Solving Einstein's Equations the Generalized Harmonic Way

Lee Lindblom Caltech

Collaborators: Larry Kidder, Keith Matthews, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Bela Szilagyi, Saul Teukolsky

Center for Computational Relativity and Gravitation Seminar, Rochester Institute of Technology, October 17, 2008

Outline of Talk:

- Methods of Specifying Gauge (Coordinates).
 - Generalized Harmonic (GH) Einstein Equations.
 - Constraint Damping.
- Boundary Conditions.
 - Constraint Preserving.
 - Physical.
- Moving Black Holes in a Spectral Code.
 - Dual Coordinate Frame Evolution.
 - Choosing Coordinates by Feedback Control.
- Gauge Drivers in the GH Einstein System.

Traditional ADM Gauge Conditions

- Construct a foliation of spacetime by spatial slices.
- Choose a time function with *t* = const. on these slices.
- Choose spatial coordinates, *x^k*, on each slice.

• The lapse *N* and shift *Nⁱ* measure how coordinates are laid out on spacetime: $\vec{n} = \partial_{\tau} = \frac{\partial t}{\partial \tau} \partial_{t} + \frac{\partial x^{k}}{\partial \tau} \partial_{k},$

 $= \frac{1}{N}\partial_t - \frac{N^k}{N}\partial_k.$

 $\vec{n} = \partial_{\tau}$

 (t, x^k)

ð٢

• Spacetime coordinates are determined in the traditional ADM method by specifying the lapse *N* and shift *N*^{*i*}.

 $(t + \delta t, x^k)$

ADM Evolution System

When the gauge is determined by specifying the lapse N and shift N^k, the Einstein system becomes a set of evolution equations for the spatial metric g_{ii} and extrinsic curvature K_{ii}:

$$\begin{aligned} \partial_t g_{ij} - N^k \partial_k g_{ij} &= -2NK_{ij} + \nabla_i N_j + \nabla_j N_i, \\ \partial_t K_{ij} - N^k \partial_k K_{ij} &= N \left({}^{(3)}R_{ij} - 2K_i^k K_{kj} + KK_{ij} \right) \\ &- \nabla_i \nabla_j N + K_{ik} \partial_j N^k + K_{kj} \partial_i N^k. \end{aligned}$$

• The Einstein equations also include constraints:

$$0 = \mathcal{M}_{\hat{t}} \equiv {}^{(3)}R - K_{ij}K^{ij} + K^2,$$

$$0 = \mathcal{M}_i \equiv \nabla^k K_{ki} - \nabla_i K.$$

• This traditional form of the Einstein equations is not hyperbolic, and numerical solutions are found to suffer from generic constraint violating instabilities.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the gauge (i.e. coordinates) in the Einstein equations is through the gauge source function H^a:
- Let *H^a* denote the function obtained by the action of the covariant scalar wave operator on the coordinates *x^a*:

$$\mathcal{H}^{a}\equiv
abla^{c}
abla_{c}x^{a} \ = \ \psi^{bc}(\partial_{b}\partial_{c}x^{a}-\Gamma^{e}_{bc}\partial_{e}x^{a})=-\Gamma^{a},$$

where $\Gamma^{a} = \psi^{bc} \Gamma^{a}{}_{bc}$ and ψ_{ab} is the 4-metric.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the gauge (i.e. coordinates) in the Einstein equations is through the gauge source function H^a:
- Let *H^a* denote the function obtained by the action of the covariant scalar wave operator on the coordinates *x^a*:

$$H^a \equiv \nabla^c \nabla_c x^a = \psi^{bc} (\partial_b \partial_c x^a - \Gamma^e_{bc} \partial_e x^a) = -\Gamma^a,$$

where $\Gamma^{a} = \psi^{bc} \Gamma^{a}{}_{bc}$ and ψ_{ab} is the 4-metric.

 Specifying coordinates by the *generalized harmonic* (GH) method can be accomplished by choosing a gauge-source function H^a(x, ψ), and requiring that

$$H^{a}(x,\psi) = -\Gamma^{a} = \partial_{b}\left(\sqrt{-\psi}\psi^{ab}\right)/\sqrt{-\psi}.$$

Einstein's Equation with the GH Method

• The spacetime Ricci tensor can be written as:

 $R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$.

• The Generalized Harmonic Einstein equation is obtained by replacing Γ_a with $-H_a(x, \psi) = -\psi_{ab}H^b(x, \psi)$:

 $R_{ab} - \nabla_{(a} \left[\Gamma_{b} + H_{b} \right] = -\frac{1}{2} \psi^{cd} \partial_{c} \partial_{d} \psi_{ab} - \nabla_{(a} H_{b)} + F_{ab}(\psi, \partial \psi).$

• The vacuum GH Einstein equation, $R_{ab} = 0$ with $\Gamma_a + H_a = 0$, is therefore manifestly hyperbolic, having the same principal part as the scalar wave equation:

$$\mathbf{0} = \nabla_{\mathbf{a}} \nabla^{\mathbf{a}} \Phi = \psi^{\mathbf{a}\mathbf{b}} \partial_{\mathbf{a}} \partial_{\mathbf{b}} \Phi + F(\partial \Phi).$$

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0,$$

$$\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0,$$

$$\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations are often re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

Gauge and Constraints in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations are often re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

 This form of Maxwell's equations is manifestly hyperbolic as long as the gauge is chosen correctly, e.g., let ∇^aA_a = H(x, t), giving:

$$\nabla^{a} \nabla_{a} A_{b} \equiv \left(-\partial_{t}^{2} + \partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} \right) A_{b} = \nabla_{b} H.$$

Constraint Damping

• Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?

Constraint Damping

- Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

 $\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$

Constraint Damping

- Where are the constraints: $\nabla^a \nabla_a A_b = \nabla_b H$?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

$$\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$$

Modify evolution equations by adding multiples of the constraints:

 $\nabla^{a} \nabla_{a} A_{b} = \nabla_{b} H + \gamma_{0} t_{b} C = \nabla_{b} H + \gamma_{0} t_{b} (\nabla^{a} A_{a} - H).$

These changes also affect the constraint evolution equation,

$$\nabla^a \nabla_a \mathcal{C} - \gamma_0 t^b \nabla_b \mathcal{C} = \mathbf{0},$$

so constraint violations are damped when $\gamma_0 > 0$.

Generalized Harmonic Evolution System

• Frans Pretorius wrote a very nice second order finite difference AMR code to solve the generalized harmonic Einstein equations:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$. Unfortunately initial code was very unstable.

Generalized Harmonic Evolution System

• Frans Pretorius wrote a very nice second order finite difference AMR code to solve the generalized harmonic Einstein equations:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$. Unfortunately initial code was very unstable.

• Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $C_a = 0$, where

$$\mathcal{C}_a = H_a + \Gamma_a,$$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $M_a = 0$, are determined by the derivatives of the gauge constraint C_a :

$$\mathcal{M}_{a} \equiv \left[R_{ab} - \frac{1}{2} \psi_{ab} R \right] n^{b} = \left[\nabla_{(a} \mathcal{C}_{b)} - \frac{1}{2} \psi_{ab} \nabla^{c} \mathcal{C}_{c} \right] n^{b}.$$

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2} \psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2} \psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

• Evolution of the constraints C_a follow from the Bianchi identities:

$$0 = \nabla^{c} \nabla_{c} \mathcal{C}_{a} - 2\gamma_{0} \nabla^{c} [n_{c} \mathcal{C}_{a}] + \mathcal{C}^{c} \nabla_{c} \mathcal{C}_{a} - \frac{1}{2} \gamma_{0} n_{a} \mathcal{C}^{c} \mathcal{C}_{c}.$$

This is a damped wave equation for C_a , that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_0 > 0$).

First-Order Einstein Evolution System

- Introduce new fields Π_{ab} and Φ_{iab} representing the time and space derivatives of the metric ψ_{ab}.
- Our code solves a first-order representation of the GH Einstein evolution system:

$$\begin{split} \partial_t \psi_{ab} &= -N\Pi_{ab} + N^i \Phi_{iab}, \\ \partial_t \Pi_{ab} &- N^k \partial_k \Pi_{ab} + N g^{ki} \partial_k \Phi_{iab} + \gamma_2 N^k \partial_k \psi_{ab} \simeq 0, \\ \partial_t \Phi_{iab} &- N^k \partial_k \Phi_{iab} + N \partial_i \Pi_{ab} - \gamma_2 N \partial_i \Psi_{ab} \simeq 0. \end{split}$$

- Violations of the additional constraint, C_{iab} = Φ_{iab} − ∂_iψ_{ab}, are suppressed on the timescale 1/γ₂ by this evolution system.
- This evolution system can be written very abstractly as: $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u)$, where $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{iab}\}$.
- This system is symmetric hyperbolic because there exists a positive definite symmetric S_{αβ} that symmetrizes the characteristic matrices: A^k_{αβ} = A^k_{βα} = S_{αγ}A^{kγ}_β.

Numerical Tests of the First-Order GH System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of the GH evolution system.
- These evolutions are stable and convergent when $\gamma_0 = \gamma_2 = 1$.

• The boundary conditions used for this simple test problem freeze the incoming characteristic fields to their initial values.

Outline of Talk:

- Methods of Specifying Gauge (Coordinates).
 - Generalized Harmonic (GH) Einstein Equations.
 - Constraint Damping.
- Boundary Conditions.
 - Constraint Preserving.
 - Physical.
- Moving Black Holes in a Spectral Code.
 - Dual Coordinate Frame Evolution.
 - Choosing Coordinates by Feedback Control.
- Gauge Drivers in the GH Einstein System.

 Boundary conditions are straightforward to formulate for first-order hyperbolic evolutions systems,

$$\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u).$$

For the GH system $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}.$

 Boundary conditions are straightforward to formulate for first-order hyperbolic evolutions systems,

 $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u).$

For the GH system $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}.$

Find the eigenvectors of the characteristic matrix s_kA^{kα}_β at each boundary point:

$$\boldsymbol{e}^{\hat{\alpha}}{}_{\alpha} \boldsymbol{s}_{k} \boldsymbol{A}^{k \alpha}{}_{\beta} = \boldsymbol{v}_{(\hat{\alpha})} \boldsymbol{e}^{\hat{\alpha}}{}_{\beta},$$

where s_k is the outward directed unit normal to the boundary.

 Boundary conditions are straightforward to formulate for first-order hyperbolic evolutions systems,

 $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u).$

For the GH system $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}.$

Find the eigenvectors of the characteristic matrix s_kA^{kα}_β at each boundary point:

$$\boldsymbol{e}^{\hat{\alpha}}{}_{\alpha} \boldsymbol{s}_{k} \boldsymbol{A}^{k \alpha}{}_{\beta} = \boldsymbol{V}_{(\hat{\alpha})} \boldsymbol{e}^{\hat{\alpha}}{}_{\beta},$$

where S_k is the outward directed unit normal to the boundary.

For hyperbolic evolution systems the eigenvectors e^â_α are complete: det e^â_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}}={\it e}^{\hat{lpha}}{}_{lpha}u^{lpha}.$$

 Boundary conditions are straightforward to formulate for first-order hyperbolic evolutions systems,

 $\partial_t u^{\alpha} + A^{k \alpha}{}_{\beta}(u) \partial_k u^{\beta} = F^{\alpha}(u).$

For the GH system $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}.$

Find the eigenvectors of the characteristic matrix s_kA^{kα}_β at each boundary point:

$$\boldsymbol{e}^{\hat{\alpha}}{}_{\alpha} \boldsymbol{s}_{k} \boldsymbol{A}^{k \alpha}{}_{\beta} = \boldsymbol{v}_{(\hat{\alpha})} \boldsymbol{e}^{\hat{\alpha}}{}_{\beta},$$

where s_k is the outward directed unit normal to the boundary.

For hyperbolic evolution systems the eigenvectors e^â_α are complete: det e^â_α ≠ 0. So we define the characteristic fields:

$$u^{\hat{lpha}}=oldsymbol{e}^{\hat{lpha}}{}_{lpha}u^{lpha}.$$

 A boundary condition must be imposed on each incoming characteristic field (*i.e.* every field with v_(â) < 0), and must not be imposed on any outgoing field (*i.e.* any field with v_(â) > 0).

Evolutions of a Perturbed Schwarzschild Black Hole

- A black-hole spacetime is perturbed by an incoming gravitational wave that excites quasi-normal oscillations.
- Use boundary conditions that *Freeze* the remaining incoming characteristic fields.
- The resulting outgoing waves interact with the boundary of the computational domain and produce constraint violations.

Lapse Movie Constraint Movie

Constraint Evolution for the First-Order GH System

The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{M}_{a} \approx n^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} \Phi_{I]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

 $\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B.$

Constraint Evolution for the First-Order GH System

The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{M}_{a} \approx n^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} \Phi_{I]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

$$\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B.$$

 This constraint evolution system is symmetric hyperbolic with principal part:

$$\partial_t \mathcal{M}_a - N^k \partial_k \mathcal{M}_a - N g^{ij} \partial_i \mathcal{C}_{ja} \simeq 0,$$

$$\partial_t \mathcal{C}_{ia} - N^{\kappa} \partial_k \mathcal{C}_{ia} - N \partial_i \mathcal{M}_a \simeq 0,$$

$$\partial_t C_{iab} - (1 + \gamma_1) N^k \partial_k C_{iab} \simeq 0$$

 $\partial_t C_{ijab} - N^k \partial_k C_{ijab} \simeq 0.$

Constraint Evolution for the First-Order GH System

• The evolution of the constraints,

 $c^{A} = \{C_{a}, C_{kab}, \mathcal{M}_{a} \approx n^{c} \partial_{c} C_{a}, C_{ka} \approx \partial_{k} C_{a}, C_{klab} = \partial_{[k} \Phi_{I]ab}\}$ are determined by the evolution of the fields $u^{\alpha} = \{\psi_{ab}, \Pi_{ab}, \Phi_{kab}\}$:

$$\partial_t c^A + A^{kA}{}_B(u)\partial_k c^B = F^A{}_B(u,\partial u) c^B.$$

 This constraint evolution system is symmetric hyperbolic with principal part:

 $\begin{array}{rcl} \partial_t \mathcal{C}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{M}_a - N^k \partial_k \mathcal{M}_a - N g^{ij} \partial_i \mathcal{C}_{ja} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ia} - N^k \partial_k \mathcal{C}_{ia} - N \partial_i \mathcal{M}_a &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{iab} - (1 + \gamma_1) N^k \partial_k \mathcal{C}_{iab} &\simeq & \mathbf{0}, \\ \partial_t \mathcal{C}_{ijab} - N^k \partial_k \mathcal{C}_{ijab} &\simeq & \mathbf{0}. \end{array}$

 An analysis of this system shows that all of the constraints are damped in the WKB limit when γ₀ > 0 and γ₂ > 0. So, this system has constraint suppression properties that are similar to those of the Pretorius (and Gundlach, et al.) system.

• Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}_{B}\partial_{k}c^{B} = F^{A}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

- Construct the characteristic fields, $\hat{c}^{\hat{A}} = e^{\hat{A}}{}_{A}c^{A}$, associated with the constraint evolution system, $\partial_{t}c^{A} + A^{kA}{}_{B}\partial_{k}c^{B} = F^{A}{}_{B}c^{B}$.
- Split the constraints into incoming and outgoing characteristics: $\hat{c} = \{\hat{c}^-, \hat{c}^+\}.$
- The incoming characteristic fields mush vanish on the boundaries, $\hat{c}^- = 0$, if the influx of constraint violations is to be prevented.
- The constraints depend on the primary evolution fields (and their derivatives). We find that c⁻ for the GH system can be expressed:

$$\hat{c}^- = d_\perp \hat{u}^- + \hat{F}(u, d_\parallel u).$$

• Set boundary conditions on the fields \hat{u}^- by requiring

$$d_{\perp}\hat{u}^{-}=-\hat{F}(u,d_{\parallel}u).$$

More Boundary Condition Issues

- Constraints can not provide BCs for all incoming fields.
- Physical gravitational-wave degrees-of-freedom must have BCs determined by the physics of the situation:

More Boundary Condition Issues

- Constraints can not provide BCs for all incoming fields.
- Physical gravitational-wave degrees-of-freedom must have BCs determined by the physics of the situation:
 - Isolated systems (no incoming gravitational waves) are modeled by imposing a BC that sets the time-dependent part of the incoming components of the Weyl tensor to zero: ∂_tΨ₀ = 0.
 - This condition is translated into a BC by expressing Ψ₀ in terms of the incoming characteristic fields: Ψ₀ = d_⊥ û[−] + F̂(u, d_{||}u).

More Boundary Condition Issues

- Constraints can not provide BCs for all incoming fields.
- Physical gravitational-wave degrees-of-freedom must have BCs determined by the physics of the situation:
 - Isolated systems (no incoming gravitational waves) are modeled by imposing a BC that sets the time-dependent part of the incoming components of the Weyl tensor to zero: ∂_tΨ₀ = 0.
 - This condition is translated into a BC by expressing Ψ₀ in terms of the incoming characteristic fields: Ψ₀ = d_⊥ û[−] + F̂(u, d_{||}u).
- Initial-boundary problem for first-order GH evolution system is well-posed for algebraic boundary conditions on \hat{u}^{α} .
- Constraint preserving and physical boundary conditions involve derivatives of \hat{u}^{α} , and standard well-posedness proofs fail.
More Boundary Condition Issues

- Constraints can not provide BCs for all incoming fields.
- Physical gravitational-wave degrees-of-freedom must have BCs determined by the physics of the situation:
 - Isolated systems (no incoming gravitational waves) are modeled by imposing a BC that sets the time-dependent part of the incoming components of the Weyl tensor to zero: ∂_tΨ₀ = 0.
 - This condition is translated into a BC by expressing Ψ₀ in terms of the incoming characteristic fields: Ψ₀ = d_⊥ û[−] + F̂(u, d_{||}u).
- Initial-boundary problem for first-order GH evolution system is well-posed for algebraic boundary conditions on \hat{u}^{α} .
- Constraint preserving and physical boundary conditions involve derivatives of \hat{u}^{α} , and standard well-posedness proofs fail.
- Oliver Rinne (2006) used Fourier-Laplace analysis to show that these BC satisfy the Kreiss (1970) condition which is necessary for well-posedness (but not sufficient for this type of BC).

Numerical Tests of Boundary Conditions

• Compare the solution obtained on a "small" computational domain with a reference solution obtained on a "large" domain where the boundary is not in causal contact with the comparison region.

Solution Differences

Constraints

- Solutions using "Freezing" BC (dashed curves) have differences and constraints that do not converge to zero.
- Solutions using constraint preserving and physical BC (solid curves) have much smaller differences and constraints that converge to zero.

Lee Lindblom (Caltech)

Outline of Talk:

- Methods of Specifying Gauge (Coordinates).
 - Generalized Harmonic (GH) Einstein Equations.
 - Constraint Damping.
- Boundary Conditions.
 - Constraint Preserving.
 - Physical.
- Moving Black Holes in a Spectral Code.
 - Dual Coordinate Frame Evolution.
 - Choosing Coordinates by Feedback Control.
- Gauge Drivers in the GH Einstein System.

• Spectral: Excision boundary is a smooth analytic surface.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

Solution:

Choose coordinates that smoothly track the location of the black hole.

For a black hole binary this means using coordinates that rotate with respect to inertial frames at infinity.

Evolving Black Holes in Rotating Frames

- Coordinates that rotate with respect to the inertial frames at infinity are needed to track the horizons of orbiting black holes.
- Evolutions of Schwarzschild in rotating coordinates are unstable.

- Evolutions shown use a computational domain that extends to r = 1000M.
- Angular velocity needed to track the horizons of an equal mass binary at merger is about Ω ≈ 0.2/M.
- Problem caused by asymptotic behavior of metric in rotating coordinates: ψ_{tt} ~ ρ²Ω², ψ_{ti} ~ ρΩ, ψ_{ij} ~ 1.

Dual-Coordinate-Frame Evolution Method

 Single-coordinate frame method uses the one set of coordinates, x^ā = {t̄, xⁱ}, to define field components, u^ā = {ψ_{āb}, Π_{āb}, Φ_{iāb}}, and the same coordinates to determine these components by solving Einstein's equation for u^ā = u^ā(x^ā):

$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Dual-Coordinate-Frame Evolution Method

 Single-coordinate frame method uses the one set of coordinates, x^ā = {t̄, x^ī}, to define field components, u^ā = {ψ_{āb}, Π_{āb}, Φ_{īāb}}, and the same coordinates to determine these components by solving Einstein's equation for u^ā = u^ā(x^ā):

$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}}\partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, x^a = {t, xⁱ} = x^a(x^ā), to represent these components as functions, U^ā = U^ā(x^a).

Dual-Coordinate-Frame Evolution Method

 Single-coordinate frame method uses the one set of coordinates, x^ā = {t̄, xⁱ}, to define field components, u^ā = {ψ_{āb}, Π_{āb}, Φ_{iāb}}, and the same coordinates to determine these components by solving Einstein's equation for u^ā = u^ā(x^ā):

$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}}\partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

- Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, x^a = {t, xⁱ} = x^a(x^ā), to represent these components as functions, U^ā = U^ā(x^a).
- These functions are determined by solving the transformed Einstein equation:

$$\partial_t u^{\bar{\alpha}} + \left[\frac{\partial x^i}{\partial \bar{t}} \delta^{\bar{\alpha}}{}_{\bar{\beta}} + \frac{\partial x^i}{\partial x^{\bar{k}}} A^{\bar{k}\bar{\alpha}}{}_{\bar{\beta}} \right] \partial_i u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Testing Dual-Coordinate-Frame Evolutions

• Single-frame evolutions of Schwarzschild in rotating coordinates are unstable, while dual-frame evolutions are stable:

• Dual-frame evolution shown here uses a comoving frame with $\Omega = 0.2/M$ on a domain with outer radius r = 1000M.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = e^{a(\bar{t})} \begin{pmatrix} \cos\varphi(\bar{t}) & -\sin\varphi(\bar{t}) & 0 \\ \sin\varphi(\bar{t}) & \cos\varphi(\bar{t}) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix}$$

with $t = \overline{t}$, is general enough to keep the holes fixed in co-moving coordinates for suitably chosen functions $a(\overline{t})$ and $\varphi(\overline{t})$.

Since the motions of the holes are not known *a priori*, the functions *a*(*t*) and φ(*t*) must be chosen dynamically and adaptively as the system evolves.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $Q^x(t) = [x_c(t) x_c(0)]/x_c(0)$ and $Q^y(t) = y_c(t)/x_c(t)$.
- Choose the map parameters a(t) and φ(t) to keep Q^x(t) and Q^y(t) small.

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $Q^x(t) = [x_c(t) x_c(0)]/x_c(0)$ and $Q^y(t) = y_c(t)/x_c(t)$.
- Choose the map parameters a(t) and φ(t) to keep Q^x(t) and Q^y(t) small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^{χ} and δQ^{γ} :

$$\delta Q^{\mathsf{X}} = -\delta a, \qquad \quad \delta Q^{\mathsf{Y}} = -\delta \varphi.$$

Horizon Tracking Coordinates II

- Measure the comoving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $Q^x(t) = [x_c(t) x_c(0)]/x_c(0)$ and $Q^y(t) = y_c(t)/x_c(t)$.
- Choose the map parameters a(t) and φ(t) to keep Q^x(t) and Q^y(t) small.
- Changing the map parameters by the small amounts, δa and δφ, results in associated small changes in δQ^x and δQ^y:

$$\delta Q^{\chi} = -\delta a, \qquad \quad \delta Q^{\chi} = -\delta \varphi.$$

• Measure the quantities $Q^{y}(t)$, $dQ^{y}(t)/dt$, $d^{2}Q^{y}(t)/dt^{2}$, and set

$$\frac{d^3\varphi}{dt^3} = \lambda^3 Q^y + 3\lambda^2 \frac{dQ^y}{dt} + 3\lambda \frac{d^2 Q^y}{dt^2} = -\frac{d^3 Q^y}{dt^3}.$$

The solutions to this "closed-loop" equation for Q^{y} have the form $Q^{y}(t) = (At^{2} + Bt + C)e^{-\lambda t}$, so Q^{y} always decreases as $t \to \infty$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times t = t_i.
- In the time interval $t_i < t < t_{i+1}$ we set:

$$\begin{split} \varphi(t) &= \varphi_i + (t-t_i) \frac{d\varphi_i}{dt} + \frac{(t-t_i)^2}{2} \frac{d^2\varphi_i}{dt^2} \\ &+ \frac{(t-t_i)^3}{2} \left(\lambda \frac{d^2 Q_i^y}{dt^2} + \lambda^2 \frac{dQ_i^y}{dt} + \lambda^3 \frac{Q_i^y}{3} \right), \end{split}$$

where Q^{x} , Q^{y} , and their derivatives are measured at $t = t_i$, so these maps satisfy the closed loop equation at $t = t_i$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times t = t_i.
- In the time interval $t_i < t < t_{i+1}$ we set:

$$\begin{split} \varphi(t) &= \varphi_i + (t-t_i) \frac{d\varphi_i}{dt} + \frac{(t-t_i)^2}{2} \frac{d^2\varphi_i}{dt^2} \\ &+ \frac{(t-t_i)^3}{2} \left(\lambda \frac{d^2 Q_i^y}{dt^2} + \lambda^2 \frac{dQ_i^y}{dt} + \lambda^3 \frac{Q_i^y}{3} \right), \end{split}$$

where Q^{x} , Q^{y} , and their derivatives are measured at $t = t_i$, so these maps satisfy the closed loop 2×10^{-4} $Q^{y} = \frac{y_{e}(t)}{x_{e}(t)}$

• This works! We are now able to evolve binary black holes using horizon tracking coordinates until just before merger.

Outline of Talk:

- Methods of Specifying Gauge (Coordinates).
 - Generalized Harmonic (GH) Einstein Equations.
 - Constraint Damping.
- Boundary Conditions.
 - Constraint Preserving.
 - Physical.
- Moving Black Holes in a Spectral Code.
 - Dual Coordinate Frame Evolution.
 - Choosing Coordinates by Feedback Control.
- Gauge Drivers in the GH Einstein System.

Gauge Conditions and Hyperbolicity

• The GH Einstein equations may be written (abstractly) as

 $\psi^{cd}\partial_c\partial_d\psi_{ab} = \nabla_a H_b + \nabla_b H_a + Q_{ab}(\psi,\partial\psi).$

 These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: H^a = H^a(x, ψ).

Gauge Conditions and Hyperbolicity

• The GH Einstein equations may be written (abstractly) as

 $\psi^{cd}\partial_c\partial_d\psi_{ab} = \nabla_a H_b + \nabla_b H_a + Q_{ab}(\psi,\partial\psi).$

- These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: H^a = H^a(x, ψ).
- Unfortunately, most gauge conditions found useful in numerical relativity are conditions on ψ_{ab} and ∂_cψ_{ab}.
- The GH Einstein equations are typically not hyperbolic for gauge conditions of this type: H^a = H^a(x, ψ, ∂ψ).

Solution: Gauge Driver Equations

 Elevate H_a to the status of a dynamical field (Pretorius) and evolve it along with the spacetime metric ψ_{ab}:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$ GH Einstein : $\psi^{cd} \partial_c \partial_d \psi_{ab} = Q_{ab}(x, H, \partial H, \psi, \partial \psi).$

• Any gauge driver of this form makes the combined Einstein–Gauge system hyperbolic.

Solution: Gauge Driver Equations

 Elevate H_a to the status of a dynamical field (Pretorius) and evolve it along with the spacetime metric ψ_{ab}:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$ GH Einstein : $\psi^{cd} \partial_c \partial_d \psi_{ab} = Q_{ab}(x, H, \partial H, \psi, \partial \psi).$

- Any gauge driver of this form makes the combined Einstein–Gauge system hyperbolic.
- Choose Q_a so that H_a evolves toward the desired gauge target F_a as the system evolves: H_a → F_a.

Solution: Gauge Driver Equations

 Elevate H_a to the status of a dynamical field (Pretorius) and evolve it along with the spacetime metric ψ_{ab}:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$ GH Einstein : $\psi^{cd} \partial_c \partial_d \psi_{ab} = Q_{ab}(x, H, \partial H, \psi, \partial \psi).$

- Any gauge driver of this form makes the combined Einstein–Gauge system hyperbolic.
- Choose Q_a so that H_a evolves toward the desired gauge target F_a as the system evolves: H_a → F_a.
- We have shown that the simple gauge driver:

 $\psi^{cd}\partial_c\partial_d H_a = Q_a = \mu^2(H_a - F_a) + 2\mu N^{-1}\partial_t H_a + \dots$

drives $H_a \rightarrow F_a$ for some of the standard numerical relativity gauges: *Phys. Rev. D* **77** 084001 (2008).

Recent Gauge Driver Improvements

• Replace the wave operator in the gauge driver by a flat-space wave operator:

 $\eta^{cd}\partial_c\partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi).$

Recent Gauge Driver Improvements

 Replace the wave operator in the gauge driver by a flat-space wave operator:

 $\eta^{cd}\partial_c\partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi).$

• Use improved boundary conditions for the gauge fields, e.g.

 $\partial_t H_a = -\mu (H_a - F_a).$

Recent Gauge Driver Improvements

 Replace the wave operator in the gauge driver by a flat-space wave operator:

 $\eta^{cd}\partial_c\partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi).$

• Use improved boundary conditions for the gauge fields, e.g.

 $\partial_t H_a = -\mu (H_a - F_a).$

The gauge field H_a transforms like the trace of a connection.
 Evolutions done in a co-moving reference frame need an appropriate Hessian term added to F_a:

$$F_a
ightarrow F_a - \psi_{ab} rac{\partial^2 x^b}{\partial x^{ar b} \partial x^{ar c}} \psi^{ar b ar c}.$$

Testing the Improved Gauge Driver System:

- Initial Data: use Schwarzschild with perturbed lapse and shift.
- Gauge Driver: use F_a representing one of the Bona-Masso slicing conditions and one of the Γ-driver shift conditions.

In Progress: Binary Black Hole Evolutions

1

- Our gauge driver system is now robust enough to perform binary black hole evolutions.
- Which gauge conditions are both stable and effective for performing BBH mergers?
- BBH mergers have been performed using driver versions of the following gauge conditions,

$$\partial_t \mathbf{N} - \mathbf{N}^k \partial_k \mathbf{N} = -\lambda \mathbf{N} \mathbf{K},$$

$$\partial_t \mathbf{N}^i = \nu \begin{bmatrix} (3) \tilde{\Gamma}^i - \eta \Upsilon^i \end{bmatrix},$$

$$\partial_t \Upsilon^i + \eta \Upsilon^i = {}^{(3)} \tilde{\Gamma}^i.$$
Summary

- Generalized Harmonic method produces manifestly hyperbolic representations of the Einstein equations for any choice of coordinates (when imposed in the appropriate way).
- Constraint damping makes the modified GH equations stable for numerical simulations.
- Constraint preserving and physical boundary conditions ensure that waves propagate through computational boundaries without (much) reflection.
- Dual coordinate frame evolution makes evolutions stable in coordinates that track the black hole motions.
- Feedback control systems can be used to construct co-moving coordinates that accurately track the black hole motions.
- Gauge drivers allow a wide range of useful gauge conditions in the generalized harmonic framework.