Calculating Accurate Waveforms for LIGO and LISA Data Analysis

Lee Lindblom

Theoretical Astrophysics, Caltech

HEPL-KIPAC Seminar, Stanford – 17 November 2009

Results from the Caltech/Cornell Numerical Relativity Collaboration.

Motivation: Gravitational Wave Astronomy

- Recent work in numerical relativity is aimed at providing model waveforms for gravitational wave (GW) astronomy (LIGO, etc.).
- Binary black hole systems emit large amounts of GW as the holes inspiral and ultimately merge. These are expected to be among the strongest sources detectable by LIGO.

Motivation: Gravitational Wave Astronomy

- Recent work in numerical relativity is aimed at providing model waveforms for gravitational wave (GW) astronomy (LIGO, etc.).
- Binary black hole systems emit large amounts of GW as the holes inspiral and ultimately merge. These are expected to be among the strongest sources detectable by LIGO.
- Numerical waveforms may be useful in detection (to construct better data filters), and/or in modeling detected signals.

Motivation: Gravitational Wave Astronomy

- Recent work in numerical relativity is aimed at providing model waveforms for gravitational wave (GW) astronomy (LIGO, etc.).
- Binary black hole systems emit large amounts of GW as the holes inspiral and ultimately merge. These are expected to be among the strongest sources detectable by LIGO.
- Numerical waveforms may be useful in detection (to construct better data filters), and/or in modeling detected signals.

Gravitational Wave Data Analysis

- Signals h_s(t) are detected in the noisy LIGO data by projecting them onto a model waveforms h_m(λ, t).
- The measured signal-to-noise ratio, ρ_m(λ), is maximized by adjusting the model waveform parameters λ.

$$\rho_m(\lambda) = 4 \int_0^\infty \frac{Re[h_s(f)h_m^*(f,\lambda)]}{S_n(f)} df \left[4 \int_0^\infty \frac{|h_m(f,\lambda)|^2}{S_n(f)} df \right]^{-1/2}$$

Gravitational Wave Data Analysis

- Signals h_s(t) are detected in the noisy LIGO data by projecting them onto a model waveforms h_m(λ, t).
- The measured signal-to-noise ratio, ρ_m(λ), is maximized by adjusting the model waveform parameters λ.

$$\rho_m(\lambda) = 4 \int_0^\infty \frac{Re[h_s(f)h_m^*(f,\lambda)]}{S_n(f)} df \left[4 \int_0^\infty \frac{|h_m(f,\lambda)|^2}{S_n(f)} df \right]^{-1/2}$$

 A detection occurs whenever a signal is present that matches a model waveform with ρ_m(λ) > ρ_{min}. For LIGO searches ρ_{min} ≈ 8.

Gravitational Wave Data Analysis

- Signals h_s(t) are detected in the noisy LIGO data by projecting them onto a model waveforms h_m(λ, t).
- The measured signal-to-noise ratio, ρ_m(λ), is maximized by adjusting the model waveform parameters λ.

$$\rho_m(\lambda) = 4 \int_0^\infty \frac{Re[h_s(f)h_m^*(f,\lambda)]}{S_n(f)} df \left[4 \int_0^\infty \frac{|h_m(f,\lambda)|^2}{S_n(f)} df \right]^{-1/2}$$

 A detection occurs whenever a signal is present that matches a model waveform with ρ_m(λ) > ρ_{min}. For LIGO searches ρ_{min} ≈ 8.

• Write the model waveform as $h_m(f) = h_s(f)e^{\delta\chi_m(f) + i\delta\Phi_m(f)}$, where $\delta\chi_m(f)$ and $\delta\Phi_m(f)$ represent errors in its amplitude and phase.

- Write the model waveform as $h_m(f) = h_s(f)e^{\delta\chi_m(f) + i\delta\Phi_m(f)}$, where $\delta\chi_m(f)$ and $\delta\Phi_m(f)$ represent errors in its amplitude and phase.
- Inaccurate model waveforms degrade the measured signal-to-noise ratios ρ_m(λ), resulting in missed detections.
- To ensure that the loss rate of detections does not exceed 10%, the waveform errors must not exceed:

$$0.01 \gtrsim \left(\overline{\delta\chi_m}\right)^2 + \left(\overline{\delta\Phi_m}\right)^2 \equiv \int_0^\infty \left[(\delta\chi_m)^2 + (\delta\Phi_m)^2 \right] \frac{4|h_s|^2}{\rho^2 S_n} df.$$

- Write the model waveform as $h_m(f) = h_s(f)e^{\delta\chi_m(f) + i\delta\Phi_m(f)}$, where $\delta\chi_m(f)$ and $\delta\Phi_m(f)$ represent errors in its amplitude and phase.
- Inaccurate model waveforms degrade the measured signal-to-noise ratios ρ_m(λ), resulting in missed detections.
- To ensure that the loss rate of detections does not exceed 10%, the waveform errors must not exceed:

 $0.01 \gtrsim \left(\overline{\delta\chi_m}\right)^2 + \left(\overline{\delta\Phi_m}\right)^2 \equiv \int_0^\infty \left[(\delta\chi_m)^2 + (\delta\Phi_m)^2 \right] \frac{4|h_s|^2}{\rho^2 S_n} df.$

• Physical properties of the GW source are measured by adjusting the model waveform parameters $h_m(f, \lambda)$ to achieve the largest measured signal-to-noise $\rho_m(\lambda)$.

- Write the model waveform as $h_m(f) = h_s(f)e^{\delta\chi_m(f) + i\delta\Phi_m(f)}$, where $\delta\chi_m(f)$ and $\delta\Phi_m(f)$ represent errors in its amplitude and phase.
- Inaccurate model waveforms degrade the measured signal-to-noise ratios ρ_m(λ), resulting in missed detections.
- To ensure that the loss rate of detections does not exceed 10%, the waveform errors must not exceed:

 $0.01 \gtrsim \left(\overline{\delta\chi_m}\right)^2 + \left(\overline{\delta\Phi_m}\right)^2 \equiv \int_0^\infty \left[(\delta\chi_m)^2 + (\delta\Phi_m)^2 \right] \frac{4|h_s|^2}{\rho^2 S_n} df.$

- Physical properties of the GW source are measured by adjusting the model waveform parameters $h_m(f, \lambda)$ to achieve the largest measured signal-to-noise $\rho_m(\lambda)$.
- To ensure the errors in the measured parameters λ are dominated by the intrinsic detector noise S_n(f) rather than model waveform error, the waveform errors must not exceed:

$$\frac{1}{4\rho_{\max}^2} \approx 2.5 \times 10^{-5} \gtrsim \left(\overline{\delta \chi_m}\right)^2 + \left(\overline{\delta \Phi_m}\right)^2.$$

How Are Accurate Waveforms Calculated?

Computational Challanges:

- Dynamics of binary black hole problem is driven by delicate adjustments to orbit due to emission of gravitational waves.
- Very big computational problem:
 - $\bullet\,$ Must evolve ~ 50 dynamical fields (spacetime metric plus all first derivatives).
 - Must accurately resolve features on many scales from black hole horizons r ~ GM/c² to emitted waves r ~ 100GM/c².
 - Many grid points are required $\gtrsim 10^6$ even if points are located optimally.

How Are Accurate Waveforms Calculated?

Computational Challanges:

- Dynamics of binary black hole problem is driven by delicate adjustments to orbit due to emission of gravitational waves.
- Very big computational problem:
 - $\bullet\,$ Must evolve ~ 50 dynamical fields (spacetime metric plus all first derivatives).
 - Must accurately resolve features on many scales from black hole horizons r ~ GM/c² to emitted waves r ~ 100GM/c².
 - $\bullet\,$ Many grid points are required $\gtrsim 10^6$ even if points are located optimally.
- Most representations of the Einstein equations have mathematically ill-posed initial value problems.
- Constraint violating instabilities destroy stable numerical solutions in many well-posed forms of the equations.

Outline of Remainder of Talk:

- Interesting Features of the Caltech/Cornell code:
 - Constraint Damping.
 - Pseudo-Spectral Methods.
 - Horizon Tracking and Conforming Grid Structures..
 - Damped Harmonic Gauge Conditions.
- Results:
 - Generic Mergers.
 - Accurate BBH waveforms.

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0,$$

$$\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations are often re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0,$$

$$\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations are often re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

 This form of Maxwell's equations is manifestly hyperbolic as long as the gauge is chosen correctly, e.g., let ∇^aA_a = H(x, t), giving:

$$\nabla^{a} \nabla_{a} A_{b} \equiv \left(-\partial_{t}^{2} + \partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} \right) A_{b} = \nabla_{b} H.$$

Constraint Damping

• Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?

Constraint Damping

- Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

$$\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$$

Constraint Damping

- Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

$$\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$$

Modify evolution equations by adding multiples of the constraints:

 $\nabla^{a} \nabla_{a} A_{b} = \nabla_{b} H + \gamma_{0} t_{b} C = \nabla_{b} H + \gamma_{0} t_{b} (\nabla^{a} A_{a} - H).$

• These changes also affect the constraint evolution equation,

$$\nabla^a \nabla_a \mathcal{C} - \gamma_0 t^b \nabla_b \mathcal{C} = \mathbf{0},$$

so constraint violations are damped when $\gamma_0 > 0$.

Constraint Damped Einstein System

- "Generalized Harmonic" form of Einstein's equations have properties similar to Maxwell's equations:
 - Gauge (coordinate) conditions are imposed by specifying the divergence of the spacetime metric: ∂_ag^{ab} = H^b + ...
 - Evolution equations become manifestly hyperbolic: $\Box g_{ab} = ...$
 - Gauge conditions become constraints.
 - Constraint damping terms can be added which make numerical evolutions stable.

Lee Lindblom (Caltech)

Calculating Accurate Waveforms

$$\partial_t u = F(u, \partial_x u, x, t).$$

• Choose a grid of spatial points, *x_n*.

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$\begin{array}{cccc} U_{n-1} & U_n & U_{n+1} \\ \bullet & \bullet & \bullet & \bullet \\ X_{n-1} & X_n & X_{n+1} \end{array}$$

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} \quad U_n \quad U_{n+1}$$

$$X_{n-1} \quad X_n \quad X_{n+1}$$
ate the spatial derivatives at the grid points

• Approximate the spatial derivatives at the grid point $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *F* at the grid points x_n in terms of the u_k : $F(u_k, x_n, t)$.

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function u on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *F* at the grid points x_n in terms of the u_k : $F(u_k, x_n, t)$.
- Solve the coupled system of ordinary differential equations,

$$\frac{du_n(t)}{dt}=F[u_k(t),x_n,t],$$

using standard numerical methods (e.g. Runge-Kutta).

Lee Lindblom (Caltech)

Calculating Accurate Wavefor

10/26

 Different numerical methods use different ways of choosing the grid points x_n, and different expressions for the spatial derivatives

$$\partial_x u(u_n) = \sum_k D_{n\,k} u_k.$$

 Different numerical methods use different ways of choosing the grid points x_n, and different expressions for the spatial derivatives

$$\partial_x u(u_n) = \sum_k D_{n\,k} u_k.$$

- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $x_n x_{n-1} = \Delta x = \text{constant}.$
 - Use Taylor expansions to obtain the needed expressions for $\partial_x u$:

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

 Different numerical methods use different ways of choosing the grid points x_n, and different expressions for the spatial derivatives

$$\partial_x u(u_n) = \sum_k D_{n\,k} u_k.$$

- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $x_n x_{n-1} = \Delta x = \text{constant}.$
 - Use Taylor expansions to obtain the needed expressions for $\partial_x u$:

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

• Grid spacing decreases as the number of grid points *N* increases, $\Delta x \sim 1/N$. Errors in finite difference methods scale as N^{-p} .

• A few groups (including ours) use pseudo-spectral methods.

- A few groups (including ours) use pseudo-spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow exact (and efficient) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.

- A few groups (including ours) use pseudo-spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow exact (and efficient) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$

- A few groups (including ours) use pseudo-spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow exact (and efficient) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (for Fourier series of *smooth* functions):

- A few groups (including ours) use pseudo-spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow exact (and efficient) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (for Fourier series of *smooth* functions):

• Errors in spectral methods decrease faster than any power of N.

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).

Lee Lindblom (Caltech)

Calculating Accurate Waveform

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Lee Lindblom (Caltech)

Calculating Accurate Waveform

Caltech/Cornell Spectral Einstein Code (SpEC):

• Multi-domain pseudo-spectral method.

- Constraint damped "generalized harmonic" Einstein equations: $\Box g_{ab} = F_{ab}(g, \partial g).$
- Constraint-preserving, physical and gauge boundary conditions.

 Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.
- Problems:
 - Difficult to get smooth extrapolation at trailing edge of horizon.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.
- Problems:
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Black hole interior is not in causal contact with exterior. Interior is removed, introducing an excision boundary.
- Numerical grid must be moved when black holes move too far.
- Problems:
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.
- Solution:

Choose coordinates that smoothly track the motions of the centers of the black holes.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = e^{a(\bar{t})} \begin{pmatrix} \cos\varphi(\bar{t}) & -\sin\varphi(\bar{t}) & 0 \\ \sin\varphi(\bar{t}) & \cos\varphi(\bar{t}) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix},$$

is general enough to keep the holes fixed in co-moving coordinates for suitably chosen functions $a(\bar{t})$ and $\varphi(\bar{t})$.

Since the motions of the holes are not known *a priori*, the functions *a*(*t*) and φ(*t*) must be chosen dynamically and adaptively as the system evolves.

Horizon Tracking Coordinates II $\delta \phi$ f y_c

• Measure the co-moving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $x_c(t) - x_c(0)$

$$Q^{x}(t) = \frac{x_{c}(t) - x_{c}(0)}{x_{c}(0)},$$

$$Q^{y}(t) = \frac{y_{c}(t)}{x_{c}(t)}.$$

Horizon Tracking Coordinates II $\delta \phi$ f y_c

• Measure the co-moving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $x_c(t) - x_c(0)$

$$Q^{x}(t) = \frac{x_{c}(t) - x_{c}(0)}{x_{c}(0)},$$

$$Q^{y}(t) = \frac{y_{c}(t)}{x_{c}(t)}.$$

Use a feedback-control system to adjust the map parameters a(t) and φ(t) in such a way that Q^x(t) and Q^y(t) remain small, thus keeping the positions of the black holes at fixed coordinate locations along the x axis.

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.
 - When the horizons move relative to the excision boundary points, the excision boundary can become timelike, and boundary conditions are then needed there.

Horizon Distortion Maps II

 Adjust the placement of grid points near each black hole using a horizon distortion map that moves grid coordinates xⁱ into points in the black hole rest frame x̃ⁱ:

$$\tilde{\theta}_A = \theta_A, \qquad \tilde{\varphi}_A = \varphi_A,$$

$$\tilde{r}_A = r_A - f_A(r_A, \theta_A, \varphi_A) \sum_{\ell=0}^L \sum_{m=-\ell}^\ell \lambda_A^{\ell m}(t) Y_{\ell m}(\theta_a, \varphi_A).$$

- Adjust the coefficients λ^{ℓm}_A(t) using a feedback control system to keep the excision surface the same shape and slightly smaller than the horizon.
- Choose f_A to scale linearly from $f_A = 1$ on the excision boundary, to $f_A = 0$ on the surrounding cube.

Dynamical Gauge Conditions

• The spacetime coordinates *x^b* are fixed in the generalized harmonic Einstein equations by specifying *H^b*:

 $\nabla^a \nabla_a x^b \equiv H^b.$

- The generalized harmonic Einstein equations remain hyperbolic as long as the gauge source functions H^b are taken to be functions of the coordinates x^b and the spacetime metric g_{ab} .
- The simplest choice $H^b = 0$ (harmonic gauge) fails for very dynamical spacetimes, like binary black hole mergers.
- We think this failure occurs because the coordinates themselves become very dynamical solutions of the wave equation ∇^a∇_ax^b = 0 in these situations.
- Another simple choice keeping *H^b* fixed in the co-moving frame of the black holes works well during the long inspiral phase, but fails when the black holes begin to merge.

Dynamical Gauge Conditions II

 Some of the extraneous gauge dynamics could be removed by adding a damping term to the harmonic gauge condition:

$$abla^a
abla_a x^b = H^b = \mu t^a \partial_a x^b = \mu t^b = \mu g^{bt} / \sqrt{-g^{tt}}.$$

 This works well for the spatial coordinates xⁱ, driving them toward solutions of the spatial Laplace equation on the timescale 1/μ.

Dynamical Gauge Conditions II

 Some of the extraneous gauge dynamics could be removed by adding a damping term to the harmonic gauge condition:

$$abla^a
abla_a x^b = H^b = \mu t^a \partial_a x^b = \mu t^b = \mu g^{bt} / \sqrt{-g^{tt}}.$$

- This works well for the spatial coordinates xⁱ, driving them toward solutions of the spatial Laplace equation on the timescale 1/μ.
- For the time coordinate *t*, this damped wave condition drives *t* to a time independent constant, which is not a good coordinate.
- A better choice sets H_t proportional to $\mu \log \sqrt{-\det g_{ij}/g^{tt}}$. This time coordinate condition keeps the ratio $\det g_{ij}/g^{tt}$ close to unity, even during binary black hole mergers where it becomes of order 100 using our simpler gauge conditions.

Generic Mergers

 Recent improvements now allow the Caltech/Cornell code SpEC to perform inspiral merger and ringdown simulations robustly for a wide range of black hole binary systems.

Numerical BBH Gravitational Waveforms

 The Caltech/Cornell collaboration has computed high precision numerical inspiral-merger-ringdown waveforms for several simple equal-mass BBH systems.

 Do these waveforms meet the required accuracy standards for LIGO data analysis?

Determining Numerical Waveform Accuracy

 Numerical convergence of gravitational waveform.

Determining Numerical Waveform Accuracy

- Numerical convergence of gravitational waveform.
- Phase dependence on outer boundary location.

Determining Numerical Waveform Accuracy

- Numerical convergence of gravitational waveform.
- Phase dependence on outer boundary location.
- Constancy of the black hole masses.

Summary of Numerical Waveform Phase Errors:

Effect	$\delta\phi$ (radians)
Numerical truncation error	0.003
Finite outer boundary	0.005
Drift of mass M	0.002
Extrapolation $r \to \infty$	0.005
Wave extraction at <i>r</i> _{areal} =const?	0.002
Coordinate time = proper time?	0.002
Lapse spherically symmetric?	0.01
root-mean-square sum	0.01

Summary of Numerical Waveform Phase Errors (Including Physical Parameter Errors):

Effect	$\delta\phi$ (radians)
Numerical truncation error	0.003
Finite outer boundary	0.005
Drift of mass M	0.002
Extrapolation $r \to \infty$	0.005
Wave extraction at r_{areal} =const?	0.002
Coordinate time = proper time?	0.002
Lapse spherically symmetric?	0.01
residual orbital eccentricity	0.02
residual black hole spin	0.03
root-mean-square sum	0.04

Summary of Numerical Waveform Phase Errors (Including Physical Parameter Errors):

Effect	$\delta\phi$ (radians)
Numerical truncation error	0.003
Finite outer boundary	0.005
Drift of mass M	0.002
Extrapolation $r \to \infty$	0.005
Wave extraction at r_{areal} =const?	0.002
Coordinate time = proper time?	0.002
Lapse spherically symmetric?	0.01
residual orbital eccentricity	0.02
residual black hole spin	0.03
root-mean-square sum	0.04

It isn't known yet whether these waveforms meet the real frequency domain waveform accuracy standards required for LIGO data analysis.