Lee Lindblom Caltech

Collaborators: Michael Boyle, Duncan Brown, Gregory Cook, Larry Kidder, Geoffrey Lovelace, Abdul Mroue, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Saul Teukolsky

Lee Lindblom Caltech

Collaborators: Michael Boyle, Duncan Brown, Gregory Cook, Larry Kidder, Geoffrey Lovelace, Abdul Mroue, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Saul Teukolsky

University of Wisconsin at Milwaukee — 4 May 2007

Generalize Harmonic (GH) gauge conditions.

Lee Lindblom Caltech

Collaborators: Michael Boyle, Duncan Brown, Gregory Cook, Larry Kidder, Geoffrey Lovelace, Abdul Mroue, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Saul Teukolsky

- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.

Lee Lindblom Caltech

Collaborators: Michael Boyle, Duncan Brown, Gregory Cook, Larry Kidder, Geoffrey Lovelace, Abdul Mroue, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Saul Teukolsky

- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.
- Moving Black Holes.

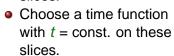
Lee Lindblom Caltech

Collaborators: Michael Boyle, Duncan Brown, Gregory Cook, Larry Kidder, Geoffrey Lovelace, Abdul Mroue, Robert Owen, Harald Pfeiffer, Oliver Rinne, Mark Scheel, Saul Teukolsky

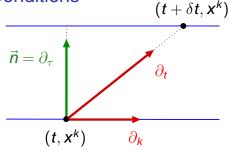
- Generalize Harmonic (GH) gauge conditions.
- Constraint damping in the GH system.
- Moving Black Holes.
- Binary Black Hole Evolutions.

Traditional ADM Gauge Conditions

 Construct a foliation of spacetime by spatial slices.



Choose spatial coordinates,
 x^k, on each slice.



- Decompose the 4-metric ψ_{ab} into its 3+1 parts: $ds^2 = \psi_{ab} dx^a dx^b = -N^2 dt^2 + g_{ij} (dx^i + N^i dt) (dx^j + N^j dt).$
- The lapse N and shift N^i measure how coordinates are laid out on spacetime: $\vec{n} = \partial_{\tau} = \frac{\partial t}{\partial \tau} \frac{\partial}{\partial t} + \frac{\partial x^k}{\partial \tau} \frac{\partial}{\partial k},$

$$= \frac{1}{N} \frac{\partial_t}{\partial_t} - \frac{N^k}{N} \frac{\partial_k}{\partial_k}.$$

 Spacetime coordinates are determined in the traditional ADM method by specifying the lapse N and shift Nⁱ.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the coordinates is through the generalized harmonic gauge source function H^a:
- Let H^a denote the function obtained by the action of the scalar wave operator on the coordinates x^a :

$$H^{a} \equiv \nabla^{c}\nabla_{c}\mathbf{X}^{a} = \psi^{bc}(\partial_{b}\partial_{c}\mathbf{X}^{a} - \Gamma^{e}_{bc}\partial_{e}\mathbf{X}^{a}) = -\Gamma^{a},$$

where $\Gamma^a = \psi^{bc} \Gamma^a{}_{bc}$ and ψ_{ab} is the 4-metric.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the coordinates is through the generalized harmonic gauge source function H^a:
- Let H^a denote the function obtained by the action of the scalar wave operator on the coordinates x^a :

$$H^{a} \equiv \nabla^{c}\nabla_{c}\mathbf{X}^{a} = \psi^{bc}(\partial_{b}\partial_{c}\mathbf{X}^{a} - \Gamma^{e}_{bc}\partial_{e}\mathbf{X}^{a}) = -\Gamma^{a},$$

where $\Gamma^a = \psi^{bc} \Gamma^a{}_{bc}$ and ψ_{ab} is the 4-metric.

• Specifying coordinates by the *generalized harmonic* (GH) method can be accomplished by choosing a gauge-source function $H_a(x,\psi)=\psi_{ab}H^b$, and requiring that $H_a(x,\psi)=-\Gamma_a=-\Gamma_{abc}\psi^{bc}$.

Important Properties of the GH Method

 The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$. The vacuum Einstein equation, $R_{ab} = 0$, has the same principal part as the scalar wave equation when $H_a(x, \psi) = -\Gamma_a$ is imposed.

Important Properties of the GH Method

 The Einstein equations are manifestly hyperbolic when coordinates are specified using a GH gauge function:

$$R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$$

where ψ_{ab} is the 4-metric, and $\Gamma_a=\psi^{bc}\Gamma_{abc}$. The vacuum Einstein equation, $R_{ab}=0$, has the same principal part as the scalar wave equation when $H_a(x,\psi)=-\Gamma_a$ is imposed.

• Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $C_a=0$, where

$$C_a = H_a + \Gamma_a$$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $\mathcal{M}_a=0$, are determined by the derivatives of the gauge constraint \mathcal{C}_a :

$$\mathcal{M}_{\mathsf{a}} \equiv \mathsf{G}_{\mathsf{a}\mathsf{b}} \mathsf{n}^{\mathsf{b}} = \left[
abla_{(\mathsf{a}} \mathcal{C}_{\mathsf{b})} - rac{1}{2} \psi_{\mathsf{a}\mathsf{b}}
abla^{\mathsf{c}} \mathcal{C}_{\mathsf{c}}
ight] \mathsf{n}^{\mathsf{b}}.$$

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2}\psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

5/17

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2}\psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

• Evolution of the constraints C_a follow from the Bianchi identities:

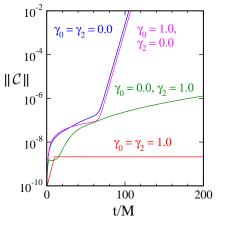
$$0 = \nabla^c \nabla_c \mathcal{C}_a - 2\gamma_0 \nabla^c \left[n_{(c} \mathcal{C}_{a)} \right] + \mathcal{C}^c \nabla_{(c} \mathcal{C}_{a)} - \frac{1}{2} \gamma_0 n_a \mathcal{C}^c \mathcal{C}_c.$$

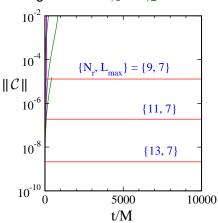
This is a damped wave equation for C_a , that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_0 > 0$).

5/17

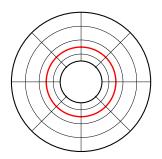
Numerical Tests of the New GH System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of our GH evolution system.
- These evolutions are stable and convergent when $\gamma_0 = \gamma_2 = 1$.

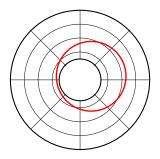




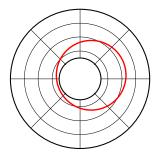
• Spectral: Excision boundary is a smooth analytic surface.



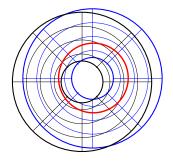
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.



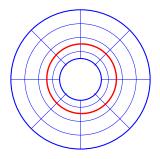
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.



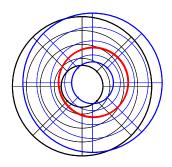
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.



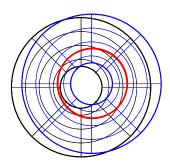
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.



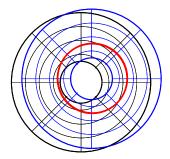
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.



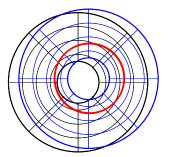
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.

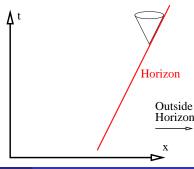


- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

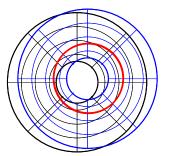


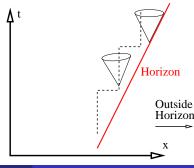
- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.





- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

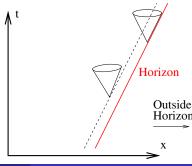




- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.
- Solution:

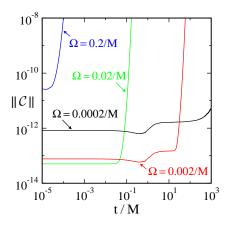
Choose coordinates that smoothly track the location of the black hole.

For a black hole binary this means using coordinates that rotate with respect to inertial frames at infinity.



Evolving Black Holes in Rotating Frames

- Coordinates that rotate with respect to the inertial frames at infinity are needed to track the horizons of orbiting black holes.
- Evolutions of Schwarzschild in rotating coordinates are unstable.



- Evolutions shown use a computational domain that extends to r = 1000M.
- Angular velocity needed to track the horizons of an equal mass binary at merger is about $\Omega \approx 0.2/M$.
- Problem caused by asymptotic behavior of metric in rotating coordinates: $\psi_{tt} \sim \rho^2 \Omega^2$, $\psi_{ti} \sim \rho \Omega$, $\psi_{ij} \sim 1$.

Dual-Coordinate-Frame Evolution Method

• Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\{\bar{t},x^{\bar{\imath}}\}$, to define field components, $u^{\bar{\alpha}}=\{\psi_{\bar{a}\bar{b}},\Pi_{\bar{a}\bar{b}},\Phi_{\bar{\imath}\bar{a}\bar{b}}\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}(x^{\bar{a}})$:

$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Dual-Coordinate-Frame Evolution Method

• Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\{\bar{t},x^{\bar{\imath}}\}$, to define field components, $u^{\bar{\alpha}}=\{\psi_{\bar{a}\bar{b}},\Pi_{\bar{a}\bar{b}},\Phi_{\bar{\imath}\bar{a}\bar{b}}\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}(x^{\bar{a}})$:

$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

• Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, $x^a = \{t, x^i\} = x^a(x^{\bar{a}})$, to represent these components as functions, $u^{\bar{\alpha}} = u^{\bar{\alpha}}(x^a)$.

Dual-Coordinate-Frame Evolution Method

• Single-coordinate frame method uses the one set of coordinates, $x^{\bar{a}}=\{\bar{t},x^{\bar{\imath}}\}$, to define field components, $u^{\bar{\alpha}}=\{\psi_{\bar{a}\bar{b}},\Pi_{\bar{a}\bar{b}},\Phi_{\bar{\imath}\bar{a}\bar{b}}\}$, and the same coordinates to determine these components by solving Einstein's equation for $u^{\bar{\alpha}}=u^{\bar{\alpha}}(x^{\bar{a}})$:

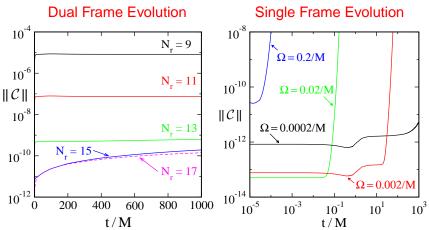
$$\partial_{\bar{t}} u^{\bar{\alpha}} + A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}} \partial_{\bar{k}} u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

- Dual-coordinate frame method uses basis vectors of one coordinate system to define components of fields, and a second set of coordinates, $x^a = \{t, x^i\} = x^a(x^{\bar{a}})$, to represent these components as functions, $u^{\bar{\alpha}} = u^{\bar{\alpha}}(x^a)$.
- These functions are determined by solving the transformed Einstein equation:

$$\partial_t u^{\bar{\alpha}} + \left[\frac{\partial x^i}{\partial \bar{t}} \delta^{\bar{\alpha}}{}_{\bar{\beta}} + \frac{\partial x^i}{\partial x^{\bar{k}}} A^{\bar{k}\,\bar{\alpha}}{}_{\bar{\beta}} \right] \partial_i u^{\bar{\beta}} = F^{\bar{\alpha}}.$$

Testing Dual-Coordinate-Frame Evolutions

 Single-frame evolutions of Schwarzschild in rotating coordinates are unstable, while dual-frame evolutions are stable:



• Dual-frame evolution shown here uses a comoving frame with $\Omega = 0.2/M$ on a domain with outer radius r = 1000M.

10 / 17

Horizon Tracking Coordinates

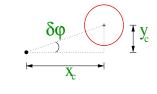
- Coordinates must be used that track the motions of the holes.
- The coordinate transformation from inertial coordinates, $(\bar{x}, \bar{y}, \bar{z})$, to co-moving coordinates (x, y, z),

$$\left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \mathrm{e}^{\mathrm{a}(\bar{t})} \left(\begin{array}{ccc} \cos\varphi(\bar{t}) & -\sin\varphi(\bar{t}) & 0 \\ \sin\varphi(\bar{t}) & \cos\varphi(\bar{t}) & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} \bar{x} \\ \bar{y} \\ \bar{z} \end{array} \right),$$

with $t = \bar{t}$, is general enough to keep the holes fixed in co-moving coordinates for suitably chosen functions $a(\bar{t})$ and $\varphi(\bar{t})$.

 Since the motions of the holes are not known a priori, the functions $a(\bar{t})$ and $\varphi(\bar{t})$ must be chosen dynamically and adaptively as the system evolves.

Horizon Tracking Coordinates II

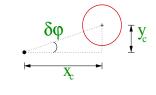


12 / 17

- Measure the comoving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $Q^x(t) = [x_c(t) x_c(0)]/x_c(0)$ and $Q^y(t) = y_c(t)/x_c(t)$.
- Choose the map parameters a(t) and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.

Lee Lindblom (Caltech) Generalized Harmonic BBH Evolutions UWM – 5/4/07

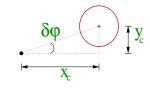
Horizon Tracking Coordinates II



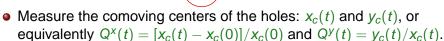
- Measure the comoving centers of the holes: $x_c(t)$ and $y_c(t)$, or equivalently $Q^x(t) = [x_c(t) x_c(0)]/x_c(0)$ and $Q^y(t) = y_c(t)/x_c(t)$.
- Choose the map parameters a(t) and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and δφ, results in associated small changes in δQ^x and δQ^y:

$$\delta Q^{x} = -\delta a, \qquad \delta Q^{y} = -\delta \varphi.$$

Horizon Tracking Coordinates II



12 / 17



- Choose the map parameters a(t) and $\varphi(t)$ to keep $Q^{x}(t)$ and $Q^{y}(t)$ small.
- Changing the map parameters by the small amounts, δa and $\delta \varphi$, results in associated small changes in δQ^x and δQ^y :

$$\delta Q^{x} = -\delta a, \qquad \delta Q^{y} = -\delta \varphi.$$

• Measure the quantities $Q^{y}(t)$, $dQ^{y}(t)/dt$, $d^{2}Q^{y}(t)/dt^{2}$, and set

$$\frac{d^3\varphi}{dt^3} = \lambda^3 Q^y + 3\lambda^2 \frac{dQ^y}{dt} + 3\lambda \frac{d^2 Q^y}{dt^2} = -\frac{d^3 Q^y}{dt^3}.$$

The solutions to this "closed-loop" equation for Q^y have the form $Q^y(t) = (At^2 + Bt + C)e^{-\lambda t}$, so Q^y always decreases as $t \to \infty$.

Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t = t_i$.
- In the time interval $t_i < t < t_{i+1}$ we set:

$$\varphi(t) = \varphi_i + (t - t_i) \frac{d\varphi_i}{dt} + \frac{(t - t_i)^2}{2} \frac{d^2\varphi_i}{dt^2} + \frac{(t - t_i)^3}{2} \left(\lambda \frac{d^2Q_i^y}{dt^2} + \lambda^2 \frac{dQ_i^y}{dt} + \lambda^3 \frac{Q_i^y}{3}\right),$$

where Q^x , Q^y , and their derivatives are measured at $t = t_i$, so these maps satisfy the closed loop equation at $t = t_i$.

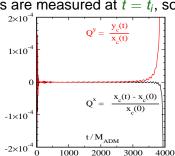
Horizon Tracking Coordinates III

- In practice the coordinate maps are adjusted only at a prescribed set of adjustment times $t = t_i$.
- In the time interval $t_i < t < t_{i+1}$ we set:

$$\varphi(t) = \varphi_i + (t - t_i) \frac{d\varphi_i}{dt} + \frac{(t - t_i)^2}{2} \frac{d^2\varphi_i}{dt^2} + \frac{(t - t_i)^3}{2} \left(\lambda \frac{d^2Q_i^y}{dt^2} + \lambda^2 \frac{dQ_i^y}{dt} + \lambda^3 \frac{Q_i^y}{3}\right),$$

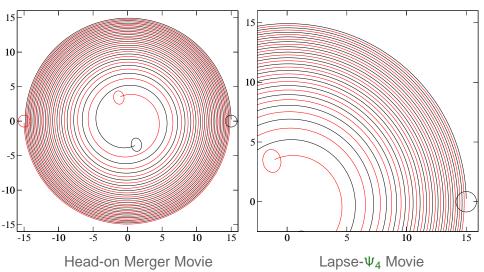
where Q^x , Q^y , and their derivatives are measured at $t = t_i$, so these maps satisfy the closed loop equation at $t = t_i$.

 This works! We are now able to evolve binary black holes using horizon tracking coordinates until just before merger.



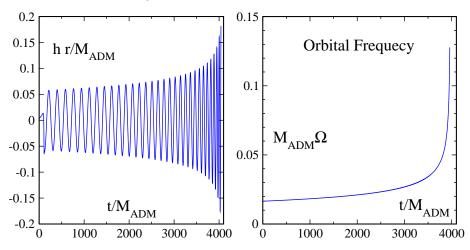
Evolving Binary Black Hole Spacetimes We can now evolve binary black hole spacetimes with excellent

 We can now evolve binary black hole spacetimes with excellent accuracy and computational efficiency through many orbits.



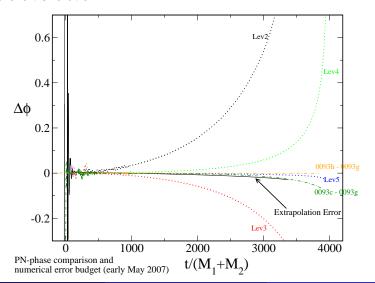
Evolving Binary Black Hole Spacetimes II

 Gravitational waveform and frequency evolution for the equal mass non-spinning BBH evolution.



Evolving Binary Black Hole Spacetimes III

 Preliminary error estimates for the gravitational wave phase for the 15 orbit evolution.



Evolving Binary Black Hole Spacetimes IV

 Preliminary comparisons of the gravitational wave phase for the 15 orbit evolution with various PN order predicted waveforms.

