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Multi-cube representations of arbitrary three-manifolds.
Boundary conditions for elliptic, parabolic and hyperbolic PDEs.
Numerical tests for solutions of simple PDEs.
Reference metrics on generic multi-cube manifolds.
Smoothing reference metrics with Ricci flow.
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Representations of Arbitrary Three-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds Σ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R × Σ.

Every two- and three-manifold admits a triangulation (Radó 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus a list of rules for gluing their edges (or faces)
together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary two- and three-manifolds be “cubed”, i.e.
represented as a set of squares or cubes plus a list of rules for
gluing their edges or faces together?
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“Multi-Cube” Representations of Three-Manifolds
Every two- and three-dimensional triangulation can be refined to a
“multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:

Every two- or three-manifold can be represented as a set of
squares or cubes, plus maps that identify their edges or faces.
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Boundary Maps: Fixing the Topology
Multi-cube representations of topological manifolds consist of a
set of cubic regions, BA, plus maps that identify the faces of
neighboring regions, ΨAα

Bβ(∂βBB) = ∂αBA.

Choose cubic regions to have uniform size and orientation.
Choose linear interface
identification maps ΨAα

Bβ:
x i

A = c i
Aα + C Aα i

B β k (xk
B − ck

B β),

where C Aα i
B β k is a rotation-

reflection matrix, and c i
Aα is

center of α face of region A.
Examples:
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Fixing the Differential Structure
The boundary identification maps,
ΨAα

Bβ, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.
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=

Smooth tensor fields expressed in multi-cube Cartesian
coordinates are not (in general) even continuous at the interfaces.

Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.
The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.
Multi-cube manifolds need an
additional layer of infrastructure:
e.g., overlapping domains DA ⊃ BA
with transition maps that are smooth
in the overlap regions.
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Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another.

Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A
If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A
A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.
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Fixing the Differential Structure III
Let g̃Aij and g̃Bij be the components of a smooth reference metric
in the multi-cube coordinates of regions BA and BB that are
identified at the faces ∂αBA ↔ ∂βBB.

Use the reference metric to define the outward directed unit
normals: ñAαi , ñi

Aα, ñBβi , and ñi
Bβ.

The needed Jacobians are given by
JAαi

Bβk = CAαi
Bβ`

(
δ`k − ñ`BβñBβk

)
− ñi

AαñBβk ,

J∗Bβk
Aαi =

(
δ`i − ñAαi ñ`Aα

)
CBβk

Aα` − ñAαi ñk
Bβ.

These Jacobians satisfy:

ñi
Aα = −JAαi

Bβk ñk
Bβ, ñAαi = −J∗Bβk

Aαi ñBβk

ui
Aα = JAαi

Bβkuk
Bβ = CAαi

Bβkuk
Bβ, δAi

Ak = JAαi
Bβ`J

∗Bβ`
Aαk .

Require that a smooth reference metric g̃ab be provided as part of
the multi-cube representation of any manifold.
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Solving PDEs on Multi-Cube Manifolds

x

z

y

1 3 42

5

6

S2 S1Χ

y

1 3 4

z

x
8

7
6

5

S3

Solve PDEs in each cubic region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For second-order strongly-elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

uA = 〈uB〉A ∇̃nB uB = −〈∇̃nAuA〉B.
For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, û−, with
outgoing characteristics, û+, from neighbor,

û−A = 〈û+
B 〉A û−B = 〈û+

A 〉B.
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Numerical Methods

Represent each component of each tensor field as a (finite) sum
of spectral basis functions, uα =

∑
pqr uαpqr Tp(x)Tq(y)Tr (z), in

each cubic region.

Evaluate derivatives of the functions using the known derivatives
of the basis functions: ∂xuα =

∑
pqr uαpqr ∂xTp(x)Tq(y)Tr (z).

Evaluate the PDEs and BCs on a set of collocation points,
{xi , yj , zk}, chosen so that uα(xi , yj , zk ) can be mapped efficiently
onto the spectral coefficients uαpqr . Derivatives become linear
combinations of the fields: ∂xuα(xi , yj , zk ) =

∑
` Di

` uα(x`, yj , zk ).
For elliptic systems, these pseudo-spectral equations become a
system of algebraic equations for uα(xi , yj , zk ). Solve these
algebraic equations using standard numerical methods.
For hyperbolic systems these equations become a system of
ordinary differential equations for uα(xi , yj , zk , t). Solve these
equations by the method of lines using standard ode integrators.
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For hyperbolic systems these equations become a system of
ordinary differential equations for uα(xi , yj , zk , t). Solve these
equations by the method of lines using standard ode integrators.
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Testing the Elliptic PDE Solver
Solve the elliptic PDE, ∇i∇iψ − c2ψ = f where c2 is a constant,
and f is a given function.

Use the co-variant derivative ∇i for the round metric on S2 × S1:

ds2 = R2
1dχ2 + R2

2

(
dθ2 + sin2 θ dϕ2

)
,

=

(
2πR1

L

)2

dz2
A +

(
πR2

2L

)2
(1 + X 2

A)(1 + Y 2
A )

(1 + X 2
A + Y 2

A )2

×
[

(1 + X 2
A) dx2

A − 2XAYA dxA dyA + (1 + Y 2
A ) dy2

A

]
.

where XA = tan [π(xA − cx
A)/2L] and YA = tan

[
π(yA − cy

A)/2L
]

are “local” Cartesian coordinates in each cubic region.

Let f = −(ω2 + c2)ψE , where ψE = <
[
eikχY`m(θ, ϕ)

]
. The

angles χ, θ and ϕ are functions of the coordinates x , y and z.

The unique, exact, analytical solution to this problem is ψ = ψE ,
when ω2 = `(` + 1)/R2

2 + k2/R2
1 .
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Testing the Elliptic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the residual RN ≡ ∇i∇iψN − c2ψN − f , and its norm:

ER =
√∫

R2
N
√

gd3x∫
f 2√gd3x .

Second, with the solution error, ∆ψ = ψN − ψE , and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2

E
√

gd3x .

All these numerical tests were
performed by implementing
the ideas described here into
the Spectral Einstein Code
(SpEC) developed by the SXS
collaboration, originally at
Caltech and Cornell.
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Testing the Hyperbolic PDE Solver
Solve the equation ∂ 2

t ψ = ∇i∇iψ with given initial data.
Convert the second-order equation into an equivalent first-order
system: ∂tψ = −Π, ∂tΠ = −∇iΦi and ∂tΦi = −∇iΠ
with constraint Ci = ∇iψ − Φi .

Use the co-variant derivative ∇i for the round metric on S3:

ds2 = R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

=

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

Choose initial data with ψt=0 = <[Yk`m(χ, θ, ϕ)],
Πt=0 = −<[iωYk`m(χ, θ, ϕ)] and Φi t=0 = <[∇iYk`m(χ, θ, ϕ)]
where ω2 = k(k + 2)/R2

3 .

The unique, exact, analytical solution to this problem is
ψ = ψE = <[eiωtYk`m(χ, θ, ϕ)], Π = −∂tψE , and Φi = ∇iψE .
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Testing the Hyperbolic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the solution error, ∆ψ = ψN − ψE , and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2√gd3x .

Second, with the constraint error, Ci = Φi −∇iψ, and its norm:

EC =
√ ∫

g ijCiCj
√

gd3x∫
g ij (Φi Φj +∇iψ∇jψ)

√
gd3x .
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Reference Metrics for Generic Multi-Cube Manifolds

A smooth reference metric g̃ij expressed in global multi-cube
Cartesian coordinates provides the differentiable structure.
How can such metrics be constructed (preferably automatically)
for generic multi-cube manifolds?

Unfortunately at the present time, we don’t know how to do this.
Somewhat less smooth, C2−, reference metrics are sufficient for
many purposes, e.g. specifying boundary conditions for
second-order elliptic and hyperbolic PDEs like Einstein’s equation.
We do know how to construct C2− reference metrics on generic
multi-cube manifolds.
The remainder of this talk will discuss how this is done, give an
explicit algorithm and examples in 2D, and finish by showing how
smoother reference metrics can be created by Ricci flow.
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Star-Shaped Clusters

Consider the star-shaped cluster of blocks whose corners
intersect at a particular vertex point in the multi-block manifold.

Introduce a flat metric on this star-shaped cluster.
Transform this flat metric into the multi-block Cartesian
coordinates of each block. In 2D, this flat metric has the form

ds2 = eIA
ij dx idx j = dx2 + 2εµ cos θIA dx dy + dy2,

where εµ = ±1, and θIA is the opening angle of this particular
vertex in the flat metric of the star-shaped cluster.
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Star-Shaped Clusters II

On a particular block BA, add together the flat star-shaped cluster
metrics associated with each corner: ḡA

ij =
∑

I uIA(~x)eIA
ij .

Use non-negative weight functions uIA whose values are 1 in a
neighborhood of the I vertex of block A, and which fall to zero in
neighborhoods of the other vertices of the block. The combined
metrics, ḡA

ij , have no cone singularities at block corners.

At present we do not know how to choose the weight functions uIA
in a way that ensures the combined metrics, ḡA

ij , are smooth
across all the interface boundaries.

For simplicity, choose weight functions of
the form uIA(~x) = h(x − cx

IA)h(y − cy
IA),

where h(w) = (1− w2k )`. These weight
functions guarantee continuity, but not
differentiability of ḡij across interface
boundaries.
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Star-Shaped Clusters III
Differentiability of the composite metrics ḡA

ij across interfaces
requires their extrinsic curvatures, K Aα

ij = 1
2(ḡA

ij − n̄Aαi n̄Aαj)K̄Aα, to
be continuous across those interfaces.

Extrinsic curvatures K̄Aα of the metrics ḡA
ij are not continuous.

Conformally transform the composite metrics, g̃A
ij = ψ4

A ḡA
ij , to

make extrinsic curvatures vanish on boundary faces: K̃Aα = 0.
The required conformal factors ψA must satisfy the conditions
ψA = 1 and n̄k

Aα∇̄k logψA = −1
2 K̄Aα on the boundary faces.

A simple choice for ψA is a sum of terms (one for each boundary
face) of the form, logψA +' −x h(x) K̄A−x (y)/2n̄x

A−x (y).
Resulting metric g̃ij has vanishing extrinsic curvatures on interface
boundary surfaces, and is therefore continuous and differentiable.
Given a multi-cube representation of a generic 2D manifold, our
code automatically determines the star-shaped clusters around
each corner, determines the appropriate opening angle
θIA = 2π/NI for the flat metric on each cluster, and then computes
the C2− reference metric g̃ij as described above.
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ij across interfaces
requires their extrinsic curvatures, K Aα

ij = 1
2(ḡA
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2(ḡA

ij − n̄Aαi n̄Aαj)K̄Aα, to
be continuous across those interfaces.
Extrinsic curvatures K̄Aα of the metrics ḡA

ij are not continuous.
Conformally transform the composite metrics, g̃A

ij = ψ4
A ḡA
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Multi-Cube Representations of Generic 2D Manifolds
Consider first the two-torus, T 2, a genus number Ng = 1 manifold:

Remove regions 3 and 8 from the genus number Ng = 1 manifold,
add a handle by identifying the open edges to produce a genus
number Ng = 2 manifold:
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Multi-Cube Representations of Generic 2D Manifolds II

Construct higher genus number manifolds by adding additional
handles to the genus number Ng = 2 case. For example, the
genus number Ng = 3 manifold can be represented as:

We have implemented examples of orientable 2D multi-cube
manifolds with genus numbers Ng = 0,1,2,3,4 and 5 in our code.
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Testing Reference Metrics
Test the functionality of the code that computes g̃ij by evaluating
the scalar curvature, R̃, and integrating over the manifold. The
Gauss-Bonnet identity then states:

∫
R̃
√

g̃ d 3x = 8π(1− Ng).

Define the quantity EGB that measures the code’s fractional
numerical error in evaluating the Gauss-Bonnet identity:

EGB =

∣∣∣∫ R̃
√

g̃ d 3x − 8π(1− Ng)
∣∣∣

8π(1 + Ng)
.

Evaluate EGB for different 2D multi-cube
manifolds having different genus numbers
Ng , constructed from different numbers of
cubic-block regions NR, and using
different levels of numerical precision,
labeled by N the number of grid points in
each spatial direction in each region.
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Testing Reference Metrics II
The reference metrics g̃ij constructed as described above are
continuous and differentiable, but they are not smooth.

Despite our efforts to use smooth weight functions
h(w) = (1− w2k )`, with k = 1 and ` = 4 giving the best results
numerically, the resulting metrics have very sharp small
length-scale features that are difficult to resolve numerically.
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Smoothing Reference Metrics with Ricci Flow
Until better ideas for constructing reference metrics are found, we
have explored the possibility of smoothing the ones we have.

Ricci flow is a parabolic evolution equation for the metric, whose
solutions are known to approach uniform curvature metrics in 2D.
We use the following variant of volume normalized Ricci flow using
DeTurck gauge fixing:

∂tgij = −2Rij +∇iHj +∇jHi +
2

ND
R̄(t)gij −

2µ
ND

V (t)− V0

V (t)
gij ,

where R̄(t) is the volume averaged scalar curvature,
Hi = gijgk`(Γj

k` − Γ̃j
k`), Γj

k` is the connection associated with gij ,
and Γ̃j

k` is a fixed reference connection on this manifold.
This version of Ricci flow implies that the volume of the manifold
evolves according to the equation:

∂t [V (t)− V0] = −µ[V (t)− V0].
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Testing Numerical Ricci Flow with Random Initial Data
First we test the accuracy and stability of our implementation of
numerical Ricci flow by evolving a “random” initial metric on S2

using the smooth round S2 metric as reference metric.
We construct this “random” initial metric, gij(0) = g̃ij + εij , by
adding the round sphere metric g̃ij and a tensor, εij , generated
with random numbers in the range [−0.1,0.1].

Monitor the evolution of the
volume V (t) of the solution by
evaluating the norm EV :

EV =
|V (t)− V0|

V0
.

Monitor the evolution of the
Gauss-Bonnet identity that
relates the volume average of
the scalar curvature R̄ to the
genus number Ng of the
manifold EGB:

EGB =

∣∣VR̄ − 8π(1− Ng)
∣∣

8π(1 + Ng)
.

Monitor the evolution of the
difference between the scalar
curvature R and its volume
averaged value R̄ using the
norm ER:

E2
R =

V
∫

(R − R̄)2√g d 2x
[8π(1 + Ng)]2

.

Finally, monitor the evolution
of the DeTurck gauge source
vector Hi = gijgk`(Γj

k` − Γ̃j
k`)

using the norm EH :

E2
H =∫

g ijHiHj
√

g d 2x∫ ∑
ij (|gij |2 +

∑
k |∂kgij |2))

√
g d 2x

.
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Ricci Flow With Differentiable Reference Metrics
Can Ricci flow be used to smooth the reference metrics?

Use a fixed non-smooth reference metric for each evolution.
Use the non-smooth reference metrics as initial data, and evolve
them with volume normalized Ricci flow with DeTurck gauge fixing.
Consider first our most complicated case: the genus number
Ng = 5 orientable 2D manifold represented as a 40 region
multi-cube manifold.
Monitor the evolution of the
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V
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k` − Γ̃j
k`)

using the norm EH :

E2
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g d 2x∫ ∑
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∑
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√
g d 2x
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Ricci Flow With Differentiable Reference Metrics II
Ricci flows of the non-smooth reference metrics on the 2D
manifolds with genus numbers Ng = 0,1,2,3 and 4 are
qualitatively similar to the Ng = 5 case:

EV , EGB, ER , and EH all converge to zero with higher resolution.
Convergence of ER implies evolution to constant curvature metrics.
Convergence of EH to zero implies the gauges are unchanged.

Comparing ER for different genus number cases reveals some
variation in the rate of Ricci flow, and some variation in the
numerical resolution needed in each case.
Monitor the evolution of the
difference between the scalar
curvature R and its volume
averaged value R̄ using the
norm ER:

E2
R =

V
∫

(R − R̄)2√g d 2x
[8π(1 + Ng)]2

.
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Ricci Flow Movies

Ricci flow of genus number Ng = 0 NR = 6 multi-cube manifold.

Ricci flow of genus number Ng = 5 NR = 40 multi-cube manifold.
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Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:

A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.
Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.
Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27



Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:
A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.
Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.
Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27



Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:
A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.
Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.
Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27



Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:
A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.

Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.
Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27



Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:
A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.
Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.

Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27



Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:
A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

A method for constructing C2− reference metrics automatically on
generic multi-cube manifolds has been developed.
Reference metrics have been created and tested for 2D manifolds
with genus numbers Ng = 0,1,2,3,4 and 5.
Smoother reference metrics have been successfully created for
2D manifolds using Ricci flow.

Lee Lindblom (Caltech / UCSD) Numerical Solutions of PDEs on Manifolds EIVP U Alaska 9/3/2014 27 / 27


