Gauge conditions are specified in the GH Einstein system by the gauge source function $H^a \equiv \nabla^c \nabla_c x^a$.

How do you choose H^a in a way that provides a reasonable coordinate system and keeps the GH Einstein system hyperbolic?
Gauge Conditions and Hyperbolicity

- The GH Einstein equations may be written (abstractly) as
 \[\psi^{cd} \partial_c \partial_d \psi_{ab} = \partial_a H_b + \partial_b H_a + Q_{ab}(H, \psi, \partial \psi). \]

- These equations are manifestly hyperbolic when \(H^a \) is specified as a function of \(x^a \) and \(\psi_{ab} \): \(H_a = H_a(x, \psi) \).
Gauge Conditions and Hyperbolicity

- The GH Einstein equations may be written (abstractly) as
 \[
 \psi^{cd} \partial_c \partial_d \psi_{ab} = \partial_a H_b + \partial_b H_a + Q_{ab}(H, \psi, \partial \psi).
 \]

- These equations are manifestly hyperbolic when \(H^a \) is specified as a function of \(x^a \) and \(\psi_{ab} \):
 \[H_a = H_a(x, \psi). \]

- Unfortunately, most gauge conditions found useful in numerical relativity are conditions on \(\psi_{ab} \) and \(\partial_c \psi_{ab} \).

- The GH Einstein equations are typically not hyperbolic for gauge conditions of this type:
 \[H_a = H_a(x, \psi, \partial \psi). \]
Gauge Conditions and Hyperbolicity

- The GH Einstein equations may be written (abstractly) as
 \[\psi^{cd} \partial_c \partial_d \psi_{ab} = \partial_a H_b + \partial_b H_a + Q_{ab}(H, \psi, \partial \psi). \]

- These equations are manifestly hyperbolic when \(H^a \) is specified as a function of \(x^a \) and \(\psi_{ab} \): \(H_a = H_a(x, \psi) \).

- Unfortunately, most gauge conditions found useful in numerical relativity are conditions on \(\psi_{ab} \) and \(\partial_c \psi_{ab} \).

- The GH Einstein equations are typically not hyperbolic for gauge conditions of this type: \(H_a = H_a(x, \psi, \partial \psi) \).

- Elevate \(H_a \) to the status of an independent dynamical field, by choosing an evolution equation for \(H_a \) whose solutions are the desired gauge conditions.
Pretorius proposed evolving H_a using an equation of the form:

\[
\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),
\]

Combined Einstein–Gauge system is manifestly hyperbolic.
Dynamically very rich, often producing solutions with “interesting” gauge dynamics. This is bad.
Pretorius proposed evolving H_a using an equation of the form:

$$\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$$

Combined Einstein–Gauge system is manifestly hyperbolic. Dynamically very rich, often producing solutions with “interesting” gauge dynamics. This is bad.

Introduce a new simpler gauge driver:

$$t^c \partial_c H_a = Q_a(x, H, \psi, \partial \psi).$$
Pretorius proposed evolving H_a using an equation of the form:

\[
\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),
\]

Combined Einstein–Gauge system is manifestly hyperbolic.
Dynamically very rich, often producing solutions with “interesting” gauge dynamics. This is bad.

Introduce a new simpler gauge driver:

\[
t^c \partial_c H_a = Q_a(x, H, \psi, \partial \psi).
\]

Also hyperbolic, but not obviously so.
Choose Q_a so that all solutions H_a evolve toward a target F_a:

\[
t^c \partial_c H_a = -\mu (H_a - F_a) + \ldots
\]

New gauge driver has fewer “interesting” solutions.
Damped-Wave Gauge Conditions

- Spatial coordinates satisfying $\nabla^c \nabla_c x^i = 2\mu_S t^c \partial_c x^i$ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.
Damped-Wave Gauge Conditions

- Spatial coordinates satisfying $\nabla^c \nabla_c x^i = 2\mu_S t^c \partial_c x^i$ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.
- The time-component $t^a H_a$ related to spacetime metric by constraints of GH Einstein system:
 \[
 t^a H_a = t^a \partial_a \log \left(\frac{\sqrt{g}}{N} \right) + N^{-1} \partial_k N^k.
 \]
- Choose target $t^a F_a$ to suppress growth in $g = \det g_{ij}$:
 \[
 t^a F_a = -2\mu_L \log \left(\frac{\sqrt{g}}{N} \right).
 \]
- This condition on $t^a H_a = t^a F_a$ is also a damped-wave equation for lapse N.

Lee Lindblom (Caltech)
Generalized Harmonic Gauge Drivers
PCGM25 4 / 6
Damped-Wave Gauge Conditions

- Spatial coordinates satisfying $\nabla^c \nabla_c x^i = 2\mu_S t^c \partial_c x^i$ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.
- The time-component $t^a H_a$ related to spacetime metric by constraints of GH Einstein system:
 \[t^a H_a = t^a \partial_a \log \left(\frac{\sqrt{g}}{N} \right) + N^{-1} \partial_k N^k. \]
- Choose target $t^a F_a$ to suppress growth in $g = \det g_{ij}$:
 \[t^a F_a = -2\mu_L \log \left(\frac{\sqrt{g}}{N} \right). \]
- This condition on $t^a H_a = t^a F_a$ is also a damped-wave equation for lapse N.
- Combined expression for damped-wave target F_a:
 \[F_a = 2\mu_L \log \left(\frac{\sqrt{g}}{N} \right) t_a - 2\mu_S N^{-1} g_{ai} N^i. \]
Testing New Gauge-Driver System:

- **Gauge Driver:** \(\partial_t H_a = -\mu N(H_a - F_a) + \ldots \)
- **Target Gauge:** \(F_a \) representing damped-wave gauge.
- **Initial Data:** Schwarzschild with perturbed lapse and shift.

![Graphs showing the relationship between \(\| H - F \| / \| F \| \) and \(t/M \) for different values of \(\mu \) and \(N_r, L \).]
Summary

- The new gauge driver $\partial_t H_a = -\mu N (H_a - F_a) + \ldots$ allows hyperbolic implementations of a wide variety of gauge conditions.
- Numerical tests show the new gauge driver is effective.

Tests of numerous gauge conditions found the damped-wave gauge very stable and useful for black-hole evolutions. Binary black-hole systems have been evolved successfully through the last orbits plus merger using this new gauge driver and the damped-wave gauge condition.
Summary

- The new gauge driver $\partial_t H_a = -\mu N (H_a - F_a) + \ldots$ allows hyperbolic implementations of a wide variety of gauge conditions.
- Numerical tests show the new gauge driver is effective.
- Tests of numerous gauge conditions found the damped-wave gauge very stable and useful for black-hole evolutions.
- Binary black-hole systems have been evolved successfully through the last orbits plus merger using this new gauge driver and the damped-wave gauge condition.