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@ Generalize Harmonic (GH) gauge conditions.
@ Constraint damping in the GH system.

@ Moving Black Holes.

@ Binary Black Hole Evolutions.
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Traditional ADM Gauge Conditions

@ Construct a foliation of
spacetime by spatial
slices. n=o0.
@ Choose a time function O
with t = const. on these
slices.
@ Choose spatial coordinates, ) K
k i (t,X )
X, on each slice.
@ Decompose the 4-metric 1/, into its 3+1 parts:
ds? = apdx3dxP = —N2dt2 + g;j(dx' + N'dt)(dx! + Nidt).
@ The lapse N and shift N' measure how coordinates are laid out on

(t + ot, x¥)

»
>

Ok

. ) ot oxk
spacetime: =0, = -0+
1, N
N TN

@ Spacetime coordinates are determined in the traditional ADM
method by specifying the lapse N and shift N'.
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Generalized Harmonic Gauge Conditions

@ An alternate way to specify the coordinates is through the
generalized harmonic gauge source function H?:

@ Let H? denote the function obtained by the action of the scalar
wave operator on the coordinates x2:

H* = VfVex® = @bc(abacxa - gcaexa) = —T%,

where I = )°°[3,. and 14 is the 4-metric.
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Generalized Harmonic Gauge Conditions

@ An alternate way to specify the coordinates is through the
generalized harmonic gauge source function H?:

@ Let H? denote the function obtained by the action of the scalar
wave operator on the coordinates x2:

H® = VOVex? = ¢%(3p0cX® — The0ex®) = =T,
where I = )°°[3,. and 14 is the 4-metric.

@ Specifying coordinates by the generalized harmonic (GH) method
can be accomplished by choosing a gauge-source function
Ha(X, 1) = ¥apHP, and requiring that
Ha(X7 w) =—Ta= *rabcq/)bc-
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Important Properties of the GH Method

@ The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Rap = fgwc"dcadwab+v(arb) + Fap (1, 09),

where 1), is the 4-metric, and I, = )°°T ., . The vacuum
Einstein equation, R, = 0, has the same principal part as the
scalar wave equation when H,(x, ) = —[, is imposed.
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Important Properties of the GH Method

@ The Einstein equations are manifestly hyperbolic when
coordinates are specified using a GH gauge function:

Ran = *EUCd OO0 ap + v(arb) + Fab(wa ()U)

where 1), is the 4-metric, and I, = )°°T ., . The vacuum
Einstein equation, R, = 0, has the same principal part as the
scalar wave equation when H,(x, ) = —[, is imposed.

@ Imposing coordinates using a GH gauge function profoundly
changes the constraints. The GH constraint, C, = O, where

Ca - Ha+ ra:

depends only on first derivatives of the metric. The standard
Hamiltonian and momentum constraints, M, — 0, are determined
by the derivatives of the gauge constraint Cj:

1
Ma = Gao® = | V(alh) — 5vaV°Ce |
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Constraint Damping Generalized Harmonic System

@ Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

1
0 = Ra— v(acb) + Y r](acb) - EUab n®Ce )
where n? is a unit timelike vector field. Since C, = H, + 4

depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.
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Constraint Damping Generalized Harmonic System

@ Pretorius (based on a suggestion from Gundlach, et al.) modified
the GH system by adding terms proportional to the gauge
constraints:

1
0 = Ra— v(acb) + Y r](acb) - EUab n®Ce )

where n? is a unit timelike vector field. Since C; = Hy + T4
depends only on first derivatives of the metric, these additional
terms do not change the hyperbolic structure of the system.

@ Evolution of the constraints C, follow from the Bianchi identities:

1
0 = VCVCCa*Z’\/oVC [n(cCa)} JrCCV(CCa)*i Yo naCCCC.

This is a damped wave equation for C,, that drives all small
short-wavelength constraint violations toward zero as the system
evolves (for 7o > 0).
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Numerical Tests of the New GH System

@ 3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.

@ These evolutions are stable and convergent when o = v, = 1.
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Moving Black Holes in a Spectral Code

@ Spectral: Excision boundary is a smooth analytic surface.
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Moving Black Holes in a Spectral Code

@ Spectral: Excision boundary is a smooth analytic surface.
e Cannot add/remove individual grid points.
@ Straightforward method: re-grid when holes move too far.
@ Problems:
o Re-gridding/interpolation is expensive.
o Difficult to get smooth extrapolation at trailing edge of horizon.
e Causality trouble at leading edge of horizon.
@ Solution:
Choose coordinates that smoothly
track the location of the black hole.

t

For a black hole binary this means Horizon

using coordinates that rotate with ﬁ

respect to inertial frames at infinity. Outside
Horizor

X
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Evolving Black Holes in Rotating Frames

@ Coordinates that rotate with respect to the inertial frames at
infinity are needed to track the horizons of orbiting black holes.

@ Evolutions of Schwarzschild in rotating coordinates are unstable.

10°® : : : @ Evolutions shown use a
computational domain that
extends to r = 1000M.

10 @ Angular velocity needed to
el track the horizons of an equal
mass binary at merger is
10" about Q ~ 0.2/M.
| @ Problem caused by asymptotic
N0 =0.002/M behavior of metric in rotating
10'110_5 1(')_3 1(')_1 161 " coordinatess: Yy ~ p?Q2,
t/M Vi ~ pS2, Y ~ 1.
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x® = {t,x"}, to define field components, U™ = {145, MNa5, Pox5 1
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

Ogua + AK &gaguﬂ =F%,
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
x® = {t,x"}, to define field components, U™ = {145, MNa5, Pox5 1
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

(’)guf*‘ + AK &EORU‘ﬁ = F%,

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {t,x'} = x(x?), to represent these
components as functions, u® = u®(x?).
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Dual-Coordinate-Frame Evolution Method

@ Single-coordinate frame method uses the one set of coordinates,
3 — [t,x"}, to define field components, U% = {155, M55, Posp b
and the same coordinates to determine these components by
solving Einstein’s equation for u® = u®(x?):

OEU& + ARaBOEU‘B =F°,

@ Dual-coordinate frame method uses basis vectors of one
coordinate system to define components of fields, and a second
set of coordinates, x? = {t,x'} = x?(x?), to represent these
components as functions, u® = u®(x?).

@ These functions are determined by solving the transformed
Einstein equation:
X! 104

ohu® 4+ _(5a,+a

Ak(y a 3:Fd
ot koo '
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Testing Dual-Coordinate-Frame Evolutions

@ Single-frame evolutions of Schwarzschild in rotating coordinates
are unstable, while dual-frame evolutions are stable:
Dual Frame Evolution
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@ Dual-frame evolution shown here uses a comoving frame with
2 = 0.2/M on a domain with outer radius r = 1000M.
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Horizon Tracking Coordinates

@ Coordinates must be used that track the motions of the holes.

@ The coordinate transformation from inertial coordinates, (X,y,Z),
to co-moving coordinates (x,y,z),

X [ cosp(t) —sing(t) O
y | = | sing(t) cosep(t) 0
z 0 0 1

with t = t, is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(t) and ¢(t).
@ Since the motions of the holes are not known a priori, the

functions a(t) and ¢(t) must be chosen dynamically and
adaptively as the system evolves.

NI <1 X
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Horizon Tracking Coordinates Il 5 _
P l}g
)
()
@ Measure the comoving centers of the holes: x.(t) and y¢(t), or

equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
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@ Measure the comoving centers of the holes: x.(t) and y¢(t), or
equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
@ Changing the map parameters by the small amounts, da and d,
results in associated small changes in /Q* and /QY:

5Q* = —ja, 5QY = —dp.
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Horizon Tracking Coordinates Il 5 _
¢ lyc
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()
@ Measure the comoving centers of the holes: x.(t) and y¢(t), or
equivalently Q*(t) = [xc(t) — x¢(0)]/x(0) and QY (t) = yc(t) /e (t).
@ Choose the map parameters a(t) and ¢(t) to keep Q*(t) and
QY(t) small.
@ Changing the map parameters by the small amounts, da and d,
results in associated small changes in /Q* and /QY:
Q¥ = —da, 6QY = —dp.
@ Measure the quantities QY (t), dQY(t)/dt, d >QY(t)/dt?, and set
d 3 dQY d2Qy  d3QY
— =23QY +3X2—— +3)\ = -
gz N I g T e a3
The solutions to this “closed-loop” equation for QY have the form
QY(t) = (At? + Bt + C)e ™, so QY always decreases ast — .
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Horizon Tracking Coordinates Il
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = t;.
@ Inthe time interval t; <t <t ; we set:
dpi  (t—1t)2d%y

pl) = g+ (t-t)- g +5 "z
(t—t)® [, d?°Q"  ,dQ/ 3Q7iy
+ 5 A a2 + A at + A 3 |

where Q*, QY, and their derivatives are measured att = tj, so
these maps satisfy the closed loop
equation att = t;.
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Horizon Tracking Coordinates Il
@ In practice the coordinate maps are adjusted only at a prescribed

set of adjustment times t = t;.
@ Inthe timeinterval tj <t <t we set:

doi  (t—1t)2d2p

pl) = g+ (t-t)- g +5 "z
(t—t)® [, d?°Q"  ,dQ/ 3Q7iy
+ 5 A a2 + A at +A 3 |

where Q*, QY, and their derivatives are measured att =tj, so

these maps satisfy the closed loop 2" QYL v |
equation at t = t;. y *®
1x10 | T
@ This works! We are now able
to evolve binary black holes using 0 .
horizon tracking coordinates until o= Xc(‘))(‘(g)c“’)
just before merger. -0 | ‘
_2X10'4 t/'\/‘IADM

L L
(0] 1000 2000 3000 4000
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Evolving Binary Black Hole Spacetimes
@ We can now evolve binary black hole spacetimes with excellent

accuracy and computational efficiency through many orbits.

T T T

|
5

Head-on Merger Movie Lapse-V¥, Movie
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Evolving Binary Black Hole Spacetimes Il

@ Gravitational waveform and frequency evolution for the equal
mass non-spinning BBH evolution.
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Evolving Binary Black Hole Spacetimes Il

@ Preliminary error estimates for the gravitational wave phase for the
15 orbit evolution.

T
0.6 Lev2';l: |
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i Levd ™.,
I . ! . ! . [ !
0 1000 2000 3000 4000
PN-ph: i d
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Evolving Binary Black Hole Spacetimes IV

@ Preliminary comparisons of the gravitational wave phase for the
15 orbit evolution with various PN order predicted waveforms.
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