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Multi-cube representations of arbitrary three-manifolds.
Boundary conditions for elliptic, parabolic and hyperbolic PDEs.
Numerical tests for solutions of simple PDEs.
Covariant first-order representation of Einstein’s equation.
Simple numerical Einstein evolutions.
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Representations of Arbitrary Three-Manifolds
Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds Σ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R × Σ.

Every two- and three-manifold admits a triangulation (Radó 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus a list of rules for gluing their edges (or faces)
together.

Cubes make more convenient computational domains for finite
difference and spectral numerical methods.
Can arbitrary two- and three-manifolds be “cubed”, i.e.
represented as a set of squares or cubes plus a list of rules for
gluing their edges or faces together?
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“Multi-Cube” Representations of Three-Manifolds
Every two- and three-dimensional triangulation can be refined to a
”multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:

Every two- or three-manifold can be represented as a set of
squares or cubes, plus maps that identify their edges or faces.
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Boundary Maps: Fixing the Topology
Multi-cube representations of topological manifolds consist of a
set of cubic regions, BA, plus maps that identify the faces of
neighboring regions, ΨAα

Bβ(∂βBB) = ∂αBA.

Choose cubic regions to have uniform size and orientation.
Choose linear interface
identification maps ΨAα

Bβ:
x i

A = c i
Aα + C Aα i

B β k (xk
B − ck

B β),

where C Aα i
B β k is a rotation-

reflection matrix, and c i
Aα is

center of α face of region A.
Examples:
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Fixing the Differential Structure
The boundary identification maps,
ΨAα

Bβ, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

∂
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∂
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∂
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Y
2

X
1

X
2

=

Smooth tensor fields expressed in multi-cube coordinates are not
(in general) even continuous at the interfaces.

Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.
The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.
Multi-cube manifolds need an
additional layer of infrastructure:
e.g., overlapping domains DA ⊃ BA
with transition maps that are smooth
in the overlap regions.
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Fixing the Differential Structure II
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian JAαi

Bβk and its dual J∗Bβk
Aαi that transform

tensors from one multi-cube coordinate region to another: for
example, v i

A = JAαi
Bβkvk

B and wAi = J∗Bβk
Aαi wBk .

A smooth reference metric g̃ij determines the needed Jacobians.
Let g̃Aij and g̃Bij be the components of a smooth reference metric
in the multi-cube coordinates of regions BA and BB that are
identified at the faces ∂αBA ↔ ∂βBB.
Use the reference metric to define the outward directed unit
normals: nAαi , ni

Aα, nBβi , and ni
Bβ.

The needed Jacobians are given by
JAαi

Bβk = CAαi
Bβ`

(
δ`k − n`BβnBβk

)
−ni

AαnBβk ,

J∗Bβk
Aαi =

(
δ`i − nAαin`Aα

)
CBβk

Aα` − nAαink
Bβ.

Use continuity of the covariant
derivatives of tensors, e.g. ∇̃Aivk

A , to
define their differentiability.

These Jacobians satisfy:
ni

Aα = −JAαi
Bβknk

Bβ,

nAαi = −J∗Bβk
Aαi nBβk ,

t i
Aα = JAαi

Bβk tk
Bβ = CAαi

Bβk tk
Bβ,

δAi
Ak = JAαi

Bβ`J
∗Bβ`
Aαk .
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Solving PDEs on Multi-Cube Manifolds

x

z

y

1 3 42

5

6

S2 S1Χ

y

1 3 4

z

x
8

7
6

5

S3

Solve PDEs in each cubic region separately.
Use boundary conditions on cube faces to select the correct
smooth global solution.

For second-order strongly-elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

uA ' uB ∇̃nB uB ' −∇̃nAuA.

For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields with outgoing
characteristics from neighbor,

û−A ' û+
B û−B ' û+

A .
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Numerical Methods

Represent each component of each tensor function as a (finite)
sum of spectral basis functions, u =

∑
pqr upqr Tp(x)Tq(y)Tr (z),

in each cubic region.

Evaluate derivatives of the functions using the known derivatives
of the basis functions: ∂xu =

∑
pqr upqr ∂xTp(x)Tq(y)Tr (z).

Evaluate the PDEs and BCs on a set of collocation points,
{xi , yj , zk}, chosen so that u(xi , yj , zk ) can be mapped efficiently
onto the spectral coefficients upqr . Derivatives become linear
combinations of the fields: ∂xu(xi , yj , zk ) =

∑
` Di

` u(x`, yj , zk ).
For elliptic systems, these pseudo-spectral equations become a
system of algebraic equations for u(xi , yj , zk ). Solve these
algebraic equations using standard numerical methods.
For hyperbolic systems these equations become a system of
ordinary differential equations for u(xi , yj , zk , t). Solve these
equations by the method of lines using standard ode integrators.
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Testing the Elliptic PDE Solver
Solve the elliptic PDE, ∇i∇iψ − c2ψ = f where c2 is a constant,
and f is a given function.

Use the co-variant derivative ∇i for the round metric on S2 × S1:

ds2 = R2
1dχ2 + R2

2

(
dθ2 + sin2 θ dϕ2

)
,

=

(
2πR1

L

)2

dz2
A +

(
πR2

2L

)2
(1 + X 2

A)(1 + Y 2
A )

(1 + X 2
A + Y 2

A )2

×
[

(1 + X 2
A) dx2

A − 2XAYA dxA dyA + (1 + Y 2
A ) dy2

A

]
.

where XA = tan [π(xA − cx
A)/2L] and YA = tan

[
π(yA − cy

A)/2L
]

are “local” Cartesian coordinates in each cubic region.

Let f = −(ω2 + c2)ψE , where ψE = <
[
eikχY`m(θ, ϕ)

]
. The

angles χ, θ and ϕ are functions of the coordinates x , y and z.

The unique, exact, analytical solution to this problem is ψ = ψE ,
when ω2 = `(` + 1)/R2

2 + k2/R2
1 .
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Testing the Elliptic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the residual RN ≡ ∇i∇iψN − c2ψN − f , and its norm:

ER =
√∫

R2
N
√

gd3x∫
f 2√gd3x .

Second, with the solution error, ∆ψ = ψN − ψE , and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2

E
√

gd3x .

All these numerical tests were
performed by implementing
the ideas described here into
the Spectral Einstein Code
(SpEC) developed originally
by the Caltech/Cornell
numerical relativity
collaboration.
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Testing the Hyperbolic PDE Solver
Solve the equation ∂ 2

t ψ = ∇i∇iψ with given initial data.
Convert the second-order equation into an equivalent first-order
system: ∂tψ = −Π, ∂tΠ = −∇iΦi and ∂tΦi = −∇iΠ
with constraint Ci = ∇iψ − Φi .

Use the co-variant derivative ∇i for the round metric on S3:

ds2 = R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

=

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
(1 + X2

A)(1 + Y 2
A + Z 2

A)

(1 + Y 2
A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
A)

(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

Choose initial data with ψt=0 = <[Yk`m(χ, θ, ϕ)],
Πt=0 = −<[iωYk`m(χ, θ, ϕ)] and Φi t=0 = <[∇iYk`m(χ, θ, ϕ)]
where ω2 = k(k + 2)/R2

3 .

The unique, exact, analytical solution to this problem is
ψ = ψE = <[eiωtYk`m(χ, θ, ϕ)], Π = −∂tψE , and Φi = ∇iψE .
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Testing the Hyperbolic PDE Solver II
Measure the accuracy of the numerical solution ψN as a function
of numerical resolution N (grid points per dimension) in two ways:

First, with the solution error, ∆ψ = ψN − ψE , and its norm:

Eψ =
√∫

∆ψ2√gd3x∫
ψ2√gd3x .

Second, with the constraint error, Ci = Φi −∇iψ, and its norm:

EC =
√ ∫

g ijCiCj
√

gd3x∫
g ij (Φi Φj +∇iψ∇jψ)

√
gd3x .
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Solving Einstein’s Equation on Multi-Cube Manifolds
Multi-cube methods were designed to solve first-order hyperbolic
systems, ∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), where the dynamical
fields uα are tensors that can be transformed across interface
boundaries using the Jacobians JAαi

Bβk , etc.

The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

The usual choice of dynamical fields,
uα = {ψab,Πab = −tc∂cψab,Φiab = ∂iψab} are not tensor fields.
The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of Πab, Πab = −tc∂cψab, and the
one that comes from preserving the constraint Ciab = Φiab − ∂iψab,
tc∂cCiab = −γ2Ciab.

Our attempts to construct the transformations for non-tensor
quantities like ∂iψab and Φiab across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.
A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation
Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.

A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative ∇̃a:

Rab = − 1
2ψ

cd∇̃c∇̃dψab +∇(a∆b) − ψcd R̃e
cd(aψb)e

+ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)
,

where ∆abc = ψad

(
Γd

bc − Γ̃d
bc

)
, and ∆a = ψbc∆abc .

A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: ∆a = −Ha(ψcd ).
The vacuum Einstein equations then become:

ψcd∇̃c∇̃dψab = −2∇(aHb) + 2ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)

−2ψcd R̃e
cd(aψb)e + γ0

[
2δc

(atb) − ψabtc
]

(Hc + ∆c) .

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UWM 5/24/2013 14 / 21



Covariant Representations of Einstein’s Equation
Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.
A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative ∇̃a:

Rab = − 1
2ψ

cd∇̃c∇̃dψab +∇(a∆b) − ψcd R̃e
cd(aψb)e

+ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)
,

where ∆abc = ψad

(
Γd

bc − Γ̃d
bc

)
, and ∆a = ψbc∆abc .

A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: ∆a = −Ha(ψcd ).
The vacuum Einstein equations then become:

ψcd∇̃c∇̃dψab = −2∇(aHb) + 2ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)

−2ψcd R̃e
cd(aψb)e + γ0

[
2δc

(atb) − ψabtc
]

(Hc + ∆c) .

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UWM 5/24/2013 14 / 21



Covariant Representations of Einstein’s Equation
Let ψ̃ab denote a smooth reference metric on the manifold R × Σ.
For convenience we choose ds2 = ψ̃abdxadxb = −dt2 + g̃ijdx idx j ,
where g̃ij is the smooth multi-cube reference three-metric on Σ.
A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative ∇̃a:

Rab = − 1
2ψ

cd∇̃c∇̃dψab +∇(a∆b) − ψcd R̃e
cd(aψb)e

+ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)
,

where ∆abc = ψad

(
Γd

bc − Γ̃d
bc

)
, and ∆a = ψbc∆abc .

A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a
covariant generalized harmonic condition: ∆a = −Ha(ψcd ).
The vacuum Einstein equations then become:

ψcd∇̃c∇̃dψab = −2∇(aHb) + 2ψcdψef (∇̃eψca∇̃fψab −∆ace∆bdf
)

−2ψcd R̃e
cd(aψb)e + γ0

[
2δc

(atb) − ψabtc
]

(Hc + ∆c) .

Lee Lindblom (Caltech) Numerical Methods for Arbitrary Topologies UWM 5/24/2013 14 / 21



Covariant Representations of Einstein’s Equation II
A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields:

uα = {ψab,Πab = −tc∇̃cψab,Φiab = ∇̃iψab},
which are tensors with respect to spatial coordinate
transformations.

The first order equation that arises from the definition of Πab,
tc∇̃cψab = −Πab is now covariant, as is the equation for tc∇̃cΦiab
that follows from the covariant constraint evolution equation,
tc∇̃cCiab = −γ2Ciab, where Ciab = Φiab − ∇̃iψab.
The resulting first-order Einstein evolution system,
∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.
The characteristic speeds and fields of this covariant system have
the same forms as the standard ones in terms of the dynamical
fields ψab, Πab and Φiab. These fields are now tensors, however,
so the actual characteristic fields are somewhat different.
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that follows from the covariant constraint evolution equation,
tc∇̃cCiab = −γ2Ciab, where Ciab = Φiab − ∇̃iψab.
The resulting first-order Einstein evolution system,
∂tuα + Ak α

β(u)∇̃kuβ = Fα(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.
The characteristic speeds and fields of this covariant system have
the same forms as the standard ones in terms of the dynamical
fields ψab, Πab and Φiab. These fields are now tensors, however,
so the actual characteristic fields are somewhat different.
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Testing the Einstein Solver: Static Universe on S3

Metric initial data is taken from the “Einstein Static Universe”
geometry:

ds2 = −dt2 + R2
3

[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

)]
,

= −dt2 +

(
πR3

2L

)2 (1 + X2
A)(1 + Y 2

A )(1 + Z 2
A)

(1 + X2
A + Y 2

A + Z 2
A)2

[
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A)(1 + Y 2
A + Z 2
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A )(1 + Z 2

A)
dx2 +

(1 + Y 2
A )(1 + X2

A + Z 2
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(1 + X2
A)(1 + Z 2

A)
dy2

+
(1 + Z 2

A)(1 + X2
A + Y 2

A )

(1 + X2
A)(1 + Y 2

A )
dz2 −

2XAYA

1 + Z 2
A

dx dy −
2XAZA

1 + Y 2
A

dx dz −
2YAZA

1 + X2
A

dy dz

]
.

This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S3.
Evolution of these initial data is the static universe geometry, if the
cosmological constant is chosen to be Λ = 1/R 2

3 , and the
complex scalar field is ϕ = ϕ0e iµt with µ2|ϕ0|2 = 1/4πR 2

3 .
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Testing the Einstein Solver: Static Universe on S3 II
Monitor how well the numerical solutions
satisfy the Einstein system by evaluating
the norm of the various constraints:

EC =
√ ∫ ∑

|C|2√gd3x∫ ∑
|∂i u|2

√
gd3x .
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N = 16
N = 18
N = 20
N = 22
N = 24

EC

t / R3

Monitor the physical volume V of the S3 in
comparison with the Einstein Static
Solution value V0 = 2π2R 3

3 :

Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,
∆ψab = ψNab − ψAab:

Eψ =
√∫ ∑

ab |∆ψab|2
√

gd3x∫ ∑
ab |ψab|2

√
gd3x .
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Testing the Einstein Solver: Static Universe on S3 III
The constraints are well satisfied for t . 20, so these are good
(approximate) solutions for early times.

The static Einstein-Klein-Gordon solution has unstable k = 0 and
k = 1 modes with frequencies given by

ω2
0R 2

3 = 2µ2R 2
3 − 2− 2

√
µ4R 4

3 − µ2R 2
3 + 1,

ω1R3 =
i
2

(
µGR3 −

√
4 + µ2

GR2
3

)
.

For the mass and radius parameters used in these simulations
1/τ0 ≡ |ω0| ≈ 1.100 and 1/τ1 ≡ |ω1| ≈ 0.618.
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Testing the Einstein Solver: Static Universe on S3 IV
Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.

Define the spherical harmonic projection Q̄k`m of a quantity Q by
Q̄k`m =

∫
Y ∗k`mQ

√
g̃ d 3x .

Modify the Einstein-Klein-Gordon evolution system by adding
terms that damp out this particular perturbation, e.g.

∂tψtt = ftt −
[
f̄ k`m
tt + ηψ̄k`m

tt

]
Y k`m.

Check this equation by multiplying the modified evolution
equations by Y ∗k`m and integrating to obtain the modified
evolution of the damped mode, e.g., for the ψtt equation you get:
∂t ψ̄

k`m
tt = −ηψ̄k`m

tt .
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Testing the Einstein Solver: Perturbed Static S3

Find the normal modes of the perturbed Einstein-Klein-Gordon
system analytically, e.g., δψtt = <

(
AttY k`meiωt), ....

The frequencies of the “scalar” modes of this system for k ≥ 2 are
given by ω2

0R2
3 = k(k + 2) and

ω2
±R2

3 = k(k + 2) + 2(µ2R2
3 − 1)

±
√

(µ2R2
3 − 1)2 + [k(k + 2) + 1]µ2R2

3 .

Evolve initial data constructed from three superimposed normal
modes (one from each frequency class ω0 and ω±).
Compare non-linear evolution with analytical perturbation solution:

Evolve initial data constructed from fifteen superimposed normal
modes (with modes from each frequency class ω0 and ω±).
Perturbed S3 Evolution Movie.
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Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Each new topology requires:

A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.
A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.
These methods have been tested successfully for Einstein
evolutions by finding simple solutions numerically on compact
manifolds using our new covariant Einstein evolution system.
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manifolds using our new covariant Einstein evolution system.
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Summary
We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.
Each new topology requires:

A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
A smooth reference metric g̃ab to define the global differential
structure on this multi-cube representation of the manifold.

These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.
A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.
These methods have been tested successfully for Einstein
evolutions by finding simple solutions numerically on compact
manifolds using our new covariant Einstein evolution system.
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