What is the relativistic inverse stellar structure problem (SSP$^{-1}$)?

Can spectral methods provide a more effective way to solve it?
Relativistic Stellar Structure Problem (SSP)

- Given an equation of state, \(\epsilon = \epsilon(p) \), solve Einstein’s equations,
 \[
 \frac{dm}{dr} = 4\pi r^2 \epsilon, \\
 \frac{dp}{dr} = -(\epsilon + p) \frac{m + 4\pi r^3 p}{r(r - 2m)},
 \]
to determine the structures of relativistic stars.
- Find the radius \(p(R) = 0 \) and mass \(M = m(R) \) for each star.
- SSP can be thought of as a map from the equation of state \(\epsilon = \epsilon(p) \) to the M-R curve \(\{ R(p_c), M(p_c) \} \).
Relativistic Inverse Stellar Structure Problem (\(\text{SSP}^{-1}\))

- When the equation of state is well understood – as in white dwarf stars – the standard stellar structure problem is useful.
- When the equation of state is poorly known – as in neutron stars – the inverse stellar structure problem may be more interesting.

SSP\(^{-1}\) finds the equation of state \(\epsilon = \epsilon(p)\) from a given mass-radius curve.

SSP\(^{-1}\) can be thought of as a map from the M-R curve \(\{R(p_c), M(p_c)\}\) to the equation of state \(\epsilon = \epsilon(p)\).

\[
\begin{align*}
\log \epsilon(p) & \rightarrow \\
\log p & \rightarrow
\end{align*}
\]
Relativistic Inverse Stellar Structure Problem (SSP\(^{-1}\))

- When the equation of state is well understood – as in white dwarf stars – the standard stellar structure problem is useful.
- When the equation of state is poorly known – as in neutron stars – the inverse stellar structure problem may be more interesting.
- SSP\(^{-1}\) finds the equation of state \(\epsilon = \epsilon(p)\) from a given mass-radius curve.
- SSP\(^{-1}\) can be thought of as a map from the M-R curve \(\{R(p_c), M(p_c)\}\) to the equation of state \(\epsilon = \epsilon(p)\).
Standard Solution to SSP$^{-1}$

- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.
- Assume the complete M-R curve is known.

\[\text{M} \quad \text{R} \quad \{R_i, M_i\} \quad \rightarrow \quad \log \epsilon(p) \quad \{p_i, \epsilon_i\} \quad \log p \]
Standard Solution to SSP$^{-1}$

- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.
- Assume the complete M-R curve is known.
- Choose a new point on the M-R curve, $\{R_{i+1}, M_{i+1}\}$, having slightly larger central density.

\[
\log \epsilon(p) \quad \text{and} \quad \log p
\]
Standard Solution to SSP\(^{-1}\)

- Assume the equation of state is known for \(\epsilon \leq \epsilon_j = \epsilon(p_i) \).
- Assume the complete M-R curve is known.
- Choose a new point on the M-R curve, \(\{R_{i+1}, M_{i+1}\} \), having slightly larger central density.
- Integrate Einstein’s equations through the outer parts of the star, to determine the mass and radius, \(\{r_{i+1}, m_{i+1}\} \), of the core.
Standard Solution to SSP$^{-1}$

- Assume the equation of state is known for $\epsilon \leq \epsilon_i = \epsilon(p_i)$.
- Assume the complete M-R curve is known.
- Choose a new point on the M-R curve, $\{R_{i+1}, M_{i+1}\}$, having slightly larger central density.
- Integrate Einstein’s equations through the outer parts of the star, to determine the mass and radius, $\{r_{i+1}, m_{i+1}\}$, of the core.
- Use a power series solution of Einstein’s equations in the core to determine the central pressure and density, $\{p_{i+1}, \epsilon_{i+1}\}$.
Can the Standard Solution to SSP\(^{-1}\) be Improved?

- Standard solution to the relativistic SSP\(^{-1}\) finds the equation of state, \(\epsilon = \epsilon(p)\), represented as a table: \(\{p_i, \epsilon_i\}\) for \(i = 1, \ldots, N\).

- Standard solution has several weaknesses:
 - Solution converges (slowly) with the number of points, as \(N^{-p}\).
 - Each equation of state point found, \(\{p_i, \epsilon_i\}\), requires the knowledge of a separate M-R curve point, \(\{R_i, M_i\}\).
 - Accurate M-R curve points \(\{R_i, M_i\}\) for neutron stars are scarce.

Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods. Can spectral methods provide better solutions to the SSP\(^{-1}\)?

Lee Lindblom (Caltech)
Can the Standard Solution to SSP\(^{-1}\) be Improved?

- Standard solution to the relativistic SSP\(^{-1}\) finds the equation of state, \(\epsilon = \epsilon(p)\), represented as a table: \(\{p_i, \epsilon_i\}\) for \(i = 1, \ldots, N\).

- Standard solution has several weaknesses:
 - Solution converges (slowly) with the number of points, as \(N^{-p}\).
 - Each equation of state point found, \(\{p_i, \epsilon_i\}\), requires the knowledge of a separate M-R curve point, \(\{R_i, M_i\}\).
 - Accurate M-R curve points \(\{R_i, M_i\}\) for neutron stars are scarce.

- Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods.

- Can spectral methods provide better solutions to the SSP\(^{-1}\)?
Assume the equation of state can be written in the form
\[\epsilon = \epsilon(p, \lambda_\alpha), \]
where the \(\lambda_\alpha \) are a set of parameters.

For example, the equation of state could be written as a spectral expansion,
\[\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p), \]
where the \(\Phi_\alpha(p) \) are spectral basis functions.
Outline for Solving SSP\(^{-1}\) Using Spectral Methods

- Assume the equation of state can be written in the form
 \[\epsilon = \epsilon(p, \lambda_\alpha), \]
 where the \(\lambda_\alpha \) are a set of parameters.
 For example, the equation of state could be written as a spectral expansion,
 \[\epsilon = \epsilon(p, \lambda_\alpha) = \sum \lambda_\alpha \Phi_\alpha(p), \]
 where the \(\Phi_\alpha(p) \) are spectral basis functions.

- For a given equation of state, i.e. a particular choice of \(\lambda_\alpha \), solve
 the SSP to obtain the M-R curve: \(\{R(p_c, \lambda_\alpha), M(p_c, \lambda_\alpha)\} \).
Outline for Solving SSP\(^{-1}\) Using Spectral Methods

- Assume the equation of state can be written in the form
 \[\epsilon = \epsilon(p, \lambda_\alpha) , \]
 where the \(\lambda_\alpha \) are a set of parameters.

 For example, the equation of state could be written as a spectral expansion,
 \[\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p) , \]
 where the \(\Phi_\alpha(p) \) are spectral basis functions.

- For a given equation of state, i.e. a particular choice of \(\lambda_\alpha \), solve the SSP to obtain the M-R curve:
 \[\{ R(p_c, \lambda_\alpha), M(p_c, \lambda_\alpha) \} . \]

- Given a set of points from the “real” M-R curve, \(\{ R_i, M_i \} \), choose the parameters \(\lambda_\alpha \) and \(p_i \) that minimize the difference measure:

 \[
 \Delta^2_{MR} = \frac{1}{N} \sum_{i=1}^{N} \left \{ \left \{ \log \left (\frac{R(p_i, \lambda_\alpha)}{R_i} \right) \right \}^2 + \left \{ \log \left (\frac{M(p_i, \lambda_\alpha)}{M_i} \right) \right \}^2 \right \}
 \]
Outline for Solving SSP\(^{-1}\) Using Spectral Methods

- Assume the equation of state can be written in the form
 \[\epsilon = \epsilon(p, \lambda_\alpha), \]
 where the \(\lambda_\alpha\) are a set of parameters.
 For example, the equation of state could be written as a spectral
 expansion,
 \[\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p), \]
 where the \(\Phi_\alpha(p)\) are spectral basis functions.

- For a given equation of state, i.e. a particular choice of \(\lambda_\alpha\), solve
 the SSP to obtain the M-R curve: \(\{R(p_c, \lambda_\alpha), M(p_c, \lambda_\alpha)\}\).

- Given a set of points from the “real” M-R curve, \(\{R_i, M_i\}\), choose
 the parameters \(\lambda_\alpha\) and \(p_i\) that minimize the difference measure:

 \[
 \Delta^2_{MR} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{R(p_i, \lambda_\alpha)}{R_i} \right) \right]^2 + \left[\log \left(\frac{M(p_i, \lambda_\alpha)}{M_i} \right) \right]^2 \right\}
 \]

- Resulting \(\lambda_\alpha\) for \(\alpha = 1, \ldots, N\) determine an equation of state,
 \(\epsilon = \epsilon(p, \lambda_\alpha)\), that provides an approximate solution of SSP\(^{-1}\).
Faithful Spectral Expansions of the Equation of State

- Physical equations of state, \(\epsilon = \epsilon(p) \), are positive monotonic increasing functions. These do not form a vector space.
- The representation, \(\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p) \), is not faithful.
- Faithful here means that every choice of \(\lambda_\alpha \) corresponds to a possible physical equation of state, and every equation of state can be represented by such an expansion.
Faithful Spectral Expansions of the Equation of State

- Physical equations of state, \(\epsilon = \epsilon(p) \), are positive monotonic increasing functions. These do not form a vector space.
- The representation, \(\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p) \), is not faithful.
- Faithful here means that every choice of \(\lambda_\alpha \) corresponds to a possible physical equation of state, and every equation of state can be represented by such an expansion.
- Faithful spectral expansions of the adiabatic index do exist:

\[
\Gamma(p) = \frac{\epsilon c^2 + p}{pc^2} = \exp \left[\sum_\alpha \gamma_\alpha \Phi_\alpha(p) \right].
\]
Faithful Spectral Expansions of the Equation of State

- Physical equations of state, $\epsilon = \epsilon(p)$, are positive monotonic increasing functions. These do not form a vector space.
- The representation, $\epsilon = \epsilon(p, \lambda_\alpha) = \sum_\alpha \lambda_\alpha \Phi_\alpha(p)$, is not faithful.
- Faithful here means that every choice of λ_α corresponds to a possible physical equation of state, and every equation of state can be represented by such an expansion.
- Faithful spectral expansions of the adiabatic index do exist:
 \[
 \Gamma(p) = \frac{\epsilon c^2 + p \, dp}{pc^2} \frac{d\epsilon}{d\epsilon} = \exp \left[\sum_\alpha \gamma_\alpha \Phi_\alpha(p) \right].
 \]
- Every equation of state is determined by the adiabatic index $\Gamma(p)$:
 \[
 \mu(p) = \exp \left[\int_{p_0}^{p} \frac{dp'}{p' \Gamma(p')} \right],
 \]
 \[
 \epsilon(p) = \frac{\epsilon_0}{\mu(p)} + \frac{1}{\mu(p)} \int_{p_0}^{p} \frac{\mu(p')}{c^2 \Gamma(p')} dp'.
 \]
Neutron Star Equations of State

- What choice of spectral basis functions $\Phi_\alpha(p)$ provide efficient representations of realistic neutron star equations of state?

$$
\Gamma(p) = \exp\{\sum_\alpha \gamma_\alpha \left[\log\left(\frac{p}{p_0}\right)\right]_\alpha\}.
$$

Test its effectiveness by constructing expansions that minimize,

$$
\Delta^2 \epsilon = \frac{1}{N} \sum_{i=1}^{N} \left[\log\left(\frac{\epsilon(p_i,\gamma_\alpha)}{\epsilon_i}\right) \right]^2
$$

for realistic neutron star equations of state.
Neutron Star Equations of State

- What choice of spectral basis functions $\Phi_{\alpha}(p)$ provide efficient representations of realistic neutron star equations of state?
- The following simple expansion works well:

$$\Gamma(p) = \exp \left\{ \sum_{\alpha} \gamma_\alpha \left[\log \left(\frac{p}{p_0} \right) \right]^\alpha \right\}.$$
Neutron Star Equations of State

What choice of spectral basis functions $\Phi_\alpha(p)$ provide efficient representations of realistic neutron star equations of state?

The following simple expansion works well:

$$\Gamma(p) = \exp \left\{ \sum_\alpha \gamma_\alpha \left[\log \left(\frac{p}{p_0} \right) \right]^\alpha \right\}.$$

Test its effectiveness by constructing expansions that minimize,

$$\Delta^2_\epsilon = \frac{1}{N} \sum_{i=1}^N \left\{ \log \left(\frac{\epsilon(p_i, \gamma_\alpha)}{\epsilon_i} \right)^2 \right\}$$

for realistic neutron star equations of state.
Neutron Star Equations of State

- What choice of spectral basis functions $\Phi_\alpha(p)$ provide efficient representations of realistic neutron star equations of state?

- The following simple expansion works well:

$$
\Gamma(p) = \exp \left\{ \sum_{\alpha} \gamma_\alpha \left[\log \left(\frac{p}{p_0} \right) \right] ^\alpha \right\}.
$$

- Test its effectiveness by constructing expansions that minimize,

$$
\Delta_\varepsilon^2 = \frac{1}{N} \sum_{i=1}^{N} \left\{ \log \left[\frac{\varepsilon(p_i, \gamma_\alpha)}{\varepsilon_i} \right] \right\}^2
$$

for realistic neutron star equations of state.
Neutron Star Equations of State

- What choice of spectral basis functions $\Phi_\alpha(p)$ provide efficient representations of realistic neutron star equations of state?
- The following simple expansion works well:

$$\Gamma(p) = \exp \left\{ \sum_\alpha \gamma_\alpha \left[\log \left(\frac{p}{p_0} \right) \right]^\alpha \right\}.$$

- Test its effectiveness by constructing expansions that minimize,

$$\Delta_\epsilon^2 = \frac{1}{N} \sum_{i=1}^{N} \left\{ \log \left(\frac{\epsilon(p_i, \gamma_\alpha)}{\epsilon_i} \right) \right\}^2$$

for realistic neutron star equations of state.
Spectral Solution of SSP\(^{-1}\)

- Next step is to test this spectral approach by finding the approximate solution to SSP\(^{-1}\) for realistic neutron star models.

- Choose points \(\{R_i, M_i\}\) from realistic neutron star models, then fix the spectral expansion coefficients \(\gamma_\alpha\) by minimizing,

\[
\Delta^2_{MR} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{M(p_i, \gamma_\alpha)}{M_i} \right) \right]^2 + \left[\log \left(\frac{R(p_i, \gamma_\alpha)}{R_i} \right) \right]^2 \right\}.
\]

Finally evaluate \(\Delta^2\),

\[
\Delta^2_\epsilon = \frac{1}{N} \sum_{i=1}^{N} \left[\log \left(\frac{\epsilon(p_i, \gamma_\alpha)}{\epsilon_i} \right) \right]^2
\]
to determine how well the spectral expansion \(\epsilon = \epsilon(p, \gamma_\alpha)\), matches the original realistic neutron star equation of state \(\epsilon = \epsilon(p)\).

Unfortunately, I have run out of time.

The End.
Next step is to test this spectral approach by finding the approximate solution to SSP\(^{-1}\) for realistic neutron star models.

Choose points \(\{R_i, M_i\}\) from realistic neutron star models, then fix the spectral expansion coefficients \(\gamma_\alpha\) by minimizing,

\[
\Delta^2_{MR} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{M(p_i, \gamma_\alpha)}{M_i} \right) \right]^2 + \left[\log \left(\frac{R(p_i, \gamma_\alpha)}{R_i} \right) \right]^2 \right\}.
\]

Finally evaluate \(\Delta_\epsilon\),

\[
\Delta^2_\epsilon = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{\epsilon(p_i, \gamma_\alpha)}{\epsilon_i} \right) \right]^2 \right\}
\]

to determine how well the spectral expansion \(\epsilon = \epsilon(p, \gamma_\alpha)\), matches the original realistic neutron star equation of state \(\epsilon = \epsilon(p)\).
Spectral Solution of SSP\(^{-1}\)

- Next step is to test this spectral approach by finding the approximate solution to SSP\(^{-1}\) for realistic neutron star models.
- Choose points \(\{R_i, M_i\}\) from realistic neutron star models, then fix the spectral expansion coefficients \(\gamma_{\alpha}\) by minimizing,

\[
\Delta_{MR}^2 = \frac{1}{N} \sum_{i=1}^{N} \left\{ \log \left(\frac{M(p_i, \gamma_{\alpha})}{M_i} \right)^2 + \log \left(\frac{R(p_i, \gamma_{\alpha})}{R_i} \right)^2 \right\}.
\]

- Finally evaluate \(\Delta_{\epsilon}\),

\[
\Delta_{\epsilon}^2 = \frac{1}{N} \sum_{i=1}^{N} \left\{ \log \left(\frac{\epsilon(p_i, \gamma_{\alpha})}{\epsilon_i} \right)^2 \right\}
\]

to determine how well the spectral expansion \(\epsilon = \epsilon(p, \gamma_{\alpha})\), matches the original realistic neutron star equation of state \(\epsilon = \epsilon(p)\).
- Unfortunately, I have run out of time.
Next step is to test this spectral approach by finding the approximate solution to SSP$^{-1}$ for realistic neutron star models.

Choose points $\{R_i, M_i\}$ from realistic neutron star models, then fix the spectral expansion coefficients γ_α by minimizing,

$$\Delta^2_{MR} = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{M(p_i, \gamma_\alpha)}{M_i} \right) \right]^2 + \left[\log \left(\frac{R(p_i, \gamma_\alpha)}{R_i} \right) \right]^2 \right\}.$$

Finally evaluate Δ_ϵ,

$$\Delta^2_\epsilon = \frac{1}{N} \sum_{i=1}^{N} \left\{ \left[\log \left(\frac{\epsilon(p_i, \gamma_\alpha)}{\epsilon_i} \right) \right]^2 \right\}$$

to determine how well the spectral expansion $\epsilon = \epsilon(p, \gamma_\alpha)$, matches the original realistic neutron star equation of state $\epsilon = \epsilon(p)$.

Unfortunately, I have run out of time.

The End.