme eigenvalues of two tridiagonal matrices (7.1) and (7.2). We modify
this estimate by extracting a lower right principal submatrix from each and use the
maximum and minimum of the eigenvalues of the principal submatrices to estimate
the extreme eigenvalues. The result is an estimate bounded above by the estimate
obtained from the full tridiagonal matrices. (We could also use estimates from only
one tridiagonal matrix; there are many possibilities.)

In Fig. 11.1, for the Elman matrix, we see that this approach yields a better estimate.
The results are identical for the Hermitian matrix resulting from the scattering problem
but are not shown. However, the estimate may not be greater than the true relative
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Figure 11.1: The dash-dot curve plots the estimates obtained by using 5 × 5 principal

submatrices extracted from the lower right corner of tridiagonal matrices. The “+” ’s

mark the estimates due to using xi’s in (8.2).

error: In Fig. 11.2, the estimate from principal submatrices crosses below the relative
error at an early stage as does the estimated upper bound. In both cases we have
included the bound (8.2) for comparison. In this experiment, the Lanczos estimate is
used for the value of λ1 in (8.2). (It is labeled as a “partial” bound in the figure since
the upper bound is obtained using only one extreme eigenvalue.)

Practical necessity requires giving up strict inequality in (10.3) at least in the early
stages of the iteration. The even greater risk that we would lose strict inequality in the
use of bounds from principal submatrices may not be acceptable to conservative users,
already unhappy with the violation of inequality in (10.3). There is a heuristic rem-

edy: We have a monotonically increasing sequence of estimates κ̃
(i)
B (CA) converging to

κB(CA) as the iteration number increases, with convergence of the estimates attained
before a user would want to terminate the iteration. The heuristic is simply to test
convergence of the condition number estimates by some means. For example, compute
the first and second differences of the sequence {κ̃

(i)
B (CA) : 0 ≤ i}, then accept (10.2)

only if magnitudes of these differences are sufficiently small to show convergence of the
κ̃

(i)
B (CA)’s.
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