Solving Einstein's Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom

Department of Physics University of California at San Diego

Mini-Workshop on Recent Advances in Gravitation Nester Center for Mathematics and Theoretical Physics National Central University, Taiwan — 9 December 2023 Solving Einstein's Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom

Department of Physics University of California at San Diego

Mini-Workshop on Recent Advances in Gravitation Nester Center for Mathematics and Theoretical Physics National Central University, Taiwan — 9 December 2023

• Develop computational methods for representing and constructing three-dimensional manifolds with arbitrary topologies.

Solving Einstein's Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom

Department of Physics University of California at San Diego

Mini-Workshop on Recent Advances in Gravitation Nester Center for Mathematics and Theoretical Physics National Central University, Taiwan — 9 December 2023

• Develop computational methods for representing and constructing three-dimensional manifolds with arbitrary topologies.

• Develop numerical methods for solving PDEs (e.g. Einstein's equation) on manifolds with topology $R \times \Sigma$, where Σ is a three-dimensional manifold with arbitrary topology.

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of Rⁿ. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of Rⁿ. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

- What is the most convenient and efficient way to represent manifolds in a computer code?
- Is there a general way to organize these representations in a way makes it possible to change from one manifold to another without completely re-writing major parts of the code?

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of Rⁿ. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

- What is the most convenient and efficient way to represent manifolds in a computer code?
- Is there a general way to organize these representations in a way makes it possible to change from one manifold to another without completely re-writing major parts of the code?
- Where can we find an extensive catalog of three-manifolds that includes all the information needed to use them for computations?

 Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

"Multicube" Representations of Manifolds

 Multicube representations of topological manifolds consist of a set of cubic regions, B_A, plus maps that identify the faces of neighboring regions, Ψ^{Aα}_{BB}(∂_βB_B) = ∂_αB_A.

"Multicube" Representations of Manifolds

 Multicube representations of topological manifolds consist of a set of cubic regions, B_A, plus maps that identify the faces of neighboring regions, Ψ^{Aα}_{BB}(∂_BB_B) = ∂_αB_A.

- Choose cubic regions to have uniform size and orientation.
- Choose linear interface identification maps $\Psi_{B\beta}^{A\alpha}$: $x_A^i = c_{A\alpha}^i + C_{B\beta}^{A\alpha}(x_B^k - c_{B\beta}^k)$, where $C_{B\beta}^{A\alpha}(x_B^k - c_{B\beta}^k)$, reflection matrix, and $c_{A\alpha}^i$ is center of the α face of region *A*.

• The boundary identification maps, $\Psi^{A\alpha}_{B\beta}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

 Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.

• The boundary identification maps, $\Psi^{A\alpha}_{B\beta}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

- Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.
- The differential structure provides the framework in which smooth functions and tensors are defined on a manifold.

• The boundary identification maps, $\Psi^{A\alpha}_{B\beta}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

- Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.
- The differential structure provides the framework in which smooth functions and tensors are defined on a manifold.
- The standard construction assumes the existence of overlapping coordinate domains having smooth transition maps.

Multicube manifolds need an additional layer of infrastructure:
 e.g., overlapping domains D_A ⊃ B_A with transition maps that are smooth in the overlap regions.

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B\beta k}^{A\alpha i}$ and its dual $J_{A\alpha i}^{*B\beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$\langle v_B^i \rangle_A = J_{B\beta k}^{A\alpha i} v_B^k, \qquad \langle w_{Bi} \rangle_A = J_{A\alpha i}^{*B\beta k} w_{Bk}$$

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B\beta k}^{A\alpha i}$ and its dual $J_{A\alpha i}^{*B\beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$\langle v_B^i \rangle_A = J_{B\beta k}^{A\alpha i} v_B^k, \qquad \langle w_{Bi} \rangle_A = J_{A\alpha i}^{*B\beta k} w_{Bk}$$

 Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$\mathbf{v}_{A}^{i} = \langle \mathbf{v}_{B}^{i} \rangle_{A}, \qquad \mathbf{w}_{Ai} = \langle \mathbf{w}_{Bi} \rangle_{A}$$

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B\beta k}^{A\alpha i}$ and its dual $J_{A\alpha i}^{*B\beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$\langle v_B^i \rangle_A = J_{B\beta k}^{A\alpha i} v_B^k, \qquad \langle w_{Bi} \rangle_A = J_{A\alpha i}^{*B\beta k} w_{Bk}$$

 Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$\mathbf{v}_{A}^{i} = \langle \mathbf{v}_{B}^{i} \rangle_{A}, \qquad \mathbf{w}_{Ai} = \langle \mathbf{w}_{Bi} \rangle_{A}$$

If there exists a covariant derivative ∇
 [˜] determined by a smooth connection, then differentiability across interface boundaries can be defined as continuity of the covariant derivatives:

$$ilde{
abla}_{Aj} v^{i}_{A} = \langle ilde{
abla}_{Bj} v^{i}_{B}
angle_{A}, \qquad ilde{
abla}_{Aj} w_{Ai} = \langle ilde{
abla}_{Bj} w_{Bi}
angle_{A}$$

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B\beta k}^{A\alpha i}$ and its dual $J_{A\alpha i}^{*B\beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$\langle v_B^i \rangle_A = J_{B\beta k}^{A\alpha i} v_B^k, \qquad \langle w_{Bi} \rangle_A = J_{A\alpha i}^{*B\beta k} w_{Bk}$$

 Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$\mathbf{v}_{A}^{i} = \langle \mathbf{v}_{B}^{i} \rangle_{A}, \qquad \mathbf{w}_{Ai} = \langle \mathbf{w}_{Bi} \rangle_{A}$$

If there exists a covariant derivative ∇
 [˜] determined by a smooth connection, then differentiability across interface boundaries can be defined as continuity of the covariant derivatives:

$$\tilde{
abla}_{Aj} \mathbf{v}_{A}^{i} = \langle \tilde{
abla}_{Bj} \mathbf{v}_{B}^{i}
angle_{A}, \qquad \tilde{
abla}_{Aj} \mathbf{w}_{Ai} = \langle \tilde{
abla}_{Bj} \mathbf{w}_{Bi}
angle_{A}$$

• A smooth reference metric \tilde{g}_{ij} determines both the needed Jacobians and the smooth connection.

- Let \tilde{g}_{Aij} and \tilde{g}_{Bij} be the components of a smooth reference metric expressed in the multicube coordinates of regions \mathcal{B}_A and \mathcal{B}_B that are identified at the faces $\partial_{\alpha}\mathcal{B}_A \leftrightarrow \partial_{\beta}\mathcal{B}_B$.
- Use the reference metric to define the outward directed unit normals to the identified faces: ñ_{Aαi}, ñⁱ_{Aα}, ñ_{Bβi}, and ñⁱ_{Bβ}.

- Let *g̃_{Aij}* and *g̃_{Bij}* be the components of a smooth reference metric expressed in the multicube coordinates of regions *B*_A and *B*_B that are identified at the faces ∂_α*B*_A ↔ ∂_β*B*_B.
- Use the reference metric to define the outward directed unit normals to the identified faces: $\tilde{n}_{A\alpha i}$, $\tilde{n}^{i}_{A\alpha}$, $\tilde{n}_{B\beta i}$, and $\tilde{n}^{i}_{B\beta}$.
- The needed Jacobians are given by

$$\begin{aligned} J_{B\beta k}^{A\alpha i} &= C_{B\beta \ell}^{A\alpha i} \left(\delta_k^{\ell} - \tilde{n}_{B\beta}^{\ell} \tilde{n}_{B\beta k} \right) - \tilde{n}_{A\alpha}^{i} \tilde{n}_{B\beta k}, \\ J_{A\alpha i}^{*B\beta k} &= \left(\delta_i^{\ell} - \tilde{n}_{A\alpha i} \tilde{n}_{A\alpha}^{\ell} \right) C_{A\alpha \ell}^{B\beta k} - \tilde{n}_{A\alpha i} \tilde{n}_{B\beta}^{k}. \end{aligned}$$

- Let *g̃_{Aij}* and *g̃_{Bij}* be the components of a smooth reference metric expressed in the multicube coordinates of regions *B*_A and *B*_B that are identified at the faces ∂_α*B*_A ↔ ∂_β*B*_B.
- Use the reference metric to define the outward directed unit normals to the identified faces: $\tilde{n}_{A\alpha i}$, $\tilde{n}^{i}_{A\alpha}$, $\tilde{n}_{B\beta i}$, and $\tilde{n}^{i}_{B\beta}$.
- The needed Jacobians are given by

$$\begin{split} J_{B\beta k}^{A\alpha i} &= C_{B\beta \ell}^{A\alpha i} \left(\delta_k^{\ell} - \tilde{n}_{B\beta}^{\ell} \tilde{n}_{B\beta k} \right) - \tilde{n}_{A\alpha}^{i} \tilde{n}_{B\beta k}, \\ J_{A\alpha i}^{*B\beta k} &= \left(\delta_i^{\ell} - \tilde{n}_{A\alpha i} \tilde{n}_{A\alpha}^{\ell} \right) C_{A\alpha \ell}^{B\beta k} - \tilde{n}_{A\alpha i} \tilde{n}_{B\beta}^{k}. \end{split}$$

• These Jacobians satisfy:

$$\begin{split} \tilde{n}_{A\alpha}^{i} &= -J_{B\beta k}^{A\alpha i} \tilde{n}_{B\beta}^{k}, \qquad \tilde{n}_{A\alpha i} = -J_{A\alpha i}^{*B\beta k} \tilde{n}_{B\beta k} \\ u_{A\alpha}^{i} &= J_{B\beta k}^{A\alpha i} u_{B\beta}^{k} = C_{B\beta k}^{A\alpha i} u_{B\beta}^{k}, \qquad \delta_{k}^{i} = J_{B\beta \ell}^{A\alpha i} J_{A\alpha k}^{*B\beta \ell}, \end{split}$$

where u^i is any vector tangent to the interface boundary.

Solving PDEs on Multicube Manifolds

- Solve PDEs within each cubic region using any standard method.
- Use boundary conditions on cube faces to enforce appropriate continuity conditions, thus selecting the correct global solution.

Solving PDEs on Multicube Manifolds

- Solve PDEs within each cubic region using any standard method.
- Use boundary conditions on cube faces to enforce appropriate continuity conditions, thus selecting the correct global solution.
- For first-order symmetric hyperbolic systems whose dynamical fields are tensors: set incoming characteristic fields, û⁻, with outgoing characteristics, û⁺, from neighbor,

$$\hat{u}_A^- = \langle \hat{u}_B^+
angle_A \qquad \qquad \hat{u}_B^- = \langle \hat{u}_A^+
angle_B.$$

Solving Einstein's Equation on Multi-Cube Manifolds

Multi-cube methods were designed to solve first-order hyperbolic systems, ∂_tu^α + A^{k α}_β(u) ∇̃_ku^β = F^α(u), where the dynamical fields u^α are tensors that can be transformed across interface boundaries using the Jacobians J^{Aαi}_{Bβk}, etc.

Solving Einstein's Equation on Multi-Cube Manifolds

- Multi-cube methods were designed to solve first-order hyperbolic systems, ∂_tu^α + A^{kα}_β(u) ∇_ku^β = F^α(u), where the dynamical fields u^α are tensors that can be transformed across interface boundaries using the Jacobians J^{Aαi}_{Bβk}, etc.
- The usual first-order representations of Einstein's equation fail to meet these conditions in two important ways:
 - The usual choice of dynamical fields,
 - $u^{\alpha} = \{\psi_{ab}, \Pi_{ab} = -t^{c}\partial_{c}\psi_{ab}, \Phi_{iab} = \partial_{i}\psi_{ab}\}$ are not tensor fields.
 - The usual first-order evolution equations are not covariant: i.e., the one that comes from the definition of Π_{ab} , $\Pi_{ab} = -t^c \partial_c \psi_{ab}$, and the one that comes from preserving the constraint $C_{iab} = \Phi_{iab} \partial_i \psi_{ab}$, $t^c \partial_c C_{iab} = -\gamma_2 C_{iab}$.

Solving Einstein's Equation on Multi-Cube Manifolds

- Multi-cube methods were designed to solve first-order hyperbolic systems, ∂_tu^α + A^{kα}_β(u) ∇̃_ku^β = F^α(u), where the dynamical fields u^α are tensors that can be transformed across interface boundaries using the Jacobians J^{Aαi}_{Bβk}, etc.
- The usual first-order representations of Einstein's equation fail to meet these conditions in two important ways:
 - The usual choice of dynamical fields,
 - $u^{\alpha} = \{\psi_{ab}, \Pi_{ab} = -t^{c}\partial_{c}\psi_{ab}, \Phi_{iab} = \partial_{i}\psi_{ab}\}$ are not tensor fields.
 - The usual first-order evolution equations are not covariant: i.e., the one that comes from the definition of Π_{ab} , $\Pi_{ab} = -t^c \partial_c \psi_{ab}$, and the one that comes from preserving the constraint $C_{iab} = \Phi_{iab} \partial_i \psi_{ab}$, $t^c \partial_c C_{iab} = -\gamma_2 C_{iab}$.
- Our attempts to construct the transformations for non-tensor quantities like $\partial_i \psi_{ab}$ and Φ_{iab} across the non-smooth multi-cube interface boundaries failed to result in stable numerical evolutions.
- A spatially covariant first-order representation of the Einstein evolution system seems to be needed.

Covariant Representations of Einstein's Equation

• Let $\tilde{\psi}_{ab}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $ds^2 = \tilde{\psi}_{ab} dx^a dx^b = -dt^2 + \tilde{g}_{ij} dx^i dx^j$, where \tilde{g}_{ij} is the smooth multi-cube reference three-metric on Σ .

Covariant Representations of Einstein's Equation

- Let $\tilde{\psi}_{ab}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $ds^2 = \tilde{\psi}_{ab} dx^a dx^b = -dt^2 + \tilde{g}_{ij} dx^i dx^j$, where \tilde{g}_{ij} is the smooth multi-cube reference three-metric on Σ .

 $\begin{aligned} R_{ab} &= -\frac{1}{2}\psi^{cd}\tilde{\nabla}_{c}\tilde{\nabla}_{d}\psi_{ab} + \nabla_{(a}\Delta_{b)} - \psi^{cd}\tilde{R}^{e}{}_{cd(a}\psi_{b)e} \\ &+ \psi^{cd}\psi^{ef}\left(\tilde{\nabla}_{e}\psi_{ca}\tilde{\nabla}_{f}\psi_{ab} - \Delta_{ace}\Delta_{bdf}\right), \end{aligned}$

where $\Delta_{abc} = \psi_{ad} \left(\Gamma^d_{bc} - \tilde{\Gamma}^d_{bc} \right)$, and $\Delta_a = \psi^{bc} \Delta_{abc}$.

Covariant Representations of Einstein's Equation

- Let $\tilde{\psi}_{ab}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $ds^2 = \tilde{\psi}_{ab} dx^a dx^b = -dt^2 + \tilde{g}_{ij} dx^i dx^j$, where \tilde{g}_{ij} is the smooth multi-cube reference three-metric on Σ .
- A fully covariant expression for the Ricci tensor can be obtained using the reference covariant derivative \$\tilde{\nabla}_a\$:

 $\begin{aligned} R_{ab} &= -\frac{1}{2}\psi^{cd}\tilde{\nabla}_{c}\tilde{\nabla}_{d}\psi_{ab} + \nabla_{(a}\Delta_{b)} - \psi^{cd}\tilde{R}^{e}{}_{cd(a}\psi_{b)e} \\ &+ \psi^{cd}\psi^{ef}\left(\tilde{\nabla}_{e}\psi_{ca}\tilde{\nabla}_{f}\psi_{ab} - \Delta_{ace}\Delta_{bdf}\right), \end{aligned}$

where $\Delta_{abc} = \psi_{ad} \left(\Gamma^d_{bc} - \tilde{\Gamma}^d_{bc} \right)$, and $\Delta_a = \psi^{bc} \Delta_{abc}$.

- A fully-covariant manifestly hyperbolic representation of the Einstein equations can be obtained by fixing the gauge with a covariant generalized harmonic condition: Δ_a = -H_a(ψ_{cd}).
- The vacuum Einstein equations then become:

$$\begin{split} \psi^{cd} \tilde{\nabla}_{c} \tilde{\nabla}_{d} \psi_{ab} &= -2 \nabla_{(a} H_{b)} + 2 \psi^{cd} \psi^{ef} \left(\tilde{\nabla}_{e} \psi_{ca} \tilde{\nabla}_{f} \psi_{ab} - \Delta_{ace} \Delta_{bdf} \right) \\ &- 2 \psi^{cd} \tilde{R}^{e}{}_{cd(a} \psi_{b)e} + \gamma_{0} \left[2 \delta^{c}_{(a} t_{b)} - \psi_{ab} t^{c} \right] \left(H_{c} + \Delta_{c} \right). \end{split}$$

Solving Einstein's Equation on Multicube Manifolds

- Examine a solution to the non-linear coupled Einstein-Klein-Gordon complex scalar-field equations numerically with perturbations in the "tensor" modes of the system (that represent gravitational wave degrees of freedom) away from the static "Einstein Universe" solution.
- Visualize $\sqrt{\delta \psi_{ab} \delta \psi^{ab}}$ on the equatorial $\chi = \pi/2$ two-sphere.

Solving Einstein's Equation on Multicube Manifolds

- Examine a solution to the non-linear coupled Einstein-Klein-Gordon complex scalar-field equations numerically with perturbations in the "tensor" modes of the system (that represent gravitational wave degrees of freedom) away from the static "Einstein Universe" solution.
- Visualize $\sqrt{\delta \psi_{ab} \delta \psi^{ab}}$ on the equatorial $\chi = \pi/2$ two-sphere.

• The constraints C converge to zero, so the numerical solution converges to a solution of the exact equations.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. S^3 , $S^2 \times S^1$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. S^3 , $S^2 \times S^1$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.
- For arbitrary 2D manifolds a step by step method exists for constructing the needed reference metrics:
- First, choose the vertex opening angles θ_i satisfying 2π = Σ_I^N θ_I at each vertex of the multicube structure, e.g. θ_I = ^{2π}/_N where N is the number of squares that intersect at that vertex.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. S^3 , $S^2 \times S^1$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.
- For arbitrary 2D manifolds a step by step method exists for constructing the needed reference metrics:
- First, choose the vertex opening angles θ_i satisfying $2\pi = \sum_{l}^{N} \theta_l$ at each vertex of the multicube structure, e.g. $\theta_l = \frac{2\pi}{N}$ where *N* is the number of squares that intersect at that vertex.

• Next choose the flat metric in this star-shaped domain by setting:

$$ds^2 = \bar{g}_{ab}^{l} dx_A^a dx_A^b = dx_A^2 \pm 2\cos\theta_l \, dx_A \, dy_A + dy_A^2$$

in each square. This metric is smooth across all the internal interface boundaries, and ensures there is no cone singularity.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{ab} = \sum_{l} u_{l}(\vec{x})\bar{g}_{ab}^{l}$.
- The weight functions $u_l(\vec{x})$ are chosen to be non-negative $u_l(\vec{x}) \ge 0$, sum to unity at each point $1 = \sum_l u_l(\vec{x})$, and fall to zero at the outer boundaries of the star-shaped domains.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{ab} = \sum_{l} u_{l}(\vec{x})\bar{g}_{ab}^{l}$.
- The weight functions $u_l(\vec{x})$ are chosen to be non-negative $u_l(\vec{x}) \ge 0$, sum to unity at each point $1 = \sum_l u_l(\vec{x})$, and fall to zero at the outer boundaries of the star-shaped domains.

- Reference metrics produced by averaging flat metrics in this way have no conical singularities, and are continuous across all the multicube interface boundaries.
- Unfortunately, they are not (in general) differentiable across those boundaries.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{ab} = \sum_{l} u_{l}(\vec{x})\bar{g}_{ab}^{l}$.
- The weight functions $u_l(\vec{x})$ are chosen to be non-negative $u_l(\vec{x}) \ge 0$, sum to unity at each point $1 = \sum_l u_l(\vec{x})$, and fall to zero at the outer boundaries of the star-shaped domains.

- Reference metrics produced by averaging flat metrics in this way have no conical singularities, and are continuous across all the multicube interface boundaries.
- Unfortunately, they are not (in general) differentiable across those boundaries.
- Modify these C^0 metrics by adding corrections, $\tilde{g}_{ab} = \bar{g}_{ab} + \delta g_{ab}$, where the δg_{ab} are chosen to make the extrinsic curvature \tilde{K}_{ab} continuous across each interface boundary.

• Compact orientable two-manifolds are uniquely determined by their genus numbers.

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

 Reference metrics constructed on these structures make it possible to solve differential equations numerically on any compact orientable two-dimensional manifold.

Smooth Reference Metrics

• As an example, we have solved the Ricci flow equation numerically on these manifolds:

$$\partial_t g_{ab} = -2R_{ab} + \nabla_a H_b + \nabla_b H_a - \mu \frac{V(t) - V_0}{V(t)} g_{ab} + \langle R(t) \rangle g_{ab},$$

where $H_a = g_{ab} g^{cd} \left(\Gamma^b_{cd} - \tilde{\Gamma}^b_{cd} \right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, V(t) is the volume, and $\langle R(t) \rangle$ is the volume averaged scalar curvature.

Smooth Reference Metrics

• As an example, we have solved the Ricci flow equation numerically on these manifolds:

$$\partial_t g_{ab} = -2R_{ab} + \nabla_a H_b + \nabla_b H_a - \mu \frac{V(t) - V_0}{V(t)} g_{ab} + \langle R(t) \rangle g_{ab},$$

where $H_a = g_{ab} g^{cd} \left(\Gamma^b_{cd} - \tilde{\Gamma}^b_{cd} \right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, V(t) is the volume, and $\langle R(t) \rangle$ is the volume averaged scalar curvature.

• In this example Ricci flow on the genus number $N_g = 5$ multicube manifold transforms the C^{2-} reference metric used as initial data into a smooth constant curvature metric:

Smooth Reference Metrics

• As an example, we have solved the Ricci flow equation numerically on these manifolds:

$$\partial_t g_{ab} = -2R_{ab} + \nabla_a H_b + \nabla_b H_a - \mu \frac{V(t) - V_0}{V(t)} g_{ab} + \langle R(t) \rangle g_{ab},$$

where $H_a = g_{ab} g^{cd} \left(\Gamma^b_{cd} - \tilde{\Gamma}^b_{cd} \right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, V(t) is the volume, and $\langle R(t) \rangle$ is the volume averaged scalar curvature.

• In this example Ricci flow on the genus number $N_g = 5$ multicube manifold transforms the C^{2-} reference metric used as initial data into a smooth constant curvature metric:

- Three dimensional manifolds are much more complicated:
 - There is no complete catalog of three-dimensional manifolds.

- Three dimensional manifolds are much more complicated:
 - There is no complete catalog of three-dimensional manifolds.
 - Constructing C⁰ reference metrics is more complicated in three dimensions, and a general method does not exist yet.

- Three dimensional manifolds are much more complicated:
 - There is no complete catalog of three-dimensional manifolds.
 - Constructing C⁰ reference metrics is more complicated in three dimensions, and a general method does not exist yet.
 - Smoothing the C^0 reference metrics to C^1 is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.

- Three dimensional manifolds are much more complicated:
 - There is no complete catalog of three-dimensional manifolds.
 - Constructing C⁰ reference metrics is more complicated in three dimensions, and a general method does not exist yet.
 - Smoothing the C⁰ reference metrics to C¹ is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.
- While no complete catalog of three-dimensional manifolds exists, there are catalogs containing triangulation based representations of large diverse collections of three-manifolds. One of these is part of the Regina software package.

- Three dimensional manifolds are much more complicated:
 - There is no complete catalog of three-dimensional manifolds.
 - Constructing C⁰ reference metrics is more complicated in three dimensions, and a general method does not exist yet.
 - Smoothing the C⁰ reference metrics to C¹ is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.
- While no complete catalog of three-dimensional manifolds exists, there are catalogs containing triangulation based representations of large diverse collections of three-manifolds. One of these is part of the Regina software package.
- Regina is a software tool for creating, manipulating, and visualizing triangulations of arbitrary three-manifolds, developed by Benjamin Burton, Rayan Budney and William Pettersson.

Catalogs of Three-Manifolds

> > SESTS2:13.11.03.21.05.401 SFS [52: (3,1) (3,2) (5,2)] SFS [52: (3,2) (3,2) (3,2) \$*\$ \$P\$ [\$2: (3,2) (3,2) (4,-3)]

575 [52: (3,2) (3,2) (4,-1)] * * 575 [52: (3,2) (3,2) (5,-3)] 575 [52: (3,2) (3,2) (5,-2)] SFS [52: (2,1) (2,1) (2,1) (2,1)

STS [S2: (2,1) (2,1) (2,1) (3,-5] SFS [52: (2,1) (2,1) (2,1) (3,-2)] SFS [S2: (2,1) (2,1) (2,1) (0,-1)] SFS [RP2/h2: (2,1) (2,3)]

SFS [RP2/h2: (2,1) (3-2)] SES [RP2/n2: (2,1) (3,1)] SFSTRP2/n2: (2,1) (3,2) SESTE 01.20 SES DKB/h2 (1.2)

Txt/[21]11] + * Tx1/[-2,1]-1,1]

K De	iscription	P % 61	etrahedra	7 %	7 tetrahedra	- F 1	SES [52: (2,1) (2,1) (3,8)]
N(otation		L(9,1)		% L(10,1)	- F 1	SFS [52: (2,1) (2,1) (4,5)]
	tetrahedron		L(15,2)		% L(17,2)	- F 1	SFS [52: (2,1) (2,1) (4,7)]
1.2	23		L(19,3)		L(22,3)		SFS [52: (2,1) (2,1) (5,1)]
1.2	L(4,1)		L(20,3)		L(23,3)		SFS [52: (2,1) (2,1) (5,7)]
1.7	10,0		L(21,4)		% L(25,4)		SFS [52: (2,1) (2,1) (5,8)]
	tetranedra		L(23,4)		% L(26,5)		SPS [S2: (2,1) (2,1) (5,4)]
1.7	52 X 51		L(24,5)		‰ L(27,4)		575 [52: (2,1) (2,1) (6,-1)]
1.7	HP/3		L(24,11)		% L(28,13)		SPS [S2: (2,1) (2,1) (7,-6)]
1.7	L(3,1)		L(27,5)		🐌 L(29,5)		srs [s2: (2,1) (2,1) (7,2)]
1.7	L(5,1)		L(28,5)		% L(32,5)		srs [s2: (2,1) (2,1) (7,3)]
2.2	L(7,2)		L(29,9)		😼 L(33,5)		5FS [52: (2,1) (2,1) (7,4)]
2.2	L(8,3)		L(30,7)		😼 L(35,11)	- × 1	5FS [52: (2,1) (2,1) (7,5)]
1.7	SPS [52: (2,1) (2,1) (2,1)]		L01.7)		⁵ ((37,7)		SFS [52: (2,1) (2,1) (8,3)]
	tetranogra		L(31,11)		S L(37,13)		SFS [52: (2,1) (2,1) (8,5)]
12	1(5,1)		L(32,7)		% L(38,7)		SFS [52: (2,1) (2,1) (9,-7)]
12	100,40	1.2.2	L(33,7)	1.1	L(38,9)	1.11	SFS [52: (2,1) (2,1) (9,-5)]
12	100.00	1.2	(133,10)		► L(39,7)		SES [52: (2,1) (2,1) (9,-4)]
12	102.00	1.2	L(34,9)		► L(40,7)		SES [52: (2,1) (2,1) (9,-2)]
12	102.00	1.2	L(35,8)		% L(40,9)	1.11	585 [52: (2,1) (2,1) (10,-7)]
12	CELEBRA CONTRACTOR AND	1.2	L(36,11)		% L(41,9)	1.11	5F5 [52: (2,1) (2,1) (10,-3)]
	set a fact (a, i) (a, i) (a, ii)	1.2	L(37,8)	1.1	% L(42,11)	1.23	5P5 [52: (2,1) (2,1) (11,4)]
1.2	1/7 1)	1.2	1(37,10)		1 L(42,13)		5F5 [52: (2,1) (2,1) (11,-7)]
1.2	101120	1.12	1(39,14)	1.1	10 L(43,0)	1.13	srs (sz. (z, i) (2,1) (11,-4) reg (rs. (s. i) (1,1) (11,-4)
1.5	1(13.3)	1.12	1(19,10)	1.1	1 L(43,9)	1.13	srs (sz. (z, i) (2,1) (11,-3)]
1.5	1(14.3)	1.1.2	1(41.11)	1.1	- L(43,10)	1.13	an a (M2 (2,1) (2,1) (12,-7))
14	1(15.4)	112	1 (41,47)	1.1	The second second	1.13	 an a part (a, i) (2,1) (12,0) and (12,0) (12,0)
1.5	1016.70	1.2	100.00	1.1	B 1(47.10)	1.1	5 ST 122 (2.1) (2.1) (12.10)
1.5	1(17.5)	1.2	100 000	1.1	B ((47,10)	1.1	5 ST 102 (2.0 (2.0 (1.0 (0)))
1.5	1(18.5)	1.2	100,00	1.1	· ((**,11)	1.1	5 ST 12 0 0 0 0 0 0 0
1.5	L(12.7)	112	1 (45 19)	1.1	b 1649 17)	1.1	SEC [52:72:11 (0.17(0.0)]
1.5	L(21.8)	1.2	106 17)	1.1	b 1649 120	1.1	SEC 152-72-11 (2-11/4-201
1.5	SPS [52: (2.1) (2.1) (2.1)]	112	1047 120	1.1	 L649 200 	1.1	SEC 152-72-11 (2-11/5-201
1.5	SPS [52: (2.1) (2.1) (3-1)]	112	1 (49,10)	1.1	b 1/51 11)	1.1	SES 152-72-10 (0.11/6.20]
1.5	SFS [52: (2,1) (2,1) (4,-3)]	114	1(50.19)	1.	1/51 200	1.1	SES 152 (2:11 (3:11 (5:11)
1.5	SFS [52: (2,1) (3,1) (3,-2)]	1.5	1(55.21)	1.1	1(52.11)	1.1	SES 152:12 11 (3.1) (76)
\$ 51	tetrahedra	1.5	9502-01000	1.1	1(53.12)	1.1	SES 52-12 11 (3.1) (7.5)
1.5	L(8,1)	1.5	SES [52: (2.1) (2.1) (3.4)]	1.1	L(53,14)		SES [52: (2.1) (3.1) (740]
	L(13,2)	1.5	SFS [52: (2.1) (2.1) (3.5]]		L(53,23)	1.1	SFS [52: (2.1) (3.1) (730]
	L(16,3)	1.5	SPS [52: (2.1) (2.1) (4.1)]		L(55.12)	1.1	SFS [52: (2.1) (3.1) (7-2)]
1.5	L(17,3)	1.5	SPS [S2: (2,1) (2,1) (4,3)]		L(55,16)	1.1	5PS [52: (2,1) (3,1) (0,-5)]
- P - %	L(17,4)		SPS [52: (2,1) (2,1) (5,2)]		L(56,15)	1 1	575 [52: (2,1) (3,1) (0,-3)]
- P - %	L(19,4)		SPS [52: (2,1) (2,1) (5,3)]		L(56,17)	1 1	575 [52: (2,1) (3,2) (3,5)]
- P - %	L(20,9)		SPS [52: (2,1) (2,1) (5,-1)]		L(57,13)	1 1	5FS [52: (2,1) (3,2) (4,1)]
	L(22,5)		SFS [52: (2,1) (2,1) (6,-5)]		% L(57,16)	- 11	5FS [52: (2,1) (3,2) (4,3)]
	L(23,5)		SFS [52: (2,1) (2,1) (7,-5)]		L(58,17)	- 11	SFS [52: (2,1) (3,2) (5,-4)]
2.2	L(23,7)		SFS [S2: (2,1) (2,1) (7,-4)]		L(59,18)	- 11	SFS [S2: (2,1) (3,2) (5,2)]
2.2	L(24,7)		SFS [S2: (2,1) (2,1) (7,-3)]		L(59,25)	- F 1	SFS [S2: (2,1) (3,2) (5,3)]
2.2	L(25,7)		SFS [S2: (2,1) (2,1) (7,-2)]		L(60,13)	- F 1	SFS [S2: (2,1) (3,2) (5,-1)]
2.2	L(25,9)		SFS [52: (2,1) (2,1) (8,-5)]		L(61,17)	- 11	SES [52: (2,1) (3,2) (7,-5)]
12	L(26,7)		SFS [52: (2,1) (2,1) (8,-3)]		L(61,22)		SFS [52: (2,1) (3,2) (7,-4)]
12	100.00	1.2	SPS [S2: (2,1) (3,1) (3,1)]		L(62,25)		585 [52: (2,1) (3,2) (7,3)]
12	100.00	1.2	SPS [52: (2,1) (3,1) (3,2)]		L(63,17)	1.11	585 [52: (2,1) (3,2) (7,-2)]
12	1/20 11)	1.2	595 [52: (2,1) (3,1) (4,-1)]	1.1	L(64,19)	1.23	5P5 [52: (2,1) (3,2) (8,-5)]
1.2	1(31.12)	1.2	5P5 [52: (2,1) (3,1) (5,3)]		1 L(04,23)		575 [52: (2,1) (3,2) (0,-3)]
1.2	1/34 120	1.2	575 [52: (2,1) (3,1) (5,2)]		1 L(05,10)		5F5 [52: (2,1) [4,1) (4,1)]
1.2	SEC 152-12 11 12 11 12 201	1.2	575 [52: (2,1) (3,1) (6,-3)]		1 L(05,19)	1.1.1	5F5 [52: (2,1) [4,1) (5,-4)]
1.5	SES 152: (2 11 (2 1) (3 11]	12	SPS [S2: (2,1) (3,2) (3,2)]	1.1	1 (00,25)		SFS [52: (2,1) [4,1) (5,-3)]
1.5	SES [52: (2 1) (2 1) (3 2)]	1.2	ar a [ac. (a, i) (a, a) (i(-a))	1.	b 1(cs.10)	1.1	
1.5	SF5 [52: (2.1) (2.1) (4.1)]	112	SEC [52-12 11 (1 2) (5.3 ¹)	1.1	L(co.cr)		ar a pactor, (a, () (4,3) (4,1))
1.5	SFS [52: (2.1) (2.1) (540]	112	SPS [52-72-11 (1-2) (5-2)]	1.	1(70.29)	1.14	SES (52-72-11 (4-3) (5-20)
1.5	SFS [52: (2,1) (2,1) (5,-3)]	1.5	SES (\$2: (2.1) (4.1) (4.1)]	1.	h (71.21)	1.14	SFS [52: (2.1) (5.2) (5-30]
1.5	SFS [52: (2,1) (2,1) (5,-2)]	115	SES [52: (3 1) (3 1) (3 -2)]	1.1	1(7126)	1.1	SES [52: (2 1) (5 2) (5 -2)
1.5	SPS [S2: (2,1) (3,1) (3,-1)]	1.5	SFS[52: (3.1) (3.1) (3.10]	1.1	L(73,27)	1.1	SES 152: (2,1) (5,3) (5-24
1.5	SPS [S2: (2,1) (3,1) (4,-3)]	1.5	SES [52: (3.1) (3.2) (3.1)]	- i - i	L(74,31)	1.1	SES 152: (3.1) (3.1) (3.1)
1.5	SPS [S2: (2,1) (3,1) (5,-4)]	1.5	SES [52: (3.2) (3.2) (3.1)]	- i - i	L(75,29)	1.1	SES 152: (3.1) (3.1) (3.2)]
+ %	SFS [S2: (2,1) (3,2) (3,-1)]	1.5	SFS [S2: (2,1) (2,1) (2,1) (2,-1)]	- i - i	L(76,21)	1.1	SFS [52: (3,1) (3,1) (4-30]
		1 1 5	SFS [RP2/n2: (2,1) (2,-1)]	1.1	L(79,29)	1.1	5F5 [52: (3,1) (3,1) (4,-1)]
		1.5	SFS [RP2/h2: (2,1) (2,1)]		% L(80,31)	- F 1	5F5 [52: (3,1) (3,1) (5,-3)]
		1.5	Tx51		% L(81,31)	1 1 1	5F5 [52: (3,1) (3,1) (5,-2)]
		1.5	SFS [T: (1,1)]	- F 1	L(89,34)	- F 1	5F5 [52: (3,1) (3,2) (3,2)]
		1.2	K8/n2 x- 51				
		- F %	SPS (K6/n2: (1.1))				

The Regina software package includes a complete catalog of all compact orientable three-manifolds that SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (2,1)], m = [0,1] 1.0 SPS [D: (2,1) (2,1)] U/m SPS [D: (2,1) (2,1)], m = [1,1 | 1,0] can be represented by SPS [D: (2,1) (2,1)] U/m SPS [D: (2,1) (2,1)], m = [-1,2]-1,1 SPS [D: (2,1) (2,1)] U/m SPS [D: (2,1) (3,1)], m = [0,1] 1,0 STS [D: (2,1) (2,1)] U/m STS [D: (2,1) (3,1)], m = [0,1] 1,1 SFS (D: (2,1) (2,1)) U/m SFS (D: (2,1) (3,2)), m = [0,1 [1,0] SFS (D: (2,1) (2,1)] U/m SFS (D: (2,1) (3,2)], m = [0,1 | 1,1] triangulations consisting of up to eleven tetrahedra.

Catalogs of Three-Manifolds

R Description	🖛 🐂 6 tetrahedra	 % 7 tetrahedra 	SFS [52: (2,1) (2,1) (3,8)]
Notation	> % L(9,1)	h % L(10,1)	SFS [52: (2,1) (2,1) (4,5)]
1 tetrahedron	b % L(15,2)	h % L(17,2)	SFS [52: (2,1) (2,1) (4,7)]
• % S3	b % L(19,3)	h % L(22,3)	SFS [52: (2,1) (2,1) (5,1)]
P 19 ((4,1)	h % L(20,3)	h % L(23,3)	SFS [52: (2,1) (2,1) (5,7)]
• • (D,0	h % L(21,4)	h % L(25,4)	SFS [S2: (2,1) (2,1) (5,8)]
1 2 cecranedra	h % L(23,4)	h % L(26,5)	SPS [S2: (2,1) (2,1) (5,4)]
• • 52X51	h % L(24,5)	h % L(27,4)	SPS [S2: (2,1) (2,1) (6,-1)]
F 19 HP3	h % L(24,11)	h % L(28,13)	SPS [S2: (2,1) (2,1) (7,-6)]
• • L(3,1)	h % L(27,5)	h % L(29,5)	SPS [S2: (2,1) (2,1) (7,2)]
• • L(5,1)	IL(28,5)	IL(32,5)	SFS [S2: (2,1) (2,1) (7,3)]
• • · · (/,2)	• S L(29,9)	 % L(33,5) 	SFS [S2: (2,1) (2,1) (7,4)]
 W L(0,3) A COLUMN COLUMN	• % L(30,7)	L(35,11)	SFS [S2: (2,1) (2,1) (7,5)]
Statistics (2,1) (2,1) (2,1)	• % U01.7)	 % L(37,7) 	SFS [S2: (2,1) (2,1) (8,3)]
Stetranedra	U01,11)	 % L(37,13) 	SFS [52: (2,1) (2,1) (8,5)]
 b (0,1) b (0,1) 	• • u)z,n	U(38,7)	SES [52: (2,1) (2,1) (9,-7)]
 b b 1(10.1) 	• • (133,7)	EL(38,9)	SES [52: (2,1) (2,1) (9,-5)]
	U(33,10)	L(39,7)	SES [52: (2,1) (2,1) (9,-4)]
 b 1/12 5) 	U34,9)	• • L(40,7)	SFS [52: (2,1) (2,1) (9,-2)]
h th 1/13 53	U35,8)	• • L(40,9)	SFS [S2: (2,1) (2,1) (10,-7)]
b % SES [52-72 10 /2 10 /2 -20]	 U(36,11) 	 E(41,9) 	F % SFS [S2: (2,1) (2,1) (10,3)]
S distributes	 C(37,0) 	 C(42,11) 	srs [sz: (z,1) (z,1) (11,4)]
107.10	 A 100000 	 m (c(d,10)) h (h) ((d,0)) 	
10120	 A 100000 	 	
1(13.3)	 A 1000 100 	 	
• > L(14.3)	b 5 ((41.11))	 b 1645 m) 	 an a part (a, r) (a, r) (12,-7) an a part (a, r) (a, r) (12,-7)
I 10 1015.40	b b ((41.17)	b 1645 140	E SES (52-72 1) (2 1) (13,40)
h % L(16.7)	b > 1(41.16)	h h 1647 100	E SES [52-72 1] (2 1) (13,5)]
h % L(17.5)	b 1(43.12)	h h 1667 11)	E SES [52-72 1] (1 1) (1 40]
h % L(18.5)	h the 1044 170	h h 1649 11)	b SEC [52-72 1] (1 1) (2 5)]
b % L(19,7)	1(45.19)	b % 1/48 17)	SESTS2: (2.1) (3.1) (4.1)]
b % L(21,0)	b % ((46.17))	b % ((49.13))	SESTS2: (2.1) (3.1) (4.3)]
\$ \$75 [52: (2,1) (2,1) (2,1)]	b % 1(47.13)	h 1629 200	SESTS2:02.11(3.1)(5.2)]
\$ \$ \$P\$ [\$2: (2,1) (2,1) (3,-1)]	> % L(49,18)	b % L(51,11)	SES [52: (2,1) (3,1) (5,3)]
\$75 [52: (2,1) (2,1) (4,-3)]	b % US0.19)	L(51,20)	SES [52: (2.1) (3.1) (5.1)]
SFS [S2: (2,1) (3,1) (3,-2)]	b % US5.21)	L(52,11)	SES [52: (2.1) (3.1) (7.6)]
🐞 Stetrahedra	SFS [52: (2,1) (2,1) (2,5]]	h % L(53,12)	SFS [52: (2,1) (3,1) (7,-5)]
IL(8,1)	SFS [52: (2,1) (2,1) (3,4]]	h % L(53,14)	SFS [52: (2,1) (3,1) (7,-4)]
b % L(13,2)	SFS [S2: (2,1) (2,1) (3,5]]	h % L(53,23)	SFS [S2: (2,1) (3,1) (7,-3)]
b % L(16,3)	52'5 [52: (2,1) (2,1) (4,1)]	h % L(55,12)	SPS [S2: (2,1) (3,1) (7,-2)]
L(17,3)	52'5 [52: (2,1) (2,1) (4,3)]	b % L(55,16)	SPS [S2: (2,1) (3,1) (0,-5)]
• • L(17,4)	SPS [52: (2,1) (2,1) (5,2)]	IL(56,15)	SPS [S2: (2,1) (3,1) (0,-3)]
* % L(19,4)	SFS [52: (2,1) (2,1) (5,3)]	IL(56,17)	SPS [S2: (2,1) (3,2) (3,5)]
L(20,9)	SFS [S2: (2,1) (2,1) (5,-1)]	k % L(57,13)	SFS [S2: (2,1) (1,2) (4,1)]
• • • • • • • • • • • • • • • • • • •	SFS [52: (2,1) (2,1) (6,-5)]	 S L(57,16) 	SFS [S2: (2,1) (1,2) (4,3)]
 U(2),5) U(2),70 	SFS [S2: (2,1) (2,1) (7,-5)]	5 L(58,17)	SFS [S2: (2,1) (3,2) (5,-4)]
b the 1/14 million	SES [S21(2,1)(2,1)(7,4)]	 U(59,18) 	SES [52 (2,1) (3,2) (5,2)]
 b 1(25.7) 	SFS[S21(2,1) (2,1) (7,3)]	• • ((59,25)	• • • • • • • • • • • • • • • • • • •
1/25.90	SPS(52, (2,1) (2,1) (7,2))	C(90,13)	• • • • • • • • • • • • • • • • • • •
1/26.7)	SPS [52: (2,1) (2,1) (0,5)]	L(s1,17)	F = 5F5 [52:(2,1) [5;2) (1;5)]
1/27.80	SS(52, (2, 1) (2, 1) (3, 3)]	b to 1/63 220	SSS(2,0,0,2,0,4)
b % L(29.8)	SSSI2:010.0000	b % (63.17)	SSI2:010200-20
I(29,12)	SES 02:72 11 (3.1) (4.10)	b % 1654 190	> > SECTO 10 (12) (8-5)
b % L(30,11)	SF5[52; (2,1) (3,1) (5,3)]	h t(54,23)	SFS [52: (2,1) (3,2) (8-3)]
I(31,12)	SFS [52; (2,1) (3,1) (5,2)]	k % L(55,18)	SFS [52: (2,1) (4,1) (4,1)]
b % L(34,13)	SPS [52; (2,1) (3,1) (6,-5)]	k % L(65,19)	* * 575 [52: (2,1) (4,1) (5,-4)]
SFS [S2: (2,1) (2,1) (2,3)]	\$75 [52: (2,1) (3,2) (3,2)]	h % L(66,25)	575 [52: (2,1) (4,1) (5,-3)]
SFS [S2: (2,1) (2,1) (3,1)]	\$75 [52: (2,1) (3,2) (4,-3)]	k % L(67,10)	F % SFS [S2: (2,1) (4,1) (5,-2)]
SFS [52: (2,1) (2,1) (3,2)]	SFS [S2: (2,1) (3,2) (4,-1)]	b % L(68,19)	SFS [S2: (2,1) (4,3) (4,-1)]
SFS [52: (2,1) (2,1) (4,-1)]	SFS [52: (2,1) (3,2) (5,-3)]	b % L(69,19)	SFS [S2: (2,1) (4,3) (5,-3)]
585 [52: (2,1) (2,1) (5,-4)]	SFS [S2: (2,1) (3,2) (5,-2)]	I (70,29)	SFS [S2: (2,1) (4,3) (5,-2)]
 = 5r5 [52: (2,1) (2,1) (5,-3)] 	SFS [S2: (2,1) (4,1) (4,3)]	1(71,21)	SFS [S2: (2,1) (5,2) (5,-3)]
 srs p.c. (z, () (2,1) (5,-2)) 	SFS [S2: (3,1) (3,1) (3,-2)]	L(71,26)	SFS [52: (2,1) (5,2) (5,-2)]
 	 SFS [S2: (3,1) (3,1) (3,-1)] 	 % L(73,27) 	 SFS [52: (2,1) (5,3) (5,-2)]
 an a part (a, (1(3, 1)(4, 3))) an a part (a, (1(3, 1)(4, 3))) 	SES[S2: (3,1) (3,2) (3,-1)]	 To L(74,31) 	• • StS p2: (3,1) (3,1) (3,1)
 SPS [52-72 1] (12) (14,11] 	 SS(S2(3,2)(3,2)(3,1)] CONTRACT OF CONTRACT OF CONTRACT. 	 To L(75,29) 	 SES [32: (3,1) (3,1) (3,2)]
	 sestemption (2,1) (2,1) (2,1) (2,1) sestemption (2,1) (2,1) (2,1) (2,1) 	 m L(r6,21) h h L(28,20) 	
	 S 500 c/lt2 (2,1) (2,1) S 555 (0023/22 (2.1) (2.1)) 	 	 South Company (Science) South Company (Science)
	 TyS1 	k % (81 31)	 Sector (3,1) (3,1) (3,3) Sector (3,1) (3,1) (3,1) (3,3)
	> > 9507-0.00	b % (89.34)	• • • • • • • • • • • • • • • • • • •
	KB/n2 x- 51		· · · · · · · · · · · · · · · · · · ·
	b % 525 005/v2 (1.10)		

The Regina software package includes a complete catalog of all compact orientable three-manifolds that SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (2,1)], m = [0,1] 1.0 can be represented by SPS [D: (2,1) (2,1)] U/m SPS [D: (2,1) (2,1)], m = [-1,2]-1,1 SFS (D: (2,1) (2,1)) U/m SFS (D: (2,1) (3,2)), m = [0,1 [1,0] SFS (D: (2,1) (2,1)] U/m SFS (D: (2,1) (3,2)], m = [0,1 | 1,1] triangulations consisting of up to eleven tetrahedra.

SFS [RP2/n2: (2,1) (2,-1)] : #1 (3-Manifold Triangulation)

SFS [D: (2,1) (2,1)] U/m SFS [D: (2,1) (2,1)], m = [1,1 | 1,0]

SPS [D: (2,1) (2,1)] U/m SPS [D: (2,1) (3,1)], m = [0,1] 1,0 STS [D: (2,1) (2,1)] U/m STS [D: (2,1) (3,1)], m = [0,1] 1,1

> > SESTO-13.11(3.2)(5.30) SFS [52: (3,1) (3,2) (5,2)] SFS [52: (3,2) (3,2) (3,2) \$*\$ \$P\$ [\$2: (3,2) (3,2) (4,-3)]

575 [52: (3,2) (3,2) (4,-1)] * * 575 [52: (3,2) (3,2) (5,-3)] > % 575 [52: (3,2) (3,2) (5,2)] SFS [52: (2,1) (2,1) (2,1) (2,1)

SFS [RP2/h2: (2,1) (3-2)] SES [RP2/n2: (2,1) (3,1)] SFSTRP2/n2: (2,1) (3,2) SESTE 0.20 SES DKB/h2 (1.2)

Txt/[21]11] + * Tx1/[-2,1]-1,1]

SFS [S2: (2,1) (2,1) (2,1) (3,5] SFS [52: (2,1) (2,1) (2,1) (3,-2)] SFS [S2: (2,1) (2,1) (2,1) (0,-1)] SFS [RP2/n2: (2,1) (2,3)]

Simplify

() Orient

Closed, orientable and oriented, connected

<u>G</u> luings <u>S</u> k		eleton	Alge	Algebra <u>C</u> ompo		ition <u>R</u> ecogr		nition	Snap <u>P</u>	ea
Tetrahedron		Face 012		Face 013		Face 023		Face 123		
0		4 (231)		3 (132)		2 (123)		1 (132)		
1		3 (320)		5 (213)		2 (203)		0 (132)		
2		4 (032)		5 (302)		1 (203)		0 (023)		
3		5 (102)	5 (102)		4 (012)		1 (210)		0 (031)	
4		3 (013)		5 (031)		2 (021)		0 (201)		
5		3 (102)		4 (0	31)	2 (13	0) 1 (103)	

Lee Lindblom (Physics Dept.: UCSD)

MiniWorkshop : NCU - 9/12/2023

Creating Multicube Representations

• Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.

Creating Multicube Representations

- Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.
- This figure shows the multicube structure for the manifold SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

Creating Multicube Representations

- Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.
- This figure shows the multicube structure for the manifold SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

 Multicube structures have also been constructed by hand for some three-manifolds constructed by identifying the faces of polyhedra. Figure on the right shows a multicube structure for Seifert-Weber space.

- In three dimensions, building *C*⁰ reference metrics follows the same basic approach used in two dimensions:
 - Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

- In three dimensions, building *C*⁰ reference metrics follows the same basic approach used in two dimensions:
 - Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

Or Combine the flat metrics in each multicube region using a partition of unity that is continuous across the cube interfaces.

- In three dimensions, building *C*⁰ reference metrics follows the same basic approach used in two dimensions:
 - Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

- Combine the flat metrics in each multicube region using a partition of unity that is continuous across the cube interfaces.
- In three dimensions it is convenient to parameterize the flat inverse metrics in each cube using the dihedral angles between cube faces ψ_{A{xy}}, ψ_{A{yz}}, and ψ_{A{xz}}:

$$ds^{-2} = \bar{g}^{ab} \partial_a \partial_b = \partial_x^2 + \partial_y^2 + \partial_z^2 \pm 2\cos\psi_{A\{xy\}} \partial_x \partial_y \\ \pm 2\cos\psi_{A\{yz\}} \partial_y \partial_z \pm 2\cos\psi_{A\{xz\}} \partial_x \partial_z.$$

The uniform dihedral angle assumption, ψ_{A{αβ}} = ^{2π}/_{N_{A{αβ}} (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.

- The uniform dihedral angle assumption, ψ_{A{αβ}} = ^{2π}/_{N_{A{αβ}} (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.

- The uniform dihedral angle assumption, ψ_{A{αβ}} = ^{2π}/_{N_{A{αβ}} (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.

- The uniform dihedral angle assumption, ψ_{A{αβ}} = ^{2π}/_{N_{A{αβ}} (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.
- In total, reference metrics were constructed successfully using this method on 40 different compact orientable manifolds.

- The uniform dihedral angle assumption, ψ_{A{αβ}} = ^{2π}/_{N_{A{αβ}} (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.
- In total, reference metrics were constructed successfully using this method on 40 different compact orientable manifolds.
- A more complicated method of choosing the dihedral angles allows the construction of reference metrics on 17 additional manifolds.

• Fan Zhang and I have used the *C*¹ smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.

- Fan Zhang and I have used the *C*¹ smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$\tilde{\nabla}^{a}\tilde{\nabla}_{a}\phi = \frac{1}{8}\phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle
ight),$$

to determine the conformal factor ϕ that transforms the reference metric \tilde{g}_{ab} into the physical metric: $g_{ab} = \phi^4 \tilde{g}_{ab}$. \tilde{R} is the scalar curvature associated with \tilde{g}_{ab} and $\langle \tilde{R} \rangle$ is its spatial average.

- Fan Zhang and I have used the *C*¹ smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$\tilde{\nabla}^{a}\tilde{\nabla}_{a}\phi = \frac{1}{8}\phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle
ight),$$

to determine the conformal factor ϕ that transforms the reference metric \tilde{g}_{ab} into the physical metric: $g_{ab} = \phi^4 \tilde{g}_{ab}$. \tilde{R} is the scalar curvature associated with \tilde{g}_{ab} and $\langle \tilde{R} \rangle$ is its spatial average.

• The Hamiltonian constraint in this case is equivalent to $\mathcal{H} = R - \langle \tilde{R} \rangle$, where *R* is the physical scalar curvature.

- Fan Zhang and I have used the *C*¹ smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$\tilde{\nabla}^{a}\tilde{\nabla}_{a}\phi = \frac{1}{8}\phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle
ight),$$

to determine the conformal factor ϕ that transforms the reference metric \tilde{g}_{ab} into the physical metric: $g_{ab} = \phi^4 \tilde{g}_{ab}$. \tilde{R} is the scalar curvature associated with \tilde{g}_{ab} and $\langle \tilde{R} \rangle$ is its spatial average.

- The Hamiltonian constraint in this case is equivalent to $\mathcal{H} = R \langle \tilde{R} \rangle$, where *R* is the physical scalar curvature.
- The solution to this constraint equation is also a solution to the Yamabe problem.

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$-\partial_t^2 \phi - \kappa \,\partial_t \phi + \tilde{\nabla}^a \tilde{\nabla}_a \phi = \frac{1}{8} \phi \left(\tilde{R} - \phi^4 \langle \tilde{R} \rangle \right).$$

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$-\partial_t^2 \phi - \kappa \,\partial_t \phi + \tilde{\nabla}^a \tilde{\nabla}_a \phi = \frac{1}{8} \phi \left(\tilde{R} - \phi^4 \langle \tilde{R} \rangle \right).$$

 This method is designed to damp away ∂_t φ leaving a solution to the elliptic equation at late times.
Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$-\partial_t^2 \phi - \kappa \,\partial_t \phi + \tilde{\nabla}^a \tilde{\nabla}_a \phi = \frac{1}{8} \phi \left(\tilde{R} - \phi^4 \langle \tilde{R} \rangle \right)$$

- This method is designed to damp away $\partial_t \phi$ leaving a solution to the elliptic equation at late times.
- The method works well on manifolds with negative scalar curvatures:
 ⟨*˜*R⟩ < 0 but fails when ⟨*˜*R⟩ > 0.

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

 $-\partial_t^2 \phi - \kappa \,\partial_t \phi + \tilde{\nabla}^a \tilde{\nabla}_a \phi = \frac{1}{8} \phi \left(\tilde{R} - \phi^4 \langle \tilde{R} \rangle \right).$

• This method is designed to damp away $\partial_t \phi$ leaving a solution to the elliptic equation at late times.

- The method works well on manifolds with negative scalar curvatures:
 ⟨*˜*R⟩ < 0 but fails when ⟨*˜*R⟩ > 0.
- The accuracy of the hyperbolic relaxation solutions can be improved using the results as initial guesses for standard elliptic solves.

