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constructing three-dimensional manifolds with arbitrary topologies.
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(e.g. Einstein’s equation) on manifolds with topology R × Σ,
where Σ is a three-dimensional manifold with arbitrary topology.
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Differentiable Manifolds
Manifolds are topological spaces covered by a
collection of open sets, each of which is
homeomorphic to a subset of Rn. These
homeomorphisms are the coordinate charts.
In a differentiable manifold the maps between
coordinate charts must be differentiable in
regions where the coordinate patches overlap.

What is the most convenient and efficient way to represent
manifolds in a computer code?
Is there a general way to organize these representations in a way
makes it possible to change from one manifold to another without
completely re-writing major parts of the code?
Where can we find an extensive catalog of three-manifolds that
includes all the information needed to use them for computations?
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Representations of Arbitrary Three-Manifolds
Keeping track of the overlap regions between coordinate charts is
complicated and time consuming. Can we find a way to represent
differentiable manifolds using non-overlapping coordinate charts?

Every two- and three-manifold admits a triangulation (Radó 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus rules for gluing their edges (or faces) together.
Every two- and three-dimensional triangulation can be refined to a
“multicube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:
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“Multicube” Representations of Manifolds
Multicube representations of topological manifolds consist of a set
of cubic regions, BA, plus maps that identify the faces of
neighboring regions, ΨAα

Bβ(∂βBB) = ∂αBA.

Choose cubic regions to have uniform size and orientation.
Choose linear interface
identification maps ΨAα

Bβ:
x i

A = c i
Aα + C Aα i

B β k (xk
B − ck

B β),

where C Aα i
B β k is a rotation-

reflection matrix, and c i
Aα is

center of the α face of
region A.
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Fixing the Differential Structure
The boundary identification maps,
ΨAα

Bβ, used to construct multicube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.
Smooth tensor fields expressed in multicube Cartesian
coordinates are not (in general) even continuous at the interfaces.

The differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.
The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.
Multicube manifolds need an
additional layer of infrastructure:
e.g., overlapping domains DA ⊃ BA
with transition maps that are smooth
in the overlap regions.
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Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multicube coordinate region to another.
Define the transformed tensors across interface boundaries:

〈v i
B〉A = JAαi

Bβkvk
B , 〈wBi〉A = J∗Bβk

Aαi wBk .

Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

v i
A = 〈v i

B〉A, wAi = 〈wBi〉A

If there exists a covariant derivative ∇̃i determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

∇̃Ajv i
A = 〈∇̃Bjv i

B〉A, ∇̃AjwAi = 〈∇̃BjwBi〉A

A smooth reference metric g̃ij determines both the needed
Jacobians and the smooth connection.
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Fixing the Differential Structure III
Let g̃Aij and g̃Bij be the components of a smooth reference metric
expressed in the multicube coordinates of regions BA and BB that
are identified at the faces ∂αBA ↔ ∂βBB.
Use the reference metric to define the outward directed unit
normals to the identified faces: ñAαi , ñi

Aα, ñBβi , and ñi
Bβ.

The needed Jacobians are given by
JAαi

Bβk = CAαi
Bβ`

(
δ`k − ñ`BβñBβk

)
− ñi

AαñBβk ,

J∗Bβk
Aαi =

(
δ`i − ñAαi ñ`Aα

)
CBβk

Aα` − ñAαi ñk
Bβ.

These Jacobians satisfy:

ñi
Aα = −JAαi

Bβk ñk
Bβ, ñAαi = −J∗Bβk

Aαi ñBβk

ui
Aα = JAαi

Bβkuk
Bβ = CAαi

Bβkuk
Bβ, δi

k = JAαi
Bβ`J

∗Bβ`
Aαk ,

where ui is any vector tangent to the interface boundary.
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Solving PDEs on Multicube Manifolds
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z

x
8

7
6

5

S3

Solve PDEs within each cubic region using any standard method.
Use boundary conditions on cube faces to enforce appropriate
continuity conditions, thus selecting the correct global solution.

For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, û−, with
outgoing characteristics, û+, from neighbor,

û−A = 〈û+
B 〉A û−B = 〈û+

A 〉B.
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Solving Einstein’s Equation on Multi-Cube Manifolds
Multi-cube methods were designed to solve first-order hyperbolic
systems, ∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), where the dynamical
fields uα are tensors that can be transformed across interface
boundaries using the Jacobians JAαi

Bβk , etc.

The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

The usual choice of dynamical fields,
uα = {ψab,Πab = −tc∂cψab,Φiab = ∂iψab} are not tensor fields.
The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of Πab, Πab = −tc∂cψab, and the
one that comes from preserving the constraint Ciab = Φiab − ∂iψab,
tc∂cCiab = −γ2Ciab.

Our attempts to construct the transformations for non-tensor
quantities like ∂iψab and Φiab across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.
A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation
Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.

A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative ∇̃a:

Rab = − 1
2ψ

cd∇̃c∇̃dψab +∇(a∆b) − ψcd R̃e
cd(aψb)e

+ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)
,

where ∆abc = ψad

(
Γd

bc − Γ̃d
bc

)
, and ∆a = ψbc∆abc .

A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: ∆a = −Ha(ψcd ).
The vacuum Einstein equations then become:

ψcd∇̃c∇̃dψab = −2∇(aHb) + 2ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)

−2ψcd R̃e
cd(aψb)e + γ0

[
2δc

(atb) − ψabtc
]

(Hc + ∆c) .
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Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.
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Rab = − 1
2ψ
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)
,

where ∆abc = ψad
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Γd
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bc

)
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Solving Einstein’s Equation on Multicube Manifolds
Examine a solution to the non-linear coupled
Einstein-Klein-Gordon complex scalar-field equations numerically
with perturbations in the ’‘tensor” modes of the system (that
represent gravitational wave degrees of freedom) away from the
static “Einstein Universe” solution.
Visualize

√
δψabδψab on the

equatorial χ = π/2 two-sphere.

The constraints C converge to zero,
so the numerical solution converges
to a solution of the exact equations.
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Choosing a Reference Metric
Finding an appropriate reference metric is the most difficult step in
constructing a multicube representation of a manifold.
For simple familiar manifolds, e.g. S3, S2 × S1, etc., it is easy to
use their standard metrics by transforming them into multicube
Cartesian coordinates, but very difficult for arbitrary manifolds.

For arbitrary 2D manifolds a step by step
method exists for constructing the needed
reference metrics:
First, choose the vertex opening angles θi
satisfying 2π =

∑N
I θI at each vertex of the

multicube structure, e.g. θI = 2π
N where N is the

number of squares that intersect at that vertex.
Next choose the flat metric in this star-shaped domain by setting:

ds2 = ḡI
abdxa

Adxb
A = dx2

A ± 2 cos θI dxA dyA + dy2
A

in each square. This metric is smooth across all the internal
interface boundaries, and ensures there is no cone singularity.
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Choosing a Reference Metric II
Combine the flat reference metrics defined at each corner of each
multicube region using a partition of unity: ḡab =

∑
I uI(~x)ḡI

ab.

The weight functions uI(~x) are
chosen to be non-negative
uI(~x) ≥ 0, sum to unity at each
point 1 =

∑
I uI(~x), and fall to

zero at the outer boundaries of
the star-shaped domains.

Reference metrics produced by averaging flat metrics in this way
have no conical singularities, and are continuous across all the
multicube interface boundaries.
Unfortunately, they are not (in general) differentiable across those
boundaries.
Modify these C0 metrics by adding corrections, g̃ab = ḡab + δgab,
where the δgab are chosen to make the extrinsic curvature K̃ab
continuous across each interface boundary.
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ab.

The weight functions uI(~x) are
chosen to be non-negative
uI(~x) ≥ 0, sum to unity at each
point 1 =

∑
I uI(~x), and fall to

zero at the outer boundaries of
the star-shaped domains.
Reference metrics produced by averaging flat metrics in this way
have no conical singularities, and are continuous across all the
multicube interface boundaries.
Unfortunately, they are not (in general) differentiable across those
boundaries.
Modify these C0 metrics by adding corrections, g̃ab = ḡab + δgab,
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Multicube Structures for Two-Manifolds
Compact orientable two-manifolds are uniquely determined by
their genus numbers.

Multicube structures for arbitrary two-manifolds are therefore
straightforward to construct: Attaching a copy of the ten-region
representation to the genus number two manifold in the
appropriate way raises the genus number by one.

Reference metrics constructed on these structures make it
possible to solve differential equations numerically on any
compact orientable two-dimensional manifold.
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Smooth Reference Metrics
As an example, we have solved the Ricci flow equation
numerically on these manifolds:

∂tgab = −2Rab +∇aHb +∇bHa − µ
V (t)− V0

V (t)
gab + 〈R(t)〉gab,

where Ha = gab gcd
(

Γb
cd − Γ̃b

cd

)
is the DeTurk term that fixes the

gauge and makes the equation strongly parabolic, V (t) is the
volume, and 〈R(t)〉 is the volume averaged scalar curvature.

In this example Ricci flow on the genus number Ng = 5 multicube
manifold transforms the C2− reference metric used as initial data
into a smooth constant curvature metric:

In this example Ricci flow on the genus number Ng = 5 multicube
manifold transforms the C2− reference metric used as initial data
into a smooth constant curvature metric:

<3->
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Representations of Arbitrary Three-Manifolds
Three dimensional manifolds are much more complicated:

1 There is no complete catalog of three-dimensional manifolds.

2 Constructing C0 reference metrics is more complicated in three
dimensions, and a general method does not exist yet.

3 Smoothing the C0 reference metrics to C1 is much more
complicated than the two-dimensional case, but has been used
successfully on about 60 different three-manifolds.

While no complete catalog of three-dimensional manifolds exists,
there are catalogs containing triangulation based representations
of large diverse collections of three-manifolds. One of these is
part of the Regina software package.
Regina is a software tool for
creating, manipulating, and
visualizing triangulations of
arbitrary three-manifolds,
developed by Benjamin
Burton, Rayan Budney and
William Pettersson.
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Catalogs of Three-Manifolds
The Regina software
package includes a
complete catalog of all
compact orientable
three-manifolds that
can be represented by
triangulations
consisting of up to
eleven tetrahedra.
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Creating Multicube Representations
Oliver Rinne has developed a python code that automatically
converts the triangulation gluing structure from a Regina output
file into a multicube structure.

This figure shows the multicube structure for the manifold
SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

Multicube structures have also been constructed by hand for
some three-manifolds constructed by identifying the faces of
polyhedra. Figure on the right shows a multicube structure for
Seifert-Weber space.
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Building Three-Dimensional Reference Metrics
In three dimensions, building C0 reference metrics follows the
same basic approach used in two dimensions:

1 Construct flat metrics in each star shaped domain surrounding
each vertex in the multicube structure.

2 Combine the flat metrics in each multicube region using a partition
of unity that is continuous across the cube interfaces.

In three dimensions it is convenient to parameterize the flat
inverse metrics in each cube using the dihedral angles between
cube faces ψA{xy}, ψA{yz}, and ψA{xz}:

ds−2 = ḡab ∂a ∂b = ∂2
x + ∂2

y + ∂2
z ± 2 cosψA{xy} ∂x ∂y

±2 cosψA{yz} ∂y ∂z ± 2 cosψA{xz} ∂x ∂z .
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Building Three-Dimensional Reference Metrics II
The uniform dihedral angle assumption, ψA{αβ} = 2π

NA{αβ}

(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.

This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.
Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:
From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.
In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.
A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.

Lee Lindblom (Physics Dept. : UCSD) Einstein’s Equation on Arbitrary Topologies MiniWorkshop : NCU - 9/12/2023 20 / 22



Building Three-Dimensional Reference Metrics II
The uniform dihedral angle assumption, ψA{αβ} = 2π

NA{αβ}

(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.
This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.

Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:
From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.
In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.
A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.

Lee Lindblom (Physics Dept. : UCSD) Einstein’s Equation on Arbitrary Topologies MiniWorkshop : NCU - 9/12/2023 20 / 22



Building Three-Dimensional Reference Metrics II
The uniform dihedral angle assumption, ψA{αβ} = 2π

NA{αβ}

(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.
This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.
Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:
From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.

In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.
A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.

Lee Lindblom (Physics Dept. : UCSD) Einstein’s Equation on Arbitrary Topologies MiniWorkshop : NCU - 9/12/2023 20 / 22



Building Three-Dimensional Reference Metrics II
The uniform dihedral angle assumption, ψA{αβ} = 2π

NA{αβ}

(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.
This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.
Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:
From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.
In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.

A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.

Lee Lindblom (Physics Dept. : UCSD) Einstein’s Equation on Arbitrary Topologies MiniWorkshop : NCU - 9/12/2023 20 / 22



Building Three-Dimensional Reference Metrics II
The uniform dihedral angle assumption, ψA{αβ} = 2π

NA{αβ}

(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.
This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.
Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:
From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.
In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.
A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.

Lee Lindblom (Physics Dept. : UCSD) Einstein’s Equation on Arbitrary Topologies MiniWorkshop : NCU - 9/12/2023 20 / 22



Solving the Constraints on Multicube Manifolds
Fan Zhang and I have used the C1 smoothed uniform dihedral
angle reference metrics to solve the Einstein constraint equations
on four multicube manifolds.

We use a simple constant mean curvature constraint equation,

∇̃a∇̃aφ = 1
8φ
(

R̃ − φ4〈R̃ 〉
)
,

to determine the conformal factor φ that transforms the reference
metric g̃ab into the physical metric: gab = φ4g̃ab. R̃ is the scalar
curvature associated with g̃ab and 〈R̃ 〉 is its spatial average.

The Hamiltonian constraint in this
case is equivalent to H = R − 〈R̃ 〉,
where R is the physical scalar
curvature.
The solution to this constraint
equation is also a solution to the
Yamabe problem.
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Solving the Constraints on Multicube Manifolds II
The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.
In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.

The hyperbolic relaxation version of the constant mean curvature
equation described in the last slide is given by,

−∂ 2
t φ− κ ∂tφ+ ∇̃a∇̃aφ = 1

8φ
(

R̃ − φ4〈R̃ 〉
)
.

This method is designed to damp away ∂tφ leaving a solution to
the elliptic equation at late times.

The method works well on manifolds
with negative scalar curvatures:
〈R̃ 〉 < 0 but fails when 〈R̃ 〉 > 0.
The accuracy of the hyperbolic
relaxation solutions can be improved
using the results as initial guesses
for standard elliptic solves.
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