Improved Gauge Drivers for the Generalized Harmonic (GH) Einstein Equations

Lee Lindblom and Béla Szilágyi Caltech

25th Pacific Coast Gravity Meeting – Eugene, OR 27 March 2009

- Gauge conditions are specified in the GH Einstein system by the gauge source function $H^a \equiv \nabla^c \nabla_c x^a$.
- How do you choose H^a in a way that provides a reasonable coordinate system and keeps the GH Einstein system hyperbolic?

Gauge Conditions and Hyperbolicity

• The GH Einstein equations may be written (abstractly) as

 $\psi^{cd}\partial_c\partial_d\psi_{ab} = \partial_aH_b + \partial_bH_a + Q_{ab}(H,\psi,\partial\psi).$

 These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: H_a = H_a(x, ψ).

Gauge Conditions and Hyperbolicity

• The GH Einstein equations may be written (abstractly) as

 $\psi^{cd}\partial_c\partial_d\psi_{ab} = \partial_aH_b + \partial_bH_a + Q_{ab}(H,\psi,\partial\psi).$

- These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: H_a = H_a(x, ψ).
- Unfortunately, most gauge conditions found useful in numerical relativity are conditions on ψ_{ab} and $\partial_c \psi_{ab}$.
- The GH Einstein equations are typically not hyperbolic for gauge conditions of this type: H_a = H_a(x, ψ, ∂ψ).

Gauge Conditions and Hyperbolicity

• The GH Einstein equations may be written (abstractly) as

 $\psi^{cd}\partial_c\partial_d\psi_{ab} = \partial_aH_b + \partial_bH_a + Q_{ab}(H,\psi,\partial\psi).$

- These equations are manifestly hyperbolic when H^a is specified as a function of x^a and ψ_{ab}: H_a = H_a(x, ψ).
- Unfortunately, most gauge conditions found useful in numerical relativity are conditions on ψ_{ab} and $\partial_c \psi_{ab}$.
- The GH Einstein equations are typically not hyperbolic for gauge conditions of this type: H_a = H_a(x, ψ, ∂ψ).
- Elevate H_a to the status of an independent dynamical field, by choosing an evolution equation for H_a whose solutions are the desired gauge conditions.

Solution: Gauge Driver Equations

• Pretorius proposed evolving H_a using an equation of the form:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$

- Combined Einstein–Gauge system is manifestly hyperbolic.
- Dynamically very rich, often producing solutions with "interesting" gauge dynamics. This is bad.

Solution: Gauge Driver Equations

• Pretorius proposed evolving H_a using an equation of the form:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$

- Combined Einstein–Gauge system is manifestly hyperbolic.
- Dynamically very rich, often producing solutions with "interesting" gauge dynamics. This is bad.
- Introduce a new simpler gauge driver:

New Gauge Driver : $t^c \partial_c H_a = Q_a(x, H, \psi, \partial \psi).$

Solution: Gauge Driver Equations

• Pretorius proposed evolving H_a using an equation of the form:

Gauge Driver : $\psi^{cd} \partial_c \partial_d H_a = Q_a(x, H, \partial H, \psi, \partial \psi),$

- Combined Einstein–Gauge system is manifestly hyperbolic.
- Dynamically very rich, often producing solutions with "interesting" gauge dynamics. This is bad.
- Introduce a new simpler gauge driver:

New Gauge Driver : $t^c \partial_c H_a = Q_a(x, H, \psi, \partial \psi).$

- Also hyperbolic, but not obviously so.
- Choose Q_a so that all solutions H_a evolve toward a target F_a :

$$t^c \partial_c H_a = -\mu (H_a - F_a) + \dots$$

• New gauge driver has fewer "interesting" solutions.

Damped-Wave Gauge Conditions

- Spatial coordinates satisfying ∇^c∇_cxⁱ = 2µ_St^c∂_cxⁱ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.

Damped-Wave Gauge Conditions

- Spatial coordinates satisfying ∇^c∇_cxⁱ = 2µ_St^c∂_cxⁱ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.
- The time-component $t^a H_a$ related to spacetime metric by constraints of GH Einstein system:

$$t^{a}H_{a} = t^{a}\partial_{a}\log\left(\frac{\sqrt{g}}{N}\right) + N^{-1}\partial_{k}N^{k}.$$

• Choose target $t^a F_a$ to suppress growth in $g = \det g_{ij}$:

$$t^a F_a = -2\mu_L \log\left(\frac{\sqrt{g}}{N}\right).$$

• This condition on $t^a H_a = t^a F_a$ is also a damped-wave equation for lapse *N*.

Damped-Wave Gauge Conditions

- Spatial coordinates satisfying ∇^c∇_cxⁱ = 2µ_St^c∂_cxⁱ are called damped-wave coordinates.
- Choose target $F^i = 2\mu_S t^i = -2\mu_S N^{-1} N^i$.
- The time-component *t^aH_a* related to spacetime metric by constraints of GH Einstein system:

$$t^{a}H_{a} = t^{a}\partial_{a}\log\left(\frac{\sqrt{g}}{N}\right) + N^{-1}\partial_{k}N^{k}.$$

• Choose target $t^a F_a$ to suppress growth in $g = \det g_{ij}$:

$$t^a F_a = -2\mu_L \log\left(\frac{\sqrt{g}}{N}\right).$$

- This condition on $t^a H_a = t^a F_a$ is also a damped-wave equation for lapse *N*.
- Combined expression for damped-wave target *F_a*:

$$F_a = 2\mu_L \log\left(\frac{\sqrt{g}}{N}\right) t_a - 2\mu_S N^{-1} g_{ai} N^i.$$

Testing New Gauge-Driver System:

- Gauge Driver: $\partial_t H_a = -\mu N(H_a F_a) + \dots$
- Target Gauge: *F_a* representing damped-wave gauge.
- Initial Data: Schwarzschild with perturbed lapse and shift.

Summary

- The new gauge driver ∂_tH_a = −µN(H_a − F_a) + ... allows hyperbolic implementations of a wide variety of gauge conditions.
- Numerical tests show the new gauge driver is effective.

Summary

- The new gauge driver ∂_tH_a = −µN(H_a − F_a) + ... allows hyperbolic implementations of a wide variety of gauge conditions.
- Numerical tests show the new gauge driver is effective.
- Tests of numerous gauge conditions found the damped-wave gauge very stable and useful for black-hole evolutions.
- Binary black-hole systems have been evolved successfully through the last orbits plus merger using this new gauge driver and the damped-wave gauge condition.