Solving Einstein's Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom

Department of Physics
University of California at San Diego

Mini-Workshop on Recent Advances in Gravitation Nester Center for Mathematics and Theoretical Physics National Central University, Taiwan - 9 December 2023

Solving Einstein’s Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom

Department of Physics University of California at San Diego

Mini-Workshop on Recent Advances in Gravitation
Nester Center for Mathematics and Theoretical Physics
National Central University, Taiwan - 9 December 2023

- Develop computational methods for representing and constructing three-dimensional manifolds with arbitrary topologies.

Solving Einstein’s Equation Numerically on Manifolds with Arbitrary Spatial Topologies

Lee Lindblom
Department of Physics University of California at San Diego

> Mini-Workshop on Recent Advances in Gravitation Nester Center for Mathematics and Theoretical Physics National Central University, Taiwan - 9 December 2023

- Develop computational methods for representing and constructing three-dimensional manifolds with arbitrary topologies.
- Develop numerical methods for solving PDEs (e.g. Einstein's equation) on manifolds with topology $R \times \Sigma$, where Σ is a three-dimensional manifold with arbitrary topology.

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of \mathbb{R}^{n}. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of \mathbb{R}^{n}. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

- What is the most convenient and efficient way to represent manifolds in a computer code?
- Is there a general way to organize these representations in a way makes it possible to change from one manifold to another without completely re-writing major parts of the code?

Differentiable Manifolds

- Manifolds are topological spaces covered by a collection of open sets, each of which is homeomorphic to a subset of \mathbb{R}^{n}. These homeomorphisms are the coordinate charts.
- In a differentiable manifold the maps between coordinate charts must be differentiable in regions where the coordinate patches overlap.

- What is the most convenient and efficient way to represent manifolds in a computer code?
- Is there a general way to organize these representations in a way makes it possible to change from one manifold to another without completely re-writing major parts of the code?
- Where can we find an extensive catalog of three-manifolds that includes all the information needed to use them for computations?

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

Representations of Arbitrary Three-Manifolds

- Keeping track of the overlap regions between coordinate charts is complicated and time consuming. Can we find a way to represent differentiable manifolds using non-overlapping coordinate charts?
- Every two- and three-manifold admits a triangulation (Radó 1925, Moire 1952), i.e. can be represented as a set of triangles (or tetrahedra), plus rules for gluing their edges (or faces) together.
- Every two- and three-dimensional triangulation can be refined to a "multicube" representation: For example, in three-dimensions divide each tetrahedron into four "distorted" cubes:

"Multicube" Representations of Manifolds

- Multicube representations of topological manifolds consist of a set of cubic regions, \mathcal{B}_{A}, plus maps that identify the faces of neighboring regions, $\Psi_{B \beta}^{A \alpha}\left(\partial_{\beta} \mathcal{B}_{B}\right)=\partial_{\alpha} \mathcal{B}_{A}$.

"Multicube" Representations of Manifolds

- Multicube representations of topological manifolds consist of a set of cubic regions, \mathcal{B}_{A}, plus maps that identify the faces of neighboring regions, $\Psi_{B \beta}^{A \alpha}\left(\partial_{\beta} \mathcal{B}_{B}\right)=\partial_{\alpha} \mathcal{B}_{A}$.

- Choose cubic regions to have uniform size and orientation.
- Choose linear interface identification maps $\Psi_{B \beta}^{A \alpha}$: $x_{A}^{i}=C_{A \alpha}^{i}+C_{B \beta k}^{A \alpha i}\left(x_{B}^{k}-C_{B \beta}^{k}\right)$, where $C_{B \beta k}^{A \alpha i}$ is a rotationreflection matrix, and $c_{A \alpha}^{i}$ is center of the α face of
 region A.

Fixing the Differential Structure

- The boundary identification maps, $\Psi_{B \beta}^{A \alpha}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

- Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.

Fixing the Differential Structure

- The boundary identification maps, $\Psi_{B \beta}^{A \alpha}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

- Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.
- The differential structure provides the framework in which smooth functions and tensors are defined on a manifold.

Fixing the Differential Structure

- The boundary identification maps, $\Psi_{B \beta}^{A \alpha}$, used to construct multicube topological manifolds are continuous, but typically are not differentiable at the interfaces.

- Smooth tensor fields expressed in multicube Cartesian coordinates are not (in general) even continuous at the interfaces.
- The differential structure provides the framework in which smooth functions and tensors are defined on a manifold.
- The standard construction assumes the existence of overlapping coordinate domains having smooth transition maps.
- Multicube manifolds need an additional layer of infrastructure: e.g., overlapping domains $\mathcal{D}_{A} \supset \mathcal{B}_{A}$ with transition maps that are smooth in the overlap regions.

Fixing the Differential Structure II

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B \beta k}^{A \alpha i}$ and its dual $J_{A \alpha i}^{* B \beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$
\left\langle v_{B}^{i}\right\rangle_{A}=J_{B \beta k}^{A \alpha i} v_{B}^{k}, \quad\left\langle w_{B i}\right\rangle_{A}=J_{A \alpha i}^{* B \beta k} w_{B k} .
$$

Fixing the Differential Structure II

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B \beta k}^{A \alpha i}$ and its dual $J_{A \alpha i}^{* B \beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$
\left\langle v_{B}^{i}\right\rangle_{A}=J_{B \beta k}^{A \alpha i} v_{B}^{k}, \quad\left\langle w_{B i}\right\rangle_{A}=J_{A \alpha i}^{* B \beta k} w_{B k} .
$$

- Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$
v_{A}^{i}=\left\langle v_{B}^{i}\right\rangle_{A}, \quad w_{A i}=\left\langle w_{B i}\right\rangle_{A}
$$

Fixing the Differential Structure II

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B \beta k}^{A \alpha i}$ and its dual $J_{A \alpha i}^{* B \beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$
\left\langle v_{B}^{i}\right\rangle_{A}=J_{B \beta k}^{A \alpha i} v_{B}^{k}, \quad\left\langle w_{B i}\right\rangle_{A}=J_{A \alpha i}^{* B \beta k} w_{B k} .
$$

- Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$
v_{A}^{i}=\left\langle v_{B}^{i}\right\rangle_{A}, \quad w_{A i}=\left\langle w_{B i}\right\rangle_{A}
$$

- If there exists a covariant derivative $\tilde{\nabla}_{i}$ determined by a smooth connection, then differentiability across interface boundaries can be defined as continuity of the covariant derivatives:

$$
\tilde{\nabla}_{A j} v_{A}^{i}=\left\langle\tilde{\nabla}_{B j} v_{B}^{i}\right\rangle_{A}, \quad \tilde{\nabla}_{A j} w_{A i}=\left\langle\tilde{\nabla}_{B j} w_{B i}\right\rangle_{A}
$$

Fixing the Differential Structure II

- All that is needed to define continuous tensor fields at interface boundaries is the Jacobian $J_{B \beta k}^{A \alpha i}$ and its dual $J_{A \alpha i}^{* B \beta k}$ that transform tensors from one multicube coordinate region to another.
- Define the transformed tensors across interface boundaries:

$$
\left\langle v_{B}^{i}\right\rangle_{A}=J_{B \beta k}^{A \alpha i} v_{B}^{k}, \quad\left\langle w_{B i}\right\rangle_{A}=J_{A \alpha i}^{* B \beta k} w_{B k} .
$$

- Tensor fields are continuous across interface boundaries if they are equal to their transformed neighbors:

$$
v_{A}^{i}=\left\langle v_{B}^{i}\right\rangle_{A}, \quad w_{A i}=\left\langle w_{B i}\right\rangle_{A}
$$

- If there exists a covariant derivative $\tilde{\nabla}_{i}$ determined by a smooth connection, then differentiability across interface boundaries can be defined as continuity of the covariant derivatives:

$$
\tilde{\nabla}_{A j} v_{A}^{i}=\left\langle\tilde{\nabla}_{B j} v_{B}^{i}\right\rangle_{A}, \quad \tilde{\nabla}_{A j} w_{A i}=\left\langle\tilde{\nabla}_{B j} w_{B i}\right\rangle_{A}
$$

- A smooth reference metric $\tilde{g}_{i j}$ determines both the needed Jacobians and the smooth connection.

Fixing the Differential Structure III

- Let $\tilde{g}_{A i j}$ and $\tilde{g}_{B i j}$ be the components of a smooth reference metric expressed in the multicube coordinates of regions \mathcal{B}_{A} and \mathcal{B}_{B} that are identified at the faces $\partial_{\alpha} \mathcal{B}_{A} \leftrightarrow \partial_{\beta} \mathcal{B}_{B}$.
- Use the reference metric to define the outward directed unit normals to the identified faces: $\tilde{n}_{A \alpha i}, \tilde{n}_{A \alpha}^{i}, \tilde{n}_{B \beta i}$, and $\tilde{n}_{B \beta}^{i}$.

Fixing the Differential Structure III

- Let $\tilde{g}_{A i j}$ and $\tilde{g}_{B i j}$ be the components of a smooth reference metric expressed in the multicube coordinates of regions \mathcal{B}_{A} and \mathcal{B}_{B} that are identified at the faces $\partial_{\alpha} \mathcal{B}_{A} \leftrightarrow \partial_{\beta} \mathcal{B}_{B}$.
- Use the reference metric to define the outward directed unit normals to the identified faces: $\tilde{n}_{A \alpha i}, \tilde{n}_{A \alpha}^{i}, \tilde{n}_{B \beta i}$, and $\tilde{n}_{B \beta}^{i}$.
- The needed Jacobians are given by
$J_{B \beta k}^{A \alpha i}=C_{B \beta \ell}^{A \alpha i}\left(\delta_{k}^{\ell}-\tilde{n}_{B \beta}^{\ell} \tilde{n}_{B \beta k}\right)-\tilde{n}_{A \alpha}^{i} \tilde{n}_{B \beta k}$,
$J_{A \alpha i}^{* B \beta k}=\left(\delta_{i}^{\ell}-\tilde{n}_{A \alpha i} \tilde{n}_{A \alpha}^{\ell}\right) C_{A \alpha \ell}^{B \beta k}-\tilde{n}_{A \alpha i} \tilde{n}_{B \beta}^{k}$.

Fixing the Differential Structure III

- Let $\tilde{g}_{A i j}$ and $\tilde{g}_{B i j}$ be the components of a smooth reference metric expressed in the multicube coordinates of regions \mathcal{B}_{A} and \mathcal{B}_{B} that are identified at the faces $\partial_{\alpha} \mathcal{B}_{A} \leftrightarrow \partial_{\beta} \mathcal{B}_{B}$.
- Use the reference metric to define the outward directed unit normals to the identified faces: $\tilde{n}_{A \alpha i}, \tilde{n}_{A \alpha}^{i}, \tilde{n}_{B \beta i}$, and $\tilde{n}_{B \beta}^{i}$.
- The needed Jacobians are given by
$J_{B \beta k}^{A \alpha i}=C_{B \beta \ell}^{A \alpha i}\left(\delta_{k}^{\ell}-\tilde{n}_{B \beta}^{\ell} \tilde{n}_{B \beta k}\right)-\tilde{n}_{A \alpha}^{i} \tilde{n}_{B \beta k}$,
$J_{A \alpha i}^{* B \beta k}=\left(\delta_{i}^{\ell}-\tilde{n}_{A \alpha i} \tilde{n}_{A \alpha}^{\ell}\right) C_{A \alpha l}^{B \beta k}-\tilde{n}_{A \alpha i} \tilde{n}_{B \beta}^{k}$.
- These Jacobians satisfy:

$$
\begin{array}{ll}
\tilde{n}_{A \alpha}^{i}=-J_{B \beta k}^{A \alpha i} \tilde{n}_{B \beta}^{k}, & \tilde{n}_{A \alpha i}=-J_{A \alpha i}^{* B \beta k} \tilde{n}_{B \beta k} \\
u_{A \alpha}^{i}=J_{B \beta k}^{A \alpha i} u_{B \beta}^{k}=C_{B \beta k}^{A \alpha i} u_{B \beta}^{k}, & \\
\delta_{k}^{i}=J_{B \beta \ell}^{A \alpha i} J_{A \alpha k}^{* B \beta \ell},
\end{array}
$$

where u^{i} is any vector tangent to the interface boundary.

Solving PDEs on Multicube Manifolds

- Solve PDEs within each cubic region using any standard method.
- Use boundary conditions on cube faces to enforce appropriate continuity conditions, thus selecting the correct global solution.

Solving PDEs on Multicube Manifolds

- Solve PDEs within each cubic region using any standard method.
- Use boundary conditions on cube faces to enforce appropriate continuity conditions, thus selecting the correct global solution.
- For first-order symmetric hyperbolic systems whose dynamical fields are tensors: set incoming characteristic fields, \hat{u}^{-}, with outgoing characteristics, \hat{u}^{+}, from neighbor,

$$
\hat{u}_{A}^{-}=\left\langle\hat{u}_{B}^{+}\right\rangle_{A} \quad \hat{u}_{B}^{-}=\left\langle\hat{u}_{A}^{+}\right\rangle_{B} .
$$

Solving Einstein's Equation on Multi-Cube Manifolds

- Multi-cube methods were designed to solve first-order hyperbolic systems, $\partial_{t} u^{\alpha}+A^{k \alpha}{ }_{\beta}(u) \tilde{\nabla}_{k} u^{\beta}=F^{\alpha}(u)$, where the dynamical fields U^{α} are tensors that can be transformed across interface boundaries using the Jacobians $J_{B \beta k}^{A \alpha i}$, etc.

Solving Einstein's Equation on Multi-Cube Manifolds

- Multi-cube methods were designed to solve first-order hyperbolic systems, $\partial_{t} U^{\alpha}+A^{k \alpha}{ }_{\beta}(u) \tilde{\nabla}_{k} u^{\beta}=F^{\alpha}(u)$, where the dynamical fields u^{α} are tensors that can be transformed across interface boundaries using the Jacobians $J_{B \beta k}^{A \alpha i}$, etc.
- The usual first-order representations of Einstein's equation fail to meet these conditions in two important ways:
- The usual choice of dynamical fields, $u^{\alpha}=\left\{\psi_{a b}, \Pi_{a b}=-t^{c} \partial_{c} \psi_{a b}, \Phi_{i a b}=\partial_{i} \psi_{a b}\right\}$ are not tensor fields.
- The usual first-order evolution equations are not covariant: i.e., the one that comes from the definition of $\Pi_{a b}, \Pi_{a b}=-t^{c} \partial_{c} \psi_{a b}$, and the one that comes from preserving the constraint $C_{i a b}=\Phi_{i a b}-\partial_{i} \psi_{a b}$, $t^{c} \partial_{c} C_{i a b}=-\gamma_{2} C_{i a b}$.

Solving Einstein's Equation on Multi-Cube Manifolds

- Multi-cube methods were designed to solve first-order hyperbolic systems, $\partial_{t} u^{\alpha}+A^{k \alpha}{ }_{\beta}(u) \tilde{\nabla}_{k} u^{\beta}=F^{\alpha}(u)$, where the dynamical fields U^{α} are tensors that can be transformed across interface boundaries using the Jacobians $J_{B \beta k}^{A \alpha i}$, etc.
- The usual first-order representations of Einstein's equation fail to meet these conditions in two important ways:
- The usual choice of dynamical fields, $u^{\alpha}=\left\{\psi_{a b}, \Pi_{a b}=-t^{c} \partial_{c} \psi_{a b}, \Phi_{i a b}=\partial_{i} \psi_{a b}\right\}$ are not tensor fields.
- The usual first-order evolution equations are not covariant: i.e., the one that comes from the definition of $\Pi_{a b}, \Pi_{a b}=-t^{c} \partial_{c} \psi_{a b}$, and the one that comes from preserving the constraint $C_{i a b}=\Phi_{i a b}-\partial_{i} \psi_{a b}$, $t^{c} \partial_{c} C_{i a b}=-\gamma_{2} C_{i a b}$.
- Our attempts to construct the transformations for non-tensor quantities like $\partial_{i} \psi_{a b}$ and $\Phi_{i a b}$ across the non-smooth multi-cube interface boundaries failed to result in stable numerical evolutions.
- A spatially covariant first-order representation of the Einstein evolution system seems to be needed.

Covariant Representations of Einstein's Equation

- Let $\tilde{\psi}_{a b}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $d s^{2}=\tilde{\psi}_{a b} d x^{a} d x^{b}=-d t^{2}+\tilde{g}_{i j} d x^{i} d x^{j}$, where $\tilde{g}_{i j}$ is the smooth multi-cube reference three-metric on Σ.

Covariant Representations of Einstein's Equation

- Let $\tilde{\psi}_{a b}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $d s^{2}=\tilde{\psi}_{a b} d x^{a} d x^{b}=-d t^{2}+\tilde{g}_{i j} d x^{i} d x^{j}$, where $\tilde{g}_{i j}$ is the smooth multi-cube reference three-metric on Σ.
- A fully covariant expression for the Ricci tensor can be obtained using the reference covariant derivative $\tilde{\nabla}_{a}$:

$$
\begin{aligned}
& R_{a b}=-\frac{1}{2} \psi^{c d} \tilde{\nabla}_{c} \tilde{\nabla}_{d} \psi_{a b}+\nabla_{(a} \Delta_{b)}-\psi^{c d} \tilde{R}_{c d}^{e}\left(a \psi_{b) e}\right. \\
&+\psi^{c d} \psi^{e f}\left(\tilde{\nabla}_{e} \psi_{c a} \tilde{\nabla}_{f} \psi_{a b}-\Delta_{a c e} \Delta_{b d f}\right) \\
& \text { where } \Delta_{a b c}=\psi_{a d}\left(\Gamma_{b c}^{d}-\tilde{\Gamma}_{b c}^{d}\right), \text { and } \Delta_{a}=\psi^{b c} \Delta_{a b c} .
\end{aligned}
$$

Covariant Representations of Einstein's Equation

- Let $\tilde{\psi}_{a b}$ denote a smooth reference metric on the manifold $R \times \Sigma$. For convenience we choose $d s^{2}=\tilde{\psi}_{a b} d x^{a} d x^{b}=-d t^{2}+\tilde{g}_{j j} d x^{i} d x^{j}$, where $\tilde{g}_{i j}$ is the smooth multi-cube reference three-metric on Σ.
- A fully covariant expression for the Ricci tensor can be obtained using the reference covariant derivative $\tilde{\nabla}_{a}$:

$$
\begin{aligned}
R_{a b}= & -\frac{1}{2} \psi^{c d} \tilde{\nabla}_{c} \tilde{\nabla}_{d} \psi_{a b}+\nabla_{(a} \Delta_{b)}-\psi^{c d} \tilde{R}^{e}{ }_{c d(a} \psi_{b) e} \\
& +\psi^{c d} \psi^{e f}\left(\tilde{\nabla}_{e} \psi_{c a} \tilde{\nabla}_{f} \psi_{a b}-\Delta_{a c e} \Delta_{b d f}\right),
\end{aligned}
$$

where $\Delta_{a b c}=\psi_{a d}\left(\Gamma_{b c}^{d}-\tilde{\Gamma}_{b c}^{d}\right)$, and $\Delta_{a}=\psi^{b c} \Delta_{a b c}$.

- A fully-covariant manifestly hyperbolic representation of the Einstein equations can be obtained by fixing the gauge with a covariant generalized harmonic condition: $\Delta_{a}=-H_{a}\left(\psi_{c d}\right)$.
- The vacuum Einstein equations then become:

$$
\begin{aligned}
\psi^{c d} \tilde{\nabla}_{c} \tilde{\nabla}_{d} \psi_{a b}= & -2 \nabla_{(a} H_{b)}+2 \psi^{c d} \psi^{e f}\left(\tilde{\nabla}_{e} \psi_{c a} \tilde{\nabla}_{f} \psi_{a b}-\Delta_{a c e} \Delta_{\text {bdf }}\right) \\
& -2 \psi^{c d} \tilde{R}_{c d(a}^{e} \psi_{b) e}+\gamma_{0}\left[2 \delta_{(a}^{c} t_{b)}-\psi_{a b} t^{c}\right]\left(H_{c}+\Delta_{c}\right) .
\end{aligned}
$$

Solving Einstein's Equation on Multicube Manifolds

- Examine a solution to the non-linear coupled Einstein-Klein-Gordon complex scalar-field equations numerically with perturbations in the "tensor" modes of the system (that represent gravitational wave degrees of freedom) away from the static "Einstein Universe" solution.
- Visualize $\sqrt{\delta \psi_{a b} \delta \psi^{a b}}$ on the equatorial $\chi=\pi / 2$ two-sphere.

Solving Einstein's Equation on Multicube Manifolds

- Examine a solution to the non-linear coupled Einstein-Klein-Gordon complex scalar-field equations numerically with perturbations in the "tensor" modes of the system (that represent gravitational wave degrees of freedom) away from the static "Einstein Universe" solution.
- Visualize $\sqrt{\delta \psi_{a b} \delta \psi^{a b}}$ on the equatorial $\chi=\pi / 2$ two-sphere.
- The constraints \mathcal{C} converge to zero, so the numerical solution converges to a solution of the exact equations.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. $S^{3}, S^{2} \times S^{1}$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. $S^{3}, S^{2} \times S^{1}$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.
- For arbitrary 2D manifolds a step by step method exists for constructing the needed reference metrics:
- First, choose the vertex opening angles θ_{i} satisfying $2 \pi=\sum_{l}^{N} \theta_{l}$ at each vertex of the multicube structure, e.g. $\theta_{l}=\frac{2 \pi}{N}$ where N is the number of squares that intersect at that vertex.

Choosing a Reference Metric

- Finding an appropriate reference metric is the most difficult step in constructing a multicube representation of a manifold.
- For simple familiar manifolds, e.g. $S^{3}, S^{2} \times S^{1}$, etc., it is easy to use their standard metrics by transforming them into multicube Cartesian coordinates, but very difficult for arbitrary manifolds.
- For arbitrary 2D manifolds a step by step method exists for constructing the needed reference metrics:
- First, choose the vertex opening angles θ_{i} satisfying $2 \pi=\sum_{l}^{N} \theta_{l}$ at each vertex of the multicube structure, e.g. $\theta_{I}=\frac{2 \pi}{N}$ where N is the number of squares that intersect at that vertex.

- Next choose the flat metric in this star-shaped domain by setting:

$$
d s^{2}=\bar{g}_{a b}^{\prime} d x_{A}^{a} d x_{A}^{b}=d x_{A}^{2} \pm 2 \cos \theta_{l} d x_{A} d y_{A}+d y_{A}^{2}
$$

in each square. This metric is smooth across all the internal interface boundaries, and ensures there is no cone singularity.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{a b}=\sum_{l} u_{l}(\vec{x}) \bar{g}_{a b}^{\prime}$.
- The weight functions $u_{l}(\vec{x})$ are chosen to be non-negative $u_{l}(\vec{x}) \geq 0$, sum to unity at each point $1=\sum_{l} u_{l}(\vec{x})$, and fall to zero at the outer boundaries of
 the star-shaped domains.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{a b}=\sum_{l} u_{l}(\vec{x}) \bar{g}_{a b}^{\prime}$.
- The weight functions $u_{l}(\vec{x})$ are chosen to be non-negative $u_{l}(\vec{x}) \geq 0$, sum to unity at each point $1=\sum_{l} u_{l}(\vec{x})$, and fall to zero at the outer boundaries of
 the star-shaped domains.
- Reference metrics produced by averaging flat metrics in this way have no conical singularities, and are continuous across all the multicube interface boundaries.
- Unfortunately, they are not (in general) differentiable across those boundaries.

Choosing a Reference Metric II

- Combine the flat reference metrics defined at each corner of each multicube region using a partition of unity: $\bar{g}_{a b}=\sum_{l} u_{l}(\vec{x}) \bar{g}_{a b}^{\prime}$.
- The weight functions $u_{l}(\vec{x})$ are chosen to be non-negative $u_{l}(\vec{x}) \geq 0$, sum to unity at each point $1=\sum_{l} u_{l}(\vec{x})$, and fall to zero at the outer boundaries of
 the star-shaped domains.
- Reference metrics produced by averaging flat metrics in this way have no conical singularities, and are continuous across all the multicube interface boundaries.
- Unfortunately, they are not (in general) differentiable across those boundaries.
- Modify these C^{0} metrics by adding corrections, $\tilde{g}_{a b}=\bar{g}_{a b}+\delta g_{a b}$, where the $\delta g_{a b}$ are chosen to make the extrinsic curvature $\tilde{K}_{a b}$ continuous across each interface boundary.

Multicube Structures for Two-Manifolds

- Compact orientable two-manifolds are uniquely determined by their genus numbers.

Multicube Structures for Two-Manifolds

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

Genus 2

Multicube Structures for Two-Manifolds

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

Genus 2

Genus 3

Multicube Structures for Two-Manifolds

- Compact orientable two-manifolds are uniquely determined by their genus numbers.
- Multicube structures for arbitrary two-manifolds are therefore straightforward to construct: Attaching a copy of the ten-region representation to the genus number two manifold in the appropriate way raises the genus number by one.

Genus 2

	Ls	\square	τ	ω^{-}	\square°	τ	γ
7	10	8]	10°	8	$]^{*}$	
	${ }_{p}^{\omega} \beta$	7	2	${ }^{2}{ }_{p}^{\omega p^{\prime}} \sigma^{\prime}$	3^{*}	2	D x^{*}
κ	9	6	3	9	6	$3{ }^{\circ}$	K
	P_{β}	5	4	${ }_{\text {c }}{ }^{-} \beta^{*}$	$5{ }^{*}$	4	D ${ }^{\text {c }}$
		σ	τ		σ°	τ	

Genus 3

- Reference metrics constructed on these structures make it possible to solve differential equations numerically on any compact orientable two-dimensional manifold.

Smooth Reference Metrics

- As an example, we have solved the Ricci flow equation numerically on these manifolds:
$\partial_{t} g_{a b}=-2 R_{a b}+\nabla_{a} H_{b}+\nabla_{b} H_{a}-\mu \frac{V(t)-V_{0}}{V(t)} g_{a b}+\langle R(t)\rangle g_{a b}$, where $H_{a}=g_{a b} g^{c d}\left(\Gamma_{c d}^{b}-\tilde{\Gamma}_{c d}^{b}\right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, $V(t)$ is the volume, and $\langle R(t)\rangle$ is the volume averaged scalar curvature.

Smooth Reference Metrics

- As an example, we have solved the Ricci flow equation numerically on these manifolds:
$\partial_{t} g_{a b}=-2 R_{a b}+\nabla_{a} H_{b}+\nabla_{b} H_{a}-\mu \frac{V(t)-V_{0}}{V(t)} g_{a b}+\langle R(t)\rangle g_{a b}$, where $H_{a}=g_{a b} g^{c d}\left(\Gamma_{c d}^{b}-\tilde{\Gamma}_{c d}^{b}\right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, $V(t)$ is the volume, and $\langle R(t)\rangle$ is the volume averaged scalar curvature.
- In this example Ricci flow on the genus number $N_{g}=5$ multicube manifold transforms the C^{2-} reference metric used as initial data into a smooth constant curvature metric:

Smooth Reference Metrics

- As an example, we have solved the Ricci flow equation numerically on these manifolds:

$$
\partial_{t} g_{a b}=-2 R_{a b}+\nabla_{a} H_{b}+\nabla_{b} H_{a}-\mu \frac{V(t)-V_{0}}{V(t)} g_{a b}+\langle R(t)\rangle g_{a b}
$$

where $H_{a}=g_{a b} g^{c d}\left(\Gamma_{c d}^{b}-\Gamma_{c d}^{b}\right)$ is the DeTurk term that fixes the gauge and makes the equation strongly parabolic, $V(t)$ is the volume, and $\langle R(t)\rangle$ is the volume averaged scalar curvature.

- In this example Ricci flow on the genus number $N_{g}=5$ multicube manifold transforms the C^{2-} reference metric used as initial data into a smooth constant curvature metric:

Representations of Arbitrary Three-Manifolds

- Three dimensional manifolds are much more complicated:
(1) There is no complete catalog of three-dimensional manifolds.

Representations of Arbitrary Three-Manifolds

- Three dimensional manifolds are much more complicated:
(1) There is no complete catalog of three-dimensional manifolds.
(2) Constructing C^{0} reference metrics is more complicated in three dimensions, and a general method does not exist yet.

Representations of Arbitrary Three-Manifolds

- Three dimensional manifolds are much more complicated:
(1) There is no complete catalog of three-dimensional manifolds.
(2) Constructing C^{0} reference metrics is more complicated in three dimensions, and a general method does not exist yet.
(3) Smoothing the C^{0} reference metrics to C^{1} is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.

Representations of Arbitrary Three-Manifolds

- Three dimensional manifolds are much more complicated:
(1) There is no complete catalog of three-dimensional manifolds.
(2) Constructing C^{0} reference metrics is more complicated in three dimensions, and a general method does not exist yet.
(3) Smoothing the C^{0} reference metrics to C^{1} is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.
- While no complete catalog of three-dimensional manifolds exists, there are catalogs containing triangulation based representations of large diverse collections of three-manifolds. One of these is part of the Regina software package.

Representations of Arbitrary Three-Manifolds

- Three dimensional manifolds are much more complicated:
(1) There is no complete catalog of three-dimensional manifolds.
(2) Constructing C^{0} reference metrics is more complicated in three dimensions, and a general method does not exist yet.
(3) Smoothing the C^{0} reference metrics to C^{1} is much more complicated than the two-dimensional case, but has been used successfully on about 60 different three-manifolds.
- While no complete catalog of three-dimensional manifolds exists, there are catalogs containing triangulation based representations of large diverse collections of three-manifolds. One of these is part of the Regina software package.
- Regina is a software tool for creating, manipulating, and visualizing triangulations of arbitrary three-manifolds, developed by Benjamin Burton, Rayan Budney and William Pettersson.

Cataloas of Three-Manifolds

	R Description
	- \$1 tetrahedron
	, \$3s
	, \$ 44,17
	** L5, 2)
	- 2 tetrabedra
	* \# 52×51
	- \$ RP3
	, \$ 43,1$)$
	*) $4(8,3)$
	$\geqslant \operatorname{ses} \operatorname{se}(2,1)(2,1)(2,-1)]$ * 3 tetrahedra
	, \$ $L 6,1$)
	* \$ $4(9,2)$
	* L 10.3$)$
	- * $[11,3)$
	* \$ L 12.5)
	- \% L 13,5)
	- 4 tetrahedra
	1 \$ 47,17
	: $*$ L 41,2$)$
	- \$ $L^{(13,3)}$
	- \$ 414.3$)$
	- \$ L 15.4)
	* \$ 416,7$)$
	- \$ L 17.5)
	* 3 L18,5)
	- \$ L (19,7)
	\# \$ 421.88
	$\cdots \operatorname{sFS}[152[2,1)(2,1)(3,1)]$
	$\cdots \operatorname{s5s}(\underline{52}(2,1)(2,1)(4,3)]$
	$\cdots \operatorname{sfs}[52-(2,1)(3,1)(3,-2)]$
	- 5 tetusheda
	* $\$ 48,17$
	: * L 13,2$)$
	: $*$ L16,3)
	- * L 417,3$)$
	, \$ L17,4)
	- \% L 419,4)
	* ${ }^{\text {L }}$ (20,9)
	- * $4(22,5)$
	** L23,5)
	- * 423,7$)$
	- \$ 424.7$)^{\text {a }}$
	- \$ 4225,7$)$
	* L25,9)
	* \$ $426.7{ }^{\text {a }}$
	- \$ 427.8$)$
	* \$ L29,8)
	- \$ L29,12]
	* \$ L30, 111
	- \$ L31,12]
	- ${ }^{\text {c }}$ L34,131
	$\cdots \operatorname{SFS}[52(2,1)(2,1)(2,3)]$
	\% $\operatorname{sFS}[152[(2,1)(2,1)(3,1)]$
	* $\left.\operatorname{sFS}^{[52} \mathbf{(2 , 1)}(2,1)(3,2)\right]$
	* $\operatorname{SFS}^{\text {S }}$ S2 $\left.2(2,1)(2,1)(4,-1)\right]$
	- \$ $\operatorname{sFs}[\operatorname{sz} 2(2,1)(2,1)(5,4)]$
	*) SFS [S2 [2, 21$)(2,1)(5,3)]$
	- $\operatorname{sFs}(\operatorname{szz}(2,1)(2,1)(5,-2)]$
	* SFS [SE2 [2, 1) (3, 1) (3,-1]]
	* $\operatorname{sFS}[\operatorname{sz} 2(2,1)(3,1)(4,3)]$
	*) $\operatorname{SFS}(\operatorname{S2} 2(2,1)(3,1)(5,4)]$
	© $\operatorname{SFS}[52 \mathrm{z}(2,1)(3,2)(3,-1)]$

Cataloas of Three-Manifolds

	R Description Notrecon
-	- 1 tetrahedron
	*3s
	- 44,1$)$
*	\$ L5, 2)
-	- 2 tetrabedra
	* 52×51
,	* RP3
,	* L3,1)
,	* 45,1$)$
	* LT, 2)
,	* 418,3$)$
	S SFS [S2 $(2,1)(2,1)(2,-1]]$ 3 tetrahedra
	* L6,1)
	* $4(9,2)$
	* 410,3$)$
,	* 411,3$)$
	* 412,5$)$
,	* 413,5$)$
$\stackrel{ }{*}$	\$ SFS [SE $(2,1)(2,1)(3,2)]$
-	$4 \text { tetrahedra }$
	- $4(11,2)$
-	* 413,3$)$
	* $[14.3)$
	* L(15,4)
	\$ 416,77
	* 417.5$)$
	* L18,5)
	* $L(19,7)$
	* 421.8$)$
	* SF5 [[82 $(2,1)(2,1)(2,1)]$
	$\geqslant \operatorname{sFS}[152(2,1)(2,1)(3,-1)]$
	* SFS [$32 \times(2,1)(2,1)(4,3)]$
	\$ sfs [152(2,1) (3,1)(3,-2)]
-	\$ 5 tetrathedra
	* L(8,1)
	* 413,2$)$
	* 416,37
	* 417,3$)$
	\$ 417.4$)^{\text {l }}$
	* 419,4$)$
	* 420.9$)$
	* 422,5$)$
	* 423,5$)$
	* 423,7$)$
	* 424.77
	* 4225,7$)$
,	* 425,9$)$
	* $426.7{ }^{\text {a }}$
	* 427.8$)$
	* L29,8)
	* 429,12$]$
,	* Liso,11]
	- L L31,12]
	* L34,13\%
,	+ SFS [[32 $(2,1)(2,1)(2,3)]$
	* SFS [\$2 $2(2,1)(2,1)(3,1)]$
,	* $\operatorname{sFs}[\operatorname{sz} 2(2,1)(2,1)(3,2)]$
	$3 \operatorname{SFS}[152(2,1)(2,1)(4,-1)]$
	* $\operatorname{sFs}[$ [$32(2,1)(2,1)(5,-4)]$
,	- $\operatorname{SFS}[152-(2,1)(2,1)(5,3] 1$
	- $\operatorname{ses}(\underline{5 z} 2(2,1)(2,1)(5,-2)]$
,	* SFS [SE2 [2, 1) (3, 1) (3-1]]
	* $\operatorname{sFs}[5 z=(2,1)(3,1)(4,3)]$
	\# SFS [122 [2, 1) (3,1) (5,-4]
	* SFS $(\operatorname{sz}(2,1)(3,2)(3,1)]$

6 tetrahedra	- \$ 7 tetrabedra	* \$ SFs [52 (2, 1) (2, 1) (3,8)]
* 4 (9,1)	$1 \rightarrow L(0,1)$	$\cdots \operatorname{sis}[5 z(2,1)(2,1)(4,5)]$
* $[15,2]$	- $L_{\text {[17,2] }}$	- $\left.{ }^{\text {SFS }}[52 \mathrm{~L}, 2,1)(2,1)(4,7)\right]$
* 419,3$]$	- 3 L22,3]	
* 420,3$]$, \# 423,3$]$	- $*$ SFS [$[52(2,1)(2,1)(5,7)]$
* L[21,4]	- \$ 425,9$]$	* \#SFS [52 [2, [2) (2,1) (5,8]]
\$ $123,4{ }^{\text {a }}$	- \$ L26.5)	\rightarrow SFs $[52(2,1)(2,1)(5,4)]$
* 424,5$]$	- \$ 427.4$]$	- \#SFS SSE [2,1) (2,1)(6,-1]]
* 424,11$]$	- 4228,13	\cdots - SFS [5z $(2,1)(2,1)(7,6,6]$
* 427,5$]$	- \$ 429.5$]$	
* 428,5$]$	- \$ 432,5	
* 429.97	- * 183,5	- \# SFS $[52=[2,1)(2,1)[0,4]$
* L30,7)	- 4353,11$)$	
* L31,]		
* 4313,11	- $4(37,13)$	
* L02,7]	- * [138,7]	- \#SFS [5E $(2,1)(2,1)(9,-7]$
* 433,7$)$	- * 438,9$)$	- \# SFs $[52(2,2)(2,1)(9,-5]]$
- 403,10	1 3 L39,7]	- SFSE[5z: $(2,1)(2,1)$) $9,-4]$
* $4(34,9)$	* L40,7)	\cdots - SFS $[52(2,3)(2,1)(9,2) 2]$
* 435,8$]$	* L40,9]	
* 436,11	- $4(41,9]$	
\$ $[37,8]$	- \$ $L(42,11\}$	- $*$ SFS $[52(2,1)(2,1)(11,88]$
$\geqslant 437,10\rangle$	- $\left.L^{4} 42,13\right\rangle$	
* $L(39,14)$		- \# SFs $[52,(2,1)(2,1)(11,-4)]$
* L(39,16)	* $4(43,9]$	- ${ }^{\text {SFS }}$ S5z $(2,2)(2,1)(11,-31]$
* L40,11)	- \$ 4 (43,10)	- ${ }^{\text {SFS }}$ S $[52:(2,1)(2,1)(12,7)]$
* L(41, 11)	- \$ L 45,8 ,	* *sFs $[52:(2,1)(2,1)(12,51]$
* $4(41,12\rangle$	- L(45,14)	- \# SFS [5z: 2,1) (2,1)(13,88)]
* $4(41,10)$	- \$ L 47,10)	- \# srs $[52(2,2)(2,1)(13,-5]$
* $L(43,12)$	* L 47,11$\}$	- ${ }^{\text {SFS }} \operatorname{sF}[52(2,1)(3,1)(3,4)]$
* $L(44,13)$	- \$ L 488,11$\}$	* \#SFS [52 [2, 2,1 (3,1) 3,5$]$
* 445.19$)$		* $\%$ SFS [52:(2.1) (3,1) (4,1)]
* L46,17]	- $L^{(49,13)}$	
* 4477,13\rangle	- $L^{40,20]}$	- ${ }^{\text {SFS }}[52[(2,1)(3,1)(5,2)]$
* L 449,18$)$	- \$ L51,11)	* \#SFS [52: $2(2,1)(3,1)(5,3]]$
* 450,191	- $\geqslant 451,20\rangle$	$\cdots \operatorname{sFs}[52(2,1)(3,1)(5,-1)]$
* L55, 21)	\$ L52,11)	- \% SFS [SE $(2,1)(3,1)[(7,6)]$
* SF5 [52: 2,11) $(2,1)(2,5)]$	- * 453,12$\}$	
\# SFS [22: 2,11$](2,1)(3,4]]$	* $4(53,14)$	
* $\operatorname{sFs}(5 z:(2,1)(2,1)(3,5)]$	- * 453,23$)$	- ${ }^{\text {SFS }}$ S5 $\left.52(2,2,1)(3,1)(7 ; 3)\right]$
\# SFS [22: 2,11$](2,1)(4,1)]$	* L(55,12)	* SFS [52-(2, 1) (3, 1) [(-2)]
* SF5 [52: $(2,1)(2,1)(4,3,3)]$	- 455,16)	
- SFS [52:(2, 1 (2,12$)(5,2)]$	- * 456,15	- SFS [5E [2, 2)(3,1)(8,-3]]
* SFS $[5 z=(2,1)(2,1)(5,3)]$	- * 456,17$)$	- + SFs $[52(2,1)(3,2)(3,5])$
\#SFS [22: $2,1,1,2,1)(5,-1]]$	* 457,131	* \#SFS [5E-(2,) (3,2) (4, 17]
\# SFS [5z $2(2,1)(2,3)(6,5]$]	- * 457,16)	* \#SFs $[52(2,2)(3,2)(4,3)]$
$\geqslant \operatorname{SFs}[52:(2,1)(2,1)(7,-5]]$	* $4(58,17)$	- \#SFS [52 (2, 1) (3,2) (5,4]]
$\cdots \operatorname{sFs}[52:(2,1)(2,1)(1,-4])$		- \$sFS $552(2,1)(3,2)(5,2)]$
\# SFS [52: 2,1) $(2,1)(7,3]]$	- $4(59,25)$	- Sts5 [52 (2, 1) (3,2) (5,3)]
	* L(60,13)	
$\geqslant \operatorname{SFS}[52:(2,1)(2,1)(8,-5]]$	- $L^{(61,17)}$	
- $\operatorname{sFS}[52:(2,1)(2,1)(8,3] 1]$	\$ $4(61,2 z)$	- \$ SFs [5z $(2,2)(3,2)[7,48)]$
- $\operatorname{sFs}[52:(2,1)(3,1)(3,1)]$	- \$ $\mathrm{L}(62,23)$	- + SFs $[52:(2,1)(3,2)(7,-3)]$
- $\operatorname{srs}[22:(2,1)(3,1)(3,2)]$	- ${ }^{\text {L }}$ (0, 3,17$)$	- tosrs $[5 z=(2,1)(3,2)(T,-z)]$
\# $\operatorname{SFS}[52: 12,1)(3,1)(4,-1)]$	* 464,19$)$	\# \$ SFS [52: (2, 1) (3,2) (8,5]]
\# SFS [52: $(2,1)(3,1)(5,-3] 1]$	- \$ L 64,231	
* SFS $[52:(2,1)(3,1)(5,-2]]$	* L(65,18)	- * SFS [52: 2,1$)(4,1)(4,-1)]$
* SFS [52: 22,11$](3,1)(6,5]$	* 4 [65,19	- \$ SFS [SE [2,1) (4,1) (5,-4]]
$\geqslant \operatorname{SFS}[52:(2,1)(3,2)(32)]$	- $\mathrm{L}^{\text {(66,25 }}$	- \$ SF5 [5z (2, 1) (4, 1) (5,-3)]
\# SFS [52: $2,1,1(3,2)(4,-3] 1$	- \$ 467,18$)$	- \# SFS [$[2=(2,1)(4,1)(5,-2]]$
$\geqslant \operatorname{sFs}[52 \cdot[2,1)(3,2)(4,-1)]$	- ${ }^{\text {L }}$ (68,19	* * $\operatorname{sFs}[52,(2,1)(4,3)(4,-1)]$
\# SFS [52:[2,1] (3,2) ($5,-3] 1$	* $L^{(69,19)}$	- \$ SFS [5E:(2,) (4,3) (5,-3]]
* $\operatorname{sfs}(5 z=2,1)(3,2)(5,-2)]$	* ¢ $^{(70,29)}$	
	- \$ L(71,21)	- \#) SFS [5E:(2, 1) (5,2) (5,-3]]
\# $\operatorname{sFs}(532:(3,1)(3,1)(3,-2]]$	- \$ $4(71,26)$	* \#sFs $[5 z-(2,1)(5,2)(5,-2)]$
\# $\operatorname{sFS}[52:[3,1)(3,1)(3,-1]]$	- 4 [73,27)	- \% sFS [SE: $(2,1)(5,3)(5,-27]$
* $\operatorname{sFs}[52:(3,1)(3,2)(3,-1)]$	- 4 L 74,317	- \$3F5 [5z $(3,1)(3,1)(3,1)]$
- SFS [52: 3,22$)(3,2)(3,-1]]$	- 4 (75,29)	
* SF5 [5z $(2,1)(2,1)(2,0)(2,-1)]$	- * 476,21$)$	- \# SFs [5z $(3,1)(3,1)(4,-3)]$
* SFS [PP2/nz $2,11(2,-1]$	- 479,29$)$	- \$ SFS [5z: (3, 1) (3, 1) (4,-7]
	- \% 480,31$)$	- \#SFs $[5 z(3,1)(3,1)(5,-37]$
- Txst	\rightarrow (481,31	- ${ }^{\text {S }}$ SFS $[5 E[(3,1)(3,1)(5,-2)]$
¢55 [f: $(1,1)]$	- * L 499,341	${ }^{*} \operatorname{sFs}(52 E(3,1)(3,2)(3,2)]$
kb/n 2 x		

The Regina software package includes a complete catalog of all compact orientable three-manifolds that can be represented by triangulations consisting of up to eleven tetrahedra.

SFS [RP2/n2: $(2,1)(2,-1)]$: \#1 (3-Manifold Triangulation)

```
* Add Te
```


Simplify

Closed, orientable and oriented, connected

| Gluings Skeleton | Algebra | Composition | Recognition | SnapPea |
| :--- | :--- | :--- | :--- | :--- | :--- |

Tetrahedron	Face 012	Face 013	Face 023	Face 123
0	$4(231)$	$3(132)$	$2(123)$	$1(132)$
1	$3(320)$	$5(213)$	$2(203)$	$0(132)$
2	$4(032)$	$5(302)$	$1(203)$	$0(023)$
3	$5(102)$	$4(012)$	$1(210)$	$0(031)$
4	$3(013)$	$5(031)$	$2(021)$	$0(201)$
5	$3(102)$	$4(031)$	$2(130)$	$1(103)$

Creating Multicube Representations

- Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.

Creating Multicube Representations

- Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.
- This figure shows the multicube structure for the manifold SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

Creating Multicube Representations

- Oliver Rinne has developed a python code that automatically converts the triangulation gluing structure from a Regina output file into a multicube structure.
- This figure shows the multicube structure for the manifold SFS[RP2/n2:(2,1)(2,-1)] from the Regina catalog.

- Multicube structures have also been constructed by hand for some three-manifolds constructed by identifying the faces of polyhedra. Figure on the right shows a multicube structure for Seifert-Weber space.

Building Three-Dimensional Reference Metrics

- In three dimensions, building C^{0} reference metrics follows the same basic approach used in two dimensions:
- Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

Building Three-Dimensional Reference Metrics

- In three dimensions, building C^{0} reference metrics follows the same basic approach used in two dimensions:
- Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

(2) Combine the flat metrics in each multicube region using a partition of unity that is continuous across the cube interfaces.

Building Three-Dimensional Reference Metrics

- In three dimensions, building C^{0} reference metrics follows the same basic approach used in two dimensions:
(1) Construct flat metrics in each star shaped domain surrounding each vertex in the multicube structure.

(2) Combine the flat metrics in each multicube region using a partition of unity that is continuous across the cube interfaces.
- In three dimensions it is convenient to parameterize the flat inverse metrics in each cube using the dihedral angles between cube faces $\psi_{A\{x y\}}, \psi_{A\{y z\}}$, and $\psi_{A\{x z\}}$:

$$
\begin{aligned}
d s^{-2}=\bar{g}^{a b} \partial_{a} \partial_{b} & =\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2} \pm 2 \cos \psi_{A\{x y\}} \partial_{x} \partial_{y} \\
& \pm 2 \cos \psi_{A\{y z\}} \partial_{y} \partial_{z} \pm 2 \cos \psi_{A\{x z\}} \partial_{x} \partial_{z}
\end{aligned}
$$

Building Three-Dimensional Reference Metrics II

- The uniform dihedral angle assumption, $\psi_{A\{\alpha \beta\}}=\frac{2 \pi}{N_{A\{\alpha \beta\}}}$ (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.

Building Three-Dimensional Reference Metrics II

- The uniform dihedral angle assumption, $\psi_{A\{\alpha \beta\}}=\frac{2 \pi}{N_{A\{\alpha \beta\}}}$ (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.

Building Three-Dimensional Reference Metrics II

- The uniform dihedral angle assumption, $\psi_{A\{\alpha \beta\}}=\frac{2 \pi}{N_{A\{\alpha \beta\}}}$ (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.

Building Three-Dimensional Reference Metrics II

- The uniform dihedral angle assumption, $\psi_{A\{\alpha \beta\}}=\frac{2 \pi}{N_{A\{\alpha \beta\}}}$ (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.
- In total, reference metrics were constructed successfully using this method on 40 different compact orientable manifolds.

Building Three-Dimensional Reference Metrics II

- The uniform dihedral angle assumption, $\psi_{A\{\alpha \beta\}}=\frac{2 \pi}{N_{A\{\alpha \beta\}}}$ (analogous to the method used in two dimensions) produces flat metrics with minimal coordinate distortion.
- This assumption has been used to construct reference metrics successfully on each of the three-dimensional multicube structures constructed by hand.
- Unfortunately only a small fraction of the triangulations in the Regina catalog admit flat metrics with uniform dihedral angles in each star-shaped domain:
- From the catalog containing manifolds constructed from eleven or fewer tetrahedra only, 29 admitted uniform dihedral flat metrics in all the star-shaped domains.
- In total, reference metrics were constructed successfully using this method on 40 different compact orientable manifolds.
- A more complicated method of choosing the dihedral angles allows the construction of reference metrics on 17 additional manifolds.

Solving the Constraints on Multicube Manifolds

- Fan Zhang and I have used the C^{1} smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.

Solving the Constraints on Multicube Manifolds

- Fan Zhang and I have used the C^{1} smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$
\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right),
$$

to determine the conformal factor ϕ that transforms the reference metric $\tilde{g}_{a b}$ into the physical metric: $g_{a b}=\phi^{4} \tilde{g}_{a b} . \tilde{R}$ is the scalar curvature associated with $\tilde{g}_{a b}$ and $\langle\tilde{R}\rangle$ is its spatial average.

Solving the Constraints on Multicube Manifolds

- Fan Zhang and I have used the C^{1} smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$
\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right),
$$

to determine the conformal factor ϕ that transforms the reference metric $\tilde{g}_{a b}$ into the physical metric: $g_{a b}=\phi^{4} \tilde{g}_{a b} . \tilde{R}$ is the scalar curvature associated with $\tilde{g}_{a b}$ and $\langle\tilde{R}\rangle$ is its spatial average.

- The Hamiltonian constraint in this case is equivalent to $\mathcal{H}=R-\langle\tilde{R}\rangle$, where R is the physical scalar curvature.

Solving the Constraints on Multicube Manifolds

- Fan Zhang and I have used the C^{1} smoothed uniform dihedral angle reference metrics to solve the Einstein constraint equations on four multicube manifolds.
- We use a simple constant mean curvature constraint equation,

$$
\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right),
$$

to determine the conformal factor ϕ that transforms the reference metric $\tilde{g}_{a b}$ into the physical metric: $g_{a b}=\phi^{4} \tilde{g}_{a b} . \tilde{R}$ is the scalar curvature associated with $\tilde{g}_{a b}$ and $\langle\tilde{R}\rangle$ is its spatial average.

- The Hamiltonian constraint in this case is equivalent to $\mathcal{H}=R-\langle\tilde{R}\rangle$, where R is the physical scalar curvature.
- The solution to this constraint equation is also a solution to the Yamabe problem.

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$
-\partial_{t}^{2} \phi-\kappa \partial_{t} \phi+\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right) .
$$

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$
-\partial_{t}^{2} \phi-\kappa \partial_{t} \phi+\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right) .
$$

- This method is designed to damp away $\partial_{t} \phi$ leaving a solution to the elliptic equation at late times.

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$
-\partial_{t}^{2} \phi-\kappa \partial_{t} \phi+\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right) .
$$

- This method is designed to damp away $\partial_{t} \phi$ leaving a solution to the elliptic equation at late times.
- The method works well on manifolds with negative scalar curvatures: $\langle\tilde{R}\rangle<0$ but fails when $\langle\tilde{R}\rangle>0$.

Solving the Constraints on Multicube Manifolds II

- The standard numerical methods for solving elliptic equations on these manifolds are very inefficient.
- In some cases a method called hyperbolic relaxation can be used to solve elliptic equations more efficiently.
- The hyperbolic relaxation version of the constant mean curvature equation described in the last slide is given by,

$$
-\partial_{t}^{2} \phi-\kappa \partial_{t} \phi+\tilde{\nabla}^{a} \tilde{\nabla}_{a} \phi=\frac{1}{8} \phi\left(\tilde{R}-\phi^{4}\langle\tilde{R}\rangle\right) .
$$

- This method is designed to damp away $\partial_{t} \phi$ leaving a solution to the elliptic equation at late times.
- The method works well on manifolds with negative scalar curvatures: $\langle\tilde{R}\rangle<0$ but fails when $\langle\tilde{R}\rangle>0$.
- The accuracy of the hyperbolic relaxation solutions can be improved using the results as initial guesses for standard elliptic solves.

