The Relativistic Inverse Stellar Structure Problem

Lee Lindblom
Department of Physics University of California at San Diego

Fundamental Theory Group Seminar
National Central University, Taiwan - 13 December 2023

The Relativistic Inverse Stellar Structure Problem

Lee Lindblom

Department of Physics University of California at San Diego

Fundamental Theory Group Seminar National Central University, Taiwan - 13 December 2023

- Can the equation of state of the matter in a neutron star be determined from astronomical observations?

The Relativistic Inverse Stellar Structure Problem

Lee Lindblom

Department of Physics University of California at San Diego

```
Fundamental Theory Group Seminar National Central University, Taiwan - 13 December 2023
```

- Can the equation of state of the matter in a neutron star be determined from astronomical observations?
- This talk describes some mathematical aspects of this question.
- What is the relativistic inverse stellar structure problem?
- How can it be solved?
- How well does the solution work in practice?
- How can gravitational radiation observations inform this problem?

Relativistic Stellar Structure Problem (SSP)

- Given an equation of state, $\epsilon=\epsilon(p)$, solve Einstein's equations,

$$
\frac{d m}{d r}=4 \pi r^{2} \epsilon, \quad \frac{d p}{d r}=-(\epsilon+p) \frac{m+4 \pi r^{3} p}{r(r-2 m)},
$$

with boundary conditions at $r=0, m(0)=0$ and $p(0)=p_{c}$, to determine the structures of relativistic stars.

Relativistic Stellar Structure Problem (SSP)

- Given an equation of state, $\epsilon=\epsilon(p)$, solve Einstein's equations,

$$
\frac{d m}{d r}=4 \pi r^{2} \epsilon, \quad \frac{d p}{d r}=-(\epsilon+p) \frac{m+4 \pi r^{3} p}{r(r-2 m)},
$$

with boundary conditions at $r=0, m(0)=0$ and $p(0)=p_{c}$, to determine the structures of relativistic stars.

- Find the radius $p(R)=0$ and mass $M=m(R)$ for each star.
- Determine $M\left(p_{c}\right)$ and $R\left(p_{c}\right)$ for all physically relevant values of p_{c}.

Relativistic Stellar Structure Problem (SSP)

- Given an equation of state, $\epsilon=\epsilon(p)$, solve Einstein's equations,

$$
\frac{d m}{d r}=4 \pi r^{2} \epsilon, \quad \frac{d p}{d r}=-(\epsilon+p) \frac{m+4 \pi r^{3} p}{r(r-2 m)},
$$

with boundary conditions at $r=0, m(0)=0$ and $p(0)=p_{c}$, to determine the structures of relativistic stars.

- Find the radius $p(R)=0$ and mass $M=m(R)$ for each star.
- Determine $M\left(p_{c}\right)$ and $R\left(p_{c}\right)$ for all physically relevant values of p_{c}.
- SSP can be thought of as a map from the equation of state $\epsilon=\epsilon(p)$ to the $\mathrm{M}-\mathrm{R}$ curve $\left\{R\left(p_{c}\right), M\left(p_{c}\right)\right\}$.

Relativistic Stellar Structure Problem (SSP) II

- Given an equation of state, $\epsilon=\epsilon(p)$, it is straightforward to solve Einstein's equations to determine the structures of neutron stars.
- Unfortunately, the equation of state of neutron-star matter is not well understood. Here are several dozen examples of published neutron-star equations of state.

Relativistic Stellar Structure Problem (SSP) II

- Given an equation of state, $\epsilon=\epsilon(p)$, it is straightforward to solve Einstein's equations to determine the structures of neutron stars.
- Unfortunately, the equation of state of neutron-star matter is not well understood. Here are several dozen examples of published neutron-star equations of state.

- These equations of state produce a wide range of neutron-star models by solving the relativistic stellar structure problem.

Relativistic Stellar Structure Problem (SSP) III

- How can the relativistic stellar structure problem be used to interpret observations of neutron stars?
- One simple minded approach would be to use observations of neutron-star masses M and radii R to eliminate particular equation of state models.

Relativistic Stellar Structure Problem (SSP) III

- How can the relativistic stellar structure problem be used to interpret observations of neutron stars?
- One simple minded approach would be to use observations of neutron-star masses M and radii R to eliminate particular equation of state models.
- A more sophisticated approach would be to adjust the parameters of a particular nuclear theory model for the equation of state by fitting the resulting neutron-star models to the observations.
- Versions of this more sophisticated approach have been implemented by James Lattimer and collaborators, and also by Feryal Özel and collaborators.

Relativistic Stellar Structure Problem (SSP) III

- How can the relativistic stellar structure problem be used to interpret observations of neutron stars?
- One simple minded approach would be to use observations of neutron-star masses M and radii R to eliminate particular equation of state models.
- A more sophisticated approach would be to adjust the parameters of a particular nuclear theory model for the equation of state by fitting the resulting neutron-star models to the observations.
- Versions of this more sophisticated approach have been implemented by James Lattimer and collaborators, and also by Feryal Özel and collaborators.
- Can we can do better?
- Do Einstein's equations determine the neutron-star equation of state directly without assuming any nuclear-theory model?

Relativistic Inverse Stellar Structure Problem (SSP ${ }^{-1}$)

- The inverse stellar structure problem $\left(\mathrm{SSP}^{-1}\right)$ finds the equation of state $\epsilon=\epsilon(p)$ from the macroscopic observables of the stars, e.g. their masses and radii.

Relativistic Inverse Stellar Structure Problem (SSP ${ }^{-1}$)

- The inverse stellar structure problem $\left(\mathrm{SSP}^{-1}\right)$ finds the equation of state $\epsilon=\epsilon(p)$ from the macroscopic observables of the stars, e.g. their masses and radii.
- $S S P^{-1}$ can be thought of as the map from the M-R curve $\left\{R\left(p_{c}\right), M\left(p_{c}\right)\right\}$ to the equation of state $\epsilon=\epsilon(p)$.

Relativistic Inverse Stellar Structure Problem (SSP ${ }^{-1}$)

- The inverse stellar structure problem (SSP^{-1}) finds the equation of state $\epsilon=\epsilon(p)$ from the macroscopic observables of the stars, e.g. their masses and radii.
- SSP^{-1} can be thought of as the map from the M-R curve $\left\{R\left(p_{c}\right), M\left(p_{c}\right)\right\}$ to the equation of state $\epsilon=\epsilon(p)$.

- The basic mathematical questions then become, "Does this problem have a solution?", "Is the solution unique?", and "How do we solve it?"

"Formal" Solution to SSP-1

- Assume the complete $\mathrm{M}-\mathrm{R}$ curve is known, including the point $\left\{R_{i}, M_{i}\right\}=\left\{R\left(p_{i}\right), M\left(p_{i}\right)\right\}$.
- Assume the equation of state is known for $\epsilon \leq \epsilon_{i}=\epsilon\left(p_{i}\right)$.

"Formal" Solution to SSP-1

- Assume the complete $\mathrm{M}-\mathrm{R}$ curve is known, including the point $\left\{R_{i}, M_{i}\right\}=\left\{R\left(p_{i}\right), M\left(p_{i}\right)\right\}$.
- Assume the equation of state is known for $\epsilon \leq \epsilon_{i}=\epsilon\left(p_{i}\right)$.

- Choose a new point on the M-R curve, $\left\{R_{i+1}, M_{i+1}\right\}$, having slightly larger central density.

"Formal" Solution to SSP-1

- Assume the complete $M-R$ curve is known, including the point $\left\{R_{i}, M_{i}\right\}=\left\{R\left(p_{i}\right), M\left(p_{i}\right)\right\}$.
- Assume the equation of state is known for $\epsilon \leq \epsilon_{i}=\epsilon\left(p_{i}\right)$.

- Choose a new point on the M-R curve, $\left\{R_{i+1}, M_{i+1}\right\}$, having slightly larger central density.
- Integrate Einstein's equations,

$$
\frac{d m}{d r}=4 \pi r^{2} \epsilon
$$

$$
\frac{d p}{d r}=-(\epsilon+p) \frac{m+4 \pi r^{3} p}{r(r-2 m)}
$$

through the outer parts of the star, to determine the mass and radius, $\left\{r_{i+1}, m_{i+1}\right\}$, of the small core with large densities $\epsilon \geq \epsilon_{i}$.

Formal Solution to SSP $^{-1}$ II

- For very small cores, $\left\{r_{i+1}, m_{i+1}\right\}$, the solution to the OV equations is described by the power series solution:

$$
\begin{aligned}
m_{i+1} & =\frac{4 \pi}{3} \epsilon_{i+1} r_{i+1}^{3}+\mathcal{O}\left(r_{i+1}^{5}\right) \\
p_{i} & =p_{i+1}-\frac{2 \pi}{3}\left(\epsilon_{i+1}+p_{i+1}\right)\left(\epsilon_{i+1}+3 p_{i+1}\right) r_{i+1}^{2}+\mathcal{O}\left(r_{i+1}^{4}\right)
\end{aligned}
$$

- Invert these series to determine the central pressure and density, $\left\{p_{i+1}, \epsilon_{i+1}\right\}$, in terms of the known quantities, $m_{i+1}, r_{i+1}, p_{i}, \epsilon_{i}$.

Can the Formal Solution to SSP^{-1} be Improved?

- Formal solution to the relativistic $S_{S P}{ }^{-1}$ finds the equation of state, $\epsilon=\epsilon(p)$, represented as a table, $\left\{p_{i}, \epsilon_{i}\right\}$ for $i=1, \ldots, N$, and an interpolation formula.
- Formal solution has several weaknesses:
- Solution converges (slowly) with the number of points, as N^{-q}.
- Each new equation of state point, $\left\{p_{i}, \epsilon_{i}\right\}$, requires the knowledge of a separate new M -R curve point, $\left\{R_{i}, M_{i}\right\}$.
- Accurate M-R curve points $\left\{R_{i}, M_{i}\right\}$ for neutron stars are scarce.

Can the Formal Solution to SSP^{-1} be Improved?

- Formal solution to the relativistic SSP^{-1} finds the equation of state, $\epsilon=\epsilon(p)$, represented as a table, $\left\{p_{i}, \epsilon_{i}\right\}$ for $i=1, \ldots, N$, and an interpolation formula.
- Formal solution has several weaknesses:
- Solution converges (slowly) with the number of points, as N^{-q}.
- Each new equation of state point, $\left\{p_{i}, \epsilon_{i}\right\}$, requires the knowledge of a separate new M -R curve point, $\left\{R_{i}, M_{i}\right\}$.
- Accurate M-R curve points $\left\{R_{i}, M_{i}\right\}$ for neutron stars are scarce.
- Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods.

Can the Formal Solution to SSP^{-1} be Improved?

- Formal solution to the relativistic $S S P^{-1}$ finds the equation of state, $\epsilon=\epsilon(p)$, represented as a table, $\left\{p_{i}, \epsilon_{i}\right\}$ for $i=1, \ldots, N$, and an interpolation formula.
- Formal solution has several weaknesses:
- Solution converges (slowly) with the number of points, as N^{-q}.
- Each new equation of state point, $\left\{p_{i}, \epsilon_{i}\right\}$, requires the knowledge of a separate new M -R curve point, $\left\{R_{i}, M_{i}\right\}$.
- Accurate M-R curve points $\left\{R_{i}, M_{i}\right\}$ for neutron stars are scarce.
- Spectral numerical methods typically converge more rapidly, and represent functions more efficiently than finite difference methods.
- Can spectral methods provide better (i.e. more practical and more accurate) solutions to the SSP^{-1} ?
- Can spectral methods provide interesting solutions to SSP-1 when only a few (e.g. two or three) M-R data points are available?

Outline for Solving SSP ${ }^{-1}$ Using Spectral Methods

- Assume the equation of state can be written in the form $\epsilon=\epsilon\left(p, \gamma_{k}\right)$, where the γ_{k} are a set of parameters.
For example, the equation of state could be written as a spectral expansion, $\epsilon=\epsilon\left(p, \gamma_{k}\right)=\sum_{k} \gamma_{k} \Phi_{k}(p)$, where the $\Phi_{k}(p)$ are spectral basis functions, e.g. $\Phi_{k}(p)=e^{i k p}$, or $\Phi_{k}(p)=P_{k}(p)$.

Outline for Solving SSP ${ }^{-1}$ Using Spectral Methods

- Assume the equation of state can be written in the form $\epsilon=\epsilon\left(p, \gamma_{k}\right)$, where the γ_{k} are a set of parameters.
For example, the equation of state could be written as a spectral expansion, $\epsilon=\epsilon\left(p, \gamma_{k}\right)=\sum_{k} \gamma_{k} \Phi_{k}(p)$, where the $\Phi_{k}(p)$ are spectral basis functions, e.g. $\Phi_{k}(p)=e^{i k p}$, or $\Phi_{k}(p)=P_{k}(p)$.
- For a given equation of state, i.e. a particular choice of γ_{k}, solve the SSP to obtain a model M-R curve: $\left\{R\left(p_{c}, \gamma_{k}\right), M\left(p_{c}, \gamma_{k}\right)\right\}$.

Outline for Solving SSP ${ }^{-1}$ Using Spectral Methods

- Assume the equation of state can be written in the form $\epsilon=\epsilon\left(p, \gamma_{k}\right)$, where the γ_{k} are a set of parameters.
For example, the equation of state could be written as a spectral expansion, $\epsilon=\epsilon\left(p, \gamma_{k}\right)=\sum_{k} \gamma_{k} \Phi_{k}(p)$, where the $\Phi_{k}(p)$ are spectral basis functions, e.g. $\Phi_{k}(p)=e^{i k p}$, or $\Phi_{k}(p)=P_{k}(p)$.
- For a given equation of state, i.e. a particular choice of γ_{k}, solve the SSP to obtain a model M-R curve: $\left\{R\left(p_{c}, \gamma_{k}\right), M\left(p_{c}, \gamma_{k}\right)\right\}$.
- Given a set of points from the "real" M-R curve, $\left\{R_{i}, M_{i}\right\}$, choose the parameters γ_{k} and p_{c}^{i} that minimize the difference measure:
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{R\left(p_{c^{\prime}}^{i} \gamma_{k}\right)}{R_{i}}\right)\right]^{2}+\left[\log \left(\frac{M\left(p_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}\right\}$

Outline for Solving SSP ${ }^{-1}$ Using Spectral Methods

- Assume the equation of state can be written in the form $\epsilon=\epsilon\left(p, \gamma_{k}\right)$, where the γ_{k} are a set of parameters.
For example, the equation of state could be written as a spectral expansion, $\epsilon=\epsilon\left(p, \gamma_{k}\right)=\sum_{k} \gamma_{k} \Phi_{k}(p)$, where the $\Phi_{k}(p)$ are spectral basis functions, e.g. $\Phi_{k}(p)=e^{i k p}$, or $\Phi_{k}(p)=P_{k}(p)$.
- For a given equation of state, i.e. a particular choice of γ_{k}, solve the SSP to obtain a model M-R curve: $\left\{R\left(p_{c}, \gamma_{k}\right), M\left(p_{c}, \gamma_{k}\right)\right\}$.
- Given a set of points from the "real" M-R curve, $\left\{R_{i}, M_{i}\right\}$, choose the parameters γ_{k} and p_{c}^{i} that minimize the difference measure:
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{R\left(p_{c^{\prime}}^{i} \gamma_{k}\right)}{R_{i}}\right)\right]^{2}+\left[\log \left(\frac{M\left(p_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}\right\}$
- Resulting γ_{k} for $k=1, \ldots, N_{\gamma_{k}}$ determines an equation of state, $\epsilon=\epsilon\left(p, \gamma_{k}\right)$, that provides an approximate solution of $S S P^{-1}$.

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?
- Can the spectral parameters γ_{k} be determined accurately and robustly by matching model masses and radii $\left\{R\left(p_{c^{\prime}}^{i} \gamma_{k}\right), M\left(p_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ to given $\left\{R_{i}, M_{i}\right\}$ data?

Basic Questions

- Do spectral expansions provide an efficient way to represent realistic neutron-star equations of state?
- What choice of spectral basis functions is useful?
- Can the spectral parameters γ_{k} be determined accurately and robustly by matching model masses and radii $\left\{R\left(p_{c^{\prime}}^{i} \gamma_{k}\right), M\left(p_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ to given $\left\{R_{i}, M_{i}\right\}$ data?
- These questions are best answered using a somewhat different form of the standard stellar structure problem (SSP).
- Digress (briefly) now to describe this alternate formulation that provides a more efficient and more accurate way to solve the SSP.

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines $m(r)$ and $p(r)$, given an equation of state of the form $\epsilon=\epsilon(p)$.
- The outer boundary of the star is the point where $p(R)=0$. This is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto(R-r)^{\Gamma_{0} /\left(\Gamma_{0}-1\right)} \approx(R-r)^{5 / 2}$.

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines $m(r)$ and $p(r)$, given an equation of state of the form $\epsilon=\epsilon(p)$.
- The outer boundary of the star is the point where $p(R)=0$. This is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto(R-r)^{\Gamma_{0} /\left(\Gamma_{0}-1\right)} \approx(R-r)^{5 / 2}$.
- This problem can be avoided by introducing the relativistic enthalpy $h(p)=\int_{0}^{p} d p^{\prime} /\left[\epsilon\left(p^{\prime}\right)+p^{\prime}\right]$, and re-writing the OV equations in terms of it:

$$
\frac{d h}{d r}=\frac{1}{\epsilon+p} \frac{d p}{d r}=-\frac{m+4 \pi r^{3} p(h)}{r(r-2 m)}
$$

Alternative Representations of the SSP

- The standard Oppenheimer-Volkoff (OV) representation of the SSP equations determines $m(r)$ and $p(r)$, given an equation of state of the form $\epsilon=\epsilon(p)$.
- The outer boundary of the star is the point where $p(R)=0$. This is difficult to solve numerically because the pressure goes to zero non-linearly there: $p \propto(R-r)^{\Gamma_{0} /\left(\Gamma_{0}-1\right)} \approx(R-r)^{5 / 2}$.
- This problem can be avoided by introducing the relativistic enthalpy $h(p)=\int_{0}^{p} d p^{\prime} /\left[\epsilon\left(p^{\prime}\right)+p^{\prime}\right]$, and re-writing the OV equations in terms of it:

$$
\frac{d h}{d r}=\frac{1}{\epsilon+p} \frac{d p}{d r}=-\frac{m+4 \pi r^{3} p(h)}{r(r-2 m)}
$$

- The surface of the star is now the point where $h(R)=0$. This condition is easier to solve numerically because the enthalpy goes to zero linearly there: $h(r) \propto(R-r)$.

Alternative Representations of the SSP II

- Simplify again by swapping the roles of h and r :

$$
\frac{d r}{d h}=-\frac{r(r-2 m)}{m+4 \pi r^{3} p(h)}, \quad \frac{d m}{d h}=-\frac{4 \pi \epsilon(h) r^{3}(r-2 m)}{m+4 \pi r^{3} p(h)}
$$

Alternative Representations of the SSP II

- Simplify again by swapping the roles of h and r :

$$
\frac{d r}{d h}=-\frac{r(r-2 m)}{m+4 \pi r^{3} p(h)}, \quad \frac{d m}{d h}=-\frac{4 \pi \epsilon(h) r^{3}(r-2 m)}{m+4 \pi r^{3} p(h)}
$$

- This form of the equations is easier to solve numerically:
- The domain on which the solution $\{r(h), m(h)\}$ is defined, $h_{C} \geq h \geq 0$, is known a priori.
- The total mass M and radius R are determined simply by evaluating the solution at $h=0,\{R, M\}=\{r(0), m(0)\}$.

Alternative Representations of the SSP II

- Simplify again by swapping the roles of h and r :

$$
\frac{d r}{d h}=-\frac{r(r-2 m)}{m+4 \pi r^{3} p(h)}, \quad \frac{d m}{d h}=-\frac{4 \pi \epsilon(h) r^{3}(r-2 m)}{m+4 \pi r^{3} p(h)}
$$

- This form of the equations is easier to solve numerically:
- The domain on which the solution $\{r(h), m(h)\}$ is defined, $h_{c} \geq h \geq 0$, is known a priori.
- The total mass M and radius R are determined simply by evaluating the solution at $h=0,\{R, M\}=\{r(0), m(0)\}$.
- These alternative OV equations require that the equation of state, $\epsilon=\epsilon(p)$, be re-written as $\epsilon=\epsilon(h)$ and $p=p(h)$:

Alternative Representations of the SSP II

- Simplify again by swapping the roles of h and r :

$$
\frac{d r}{d h}=-\frac{r(r-2 m)}{m+4 \pi r^{3} p(h)}, \quad \frac{d m}{d h}=-\frac{4 \pi \epsilon(h) r^{3}(r-2 m)}{m+4 \pi r^{3} p(h)}
$$

- This form of the equations is easier to solve numerically:
- The domain on which the solution $\{r(h), m(h)\}$ is defined, $h_{C} \geq h \geq 0$, is known a priori.
- The total mass M and radius R are determined simply by evaluating the solution at $h=0,\{R, M\}=\{r(0), m(0)\}$.
- These alternative OV equations require that the equation of state, $\epsilon=\epsilon(p)$, be re-written as $\epsilon=\epsilon(h)$ and $p=p(h)$:
- Start with the standard, $\epsilon=\epsilon(p)$.
- Compute, $h(p)=\int_{0}^{p} d p^{\prime} /\left[\epsilon\left(p^{\prime}\right)+p^{\prime}\right]$.
- Invert to give $p=p(h)$.
- Compose $\epsilon=\epsilon(p)$ with $p=p(h)$, to give $\epsilon=\epsilon(h)=\epsilon[p(h)]$.

Faithful Spectral Expansions of the Equation of State

- Physical equations of state, $\epsilon=\epsilon(h)$ and $p=p(h)$, are positive monotonic increasing functions.
- Naive spectral representations, $\epsilon=\epsilon\left(h, \alpha_{k}\right)=\sum_{k} \alpha_{k} \Phi_{k}(h)$ and $p=p\left(h, \beta_{k}\right)=\sum_{k} \beta_{k} \Phi_{k}(h)$, are not faithful.

Faithful Spectral Expansions of the Equation of State

- Physical equations of state, $\epsilon=\epsilon(h)$ and $p=p(h)$, are positive monotonic increasing functions.
- Naive spectral representations, $\epsilon=\epsilon\left(h, \alpha_{k}\right)=\sum_{k} \alpha_{k} \Phi_{k}(h)$ and $p=p\left(h, \beta_{k}\right)=\sum_{k} \beta_{k} \Phi_{k}(h)$, are not faithful.
- Faithful here means:
- i) Every choice of spectral parameters, α_{k} and β_{k}, corresponds to a possible physical equation of state.
- ii) Every physical equation of state can be represented by such an expansion.

Faithful Spectral Expansions of the Equation of State

- Physical equations of state, $\epsilon=\epsilon(h)$ and $p=p(h)$, are positive monotonic increasing functions.
- Naive spectral representations, $\epsilon=\epsilon\left(h, \alpha_{k}\right)=\sum_{k} \alpha_{k} \Phi_{k}(h)$ and $p=p\left(h, \beta_{k}\right)=\sum_{k} \beta_{k} \Phi_{k}(h)$, are not faithful.
- Faithful here means:
- i) Every choice of spectral parameters, α_{k} and β_{k}, corresponds to a possible physical equation of state.
- ii) Every physical equation of state can be represented by such an expansion.
- Faithful spectral expansions of the adiabatic index Γ do exist:

$$
\Gamma(h)=\frac{\epsilon+p}{p} \frac{d p}{d \epsilon}=\exp \left[\sum_{k} \gamma_{k} \Phi_{k}(h)\right]
$$

Faithful Spectral Expansions of the Equation of State II

- Every equation of state is determined by the adiabatic index $\Gamma(h)$:

$$
\frac{d p}{d h}=\epsilon+p, \quad \frac{d \epsilon}{d h}=\frac{(\epsilon+p)^{2}}{p \Gamma(h)} .
$$

Faithful Spectral Expansions of the Equation of State II

- Every equation of state is determined by the adiabatic index $\Gamma(h)$:

$$
\frac{d p}{d h}=\epsilon+p, \quad \frac{d \epsilon}{d h}=\frac{(\epsilon+p)^{2}}{p \Gamma(h)} .
$$

- The solutions to these equations can be reduced to quadratures:

$$
\begin{aligned}
& \mu(h)=\frac{p_{0} e^{h_{0}}}{\epsilon_{0}+p_{0}}+\int_{h_{0}}^{h} \frac{\Gamma\left(h^{\prime}\right)-1}{\Gamma\left(h^{\prime}\right)} e^{h^{\prime}} d h^{\prime}, \\
& p(h)=p_{0} \exp \left[\int_{h_{0}}^{h} \frac{e^{h^{\prime}} d h^{\prime}}{\mu\left(h^{\prime}\right)}\right], \\
& \epsilon(h)=p(h) \frac{e^{h}-\mu(h)}{\mu(h)} .
\end{aligned}
$$

Faithful Spectral Expansions of the Equation of State II

- Every equation of state is determined by the adiabatic index $\Gamma(h)$:

$$
\frac{d p}{d h}=\epsilon+p, \quad \frac{d \epsilon}{d h}=\frac{(\epsilon+p)^{2}}{p \Gamma(h)} .
$$

- The solutions to these equations can be reduced to quadratures:

$$
\begin{aligned}
& \mu(h)=\frac{p_{0} e^{h_{0}}}{\epsilon_{0}+p_{0}}+\int_{h_{0}}^{h} \frac{\Gamma\left(h^{\prime}\right)-1}{\Gamma\left(h^{\prime}\right)} e^{h^{\prime}} d h^{\prime}, \\
& p(h)=p_{0} \exp \left[\int_{h_{0}}^{h} \frac{e^{h^{\prime}} d h^{\prime}}{\mu\left(h^{\prime}\right)}\right] \\
& \epsilon(h)=p(h) \frac{e^{h}-\mu(h)}{\mu(h)} .
\end{aligned}
$$

- Choosing, $\log \Gamma(h)=\sum_{k} \gamma_{k} \Phi_{k}(h)$, for any spectral basis functions, $\Phi_{k}(h)$, results in a faithful parameterized equation of state of the desired form: $\epsilon=\epsilon\left(h, \gamma_{k}\right)$ and $p=p\left(h, \gamma_{k}\right)$.

Causal Spectral Representations

- In a barotropic fluid the speed of sound v is related to the equation of state by: $v^{2}=d p / d \epsilon$.

Causal Spectral Representations

- In a barotropic fluid the speed of sound v is related to the equation of state by: $v^{2}=d p / d \epsilon$.
- The velocity function

$$
\Upsilon(h)=\frac{1-v^{2}(h)}{v^{2}(h)}=\frac{d \epsilon}{d p}-1
$$

is non-negative, $\Upsilon(h) \geq 0$, if and only if the fluid is causal: $0<v^{2} \leq 1$.

Causal Spectral Representations

- In a barotropic fluid the speed of sound v is related to the equation of state by: $v^{2}=d p / d \epsilon$.
- The velocity function

$$
\Upsilon(h)=\frac{1-v^{2}(h)}{v^{2}(h)}=\frac{d \epsilon}{d p}-1
$$

is non-negative, $\Upsilon(h) \geq 0$, if and only if the fluid is causal: $0<v^{2} \leq 1$.

- Construct a spectral representation of $\Upsilon(h)$ that ensures causality:

$$
\Upsilon(h)=\exp \left\{\sum_{k} v_{k} \Phi_{k}(h)\right\}
$$

Causal Spectral Representations II

- The velocity function $\Upsilon(h)$ determines the equation of state, $\epsilon(h)$ and $p(h)$, through the odes that define Υ and h :

$$
\begin{aligned}
& \frac{d \epsilon}{d h}=(\epsilon+p)[1+\Upsilon(h)] \\
& \frac{d p}{d h}=\epsilon+p
\end{aligned}
$$

Causal Spectral Representations II

- The velocity function $\Upsilon(h)$ determines the equation of state, $\epsilon(h)$ and $p(h)$, through the odes that define Υ and h :

$$
\begin{aligned}
& \frac{d \epsilon}{d h}=(\epsilon+p)[1+\Upsilon(h)] \\
& \frac{d p}{d h}=\epsilon+p
\end{aligned}
$$

- Integrate these odes to obtain a causal spectral representation of the equation of state:

$$
\begin{aligned}
& \mu(h)=\exp \left\{\int_{h_{0}}^{h}\left[2+\Upsilon\left(h^{\prime}\right)\right] d h^{\prime}\right\} \\
& p(h)=p_{0}+\left(\epsilon_{0}+p_{0}\right) \int_{h_{0}}^{h} \mu\left(h^{\prime}\right) d h^{\prime} \\
& \epsilon(h)=\epsilon_{0}-p(h)+\left(\epsilon_{0}+p_{0}\right) \mu(h)
\end{aligned}
$$

Fitting Model Neutron-Star Equations of State

- How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon=\epsilon\left(h, \gamma_{k}\right)$ and $p=p\left(h, \gamma_{k}\right)$, when $\Gamma(h)$ is given by

$$
\Gamma(h)=\exp \left\{\sum_{k=0}^{N_{\gamma_{k}}-1} \gamma_{k}\left[\log \left(\frac{h}{h_{0}}\right)\right]^{k}\right\} ?
$$

Fitting Model Neutron-Star Equations of State

- How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon=\epsilon\left(h, \gamma_{k}\right)$ and $p=p\left(h, \gamma_{k}\right)$, when $\Gamma(h)$ is given by

$$
\Gamma(h)=\exp \left\{\sum_{k=0}^{N_{\gamma_{k}}-1} \gamma_{k}\left[\log \left(\frac{h}{h_{0}}\right)\right]^{k}\right\} ?
$$

- Let $\left\{p_{i}, \epsilon_{i}, h_{i}\right\}$, for $i=1, \ldots, N_{\text {EOS }}$ denote one of the standard tabulated realistic neutron-star equations of state.
- Find the spectral parameters γ_{k} that minimize the fitting error:

$$
\left(\Delta_{N_{\gamma_{k}}}^{E O S}\right)^{2}=\frac{1}{N_{\mathrm{EOS}}} \sum_{i=1}^{N_{\mathrm{EOS}}}\left(\log \left[\frac{\epsilon\left(h_{i}, \gamma_{k}\right)}{\epsilon_{i}}\right]\right)^{2}
$$

Fitting Model Neutron-Star Equations of State

- How accurately and efficiently are realistic neutron-star equations of state represented by $\epsilon=\epsilon\left(h, \gamma_{k}\right)$ and $p=p\left(h, \gamma_{k}\right)$, when $\Gamma(h)$ is given by

$$
\Gamma(h)=\exp \left\{\sum_{k=0}^{N_{\gamma_{k}}-1} \gamma_{k}\left[\log \left(\frac{h}{h_{0}}\right)\right]^{k}\right\} ?
$$

- Let $\left\{p_{i}, \epsilon_{i}, h_{i}\right\}$, for $i=1, \ldots, N_{\text {EOS }}$ denote one of the standard tabulated realistic neutron-star equations of state.
- Find the spectral parameters γ_{k} that minimize the fitting error:

$$
\left(\Delta_{N_{\gamma_{k}}}^{E O S}\right)^{2}=\frac{1}{N_{\mathrm{EOS}}} \sum_{i=1}^{N_{\mathrm{EOS}}}\left(\log \left[\frac{\epsilon\left(h_{i}, \gamma_{k}\right)}{\epsilon_{i}}\right]\right)^{2}
$$

- The average values of these fitting errors, $\Delta_{N_{\gamma_{k}}}^{E O S}$, for 34 realistic neutron-star equations of state are:

$$
\begin{array}{ll}
\Delta_{2}^{E O S}=0.032, & \Delta_{3}^{E O S}=0.017 \\
\Delta_{4}^{E O S}=0.012, & \Delta_{5}^{E O S}=0.0089
\end{array}
$$

Spectral Fits of Model Neutron-Star Equations of State

- Relative errors between the spectral equations of state $\epsilon\left(h, \gamma_{k}\right)$, and the exact equation of states $\epsilon(h)$ that they approximate.

- Average errors $\Delta_{N_{\gamma_{k}}}^{E O S}$ for the best, 'average', and worst cases are:

PAL6: $\Delta_{2}^{E O S}=0.0032, \Delta_{3}^{E O S}=0.0016, \Delta_{4}^{E O S}=0.0005, \Delta_{5}^{E O S}=0.0002$,
MS1: $\Delta_{2}^{E O S}=0.0277, \Delta_{3}^{E O S}=0.0055, \Delta_{4}^{E O S}=0.0035, \Delta_{5}^{E O S}=0.0003$,
BGN1H1: $\Delta_{2}^{E O S}=0.087, \Delta_{3}^{E O S}=0.050, \Delta_{4}^{E O S}=0.044, \Delta_{5}^{E O S}=0.040$.

Spectral Solution of SSP ${ }^{-1}$

- Next step: test this spectral approach to solving the SSP-1 using mock observational data based on realistic neutron-star models.

Spectral Solution of SSP-1

- Next step: test this spectral approach to solving the SSP $^{-1}$ using mock observational data based on realistic neutron-star models.
- Choose mock data points $\left\{R_{i}, M_{i}\right\}$ for neutron-star models computed with 34 realistic equations of state.

Spectral Solution of SSP ${ }^{-1}$ II

- Fix the spectral expansion coefficients γ_{k} by minimizing,

$$
\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{R\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{R_{i}}\right)\right]^{2}\right\}
$$

with respect to variations in γ_{k}, and variations in the central values of the enthalpy for each star, h_{c}^{i}.

Spectral Solution of SSP ${ }^{-1}$ II

- Fix the spectral expansion coefficients γ_{k} by minimizing,
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{R\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{R_{i}}\right)\right]^{2}\right\}$.
with respect to variations in γ_{k}, and variations in the central values of the enthalpy for each star, h_{c}^{i}.
- These γ_{k} determine an equation of state, $\epsilon\left(h, \gamma_{k}\right)$ and $p\left(h, \gamma_{k}\right)$, that provides an approximate solution to SSP^{-1}.

Spectral Solution of SSP ${ }^{-1}$ II

- Fix the spectral expansion coefficients γ_{k} by minimizing,
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{R\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{R_{i}}\right)\right]^{2}\right\}$
with respect to variations in γ_{k}, and variations in the central values of the enthalpy for each star, h_{c}^{i}.
- These γ_{k} determine an equation of state, $\epsilon\left(h, \gamma_{k}\right)$ and $p\left(h, \gamma_{k}\right)$, that provides an approximate solution to SSP ${ }^{-1}$.
- Evaluate the accuracy of this equation of state by measuring the fitting errors, $\Delta_{N_{\gamma_{k}}}^{M R}$,

$$
\left(\Delta_{N_{\gamma_{k}}}^{M R}\right)^{2}=\frac{1}{N_{\mathrm{EOS}}} \sum_{i=1}^{N_{\mathrm{EOS}}}\left[\log \left(\frac{\epsilon\left(h_{i}, \gamma_{k}\right)}{\epsilon_{i}}\right)\right]^{2}
$$

to determine how well the spectral expansion $\epsilon=\epsilon\left(h, \gamma_{k}\right)$, matches the exact neutron-star equation of state $\epsilon=\epsilon(h)$.

Spectral Solutions to SSP^{-1} III

- The average values of $\Delta_{N_{\gamma_{k}}}^{M R}$ (with $N_{\gamma_{k}}=N_{\text {stars }}$) determined in this way for 34 realistic model equations of state are:

$$
\begin{array}{ll}
\Delta_{2}^{M R}=0.040, & \Delta_{2}^{E O S}=0.032 \\
\Delta_{3}^{M R}=0.029, & \Delta_{3}^{E O S}=0.017 \\
\Delta_{4}^{M R}=0.028, & \Delta_{4}^{E O S}=0.012 \\
\Delta_{5}^{M R}=0.024, & \Delta_{5}^{E O S}=0.0089
\end{array}
$$

Spectral Solutions to SSP^{-1} III

- The average values of $\Delta_{N_{\gamma_{k}}}^{M R}$ (with $N_{\gamma_{k}}=N_{\text {stars }}$) determined in this way for 34 realistic model equations of state are:

$$
\begin{array}{rlrl}
\Delta_{2}^{M R} & =0.040, & \Delta_{2}^{E O S}=0.032 \\
\Delta_{3}^{M R} & =0.029, & \Delta_{3}^{E O S}=0.017 \\
\Delta_{4}^{M R} & =0.028, & \Delta_{4}^{E O S}=0.012 \\
\Delta_{5}^{M R}=0.024, & \Delta_{5}^{E O S}=0.0089 .
\end{array}
$$

- The average errors are quite impressive, even using a small number of high accuracy $\mathrm{M}-\mathrm{R}$ data points.

Spectral Solutions to SSP^{-1} III

- The average values of $\Delta_{N_{\gamma_{k}}}^{M R}$ (with $N_{\gamma_{k}}=N_{\text {stars }}$) determined in this way for 34 realistic model equations of state are:

$$
\begin{array}{ll}
\Delta_{2}^{M R}=0.040, & \Delta_{2}^{E O S}=0.032, \\
\Delta_{3}^{M R}=0.029, & \Delta_{3}^{E O S}=0.017, \\
\Delta_{4}^{M R}=0.028, & \Delta_{4}^{E O S}=0.012, \\
\Delta_{5}^{M R}=0.024, & \Delta_{5}^{E O O S}=0.0089 .
\end{array}
$$

- The average errors are quite impressive, even using a small number of high accuracy M-R data points.
- Average errors $\Delta_{N_{\gamma_{k}}}^{M R}$ for the best, 'average', and worst cases are: PAL6: $\Delta_{2}^{M R}=0.0034, \Delta_{3}^{M R}=0.0018, \Delta_{4}^{M R}=0.0007, \Delta_{5}^{M R}=0.0003$, MS1: $\Delta_{2}^{M R}=0.0474, \Delta_{3}^{M R}=0.0157, \Delta_{4}^{M R}=0.0132, \Delta_{5}^{M R}=0.0009$, BGN1H1: $\Delta_{2}^{M R}=0.135, \Delta_{3}^{M R}=0.170, \Delta_{4}^{M R}=0.136, \Delta_{5}^{M R}=0.138$.

Can SSP ${ }^{-1}$ be Solved with Gravitational Wave Data?

- GW observations of neutron-star binary systems can not determine the radii R of those stars, but can (in principle) determine their masses M and tidal deformabilities \wedge.

Can SSP^{-1} be Solved with Gravitational Wave Data?

- GW observations of neutron-star binary systems can not determine the radii R of those stars, but can (in principle) determine their masses M and tidal deformabilities \wedge.
- Can we solve the SSP^{-1} by matching model values of $\left\{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right), \wedge\left(h_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ to gravitational wave observations of $\left\{M_{i}, \wedge_{i}\right\}$ by minimizing,

$$
\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{\Lambda\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{\Lambda_{i}}\right)\right]^{2}\right\} ?
$$

Can SSP^{-1} be Solved with Gravitational Wave Data?

- GW observations of neutron-star binary systems can not determine the radii R of those stars, but can (in principle) determine their masses M and tidal deformabilities \wedge.
- Can we solve the SSP^{-1} by matching model values of $\left\{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right), \wedge\left(h_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ to gravitational wave observations of $\left\{M_{i}, \wedge_{i}\right\}$ by minimizing,
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{\Lambda\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{\Lambda_{i}}\right)\right]^{2}\right\} ?$
- Compare average accuracy of the resulting equations of state $\Delta_{N}^{M \wedge}$ with those obtained using mass-radius data, $\Delta_{N}^{M R}$.
$\Delta_{2}^{M \wedge}=0.040, \Delta_{3}^{M \wedge}=0.030, \Delta_{4}^{M \wedge}=0.030, \Delta_{5}^{M \wedge}=0.027$,
$\Delta_{2}^{M R}=0.040, \Delta_{3}^{M R}=0.029, \Delta_{4}^{M R}=0.028, \Delta_{5}^{M R}=0.024$.

Can SSP^{-1} be Solved with Gravitational Wave Data?

- GW observations of neutron-star binary systems can not determine the radii R of those stars, but can (in principle) determine their masses M and tidal deformabilities \wedge.
- Can we solve the SSP^{-1} by matching model values of $\left\{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right), \Lambda\left(h_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ to gravitational wave observations of $\left\{M_{i}, \wedge_{i}\right\}$ by minimizing,
$\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\left\{\left[\log \left(\frac{M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{M_{i}}\right)\right]^{2}+\left[\log \left(\frac{\Lambda\left(h_{c^{\prime}}^{i} \gamma_{k}\right)}{\Lambda_{i}}\right)\right]^{2}\right\} ?$
- Compare average accuracy of the resulting equations of state $\Delta_{N}^{M \wedge}$ with those obtained using mass-radius data, $\Delta_{N}^{M R}$.
$\Delta_{2}^{M \wedge}=0.040, \Delta_{3}^{M \wedge}=0.030, \Delta_{4}^{M \wedge}=0.030, \Delta_{5}^{M \wedge}=0.027$,
$\Delta_{2}^{M R}=0.040, \Delta_{3}^{M R}=0.029, \Delta_{4}^{M R}=0.028, \Delta_{5}^{M R}=0.024$.
- The solution to the SSP^{-1} for neutron stars therefore can be done with mass-radius data, $\left\{M_{i}, R_{i}\right\}$, or with mass-tidal-deformability data, $\left\{M_{i}, \Lambda_{i}\right\}$, at about the same level of accuracy.

Can SSP ${ }^{-1}$ be Solved with LIGO/VIRGO Data?

- Present GW observations of neutron-star binary systems can determine the masses M_{1} and M_{2} but not the tidal deformabilities Λ_{1} and Λ_{2} of the individual stars.

Can SSP ${ }^{-1}$ be Solved with LIGO/VIRGO Data?

- Present GW observations of neutron-star binary systems can determine the masses M_{1} and M_{2} but not the tidal deformabilities Λ_{1} and Λ_{2} of the individual stars.
- Measurements in the LIGO/VIRGO frequency band can however measure a composite tidal deformability of the system:

$$
\tilde{\Lambda}=\frac{16}{13} \frac{M_{1}^{4}\left(M_{1}+12 M_{2}\right) \Lambda_{1}+M_{2}^{4}\left(M_{2}+12 M_{1}\right) \Lambda_{2}}{\left(M_{1}+M_{2}\right)^{5}}
$$

Can SSP ${ }^{-1}$ be Solved with LIGO/VIRGO Data?

- Present GW observations of neutron-star binary systems can determine the masses M_{1} and M_{2} but not the tidal deformabilities Λ_{1} and Λ_{2} of the individual stars.
- Measurements in the LIGO/VIRGO frequency band can however measure a composite tidal deformability of the system:

$$
\tilde{\Lambda}=\frac{16}{13} \frac{M_{1}^{4}\left(M_{1}+12 M_{2}\right) \Lambda_{1}+M_{2}^{4}\left(M_{2}+12 M_{1}\right) \Lambda_{2}}{\left(M_{1}+M_{2}\right)^{5}}
$$

- Can we solve the SSP^{-1} by matching model values of $\left\{M_{1}\left(h_{1 c^{\prime}}^{i} \epsilon_{k}\right), M_{2}\left(h_{2 c}^{i}\right), \tilde{\Lambda}\left(h_{1 c^{\prime}}^{i} h_{2 c^{\prime}}^{i} \epsilon_{k}\right)\right\}$ to gravitational wave observations of $\left\{M_{1 i}, M_{2 i}, \tilde{\Lambda}_{i}\right\}$ by minimizing,

$$
\begin{aligned}
\chi^{2}=\frac{1}{N_{\text {stars }}} \sum_{i=1}^{N_{\text {stars }}}\{ & {\left[\log \left(\frac{M_{1}\left(h_{1 c^{\prime}}^{i} \epsilon_{k}\right)}{M_{1 i}}\right)\right]^{2}+\left[\log \left(\frac{M_{2}\left(h_{2 c^{\prime}}^{i} \epsilon_{k}\right)}{M_{2 i}}\right)\right]^{2} } \\
& \left.+\left[\log \left(\frac{\tilde{\Lambda}\left(h_{1 c^{\prime}}^{i} h_{2 c^{\prime}}^{i}, \epsilon_{k}\right)}{\tilde{\Lambda}_{i}}\right)\right]^{2}\right\} ?
\end{aligned}
$$

Can SSP $^{-1}$ be Solved with LIGO/VIRGO Data II?

- Test the SSP ${ }^{-1}$ for binaries using high precision mock data $\left\{M_{1 i}, M_{2 i}, \tilde{\Lambda}_{i}\right\}$ for a randomly chosen collection of binaries based on a simple equation of state:
$p=p_{0}\left(\epsilon / \epsilon_{0}\right)^{2}$.

Can SSP ${ }^{-1}$ be Solved with LIGO/VIRGO Data II?

- Test the SSP ${ }^{-1}$ for binaries using high precision mock data $\left\{M_{1 i}, M_{2 i}, \tilde{\Lambda}_{i}\right\}$ for a randomly chosen collection of binaries based on a simple equation of state:
$p=p_{0}\left(\epsilon / \epsilon_{0}\right)^{2}$.
- Solve SSP $^{-1}$ for these data by minimizing $\chi^{2}\left(h_{1 c^{\prime}}^{i}, h_{2 c^{\prime}}^{i} \gamma_{k}\right)$. Evaluate the accuracy $\Delta_{N_{B}}$ of the resulting approximate equation of state,
$\epsilon=\epsilon\left(h, \gamma_{k}\right)$, by comparing to the equation of state used to construct the mock data.

Summary

- Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.

Summary

- Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.
- Matching observed values of neutron star masses M_{i} and radii R_{i} to models of $M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)$ and $\left.R\left(h_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ can determine the equation of state with (average) accuracies of just a few percent using (high quality) observational data from only 2 or 3 neutron stars.

Summary

- Neutron star equations of state can be represented very efficiently with spectral expansions: with (average) accuracies of just a few percent using only 2 or 3 spectral coefficients.
- Matching observed values of neutron star masses M_{i} and radii R_{i} to models of $M\left(h_{c^{\prime}}^{i} \gamma_{k}\right)$ and $\left.R\left(h_{c^{\prime}}^{i} \gamma_{k}\right)\right\}$ can determine the equation of state with (average) accuracies of just a few percent using (high quality) observational data from only 2 or 3 neutron stars.
- Observations of binary neutron-star masses M_{1} and M_{2} plus the composite tidal deformability $\tilde{\wedge}$ can also be used to determine the neutron star equation of state.

