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@ Develop computational methods for representing and
constructing three-dimensional manifolds with arbitrary topologies.
@ Develop numerical methods for solving PDEs

(e.g. Einstein’s equation) on manifolds with topology R x %,
where ¥ is a three-dimensional manifold with arbitrary topology.
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Differentiable Manifolds

@ Manifolds are topological spaces covered by a
collection of open sets, each of which is
homeomorphic to a subset of R”. These
homeomorphisms are the coordinate charts.

@ In a differentiable manifold the maps between .W
coordinate charts must be differentiable in S% ;
Rn

regions where the coordinate patches overlap. R
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@ Manifolds are topological spaces covered by a
collection of open sets, each of which is
homeomorphic to a subset of R”. These
homeomorphisms are the coordinate charts.

@ In a differentiable manifold the maps between
coordinate charts must be differentiable in
regions where the coordinate patches overlap.

@ What is the most convenient and efficient way to represent
manifolds in a computer code?

@ Is there a general way to organize these representations in a way
makes it possible to change from one manifold to another without
completely re-writing major parts of the code?

@ Where can we find an extensive catalog of three-manifolds that
includes all the information needed to use them for computations?
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Representations of Arbitrary Three-Manifolds

@ Keeping track of the overlap regions between coordinate charts is
complicated and time consuming. Can we find a way to represent
differentiable manifolds using non-overlapping coordinate charts?
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“Multicube” Representations of Manifolds
@ Multicube representations of topological manifolds consist of a set
of cubic regions, 34, plus maps that identify the faces of
neighboring regions, W£%(955s) = d.Ba-

Lee Lindblom (Physics Dept.: UCSD) MiniWorkshop : NCU - 9/12/2023 4/22



“Multicube” Representations of Manifolds
@ Multicube representations of topological manifolds consist of a set
of cubic regions, 34, plus maps that identify the faces of
neighboring regions, ng(agBB) = 0,Ba.

@ Choose cubic regions to have uniform size and orientation.
@ Choose linear interface

. Iy . A .
identification maps Wi3: g A .
i Aai(yk _ Ak L
Xp = Cao T C5k(Xg — Coj), B
Aai i i _ -
where.CBﬂk isa rotathn-_ o | 34 ;
reflection matrix, and ¢, , is A S h
center of the « face of
region A.
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Fixing the Differential Structure

@ The boundary identification maps,
W2, used to construct multicube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multicube Cartesian

coordinates are not (in general) even continuous at the interfaces.
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Fixing the Differential Structure

@ The boundary identification maps,
W2, used to construct multicube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multicube Cartesian
coordinates are not (in general) even continuous at the interfaces.

@ The differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.

@ The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.

@ Multicube manifolds need an
additional layer of infrastructure: <
e.g., overlapping domains Dy O Ba < )
with transition maps that are smooth
in the overlap regions. <
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Fixing the Differential Structure I
@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JZ3; and its dual J}ﬁfk that transform
tensors from one multicube coordinate region to another.
@ Define the transformed tensors across interface boundaries:

Bsk
(VB)a = JBGKVE,  (Waida = Jae Wak.
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@ All that is needed to define continuous tensor fields at interface
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tensors from one multicube coordinate region to another.
@ Define the transformed tensors across interface boundaries:

Bsk
(VB)a = JBGKVE,  (Waida = Jae Wak.

@ Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

Vi\ = <Vli3>A: Wai = (Wgj)A

Lee Lindblom (Physics Dept. : UCSD) MiniWorkshop :NCU - 9/12/2023 6/22
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boundaries is the Jacobian JZ3; and its dual Jj\ffk that transform
tensors from one multicube coordinate region to another.
@ Define the transformed tensors across interface boundaries:

Bpk
(Vs)a = JE5k (Wai)a = Jpi Wak.

@ Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

Vi\ = <VI£3>A: Wai = (Wgj)A

@ If there exists a covariant derivative V; determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

Vava= (Vgvpla,  Vawai = (VgWwai)a
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Fixing the Differential Structure I
@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JZ3; and its dual Jj\ffk that transform
tensors from one multicube coordinate region to another.
@ Define the transformed tensors across interface boundaries:

Bpk
(Vs)a = JE5k (Wai)a = Jpi Wak.

@ Tensor fields are continuous across interface boundaries if they
are equal to their transformed neighbors:

Vi\ = <VI£3>A: Wai = (Wgj)A

@ If there exists a covariant derivative V; determined by a smooth
connection, then differentiability across interface boundaries can
be defined as continuity of the covariant derivatives:

Vava= (Vgvpla,  Vawai = (VgWwai)a

@ A smooth reference metric g; determines both the needed
Jacobians and the smooth connection.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
expressed in the multicube coordinates of regions 3, and 35 that
are identified at the faces 0,84 <+ 03B8p.

@ Use the reference metric to define the putward directed unit
normals to the identified faces: Na.;, My, Nasi, and Ng;.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
expressed in the multicube coordinates of regions 3, and 35 that
are identified at the faces 0,584 <+ 03B85.

@ Use the reference metric to define the outward directed unit
normals to the identified faces: Na.;, My, Nasi, and Ng;.

@ The needed Jacobians are given by |
Jask = CA31 (9% — PlyoPsk ) — Play Pgan,

«BBK (ot = =g N ~BBK o ok
Jpai = (07 = Naaifa,) Cany — NaailMgy.
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Fixing the Differential Structure Il

@ Let gnj and gg; be the components of a smooth reference metric
expressed in the multicube coordinates of regions 3, and 35 that
are identified at the faces 0,584 <+ 03B85.

@ Use the reference metric to define the putward directed unit
normals to the identified faces: Na.;, My, Nasi, and Ng;.

@ The needed Jacobians are given by
S5 = CAS} (3k — PlasMesk ) — Mao P,

+ BBk ¢ Bjk Y ¢
Jpai = (07 = Paaifia,) Cany — NAailgg.
@ These Jacobians satisfy:
A ~ «BBk
nAa JB/%(”B% Naai = JAaI NBak

_ JAai Aaii i _ JAai xBBL
UAa = BakUBﬁf CBBkuBﬂ Ok = JBGiJaak

where ' is any vector tangent to the interface boundary.
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Solving PDEs on Multicube Manifolds

5%, 1 ss

L —

t 5 o t 5 o
< P
@ Solve PDEs within each cubic region using any standard method.

@ Use boundary conditions on cube faces to enforce appropriate
continuity conditions, thus selecting the correct global solution.
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Solving PDEs on Multicube Manifolds

o S5 b s
1 2‘ 3 4 ! 3 4
t 5 o t 5 P

X X y

@ Solve PDEs within each cubic region using any standard method.

@ Use boundary conditions on cube faces to enforce appropriate
continuity conditions, thus selecting the correct global solution.

@ For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields, &, with
outgoing characteristics, &, from neighbor,

by = (Ug)a Ug = (Up)s:

8/22
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u” + Ak 5 (u)Vu® = F2(u), where the dynamical
fields u® are tensors that can be transformed across interface
boundaries using the Jacobians J59, etc.
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u” + Ak 5 (u)Vu® = F2(u), where the dynamical
fields u® are tensors that can be transformed across interface
boundaries using the Jacobians J59, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® ={vap, Nap = —t°0cthap, Piap = di1bap } are not tensor fields.

o The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of Iy, M4, = —°0c1) 25, and the
one that comes from preserving the constraint Cizp = ®jap — 9itbap,
t°0cCiap = —72Ciap-
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u” + Ak 5 (u)Vu® = F2(u), where the dynamical
fields u® are tensors that can be transformed across interface
boundaries using the Jacobians J59, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® ={vap, Nap = —t°0cthap, Piap = di1bap } are not tensor fields.

o The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of Iy, M4, = —°0c1) 25, and the
one that comes from preserving the constraint Cizp = ®jap — 9itbap,
t°0cCiab = —72Ciap-

@ Our attempts to construct the transformations for non-tensor
quantities like 9;1 4, and @, across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.

@ A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation
@ Let ¢/,, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = 1,,dx?dx? = —dit? + g;dx'dx/,
where g is the smooth multi-cube reference three-metric on .
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Covariant Representations of Einstein’s Equation
@ Let ¢/,, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = 1,,dx?dx? = —dit? + g;dx'dx/,
where g; is the smooth multi-cube reference three-metric on .
@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V:

Rap = —30%VeVathap + V(alp) — 1° “Re cd(a¥b)e
1)Cd1/)ef (v6@)caqu/}ab - AaoeAbdf) ’
where A pe = 1ag (rgc — Fg(,), and A, = YA e
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Covariant Representations of Einstein’s Equation
@ Let ¢/,, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = 1,,dx?dx? = —dit? + g;dx'dx/,
where g is the smooth multi-cube reference three-metric on .
@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V .

Rap = _%@Cd@c@d@ab + v(aAb) - wcc,ﬁecd(awb)e
JF@Cd?/)ef (6e®ca6f¢ab - AaceAbdf) )
where Ay = g (r rgc>, and A, — GPCA .
@ A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a

covariant generalized harmonic condition: A, = —Ha(t¢q).
@ The vacuum Einstein equations then become:

VNN gap = —2V(aHpy + 209 (VetbeaVitbap — Dacelpdr)
20 R oqatbge + 0 |20ty — Yant®| (Ho + Ac).
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Solving Einstein’s Equation on Multicube Manifolds

@ Examine a solution to the non-linear coupled
Einstein-Klein-Gordon complex scalar-field equations numerically
with perturbations in the “tensor” modes of the system (that
represent gravitational wave degrees of freedom) away from the
static “Einstein Universe” solution.

@ Visualize /514,012 on the

equatorial x = 7/2 two-sphere.

Lee Lindblom (Physics Dept. : UCSD) MiniWorkshop :NCU - 9/12/2023 11/22



Solving Einstein’s Equation on Multicube Manifolds

@ Examine a solution to the non-linear coupled
Einstein-Klein-Gordon complex scalar-field equations numerically
with perturbations in the “tensor” modes of the system (that
represent gravitational wave degrees of freedom) away from the
static “Einstein Universe” solution.

@ Visualize /514,012 on the

equatorial x = 7/2 two-sphere.

@ The constraints C converge to zero, o'
so the numerical solution converges .. i
to a solution of the exact equations. ¢
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Choosing a Reference Metric
@ Finding an appropriate reference metric is the most difficult step in
constructing a multicube representation of a manifold.
@ For simple familiar manifolds, e.g. S®, S? x S', etc., it is easy to
use their standard metrics by transforming them into multicube
Cartesian coordinates, but very difficult for arbitrary manifolds.
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Choosing a Reference Metric

@ Finding an appropriate reference metric is the most difficult step in
constructing a multicube representation of a manifold.

@ For simple familiar manifolds, e.g. S®, S? x S', etc., it is easy to
use their standard metrics by transforming them into multicube
Cartesian coordinates, but very difficult for arbitrary manifolds.

@ For arbitrary 2D manifolds a step by step
method exists for constructing the needed
reference metrics:

@ First, choose the vertex opening angles 0,
satisfying 27 = Zf’ 0, at each vertex of the
multicube structure, e.g. 0, = 57 where N is the
number of squares that intersect at that vertex.

Lee Lindblom (Physics Dept. : UCSD) MiniWorkshop :NCU - 9/12/2023



Choosing a Reference Metric

@ Finding an appropriate reference metric is the most difficult step in
constructing a multicube representation of a manifold.

@ For simple familiar manifolds, e.g. S®, S? x S', etc., it is easy to
use their standard metrics by transforming them into multicube
Cartesian coordinates, but very difficult for arbitrary manifolds.

@ For arbitrary 2D manifolds a step by step
method exists for constructing the needed
reference metrics:

@ First, choose the vertex opening angles 0,
satisfying 27 = Zf’ 0, at each vertex of the
multicube structure, e.g. 0, = 57 where N is the
number of squares that intersect at that vertex.
@ Next choose the flat metric in this star-shaped domain by setting:

ds® = ghydxGdxb = dx3 + 2 cos 6 dxa dya + dy3

in each square. This metric is smooth across all the internal
interface boundaries, and ensures there is no cone singularity.
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Choosing a Reference Metric

@ Combine the flat reference metrics defined at each corner of each
multicube region using a partition of unity: g., = >, u,()?)g;b.

@ The weight functions v,(X) are
chosen to be non-negative
uy(X) > 0, sum to unity at each
point 1 = >, uy(X), and fall to
zero at the outer boundaries of
the star-shaped domains.
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Choosing a Reference Metric

@ Combine the flat reference metrics defined at each corner of each
multicube region using a partition of unity: g., = >, u,()?)ggb.

@ The weight functions u/(X) are
chosen to be non-negative
uy(X) > 0, sum to unity at each
point 1 = >, uy(X), and fall to
zero at the outer boundaries of
the star-shaped domains.

@ Reference metrics produced by averaging flat metrics in this way
have no conical singularities, and are continuous across all the
multicube interface boundaries.

@ Unfortunately, they are not (in general) differentiable across those
boundaries.
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Choosing a Reference Metric

@ Combine the flat reference metrics defined at each corner of each
multicube region using a partition of unity: g., = >, u,()?)ggb.

@ The weight functions u/(X) are
chosen to be non-negative
uy(X) > 0, sum to unity at each
point 1 = >, uy(X), and fall to
zero at the outer boundaries of
the star-shaped domains.

@ Reference metrics produced by averaging flat metrics in this way
have no conical singularities, and are continuous across all the
multicube interface boundaries.

@ Unfortunately, they are not (in general) differentiable across those
boundaries.

@ Modify these C° metrics by adding corrections, §a» = Jap + 0Qabs
where the §g,, are chosen to make the extrinsic curvature Kz,
continuous across each interface boundary.
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Multicube Structures for Two-Manifolds

@ Compact orientable two-manifolds are uniquely determined by
their genus numbers.
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Multicube Structures for Two-Manifolds

@ Compact orientable two-manifolds are uniquely determined by
their genus numbers.

@ Multicube structures for arbitrary two-manifolds are therefore
straightforward to construct: Attaching a copy of the ten-region
representation to the genus number two manifold in the
appropriate way raises the genus number by one.

y|m 2 1 | v
)
p|3 T 2 oL
K’| 9 =1 3 w
p|3 5 4 [+'3
= T
Genus 2
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Multicube Structures for Two-Manifolds

@ Compact orientable two-manifolds are uniquely determined by
their genus numbers.

@ Multicube structures for arbitrary two-manifolds are therefore
straightforward to construct: Attaching a copy of the ten-region
representation to the genus number two manifold in the
appropriate way raises the genus number by one.

(44 (=3 T (i3] - T (18 " T
]'| 10 2 1 T 1'| n 2 1 107 - 17 |7
D3 [in] i
B G| 7 2 o P 51 2 mp'ﬁ' 7" 27 |
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Multicube Structures for Two-Manifolds

@ Compact orientable two-manifolds are uniquely determined by
their genus numbers.

@ Multicube structures for arbitrary two-manifolds are therefore
straightforward to construct: Attaching a copy of the ten-region
representation to the genus number two manifold in the
appropriate way raises the genus number by one.

D F T [i5] i T [ i T"

ki | 10 2 1 T 1'| n 2 1 107 - 17 |7
D3 [in] i
b G|l 7 2 | o Bl 7 2 mp'ﬁ’ 7 27 e
K’| o & 3 *® K| o & 3 o & 37 |w
i E| 5 4 | P Bl s 4 mp,ﬁ' 5" a4 o
(=3 T Fa T T G
Genus 2 Genus 3

@ Reference metrics constructed on these structures make it
possible to solve differential equations numerically on any
compact orientable two-dimensional manifold.
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Smooth Reference Metrics
@ As an example, we have solved the Ricci flow equation
numerically on these manifolds:

V(t) - Vo
_—— R ;
where H, = gap 9% (ng —~ ng) is the DeTurk term that fixes the

gauge and makes the equation strongly parabolic, V(1) is the
volume, and (R(t)) is the volume averaged scalar curvature.

O0t9ab = —2Rap+ VaHp+ VpHa—p
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Smooth Reference Metrics

@ As an example, we have solved the Ricci flow equation
numerically on these manifolds:

V(t) -V
O0t9ap = —2Rap+ VaHp + VpHa — M(&(t)o 9ab + (R(1)) Gab,
where Hz = gap 9% <ng - F§d> is the DeTurk term that fixes the

gauge and makes the equation strongly parabolic, V(1) is the
volume, and (R(t)) is the volume averaged scalar curvature.

@ In this example Ricci flow on the genus number N, = 5 multicube
manifold transforms the C?~ reference metric used as initial data
into a smooth constant curvature metric:
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Otgab = —2Rap+ VaHp+ VpHa — MW 9ab + (R(1)) Gab,
where H, = gap 9% (ng —~ f‘c’d) is the DeTurk term that fixes the

gauge and makes the equation strongly parabolic, V(1) is the
volume, and (R(t)) is the volume averaged scalar curvature.

@ In this example Ricci flow on the genus number N; = 5 multicube
manifold transforms the C?~ reference metric used as initial data
into a smooth constant curvature metric:
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Representations of Arbitrary Three-Manifolds
@ Three dimensional manifolds are much more complicated:
@ There is no complete catalog of three-dimensional manifolds.
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@ There is no complete catalog of three-dimensional manifolds.

@ Constructing C° reference metrics is more complicated in three
dimensions, and a general method does not exist yet.

© Smoothing the C° reference metrics to C' is much more
complicated than the two-dimensional case, but has been used
successfully on about 60 different three-manifolds.
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@ Constructing C° reference metrics is more complicated in three
dimensions, and a general method does not exist yet.

© Smoothing the C° reference metrics to C' is much more
complicated than the two-dimensional case, but has been used
successfully on about 60 different three-manifolds.

@ While no complete catalog of three-dimensional manifolds exists,
there are catalogs containing triangulation based representations
of large diverse collections of three-manifolds. One of these is
part of the Regina software package.
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Representations of Arbitrary Three-Manifolds

@ Three dimensional manifolds are much more complicated:

@ There is no complete catalog of three-dimensional manifolds.

@ Constructing C° reference metrics is more complicated in three
dimensions, and a general method does not exist yet.

© Smoothing the C° reference metrics to C' is much more
complicated than the two-dimensional case, but has been used
successfully on about 60 different three-manifolds.

@ While no complete catalog of three-dimensional manifolds exists,
there are catalogs containing triangulation based representations
of large diverse collections of three-manifolds. One of these is
part of the Regina software package.

@ Regina is a software tool for Regina
creating, manipulating, and @
visualizing triangulations of
arbitrary three-manifolds,
developed by Benjamin
Burton, Rayan Budney and
William Pettersson. e e

About | Authors | Libraries | Thanksto
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Cataloas of Three-Manifolds
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Creating Multicube Representations
@ Oliver Rinne has developed a python code that automatically
converts the triangulation gluing structure from a Regina output
file into a multicube structure.
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@ This figure shows the multicube structure for the manifold
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Creating Multicube Representations
@ Oliver Rinne has developed a python code that automatically
converts the triangulation gluing structure from a Regina output
file into a multicube structure.

@ This figure shows the multicube structure for the manifold
SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

@ Multicube structures have also been constructed by hand for
some three-manifolds constructed by identifying the faces of
polyhedra. Figure on the right shows a multicube structure for
Seifert-Weber space.
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Building Three-Dimensional Reference Metrics

@ In three dimensions, building C° reference metrics follows the
same basic approach used in two dimensions:
@ Construct flat metrics in each star shaped domain surrounding
each vertex in the multicube structure.

OEP %
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Building Three-Dimensional Reference Metrics

@ In three dimensions, building C° reference metrics follows the
same basic approach used in two dimensions:
@ Construct flat metrics in each star shaped domain surrounding
each vertex in the multicube structure.

A AR

@ Combine the flat metrics in each multicube region using a partition
of unity that is continuous across the cube interfaces.
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Building Three-Dimensional Reference Metrics

@ In three dimensions, building C° reference metrics follows the
same basic approach used in two dimensions:
@ Construct flat metrics in each star shaped domain surrounding
each vertex in the multicube structure.

A AR

@ Combine the flat metrics in each multicube region using a partition
of unity that is continuous across the cube interfaces.
@ In three dimensions it is convenient to parameterize the flat
inverse metrics in each cube using the dihedral angles between

cube faces Vagxyy, Vagyzy, and Yagyzy:
ds—2 — gab 0a0p = 8)2( + 8}3 + 8§ + 2 coshagxyy Ox Oy
+2 cosYayyzy Oy Oz & 2cos Yp(xzy Ox Oz-
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Building Three-Dimensional Reference Metrics Il
@ The uniform dihedral angle assumption, 4,5y = NA?}WQ}
(analogous to the method used in two dimensions) produces flat

metrics with minimal coordinate distortion.
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Building Three-Dimensional Reference Metrics Il
@ The uniform dihedral angle assumption, 4,5y = NA?}:S}
(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.

@ This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube

structures constructed by hand.
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Building Three-Dimensional Reference Metrics Il

@ The uniform dihedral angle assumption, 4,5y = Nf{:ﬁ}
(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.

@ This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.

@ Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:

@ From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.
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@ The uniform dihedral angle assumption, 4,5y = Nf{:ﬁ}
(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.

@ This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.

@ Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:

@ From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.

@ In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.
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Building Three-Dimensional Reference Metrics Il

The uniform dihedral angle assumption, 14,5 = Nf{:ﬁ}
(analogous to the method used in two dimensions) produces flat
metrics with minimal coordinate distortion.

This assumption has been used to construct reference metrics
successfully on each of the three-dimensional multicube
structures constructed by hand.

Unfortunately only a small fraction of the triangulations in the
Regina catalog admit flat metrics with uniform dihedral angles in
each star-shaped domain:

From the catalog containing manifolds constructed from eleven or
fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in
all the star-shaped domains.

In total, reference metrics were constructed successfully using this
method on 40 different compact orientable manifolds.

A more complicated method of choosing the dihedral angles
allows the construction of reference metrics on 17 additional
manifolds.
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Solving the Constraints on Multicube Manifolds

@ Fan Zhang and | have used the C' smoothed uniform dihedral
angle reference metrics to solve the Einstein constraint equations
on four multicube manifolds.
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Solving the Constraints on Multicube Manifolds

@ Fan Zhang and | have used the C' smoothed uniform dihedral
angle reference metrics to solve the Einstein constraint equations
on four multicube manifolds.

@ We use a simple constant mean curvature constraint equation,
@a@ad) = %(j) (/?1’ — (1)4(:[_1’)) ,
to determine the conformal factor ¢ that transforrers the reference
metric J.p into the physical metric: g.» = ¢*Jap. A is the scalar

curvature associated with g., and (R) is its spatial average.
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Solving the Constraints on Multicube Manifolds

@ Fan Zhang and | have used the C' smoothed uniform dihedral
angle reference metrics to solve the Einstein constraint equations
on four multicube manifolds.

@ We use a simple constant mean curvature constraint equation,
ViV = fo(R-o4R)),
to determine the conformal factor ¢ that transforrrjs the reference
metric J.p into the physical metric: g.» = ¢*Jap. A is the scalar

curvature associated with g., and (R) is its spatial average.

@ The Hamiltonian constraint in th[s ol
case is equivalentto 7 = R — (R),
where R is the physical scalar 107

curvature.
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Solving the Constraints on Multicube Manifolds

@ Fan Zhang and | have used the C' smoothed uniform dihedral
angle reference metrics to solve the Einstein constraint equations
on four multicube manifolds.

@ We use a simple constant mean curvature constraint equation,
@a@ad) = %(j) (,Eu’ — q)4<lt_1’>) ,
to determine the conformal factor ¢ that transforrrjs the reference
metric J.p into the physical metric: g.» = ¢*Jap. A is the scalar

curvature associated with g., and (R) is its spatial average.

@ The Hamiltonian constraint in th[s ol
case is equivalentto 7 = R — (R),
where R is the physical scalar 107

curvature.

@ The solution to this constraint
equation is also a solution to the
Yamabe problem. ‘
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Solving the Constraints on Multicube Manifolds |l

@ The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.

@ In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.
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Solving the Constraints on Multicube Manifolds |l

@ The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.

@ In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.

@ The hyperbolic relaxation version of the constant mean curvature
equation described in the last slide is given by,

—0Rp— kO + VN = Lo (F? . ¢4<F?>) .
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Solving the Constraints on Multicube Manifolds |l

@ The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.

@ In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.

@ The hyperbolic relaxation version of the constant mean curvature
equation described in the last slide is given by,

—0R— KO+ VNV = 1o (F? -0
@ This method is designed to damp away 0;¢ leaving a solution to
the elliptic equation at late times.
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Solving the Constraints on Multicube Manifolds |l

@ The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.

@ In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.

@ The hyperbolic relaxation version of the constant mean curvature
equation described in the last slide is given by,

—0R— KO+ VNV = 1o (F? —HMRY).
@ This method is designed to damp away 0;¢ leaving a solution to

the elliptic equation at late times. o

@ The method works well on manifolds
with negative scalar curvatures:

(R) < 0 but fails when (R ) > 0.

o]
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@ The standard numerical methods for solving elliptic equations on
these manifolds are very inefficient.

@ In some cases a method called hyperbolic relaxation can be used
to solve elliptic equations more efficiently.

@ The hyperbolic relaxation version of the constant mean curvature
equation described in the last slide is given by,

—0R— KO+ VNV = 1o (F? —HMRY).
@ This method is designed to damp away 0;¢ leaving a solution to
the elliptic equation at late times. o

—— Hyperbolic G5xS1
35xS1

@ The method works well on manifolds
with negative scalar curvatures:

(R) < 0 but fails when (R ) > 0.

@ The accuracy of the hyperbolic P
relaxation solutions can be improved
using the results as initial guesses
for standard elliptic solves. 10796 24 32 40 48 56

[El
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