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Representations of Arbitrary 3-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R × Σ.

Every 3-manifold admits a triangulation (Moire 1952), i.e. can be
represented as a set of tetrahedrons, plus a list of rules for gluing
their faces together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary 3-manifolds be “cubed”, i.e. represented as a set of
cubes plus a list of rules for gluing their faces together?

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UCSD 11/13/11 2 / 13



Representations of Arbitrary 3-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R × Σ.
Every 3-manifold admits a triangulation (Moire 1952), i.e. can be
represented as a set of tetrahedrons, plus a list of rules for gluing
their faces together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary 3-manifolds be “cubed”, i.e. represented as a set of
cubes plus a list of rules for gluing their faces together?

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UCSD 11/13/11 2 / 13



Representations of Arbitrary 3-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and
hyperbolic PDEs on manifolds with topology R × Σ.
Every 3-manifold admits a triangulation (Moire 1952), i.e. can be
represented as a set of tetrahedrons, plus a list of rules for gluing
their faces together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary 3-manifolds be “cubed”, i.e. represented as a set of
cubes plus a list of rules for gluing their faces together?

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UCSD 11/13/11 2 / 13



“Cubed” Representations of Arbitrary 3-Manifolds
Every triangulation can be refined to a ”cubed” representation:
divide each tetrahedron into four “distorted” cubes.

Every 3-manifold can therefore be represented as a set of cubes,
plus maps that identify their faces in the appropriate way.
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Solving PDEs on Cubed Manifolds
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Solve PDEs in each cubic block region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For second-order strongly elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

uA = uB ∇nB uB = −∇nAuA.

For first-order symmetric hyperbolic systems: set incoming
characteristic fields with outgoing characteristics from neighbor,

ũ−A = ũ+
B ũ−B = ũ+

A .
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Mapping Boundary Data: Scalars
Choose the cubic-block coordinate patches to have uniform
(coordinate) size and orientation.
Maps ΨAα

Bβ between boundary faces are linear:

x i
A = c i

Aα + C Aα i
B β k (xk

B − ck
B β),

where C Aα i
B β k is a rotation-reflection matrix, and c i

Aα is the center
of the α face of block A.
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Ψ Bβ
Αα

A

This map provides the needed boundary transformation law for
scalar fields: ūA(x i

A) ≡ uB(xk
B), where x i

A and xk
B are related by

the coordinate boundary map.
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Mapping Boundary Data: Tensors

Jacobian of the boundary coordinate map gives the appropriate
transformation law for vectors tangent to the boundary surface:

v̄p
A(x i

A) ≡ C Aα p
B β qvq

B(xk
B).

In general the normal coordinate basis vector ∂Aσ is not the
smooth extension of ∂B σ, so a more complicated transformation
law is needed for generic vectors.

Additional information must be specified to fix the relationship
between the normal coordinate basis vectors, to ensure that
smooth functions have smooth derivatives across the block
boundaries.
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Mapping Boundary Data: Tensors II
One way to specify the required differentiable structure at the
boundaries is to require a global smooth metric gab be provided.

Use the metric gab to construct the outward directed unit normals
nAa and nBa on each boundary face.
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A
These outward directed geometrical normals, na

A = gab
A nAb and

na
B = gab

B nBb, can be used to define the natural transformation law
for smooth vectors across the boundaries:

v̄a
A(x i

A) ≡ J Aα a
B β b vb

B(xk
B),

with J Aα a
B β b = C Aα a

B β c (δc
b − nc

BnBb)− na
AnBb.
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Numerical Methods

Represent each component of each tensor function as a (finite)
sum of spectral basis functions, u =

∑
ijk uijk Ti(x)Tj(y)Tk (z), in

each cubic block region.

Evaluate derivatives of the functions using the known derivatives
of the basis functions: ∂xu =

∑
ijk uijk ∂xTi(x)Tj(y)Tk (z).

Evaluate the PDEs and BCs on a set of collocation points,
{xi , yj , zk}, chosen so that u(xi , yj , zk ) can be mapped efficiently
onto the spectral coefficients uijk . Derivatives become linear
combinations of the fields: ∂xu(xi , yj , zk ) =

∑
` Di

` u(x`, yj , zk ).
For elliptic systems, these pseudo-spectral equations become a
system of algebraic equations for u(xi , yj , zk ). Solve these
algebraic equations using standard numerical methods.
For hyperbolic systems these equations become a system of
ordinary differential equations for u(xi , yj , zk , t). Solve these
equations by the method of lines using standard ode integrators.
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Testing the Elliptic PDE Solver
Solve the elliptic PDE, ∇i∇iψ − c2ψ = f where c2 is a constant,
and f is a given function.

Use the co-variant derivative ∇i for the round metric on S2 × S1:

ds2 = R2
1dχ2 + R2

2

(
dθ2 + sin2 θ dϕ2

)
,

=

(
2πR1

L

)2

dz2 +

(
πR2

2L

)2
(1 + X 2

A)(1 + Y 2
A )

(1 + X 2
A + Y 2

A )2

×
[

(1 + X 2
A) dx2 − 2XAYA dx dy + (1 + Y 2

A ) dy2
]
.

where XA = tan [π(x − cx
A)/2L] and YA = tan

[
π(y − cy

A)/2L
]

are “local” Cartesian coordinates in each cubic-block.

Let f = −(ω2 + c2)ψA, where ψA = <
[
eikχY`m(θ, ϕ)

]
. The

angles χ, θ and ϕ are functions of the coordinates x , y and z.

The unique, exact, analytical solution to this problem is ψ = ψA,
when ω2 = `(` + 1)/R2

2 + k2/R2
1 .
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Testing the Elliptic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the residual RN ≡ ∇i∇iψN − c2ψN − f , and its norm:

ER =
√∫

R2
N
√

gd3x∫
f 2√gd3x .

Second, with the solution error, ∆ψ = ψN − ψA, and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2

A
√

gd3x .

All these numerical tests were
performed by implementing
the ideas described here into
the Spectral Einstein Code
(SpEC) developed originally
by the Caltech/Cornell
numerical relativity
collaboration.
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Testing the Hyperbolic PDE Solver
Solve the equation ∂2

t ψ = ∇i∇iψ with given initial data.
Convert the second-order equation into an equivalent first-order
system: ∂tψ = −Π, ∂tΠ = −∇iΦi and ∂tΦi = −∇iΠ
with constraint Ci = ∇iψ − Φi .

Use the co-variant derivative ∇i for the round metric on S3:

ds2 = R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

=

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

Choose initial data with ψt=0 = <[Yk`m(χ, θ, ϕ)],
Πt=0 = −<[iωYk`m(χ, θ, ϕ)] and Φi t=0 = <[∇iYk`m(χ, θ, ϕ)]
where ω2 = k(k + 2)/R2

3 .

The unique, exact, analytical solution to this problem is
ψ = ψA = <[eiωtYk`m(χ, θ, ϕ)], Π = −∂tψA, and Φi = ∇iψA.
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Testing the Hyperbolic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the solution error, ∆ψ = ψN − ψA, and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2√gd3x .

Second, with the constraint error, Ci = Φi −∇iψ, and its norm:

EC =
√ ∫

g ijCiCj
√

gd3x∫
g ij (Φi Φj +∇iψ∇jψ)

√
gd3x .
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Summary

We have developed a simple and flexible multi-block numerical
method for solving partial differential equations on manifolds with
arbitrary spatitial topology.

Each new spatial topology requires:

A cubic-block representation of the topology, i.e. a list of cubic-block
regions and a list of boundary identification maps.
A smooth reference metric gab to define the global differential
structure on this cubic-block representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

These methods have also been tested by finding simple solutions
to Einstein’s equation on several compact manifolds.
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