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Outline of Talk:
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Gauge Drivers in the GH Einstein System.
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Traditional ADM Gauge Conditions
Construct a foliation of
spacetime by spatial
slices.
Choose a time function
with t = const. on these
slices.
Choose spatial coordinates,
xk , on each slice.
Decompose the 4-metric ψab into its 3+1 parts:
ds2 = ψabdxadxb = −N2dt2 + gij(dx i + N idt)(dx j + N jdt).
The lapse N and shift N i measure how coordinates are laid out on
spacetime: ~n = ∂τ =

∂t
∂τ
∂t +

∂xk

∂τ
∂k ,

=
1
N
∂t − Nk

N
∂k .

Spacetime coordinates are determined in the traditional ADM
method by specifying the lapse N and shift N i .

~n = ∂τ
∂t

∂k(t , xk )

(t + δt , xk )
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ADM Evolution System
When the gauge is determined by specifying the lapse N and shift
Nk , the Einstein system becomes a set of evolution equations for
the spatial metric gij and extrinsic curvature Kij :

∂tgij − Nk∂kgij = −2NKij +∇iNj +∇jNi ,

∂tKij − Nk∂kKij = N
(

(3)Rij − 2Ki
kKkj + KKij

)
−∇i∇jN + Kik∂jNk + Kkj∂iNk .

The Einstein equations also include constraints:

0 = Mt̂ ≡ (3)R − KijK ij + K 2,

0 = Mi ≡ ∇kKki −∇iK .

This traditional form of the Einstein equations is not hyperbolic,
and numerical solutions are found to suffer from generic constraint
violating instabilities.
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Generalized Harmonic Gauge Conditions
An alternate way to specify the gauge (i.e. coordinates) in the
Einstein equations is through the gauge source function Ha:

Let Ha denote the function obtained by the action of the covariant
scalar wave operator on the coordinates xa:

Ha ≡ ∇c∇cxa = ψbc(∂b∂cxa − Γe
bc∂exa) = −Γa,

where Γa = ψbcΓa
bc and ψab is the 4-metric.

Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(x , ψ), and requiring that

Ha(x , ψ) = −Γa = ∂b

(√
−ψψab

)
/
√
−ψ.
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Einstein’s Equation with the GH Method
The spacetime Ricci tensor can be written as:

Rab = − 1
2ψ

cd∂c∂dψab +∇(aΓb) + Fab(ψ, ∂ψ),

where ψab is the 4-metric, and Γa = ψbcΓabc .

The Generalized Harmonic Einstein equation is obtained by
replacing Γa with −Ha(x , ψ) = −ψabHb(x , ψ):

Rab −∇(a
[
Γb) + Hb)

]
= − 1

2ψ
cd∂c∂dψab −∇(aHb) + Fab(ψ, ∂ψ).

The vacuum GH Einstein equation, Rab = 0 with Γa + Ha = 0, is
therefore manifestly hyperbolic, having the same principal part as
the scalar wave equation:

0 = ∇a∇aΦ = ψab∂a∂bΦ + F (∂Φ).
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Gauge and Constraints in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional notation: ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations are often re-expressed in terms of a vector
potential Fab = ∇aAb −∇bAa :

∇a∇aAb −∇b∇aAa = 0.
This form of Maxwell’s equations is manifestly hyperbolic as long
as the gauge is chosen correctly, e.g., let ∇aAa = H(x , t), giving:

∇a∇aAb ≡
(−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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Constraint Damping

Where are the constraints: ∇a∇aAb = ∇bH?

Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes also affect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34



Constraint Damping

Where are the constraints: ∇a∇aAb = ∇bH?
Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes also affect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34



Constraint Damping

Where are the constraints: ∇a∇aAb = ∇bH?
Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes also affect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.

Lee Lindblom (Caltech) GH Einstein CCRG-RIT – 10/17/2008 8 / 34



Generalized Harmonic Evolution System
Frans Pretorius wrote a very nice second order finite difference
AMR code to solve the generalized harmonic Einstein equations:

0 = Rab −∇(aΓb) −∇(aHb),

= Rab −∇(aCb),

where Ca = Ha + Γa. Unfortunately initial code was very unstable.

Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, Ca = 0, where

Ca = Ha + Γa,

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints,Ma = 0, are determined
by the derivatives of the gauge constraint Ca:

Ma ≡
[
Rab − 1

2
ψabR

]
nb =

[
∇(aCb) − 1

2
ψab∇cCc

]
nb.
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Constraint Damping Generalized Harmonic System
Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

0 = Rab −∇(aCb) + γ0

[
n(aCb) − 1

2
ψab nc Cc

]
,

where na is a unit timelike vector field. Since Ca = Ha + Γa
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

Evolution of the constraints Ca follow from the Bianchi identities:

0 = ∇c∇cCa−2γ0∇c[n(cCa)

]
+ Cc∇(cCa)−1

2
γ0 naCcCc.

This is a damped wave equation for Ca, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for γ0 > 0).
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First-Order Einstein Evolution System
Introduce new fields Πab and Φiab representing the time and space
derivatives of the metric ψab.
Our code solves a first-order representation of the GH Einstein
evolution system:

∂tψab = −NΠab + N iΦiab,

∂t Πab − Nk∂k Πab + Ngki∂k Φiab + γ2Nk∂kψab ' 0,
∂t Φiab − Nk∂k Φiab + N∂iΠab − γ2N∂iΨab ' 0.

Violations of the additional constraint, Ciab = Φiab − ∂iψab, are
suppressed on the timescale 1/γ2 by this evolution system.
This evolution system can be written very abstractly as:
∂tuα + Ak α

β(u)∂kuβ = Fα(u), where uα = {ψab,Πab,Φiab}.
This system is symmetric hyperbolic because there exists a
positive definite symmetric Sαβ that symmetrizes the
characteristic matrices: Ak

αβ = Ak
βα = SαγAk γ

β.
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Numerical Tests of the First-Order GH System
3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of the GH evolution system.
These evolutions are stable and convergent when γ0 = γ2 = 1.
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The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Boundary Conditions
Boundary conditions are straightforward to formulate for first-order
hyperbolic evolutions systems,

∂tuα + Ak α
β(u)∂kuβ = Fα(u).

For the GH system uα = {ψab,Πab,Φkab}.

Find the eigenvectors of the characteristic matrix skAk α
β at each

boundary point:
eα̂α skAk α

β = v(α̂)eα̂β,

where sk is the outward directed unit normal to the boundary.

For hyperbolic evolution systems the eigenvectors eα̂α are
complete: det eα̂α 6= 0. So we define the characteristic fields:

uα̂ = eα̂αuα.

A boundary condition must be imposed on each incoming
characteristic field (i.e. every field with v(α̂) < 0), and must not be
imposed on any outgoing field (i.e. any field with v(α̂) > 0).
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Evolutions of a Perturbed Schwarzschild Black Hole

A black-hole spacetime is
perturbed by an incoming
gravitational wave that excites
quasi-normal oscillations.

Use boundary conditions that
Freeze the remaining
incoming characteristic fields.

The resulting outgoing waves
interact with the boundary of
the computational domain and
produce constraint violations.

Lapse Movie Constraint Movie
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Constraint Evolution for the First-Order GH System
The evolution of the constraints,
cA = {Ca, Ckab,Ma ≈ nc∂cCa, Cka ≈ ∂kCa, Cklab = ∂[k Φl]ab} are
determined by the evolution of the fields uα = {ψab,Πab,Φkab}:

∂tcA + Ak A
B(u)∂kcB = F A

B(u, ∂u) cB.

This constraint evolution system is symmetric hyperbolic with
principal part:

∂tCa ' 0,
∂tMa − Nk∂kMa − Ng ij∂iCja ' 0,

∂tCia − Nk∂kCia − N∂iMa ' 0,
∂tCiab − (1 + γ1)Nk∂kCiab ' 0,

∂tCijab − Nk∂kCijab ' 0.
An analysis of this system shows that all of the constraints are
damped in the WKB limit when γ0 > 0 and γ2 > 0. So, this
system has constraint suppression properties that are similar to
those of the Pretorius (and Gundlach, et al.) system.
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Constraint Preserving Boundary Conditions

Construct the characteristic fields, ĉÂ = eÂ
AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
ĉ = {ĉ−, ĉ+}.
The incoming characteristic fields mush vanish on the boundaries,
ĉ− = 0, if the influx of constraint violations is to be prevented.

The constraints depend on the primary evolution fields (and their
derivatives). We find that ĉ− for the GH system can be expressed:

ĉ− = d⊥û− + F̂ (u,d‖u).

Set boundary conditions on the fields û− by requiring

d⊥û− = −F̂ (u,d‖u).
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AcA, associated with

the constraint evolution system, ∂tcA + Ak A
B∂kcB = F A

BcB.

Split the constraints into incoming and outgoing characteristics:
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More Boundary Condition Issues

Constraints can not provide BCs for all incoming fields.
Physical gravitational-wave degrees-of-freedom must have BCs
determined by the physics of the situation:

Isolated systems (no incoming gravitational waves) are modeled by
imposing a BC that sets the time-dependent part of the incoming
components of the Weyl tensor to zero: ∂t Ψ0 = 0.
This condition is translated into a BC by expressing Ψ0 in terms of
the incoming characteristic fields: Ψ0 = d⊥û− + F̂ (u,d‖u).

Initial-boundary problem for first-order GH evolution system is
well-posed for algebraic boundary conditions on ûα.
Constraint preserving and physical boundary conditions involve
derivatives of ûα, and standard well-posedness proofs fail.
Oliver Rinne (2006) used Fourier-Laplace analysis to show that
these BC satisfy the Kreiss (1970) condition which is necessary
for well-posedness (but not sufficient for this type of BC).
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Constraint preserving and physical boundary conditions involve
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Numerical Tests of Boundary Conditions
Compare the solution obtained on a “small” computational domain
with a reference solution obtained on a “large” domain where the
boundary is not in causal contact with the comparison region.

Solution Differences Constraints

Solutions using “Freezing” BC (dashed curves) have differences
and constraints that do not converge to zero.
Solutions using constraint preserving and physical BC (solid
curves) have much smaller differences and constraints that
converge to zero.
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Outline of Talk:

Methods of Specifying Gauge (Coordinates).
Generalized Harmonic (GH) Einstein Equations.
Constraint Damping.

Boundary Conditions.
Constraint Preserving.
Physical.

Moving Black Holes in a Spectral Code.
Dual Coordinate Frame Evolution.
Choosing Coordinates by Feedback Control.

Gauge Drivers in the GH Einstein System.
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Moving Black Holes in a Spectral Code

Spectral: Excision boundary is a smooth analytic surface.

Cannot add/remove individual grid points.
Straightforward method: re-grid when holes move too far.
Problems:

Re-gridding/interpolation is expensive.
Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the location of the black hole.

For a black hole binary this means
using coordinates that rotate with
respect to inertial frames at infinity.

x

Horizon

Horizon
Outside

t
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Evolving Black Holes in Rotating Frames

Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.
Evolutions of Schwarzschild in rotating coordinates are unstable.
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Evolutions shown use a
computational domain that
extends to r = 1000M.
Angular velocity needed to
track the horizons of an equal
mass binary at merger is
about Ω ≈ 0.2/M.
Problem caused by asymptotic
behavior of metric in rotating
coordinates: ψtt ∼ ρ2Ω2,
ψti ∼ ρΩ, ψij ∼ 1.
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Dual-Coordinate-Frame Evolution Method

Single-coordinate frame method uses the one set of coordinates,
x ā = {t̄ , x ı̄}, to define field components, uᾱ = {ψāb̄,Πāb̄,Φı̄āb̄},
and the same coordinates to determine these components by
solving Einstein’s equation for uᾱ = uᾱ(x ā):

∂ t̄u
ᾱ + Ak̄ ᾱ

β̄∂k̄uβ̄ = F ᾱ.

Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, xa = {t , x i} = xa(x ā), to represent these
components as functions, uᾱ = uᾱ(xa).

These functions are determined by solving the transformed
Einstein equation:

∂tuᾱ +

[
∂x i

∂ t̄
δᾱβ̄ +

∂x i

∂x k̄
Ak̄ ᾱ

β̄

]
∂iuβ̄ = F ᾱ.
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These functions are determined by solving the transformed
Einstein equation:

∂tuᾱ +
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and the same coordinates to determine these components by
solving Einstein’s equation for uᾱ = uᾱ(x ā):
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β̄∂k̄uβ̄ = F ᾱ.
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δᾱβ̄ +

∂x i

∂x k̄
Ak̄ ᾱ
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Testing Dual-Coordinate-Frame Evolutions
Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:

Dual Frame Evolution Single Frame Evolution
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Dual-frame evolution shown here uses a comoving frame with
Ω = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.
A coordinate transformation from inertial coordinates, (x̄ , ȳ , z̄), to
co-moving coordinates (x , y , z), consisting of a rotation followed
by an expansion, x

y
z

 = e a(̄t)

 cosϕ(̄t) − sinϕ(̄t) 0
sinϕ(̄t) cosϕ(̄t) 0

0 0 1

 x̄
ȳ
z̄

 ,

with t = t̄ , is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(̄t) and ϕ(̄t).
Since the motions of the holes are not known a priori, the
functions a(̄t) and ϕ(̄t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates II

x

δϕ y

c

c

Measure the comoving centers of the holes: xc(t) and yc(t), or
equivalently Qx (t) = [xc(t)− xc(0)]/xc(0) and Qy (t) = yc(t)/xc(t).
Choose the map parameters a(t) and ϕ(t) to keep Qx (t) and
Qy (t) small.

Changing the map parameters by the small amounts, δa and δϕ,
results in associated small changes in δQx and δQy :

δQx = −δa, δQy = −δϕ.
Measure the quantities Q y (t), dQ y (t)/dt , d 2Q y (t)/dt2, and set

d 3ϕ

dt3 = λ3Q y + 3λ2 dQ y

dt
+ 3λ

d 2Q y

dt2 = −d 3Q y

dt3 .

The solutions to this “closed-loop” equation for Q y have the form
Q y (t) = (At2 + Bt + C)e−λt , so Q y always decreases as t →∞.
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Horizon Tracking Coordinates III
In practice the coordinate maps are adjusted only at a prescribed
set of adjustment times t = ti .
In the time interval ti < t < ti+1 we set:

ϕ(t) = ϕi + (t − ti)
dϕi

dt
+

(t − ti)2

2
d 2ϕi

dt2

+
(t − ti)3

2

(
λ

d 2Q y
i

dt2 + λ2 dQ y
i

dt
+ λ3 Q y

i
3

)
,

where Q x , Q y , and their derivatives are measured at t = ti , so
these maps satisfy the closed loop
equation at t = ti .
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This works! We are now able
to evolve binary black holes using
horizon tracking coordinates until
just before merger.
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Gauge Conditions and Hyperbolicity

The GH Einstein equations may be written (abstractly) as

ψcd∂c∂dψab = ∇aHb +∇bHa + Qab(ψ, ∂ψ).

These equations are manifestly hyperbolic when Ha is specified
as a function of xa and ψab: Ha = Ha(x , ψ).

Unfortunately, most gauge conditions found useful in numerical
relativity are conditions on ψab and ∂cψab.

The GH Einstein equations are typically not hyperbolic for gauge
conditions of this type: Ha = Ha(x , ψ, ∂ψ).
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Solution: Gauge Driver Equations
Elevate Ha to the status of a dynamical field (Pretorius) and evolve
it along with the spacetime metric ψab:

Gauge Driver : ψcd∂c∂dHa = Qa(x ,H, ∂H, ψ, ∂ψ),

GH Einstein : ψcd∂c∂dψab = Qab(x ,H, ∂H, ψ, ∂ψ).

Any gauge driver of this form makes the combined
Einstein–Gauge system hyperbolic.

Choose Qa so that Ha evolves toward the desired gauge target Fa
as the system evolves: Ha → Fa.
We have shown that the simple gauge driver:

ψcd∂c∂dHa = Qa = µ2(Ha − Fa) + 2µN−1∂tHa + ...

drives Ha → Fa for some of the standard numerical relativity
gauges: Phys. Rev. D 77 084001 (2008).
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drives Ha → Fa for some of the standard numerical relativity
gauges: Phys. Rev. D 77 084001 (2008).
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Recent Gauge Driver Improvements

Replace the wave operator in the gauge driver by a flat-space
wave operator:

ηcd∂c∂dHa = Qa(x ,H, ∂H, ψ, ∂ψ).

Use improved boundary conditions for the gauge fields, e.g.

∂tHa = −µ(Ha − Fa).

The gauge field Ha transforms like the trace of a connection.
Evolutions done in a co-moving reference frame need an
appropriate Hessian term added to Fa:

Fa → Fa − ψab
∂ 2xb

∂x b̄∂x c̄
ψb̄c̄.
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Testing the Improved Gauge Driver System:
Initial Data: use Schwarzschild with perturbed lapse and shift.
Gauge Driver: use Fa representing one of the Bona-Masso slicing
conditions and one of the Γ-driver shift conditions.
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In Progress: Binary Black Hole Evolutions
Our gauge driver system is now robust enough to perform binary
black hole evolutions.
Which gauge conditions are both stable and effective for
performing BBH mergers?

BBH mergers have been performed using driver versions of the
following gauge conditions,

∂tN − Nk∂kN = −λNK ,

∂tN i = ν
[

(3)Γ̃i − ηΥi
]
,

∂tΥ
i + ηΥi = (3)Γ̃i .
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Summary

Generalized Harmonic method produces manifestly hyperbolic
representations of the Einstein equations for any choice of
coordinates (when imposed in the appropriate way).
Constraint damping makes the modified GH equations stable for
numerical simulations.
Constraint preserving and physical boundary conditions ensure
that waves propagate through computational boundaries without
(much) reflection.
Dual coordinate frame evolution makes evolutions stable in
coordinates that track the black hole motions.
Feedback control systems can be used to construct co-moving
coordinates that accurately track the black hole motions.
Gauge drivers allow a wide range of useful gauge conditions in
the generalized harmonic framework.
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