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Abstract: Neutron stars are created by the gravitational collapse
of massive stars that have exhausted their nuclear fuel. The bulk
of the material in these stars is compressed to densities larger
than those in the nuclei of normal atoms. Their gravitational fields
become nearly as strong as those at the surfaces of black holes.
This talk will explore how astronomical observations of these stars
and an understanding of gravitational physics can be used to learn
new things about nuclear physics.

Rough outline of my talk:
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How does nuclear physics affect neutron-star structure?
How can we use that knowledge to learn about nuclear physics?
How accurately can nuclear physics information be determined
using noisy neutron-star observational data?
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Neutron Stars

The idea of neutron stars was proposed by Baade and Zwicky in
1934 as the end products of supernova explosions.
They suggested (about a year after the discovery of the neutron
by Chadwick) that these stars would be composed primarily of
neutrons supported by degenerate Fermi pressure.

Oppenheimer and Volkoff were the
first to solve Einstein’s equation to
determine the structures of neutron
stars in 1939.
Modern nuclear-theory models of
neutron-star matter are complicated
mixtures of neutrons, protons,
electrons, muons and other exotic
particles. Figure from Gendreau, Arzoumanian, Okajima

Proc. of SPIE, 8443, 844313 (2012).
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How do gravitational and nuclear physics determine
the structures of neutron stars?

Einstein’s equations determine the structures of relativistic stars:
dm

dr
= 4πr 2ε,

dp

dr
= −(ε+ p)

m + 4πr 3p

r(r − 2m)
.

Einstein’s equations determine the structures of relativistic stars:
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= −(ε+ p)

m + 4πr 3p

r(r − 2m)
.

These equations must be supplemented by an equation of state
ε = ε(p) that characterizes the composition and thermodynamic
properties of the material in the star.
Solve the equations starting at r = 0 by setting the boundary
conditions m(0) = 0 and p(0) = pc .
Find the radius p(R) = 0 and mass M = m(R) for each star.
The total mass M and radius R are determined by solving these
equations for each value of pc : {R(pc),M(pc)}.
M and R are macroscopic properties of neutron stars that can (in
principle) be measured by astronomical observations.
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Relativistic Stellar Structure Problem (SSP)

The relativistic stellar structure problem (SSP) can be thought of
as a map from the equation of state ε = ε(p) to a curve in the
M-R parameter space {R(pc),M(pc)}.

log ε(p)

log p

M

R

→

Unfortunately, the equation of
state of neutron-star matter is
not well understood. Here are
several dozen examples of
theoretical neutron-star
equations of state.

Solving the relativistic stellar
structure problem for these
equations of state produces a
wide range of neutron-star
models.
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Relativistic Stellar Structure Problem (SSP) II
How can the relativistic stellar structure problem be used to
interpret observations of neutron stars?

One simple minded approach would be to use observations of
neutron-star masses M and radii R to eliminate particular
equation of state models.

A more sophisticated approach would be to adjust the parameters
of a particular nuclear-theory model for the equation of state by
fitting the resulting neutron-star models to the observations.
Versions of this more sophisticated approach have been
implemented by James Lattimer and collaborators, and also by
Feryal Özel and collaborators.
Can we can do better?
Do Einstein’s equations plus observations determine the
neutron-star equation of state on their own without assuming
anything about the nuclear-theory model?
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Relativistic Inverse Stellar Structure Problem (SSP−1)
The inverse stellar structure problem (SSP−1) solves Einstein’s
equation to find the equation of state ε = ε(p) given a curve of
macroscopic observables, e.g. {R(λ),M(λ)}.
SSP−1 can be thought of as the map from the M-R curve
{R(λ),M(λ)} to the equation of state ε = ε(p).

M

R

log ε(p)

log p

→

The basic mathematical questions then become:

“Does this problem have a solution?”
“Is the solution unique?”
“How do we solve it?”
“How accurately can we solve it?”
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“Formal” Solution to SSP−1

Assume the equation of state is known for ε ≤ εi = ε(pi).
Assume the complete M-R curve is known, including the point
{Ri ,Mi} = {R(pi),M(pi)}.

M

R

{Ri, Mi} →
log ε(p)

log p

{pi, εi}

Choose a new point on the M-R curve, {Ri+1,Mi+1}, that
represents a stellar model having slightly larger central density.

Integrate Einstein’s equations through the outer parts of the star,

dm

dr
= 4πr2ε,

dp

dr
= −(ε+ p)

m + 4πr3p

r(r − 2m)
,

to determine the mass and radius, {ri+1,mi+1}, of the tiny core
with large densities ε ≥ εi .
Determine the central density εi+1 and pressure pi+1 analytically
from the structure of the tiny core: mi+1 = 4π

3 εi+1r3
i+1 + O(r5

i+1).
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Can the Formal Solution to SSP−1 be Improved?
Formal solution to the relativistic SSP−1 finds the equation of
state, ε = ε(p), represented as a table, {pi , εi} for i = 1, ...,N,
and an interpolation formula.

Formal solution has several practical weaknesses:
Solution converges (slowly) with the number of points, as N−q .
Each new equation of state point, {pi , εi}, requires the
knowledge of a separate new M-R curve point, {Ri ,Mi}.
Accurate M-R curve points {Ri ,Mi} for neutron stars are scarce.

Spectral numerical methods typically converge more rapidly, and
represent functions more efficiently than finite difference methods.

Can spectral methods provide better (i.e. more practical and more
accurate) solutions to the SSP−1?

Can spectral methods provide interesting solutions to SSP−1

when only a few (e.g. two or three) M-R data points are available?
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Solving SSP−1 Using Spectral Methods
Assume the equation of state can be written in the form
ε = ε(p, λk ), where the λk are a set of parameters.
For example, the equation of state could be written as a spectral
expansion, ε = ε(p, λk ) =

∑

k λk Φk (p), where the Φk (p) are
known basis functions, e.g. Φk (p) = e ikp, or Φk (p) = Pk (p).

For a given equation of state, i.e. a particular choice of λk , solve
the SSP to obtain a model M-R curve: {R(pc, λk ),M(pc, λk )}.

Given a set of points from the “real” M-R curve, {Ri ,Mi}, choose
the parameters λk and p i

c that minimize the difference measure:

χ2 =
1

N stars

N stars
∑

i=1

(

�

log

�

R(p i
c, λk )

Ri

��2

+

�

log

�

M(p i
c, λk )

Mi

��2)

Resulting λk for k = 1, ...,Nλk determines an equation of state,
ε = ε(p, λk ), that provides an approximate solution of SSP−1.
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Causal Spectral Representations
Simple spectral representations like ε(p, λk ) =

∑

k λk Φk (p) are
inefficient because the Φk (p) oscillate. Can we do better?

In a simple barotropic fluid the speed of sound v is related to the
equation of state by: v2(p) = dp/dε.
The velocity function Υ(p) =

�

c2 − v2(p)
�

/v2(p) is therefore
non-negative, Υ(p) ≥ 0, if and only if the fluid is causal.
Construct a spectral representation of Υ(p) that ensures causality:

Υ(p) = exp

¨

∑

k

λk Φk (p)

«

.

The definition of the velocity function can be written as the ode:

dε/dp = (1 + Υ(p))/c2.

Integrate this ode to obtain a causal spectral representation of the
equation of state:

ε(p, λk ) = ε0 +
p − p0

c2
+

1

c2

∫ p

p0

exp

¨

∑

k

λk Φk (p′)

«

dp′.
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Testing the Accuracy of the Spectral Representations
The best causal representations of the equation of state, ε(p, λk ),
use basis functions Φk (p) made from Chebyshev polynomials.
Test how accurately these equation of state representations work
for nuclear-theory model neutron star equations of state.

For a given equation of state {εi ,pi} test the accuracy of the
spectral representation by finding the spectral parameters λk that
minimize the equation of state fitting errors, ∆(λk ), defined by

∆2(λk ) =
1

Neos

Neos
∑

i=1

�

log

�

ε(pi , λk )

εi

��2

.

Evaluate the average equation
of state fitting errors, ∆, for a
collection of 26 nuclear-theory
based equations of state.
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Testing the Spectral Solution of SSP−1

Test the spectral method for solving the SSP−1 using mock
{Ma,Ra} data computed from a known equation of state {εi ,pi}.

Minimize χ that measures how well the model stellar models
{M(pa

c , λk ),R(pa
c , λk )} agree with the mock data {Ma,Ra}.

χ2(λk ) =
1

NMR

NMR
∑

a=1

(

�

log

�M(pa
c , λk )

Ma

��2

+

�

log

�R(pa
c , λk )

Ra

��2)

.

The resulting spectral parameters λk determine an equation of
state, ε(p, λk ), that provides an approximate solution to SSP−1.
Evaluate the accuracy of this ε(p, λk ) by measuring the fitting
errors, ∆,

∆2 =
1

NEOS

NEOS
∑

i=1

�

log

�

ε(p i , λk )

εi

��2

to determine how well ε = ε(p, λk ) matches the exact tabulated
equation of state {εi ,pi}.
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Testing the Spectral SSP−1 Solutions
Test the solution of SSP−1 using
mock data consisting of 10 exact
{M̃a, R̃a} data points from the MR
curve based on the GM1L effective
mean field nuclear-theory equation
of state.

Determine the spectral parameters
λk that minimize the differences
between the model observables
{M(pa

c , λk ),R(pa
c , λk )} and the

exact {M̃a, R̃a} data.
Evaluate the equation of state error
∆ for the resulting ε(p, λk ) based
on the resulting λk .
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Testing the Spectral SSP−1 Solutions II

Next test the solution of SSP−1 using noisy mock mass-radius
data consisting of {Ma,Ra} data points constructed from the
exact {M̃a, R̃a}:

Ma = (1 + δA)M̃a,

Ra = (1 + δA)R̃a,

where A is an error amplitude parameter and −1 ≤ δ ≤ 1 is a
random variable.

Construct 1000 noisy {Ma,Ra}
curves for each noise amplitude
A = {0.001,0.01,0.1,0.2}. These
noisy mass-radius curves occupy
the following regions of mass-radius
space:
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Testing the Spectral SSP−1 Solutions III

Solve the SSP−1 to determine the best fit spectral parameters λk
for each of the 1000 noisy {Ma,Ra} curves in the collections with
noise amplitudes A = {0.001,0.01,0.1,0.2}.

Determine the accuracy of each SSP−1 solution by evaluating the
equation of state errors ∆ determined for the resulting λk .
Then average the equation of state errors ∆ over the 1000 noisy
mass-radius curves in the ensemble with noise amplitude A.
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Summary

Neutron-star equations of state can be represented very efficiently
using spectral representations: with (average) accuracies of just a
few percent using only 2 or 3 spectral coefficients.

The relativistic inverse stellar structure problem can be solved
efficiently and accurately to determine a spectral representation of
the neutron-star equation of state given a knowledge of the exact
mass-radius curve.
The neutron-star equation of state can be determined from noisy
mass-radius data with an accuracy commensurate with the
accuracy of the data.
There is an optimal number of equation of state parameters to use
when solving the inverse stellar structure problem using noisy
mass-radius data. Somewhat counter intuitively, using too many
parameters can result in less (not more) accurate equation of
state models.
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