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• Constraint violations often make it difficult to compute accurate
numerical solutions to constrained evolution systems.

• Constraint projection is used to control the growth of constraints by
solving the evolution equations until the constraints become too
large, and then projecting back onto the constraint submanifold by
re-solving the constraint equations.

• Outline of this talk:

– General Discussion of Optimal Constraint Projection.
– Example: Constraint Projection for the Scalar Field System.
– Preliminary Analysis of the Einstein system.
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General Discussion of Optimal Constraint Projection

• Numerical solutions to hyperbolic evolution systems

∂tu
α +Akα

β(u)∂ku
β = Fα(u),

that are subject to constraints (typically of the form)

0 = cA ≡ KAk
α(u)∂ku

α +LA(u),

can be corrupted by the uncontrollable growth of the constraints.
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• The idea of constraint
projection is to evolve the
dynamical fields using the free
evolution system, and then
project back into the constraint
submanifold whenever the
constraints become too large.
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General Discussion of
Optimal Constraint Projection II
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• Unfortunately the projection

into the constraint satisfying
submanifold is not unique.

• We propose to use “optimal” constraint projection in which we
minimize the distance between the field point ūα and its projection
ûα. We construct this optimal projection by insisting that the
Lagrangian L ,

L =
1
2

Sαβ(ûα − ūα)(ûβ − ūβ)+λAcA,

• be stationary with respect to arbitrary variations in the fields ûα and
the Lagrange multipliers λA.
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• Optimal constraint projection depends on the choice of the metric
Sαβ that defines distances on the space of dynamical fields,

L =
1
2

Sαβ(ûα − ūα)(ûβ − ūβ)+λAcA.

• Fortunately symmetric hyperbolic evolution systems,

∂tu
α +Akα

β(u)∂ku
β = Fα(u),

• have a natural positive definite metric on the space of fields. This is
the “symmetrizer” matrix that makes the characteristic matrices of
the fundamental evolution equations symmetric:

Sαγ Akγ
β ≡ Ak

αβ
= Ak

βα
.

• We use this symmetrizer metric, which defines the “energy” norm for
these systems, to define our optimal constraint projections.

• If L is stationary with respect to variations in ûα and λA,

δL
δ ûα = 0 and δL

δλA
= 0,

then ûα represents the optimal projection of ūα.
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Does Optimal Constraint Projection Work?

• Let uα(t0+δ t) denote the exact solution to a symmetric-hyperbolic
evolution system with constraint satisfying initial data uα(t0).
Consider a numerical integration algorithm that solves this system
with the same initial data to produce the approximate solution
ūα(t0+δ t). Assume this numerical algorithm is locally convergent in
the sense that an order-h approximate solution satisfying

||ū(t0+δ t)−u(t0+δ t)|| ≤Chp

• where ||u||2 ≡ 1
2

∫
SαβuαuβdV.

• exists for any value of the order parameter h (roughly one over the
number of spatial discretization points). For spectral methods the
convergence is typically faster: Ce−p/h.

• Use boundary conditions that make the Euler-Lagrange equations
for optimal constraint projection well-posed. Make these boundary
conditions consistent with the boundary conditions used during the
free-evolution steps.
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Theorem (Holst):

Consider an order-h approximate solution ūα(t0+δ t) to a
symmetric-hyperbolic evoution system from constraint-satisfying initial
data uα(t0) using a locally convergent numerical method.

If the constraint submanifold cA(u) = 0 is a submersion in a
neighborhood of uα(t0+δ t),

If the boundary conditions for the optimal-constraint-projection
Euler-Lagrange equations,

δL

δ ûα
=

δL

δλ A
= 0,

are consistent with those that determine the exact solution to the
evolution system, and

If the Euler-Lagrange equations with these boundary conditions admit
a solution ûα(t0+δ t) for the optimal projection of ūα(t0+δ t) into cA(u) = 0,

Then this order-h projection ûα(t0+δ t) converges to the exact solution
uα(t0+δ t) at basically the same rate as ūα(t0+δ t):

||û(t0+δ t)−u(t0+δ t)|| ≤ 2Chp.
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Example System: Scalar Waves on a Fixed Background Spacetime

• Consider the scalar wave equation ∇µ∇µψ = 0 where ψ is the scalar
field, and ∇µ is the covariant derivative on the background spacetime

ds2 =−N2dt2+gi j (dxi +Nidt)(dxj +N jdt).

• This equation can be written as a first-order hyperbolic evolution
system for uα = {ψ,Π,Φi}. For flat space these equations reduce to,

∂tψ = −Π,

∂tΠ+gki
∂kΦi = 0,

∂tΦi +∂iΠ = 0.

• This evolution system is subject to the constraints 0 = cA = {Ci,Ci j}:
Ci = ∂iψ −Φi,

Ci j = ∂[iΦ j].

• These constraints must be satisfied if the solutions to this first-order
system also satisfy the original scalar wave equation.
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Free Evolution with Constraint Preserving Boundary Conditions

• Constraint preserving boundary conditions for the scalar field
system are imposed by setting conditions on the incoming
characteristic fields that ensure there are no incoming constraints:

∂t(Π−nkΦk) = 0, ∂tψ = NkΦk−NΠ, (δ k
i−nkni)∂t(Φk−∂kψ) = 0.

• Evolutions of the first-order scalar field system using these
constraint preserving boundary conditions:
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• Constraint violations are
measured using the norm
||C(t)|| defined by

||C(t)||2 =
∫ (

CiC
i +Ci jC

i j
)√

gd3x.
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Modified Scalar Wave System

• The standard scalar wave system was transformed into a better
model of the Einstein system by modifying the evolution equations.
For the flat space equations, this modification is:

∂tΦi +∂iΠ = γ Ci,

∂tΦi +∂iΠ −γ∂iψ = −γ Φi.

• This term changes the equation for the evolution of the constraints:

∂tCi−L~N Ci =−γ NCi,

causing them to grow exponentially when γ < 0.

• This modified scalar field system admits constraint violations that
enter the computational domain through the boundaries, as well as
constraint violations generated by this new bulk term. This system
now suffers from constraint violation pathologies similar to those of
the Einstein system.
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Free Evolution of the Pathological Scalar Field System

• Evolutions of the pathological
(γ =−1) scalar field system
with constraint preserving
boundary conditions.

• The constraints grow
exponentially in the
pathological scalar field
system, even when constraint
preserving boundary
conditions are used.

• Constraint preserving boundary conditions alone are inadequate for
controlling the growth of the constraints in this system.
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.Optimal Constraint Projection for the Scalar Field System

• The symmetrizer metric for the scalar field system is given by

dS2 = Sαβ duαduβ ,

= Λ2dψ
2−2γ dψdΠ+dΠ2+gi j dΦidΦ j.

• This symmetrizer is positive definite whenever the arbitrary
parameter Λ satisfies Λ2− γ2 > 0.

• The Lagrangian that defines optimal constraint projections for the
scalar field system is

L =
1
2

Sαβ(uα − ūα)(uβ − ūβ)+λAcA,

=
1
2

Λ2(ψ − ψ̄)2+
1
2
(Π− Π̄)2+

1
2

gi j (Φi− Φ̄i)(Φ j − Φ̄ j)

−γ (Π− Π̄)(ψ − ψ̄)+λ
i(∂iψ −Φi).

• Making this Lagrangian stationary with respect to variations in ψ, Π,
Φi, and λ i, implies the following constraint projection equations:

∇i∇iψ − (Λ2− γ
2)ψ = ∇iΦ̄i− (Λ2− γ

2)ψ̄,

Π = Π̄+ γ (ψ − ψ̄),

Φi = ∂iψ.
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Optimal Constraint Projection for the Scalar Field System II

• The outgoing wave boundary condition Π = nkΦk, implies a boundary
condition for ψ:

nk
∂kψ = nkΦk = Π = Π̄+ γ (ψ − ψ̄) = nkΦ̄k + γ (ψ − ψ̄).

• In summary then, optimal constraint projection for the scalar wave
system consists of solving the inhomogeneous Helmholtz equation,

∇i∇iψ − (Λ2− γ
2)ψ = ∇iΦ̄i− (Λ2− γ

2)ψ̄,

• subject to the boundary condition

nk
∂kψ − γ ψ = nkΦ̄i− γ ψ̄.
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.Numerical Tests of Constraint Projection

• Evolutions of the pathological (γ =−1) scalar field system, with
constraint preserving boundary conditions, and constraint projection
(with Λ =

√
2) every ∆t = 2M.
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• Optimal constraint projection does control the magnitudes of
constraint violations, even in the pathological scalar fields system.
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.
Numerical Tests of Constraint Projection II

• The projected solutions have small constraint violations, but do they
represent the correct solution to the evolution problem?
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• The projected solutions also converge to the numerical solution of
the standard scalar wave evolution system (γ = 0) with constraint
preserving boundary conditions, in the sense that the difference
norm ||δu(t)|| converges to machine roundoff error levels.

.
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Optimizing Constraint Projection
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• Convergence of constraint
projections for various values
of the symmetrizer parameter
Λ and the time between
projections ∆T.
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• Efficiency of constraint
projection measured as the
fraction of the total
computational cost used by the
elliptic solve Tell/Ttotal ; and the
relative cost of one elliptic
solve compared to one
evolution time step tell/thyp .
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Lessons Learned From the Toy Constraint Projection Problem

• Optimal constraint projection produces numerically stable constraint
preserving evolutions which converge to the true numerical
solutions.

• Simple constraint projection methods converge much more slowly
(or not at all) compared to optimal constraint projection methods.

• Constraint projection is not convergent unless constraint preserving
boundary conditions are also used during the free evolution steps.

• Constraint projection is not expensive using state-of-the-art elliptic
solvers, accounting for only a fraction of a percent of the total
computational cost in the highest resolution cases.
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Preliminary Analysis of Optimal Projection for the Einstein System

• The Einstein system provides evolution equations for the dynamical
fields,

uα = {gi j , Ki j , Dki j },

• and also constraints that must be satisfied:

cA = {C , Ci, Cki j }
• where

C =
1
2
(R(3)−K i j Ki j +K2),

Ci = ∇ jKi j −∇iK,

Cki j = ∂kgi j −2Dki j.

• Many representations of the Einstein system are symmetric
hyperbolic, so we propose to use the symmetrizer metric to
construct the optimal projection Lagrangian:

L =
1
2

Sαβ(uα − ūα)(uβ − ūβ)+λAcA.

• This Lagrangian (and the resulting optimal projection equations) are
very complicated for the general Einstein system, so we first
examined a simplified version.
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Optimal Projection for the Simplified Einstein System

• Consider solutions to the Einstein system that represent small
perturbations of flat space,

uα = {ei j +δgi j , δKi j , δDki j }.

• The constraints simplify in this case to,
δC = 2∂[kδDik

i],

δCi = 2∂[kδKi]
k,

δCki j = ∂kδgi j −2δDki j.

• Simplify the optimal projection Lagrangian further by using the trivial
metric on the space of fields Sαβ = δαβ :

L =
1
2
(δgi j −δ ḡi j )(δgi j −δ ḡi j )+

1
2
(δK i j −δ K̄ i j )(δKi j −δ K̄i j )

+
1
2
(δDki j −δ D̄ki j)(δDki j −δ D̄ki j)

+2λ∂[kδDik
i] +2λ

i
∂[kδKi]

k +λ
ki j(∂kδgi j −2δDki j).

• The variations of this Lagrangian produce a set of linear equations
for δgi j , δKi j , δDki j, λ , λ i, and λ ki j.
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Optimal Projection for the Simplified Einstein System II

• The optimal projection equations for the simplified Einstein system
reduce to algebraic equations for δKi j , δDki j, and λki j:

δKi j = δ K̄i j +∂(iλ j)−ei j ∂kλ
k,

δDki j =
1
2

∂kδgi j ,

λki j = −1
2

δ D̄ki j +
1
2

ei j ∂kλ −
1
2

ek(i∂ j)λ +
1
4

∂kδgi j ,

• plus a system of differential equations for the fields δgi j , λ i, and λ :

∂
k
∂(iλk) +∂i∂kλ

k = −∂
k
δ K̄ik +ejk

∂iδ K̄ jk,

∂
k
∂kδgi j −2∂i∂ jλ +2ei j ∂

k
∂kλ −4δgi j = 2∂

k
δ D̄ki j −4δ ḡi j ,

∂
i
∂

j
δgi j −δ

i j
∂

k
∂kδgi j = 0.

• This system of differential equations is elliptic. However, the
equations that determine δgi j , and λ are badly coupled and may be
difficult to solve numerically.
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Optimal Projection for the Simplified Einstein System III

• The system of equations for δgi j and λ can be decoupled by
decomposing δgi j into transverse and longitudinal parts:

δgi j = δτi j +∂iδw j +∂ jδwi +
1
3

ei j δτ,

• where 0 = δτ k
k = ∂ kδτki. Also define δ µi = ∂ kδgki.

• Using this decomposition, the coupled differential equations for δgi j

and λ can be written as a larger but decouped system of elliptic
differential equations for δτ, δ µi, δwi, λ and δτi j :

∂
k
∂kδτ = 0,

∂
k
∂kδ µi−4δ µi = 2∂

k
∂

j
δ D̄ki j −4∂

k
δ ḡki,

∂
k
∂kδwi +∂i∂kδwk = δ µi−

1
3

∂iδτ,

∂
k
∂kλ = ∂

k
δ D̄ki

i− 1
2

δ ḡi
i−

1
2

∂
k
∂k∂iδwi +2∂kδwk +δτ,

∂
k
∂kδτi j −4δτi j = 2∂

k
δ D̄ki j −4δ ḡi j +2∂i∂ jλ −2ei j ∂

k
∂kλ +

4
3

ei j δτ

−∂
k
∂k(∂iδw j +∂ jδwi)+4(∂iδw j +∂ jδwi).
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