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@ Multi-cube representations of arbitrary three-manifolds.

@ Boundary conditions for elliptic, parabolic and hyperbolic PDEs.
@ Numerical tests for solutions of simple PDEs.

@ Covariant first-order representation of Einstein’s equation.

@ Simple numerical Einstein evolutions.
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Representations of Arbitrary Three-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds ¥ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R x %.
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Representations of Arbitrary Three-Manifolds

@ Goal: Develop numerical methods that are easily adapted to
solving elliptic PDEs on three-manifolds ¥ with arbitrary topology,
and parabolic or hyperbolic PDEs on manifolds R x %.

@ Every two- and three-manifold admits a triangulation (Radé 1925,
Moire 1952), i.e. can be represented as a set of triangles (or
tetrahedra), plus a list of rules for gluing their edges (or faces)
together.

@ Cubes make more convenient computational domains for finite
difference and spectral numerical methods.

@ Can arbitrary two- and three-manifolds be “cubed”, i.e.
represented as a set of squares or cubes plus a list of rules for
gluing their edges or faces together?
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“Multi-Cube” Representations of Three-Manifolds

@ Every two- and three-dimensional triangulation can be refined to a
"multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:
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“Multi-Cube” Representations of Three-Manifolds

@ Every two- and three-dimensional triangulation can be refined to a
"multi-cube” representation: For example, in three-dimensions
divide each tetrahedron into four “distorted” cubes:

@ Every two- or three-manifold can be represented as a set of
squares or cubes, plus maps that identify their edges or faces.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, V5% (938g) = 0.5x.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, ng(agBB) = 0y Ba.

@ Choose cubic regions to have uniform size and orientation.
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Boundary Maps: Fixing the Topology

@ Multi-cube representations of topological manifolds consist of a

set of cubic regions, B4, plus maps that identify the faces of

neighboring regions, ng;(&)gBB) = 0,Ba.

@ Choose cubic regions to have uniform size and orientation.

@ Choose linear interface
identification maps W4:
P Aai(vk Ak
Xa = Caq +‘CB§k(XB — Cgp);
where C4¢/ is a rotation-

reflection matrix, and ¢/, , is
center of « face of region A.

Lee Lindblom (Caltech)

1

o
—

A

¥ x

Ry

z

UWM 5/24/2013

4/21



Boundary Maps: Fixing the Topology
@ Multi-cube representations of topological manifolds consist of a
set of cubic regions, B4, plus maps that identify the faces of
neighboring regions, W3%(9385) = 0. Ba.
@ Choose cubic regions to have uniform size and orientation.
@ Choose linear interface

. e . A . z z
identification maps Wi3: Wi
i i Aai (yk K
X/I‘\_ Cj‘\(,x +‘CB§/I((XB_CB;3’)7 B
where C7 4} is a rotation- “© |y P
reflection matrix, and ?Aa is #x A "B
center of « face of region A.
@ Examples: S5
. S2XS
s g
1 2! 3 4 ! 3 4
t 5 T t 5 P
x |5
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Fixing the Differential Structure
@ The boundary identification maps,
W22, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multi-cube coordinates are not
(in general) even continuous at the interfaces.
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@ Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.
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coordinate domains having smooth transition maps.
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Fixing the Differential Structure
@ The boundary identification maps,
W22, used to construct multi-cube
topological manifolds are
continuous, but typically are not
differentiable at the interfaces.

@ Smooth tensor fields expressed in multi-cube coordinates are not
(in general) even continuous at the interfaces.

@ Differential structure provides the framework in which smooth
functions and tensors are defined on a manifold.

@ The standard construction assumes the existence of overlapping
coordinate domains having smooth transition maps.

@ Multi-cube manifolds need an
additional layer of infrastructure:
e.g., overlapping domains Dy O Ba < >
with transition maps that are smooth
in the overlap regions.
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Fixing the Differential Structure I
@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian J43, and its dual J;°”* that transform
tensors from one multi-cube coordinate region to another: for
example, vi = JA9vE and wa; = J;27 wi.
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@ A smooth reference metric g; determines the needed Jacobians.

@ Let gsj and gg; be the components of a smooth reference metric
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Fixing the Differential Structure I

@ All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian J43, and its dual J;°”* that transform
tensors from one multi-cube coordinate region to another: for
example, vi = JA9vE and wa; = J;27 wi.

@ A smooth reference metric g; determines the needed Jacobians.

@ Let gsj and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 55 that are
identified at the faces 0,84 <+ 03B8p.

@ Use the reference metric to define the outward directed unit
normals: Na.i, My, Nezi, and N

@ The needed Jacobians are given by
Jask = 85t (0% — nynasn ) — My, Nk

«BBk [y A BBk Ak
Jpai = (0 = NpaiN,) Cang — NAaiNgs-
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Fixing the Differential Structure I

All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian J53; and its dual Jj\gfk that transform
tensors from one multi-cube coordinate region to another: for
example, vi = JA9vE and wa; = J;27 wi.

A smooth reference metric g; determines the needed Jacobians.

Let g4 and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 55 that are
identified at the faces 0,84 <+ 03B8p.

Use the reference metric to define the outward directed unit
normals: Na.i, My, Nezi, and N

The needed Jacobians are given by @ These Jacobians satisfy:
A Aal l ! j i Aal
JB%/I( = Cg (5k - nlBﬁan?’k) — My NBsks  Mpa = JB?k”de
BBk Bjk — _ BBk,
J:\af (O[ nAQ"nﬁ\a) CAaZ nAQin;éB' nAm B JAQ’ nB Bk ;
; t JAo/ T CAm tk/
Ao Bak'Bs = “Bsk'Bs:

JA(“ BB
Ak — YBptYAak -
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Fix

ing the Differential Structure I
All that is needed to define continuous tensor fields at interface
boundaries is the Jacobian J43, and its dual J;°”* that transform
tensors from one multi-cube coordinate region to another: for
example, vi = JA9vE and wa; = J;27 wi.
A smooth reference metric g; determines the needed Jacobians.
Let g4 and gg; be the components of a smooth reference metric
in the multi-cube coordinates of regions B3, and 55 that are
identified at the faces 0,84 <+ 03B8p.
Use the reference metric to define the outward directed unit
normals: Na.i, My, Nezi, and N
The needed Jacobians are given by @ These Jacobians satisfy:

Aai _ PAai [ s ) i i _ _ JAai pk
Jesk = Chh <()k — Ngg ”Bﬁk) — MaalBsks  Mae = —JB5KMBa
«Bpk . Bik . BBk,
JAaé = (OI[ B nAQ"nﬁ\a) CA(M B nAQinléﬁ' Z-Am B AO‘{’L}%" ntf\:” l'k
Use continuity of the covariant ﬁ;’f B if?k- Bfé:z S
. . d I vl =
derivatives of tensors, e.g. V V4, to Oak = JBgrdack -

define their differentiability.
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Solving PDEs on Multi-Cube Manifolds

5, xS, 185
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@ Solve PDEs in each cubic region separately.

@ Use boundary conditions on cube faces to select the correct
smooth global solution.
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Solving PDEs on Multi-Cube Manifolds
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@ Solve PDEs in each cubic region separately.
@ Use boundary conditions on cube faces to select the correct

smooth global solution.
@ For second-order strongly-elliptic systems: enforce continuity on

one face and continuity of normal derivatives on neighboring face,

Ua >~ Up VnBUB ~ *VnAUA.
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Solving PDEs on Multi-Cube Manifolds

1S
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@ Solve PDEs in each cubic region separately.

@ Use boundary conditions on cube faces to select the correct
smooth global solution.

@ For second-order strongly-elliptic systems: enforce continuity on
one face and continuity of normal derivatives on neighboring face,

Uag >~ Up VnBUB ~ *VnAUA.

@ For first-order symmetric hyperbolic systems whose dynamical
fields are tensors: set incoming characteristic fields with outgoing
characteristics from neighbor,

Uy, ~ Uy Ug ~ Uy.
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Numerical Methods

@ Represent each component of each tensor function as a (finite)
sum of spectral basis functions, U = > Upqgr Tp(X) T4(y) T(2),
in each cubic region.
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@ Evaluate derivatives of the functions using the known derivatives
of the basis functions: O,u = 3 _ . Upgr Oy Tp(X) To(y) Tr(2).
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Numerical Methods

@ Represent each component of each tensor function as a (finite)
sum of spectral basis functions, U = > Upqgr Tp(X) T4(y) T(2),
in each cubic region.

@ Evaluate derivatives of the functions using the known derivatives
of the basis functions: O,u = 3 _ . Upgr Oy Tp(X) To(y) Tr(2).

@ Evaluate the PDEs and BCs on a set of collocation points,

{Xi, ). Zx }, chosen so that u(x;, y;, zx) can be mapped efficiently
onto the spectral coefficients U,,. Derivatives become linear
combinations of the fields: d,u(x;., y;, zx) = >, D u(xe, ¥}, Zx).
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Numerical Methods

@ Represent each component of each tensor function as a (finite)
sum of spectral basis functions, U = > Upqgr Tp(X) T4(y) T(2),
in each cubic region.

@ Evaluate derivatives of the functions using the known derivatives
of the basis functions: O,u = 3 _ . Upgr Oy Tp(X) To(y) Tr(2).

@ Evaluate the PDEs and BCs on a set of collocation points,

{Xi, ). Zx }, chosen so that u(x;, y;, zx) can be mapped efficiently
onto the spectral coefficients U,,. Derivatives become linear
combinations of the fields: d,u(x;., y;, zx) = >, D u(xe, ¥}, Zx).

@ For elliptic systems, these pseudo-spectral equations become a
system of algebraic equations for u(x;, y;, zx). Solve these
algebraic equations using standard numerical methods.

@ For hyperbolic systems these equations become a system of
ordinary differential equations for u(x;, y;, Zx, t). Solve these
equations by the method of lines using standard ode integrators.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V ;1) — ¢®) = f where ¢? is a constant,
and f is a given function.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V i) — ¢®1) = f where ¢? is a constant,
and f is a given function.
@ Use the co-variant derivative V; for the round metric on S® x S':

ds? = R2dy2+ RE (d92+sin29d<p2>,
orR\? 5  (7R\? (14 X2)( + Y2)
- dZA + 2 2\2
L 2L ) (1+X2+1Y?)
x [(1 + X2) dx2 — 22X, Yadxadya+ (1 + Y2) dy/ﬂ .

where X, = tan [r(xa — c})/2L] and Y, = tan [x(ya — c})/2L]
are “local” Cartesian coordinates in each cubic region.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V ;1) — ¢®) = f where ¢? is a constant,
and f is a given function.

@ Use the co-variant derivative V; for the round metric on S? x S':
ds? = R2dy2+ RE (d92 +sin?0 d<p2> ,
- (%Fg >2dz§ . <7TR2>2 (1+X3)(1+ Y3)
L 2L ) (1+ X2+ Y2)2
x [(1 + X2) dx2 — 22X, Yadxadya+ (1 + Y2) dyﬂ .

where X, = tan [r(xa — c})/2L] and Y, = tan [x(ya — c})/2L]
are “local” Cartesian coordinates in each cubic region.

o Letf = —(w? + C%)ve, where g = R [€*XY,n(0, ¢)]. The
angles y, ¢ and ¢ are functions of the coordinates x, y and Z.
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Testing the Elliptic PDE Solver

@ Solve the elliptic PDE, V'V i) — ¢®1) = f where ¢? is a constant,
and f is a given function.
@ Use the co-variant derivative V; for the round metric on S® x S':

ds? = R2dy2+ RE (d92+sin29d<p2>,
orR\? 5  (7R\? (14 X2)( + Y2)
- dZA + 2 2\2
L 2L ) (1+X2+1Y?)
x [(1 + X2) dx2 — 22X, Yadxadya+ (1 + Y2) dyﬂ .

where X, = tan [r(xa — c})/2L] and Y, = tan [x(ya — c})/2L]
are “local” Cartesian coordinates in each cubic region.

o Letf = —(w? + C%)ve, where g = R [€*XY,n(0, ¢)]. The
angles y, ¢ and ¢ are functions of the coordinates x, y and Z.

@ The unique, exact, analytical solution to this problem is 1) = g,
when w? = /(¢ +1)/R5 + k*/ R2.
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Testing the Elliptic PDE Solver Il

@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
o First, with the residual Ry = V'V )y — ¢y — f, and its norm:

_ [T
&R =\ TR g

e Second, with the solution error, Ay = 1)y — g, and its norm:

. = J Ay2,/gd3x
v =\ TeEvedx
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Testing the Elliptic PDE Solver Il

@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
o First, with the residual Ry = V'V )y — ¢y — f, and its norm:

En— J R2\/gd®x

R — T2 /gdex
e Second, with the solution error, Ay = )y — g, and its norm:
[ Ay2 /gd3x

gw o .]'/u‘)%\/@d3x '

10° ‘ ‘ ‘ ‘ ‘ @ All these numerical tests were

. performed by implementing
10°¢ 1 the ideas described here into
o e . &y | the Spectral Einstein Code

° (SpEC) developed originally
w2k . i by the Caltech/Cornell
&r e % numerical relativity

e e m R collaboration.

10 12 14 16 18 20 22
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Testing the Hyperbolic PDE Solver
@ Solve the equation 021 = V, V¢ with given initial data.
@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d;, and 0P, = -V,
with constraint C; = Vi) — ;.
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Testing the Hyperbolic PDE Solver

@ Solve the equation 021 = V, V¢ with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d;, and 0P, = -V,
with constraint C; = Vi) — ;.

@ Use the co-variant derivative V; for the round metric on S°:

ds? = RZ[dy?+sin®x (d6® +sin® 0 di?)|

A+XDA+YE+28) o, (+YH(+X3+238) ,

(@)2 (1 +X3)(1 + Y3 (1 + Z3)

2L (1+ X2+ Y24+ 22)2 1+ Y2)(1+22) (1 +X2)(1 +22)
14201+ X3+ Y2 2X,Y, 2X4Z, 2Y,Z,
( A)(2 A > ) 2 TA 2 X dy — A gdxdz— A ':dydz .
(1+X3)(1+ v2) 1+ 2% 1+ Y2 1+ X2
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Testing the Hyperbolic PDE Solver

@ Solve the equation 021 = V, V¢ with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d;, and 0P, = -V,
with constraint C; = Vi) — ;.

@ Use the co-variant derivative V; for the round metric on S°:
ds? = R? [dXZ +sin?y <d€2 +sin?¢ d&)} ,

(@)2 (1 +X3)(1 + Y3 (1 + Z3)

A+XDA+YE+28) , (1+Y)(1+X3 +z§)d 5

2L (1+ X2+ Y24+ 22)2 1+ Y2)(1+22) (1 +X2)(1 +22)
14201+ X3+ Y2 2X,Y, 2X4Z, 2Y,Z,
( A)(2 A 2A) 2 _ Ag X dy — Agdxdz— A':dydz.
(1+X3)(1+ v2) 1+ 2% 1+ Y2 1+ X2

@ Choose initial data with ¢;—o = R Yikem(x, ¢, ¢)],
Mi—o = —R[iw Ykem(x, 0, ¢)] and ®;—o = R[V; Yiem(X, 0, ©)]
where w? = k(k + 2)/Rs.

Lee Lindblom (Caltech) UWM 5/24/2013 11/21



Testing the Hyperbolic PDE Solver

@ Solve the equation 021 = V, V¢ with given initial data.

@ Convert the second-order equation into an equivalent first-order
system: Oy = —I1, Ol =-V'®d;, and 0P, = -V,
with constraint C; = Vi) — ;.

@ Use the co-variant derivative V; for the round metric on S°:

ds? = RZ[dy?+sin®x (d6® +sin® 0 di?)|

A+XDA+YE+28) o, (+YH(+X3+238) ,

(@)2 (1 +X3)(1 + Y3 (1 + Z3)

2L (1+ X2+ Y24+ 22)2 1+ Y2)(1+22) (1 +X2)(1 +22)
14201+ X3+ Y2 2X,Y, 2X4Z, 2Y,Z,
( A)(2 A > ) 2 TA 2 X dy — A gdxdz— A ':dydz .
(1+X3)(1+ v2) 1+ 2% 1+ Y2 1+ X2

@ Choose initial data with ¢;—o = R Yikem(x, ¢, ¢)],
Mi—o = —R[iw Ykem(x, 0, ¢)] and ®;—o = R[V; Yiem(X, 0, ©)]
where w? = k(k + 2)/Rs.

@ The unique, exact, analytical solution to this problem is
Y = e = R[E“ Yium(x, 0, )], N = —0r)e, and ®; = Vit)e.
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Testing the Hyperbolic PDE Solver Il
@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
e First, with the solution error, Ay = )y — g, and its norm:

.= J Ay2,/gd3x

e Second, with the constraint error, C; = ®; — V1), and its norm:

g o fg’/C,C,-\/gd3x
€7V T 9@ +ViuV9) /adx”
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Testing the Hyperbolic PDE Solver Il

@ Measure the accuracy of the numerical solution ¢/, as a function
of numerical resolution N (grid points per dimension) in two ways:
e First, with the solution error, Ay = )y — g, and its norm:

.= J Ay2,/gd3x

e Second, with the constraint error, C; = ®; — V1), and its norm:

[ g7C:C;\/ad®x
To7(®; ¢/+V,LV/ ) /adPx "
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u“ are tensors that can be transformed across interface
boundaries using the Jacobians J35;, etc.
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u“ are tensors that can be transformed across interface
boundaries using the Jacobians J33;, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® = {vap, Nap = —t°0cthap, Piap = Ji1bap } are not tensor fields.

e The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of N, My, = —°0.1)4p, and the
one that comes from preserving the constraint Cizp = ®jap — i1 2p,
t¢0cCiab = —72 Ciabp-
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Solving Einstein’s Equation on Multi-Cube Manifolds

@ Multi-cube methods were designed to solve first-order hyperbolic
systems, O;u* + A 5(u)Vu® = F*(u), where the dynamical
fields u™ are tensors that can be transformed across interface
boundaries using the Jacobians J53/, etc.

@ The usual first-order representations of Einstein’s equation fail to
meet these conditions in two important ways:

e The usual choice of dynamical fields,
u® = {vap, Nap = —t°0cthap, Piap = Ji1bap } are not tensor fields.

e The usual first-order evolution equations are not covariant: i.e., the
one that comes from the definition of N, M, = — 10145, and the
one that comes from preserving the constraint Cizp = ®jap — i1 2p,
t°0¢cCiab = —72Ciap-

@ Our attempts to construct the transformations for non-tensor
quantities like d;1 4, and @4, across the non-smooth multi-cube
interface boundaries failed to result in stable numerical evolutions.

@ A spatially covariant first-order representation of the Einstein
evolution system seems to be needed.
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Covariant Representations of Einstein’s Equation

@ Let ¢, denote a smooth reference [netric on the manifold R x %
For convenience we choose ds? = 1,,dx@dx? = —dt? + g;ax’adx/,
where gj is the smooth multi-cube reference three-metric on .
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Covariant Representations of Einstein’s Equation

@ Let ¢, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = ,pdxdx? = —dit? + gjax'ax/,
where gj is the smooth multi-cube reference three-metric on .

@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V :

Ry = *%IZ)Cd@c@d?/Jab + V(alp) — deﬁ?ecd(awb)e
%9 (VetreaV tbab — Daceloar)

Where Aabc - wad (l—gc - fgc), and Aa — UbCAabc.
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Covariant Representations of Einstein’s Equation

@ Let ¢, denote a smooth reference metric on the manifold R x ¥.
For convenience we choose ds? = ,pdxdx? = —dit? + gjax'ax/,
where gj is the smooth multi-cube reference three-metric on .

@ A fully covariant expression for the Ricci tensor can be obtained
using the reference covariant derivative V :

Rap = *%?/)Cd@c@dﬁ’ab + v(aAb) - ““/'Cdﬁ?ecd(aﬂ)b)e
ap©dapet (@e’l/Jca@ﬂ/)ab - AaceAbdf> ;
Where Aabc - wad (l—gc - fgc), and Aa — UbCAabc.
@ A fully-covariant manifestly hyperbolic representation of the
Einstein equations can be obtained by fixing the gauge with a

covariant generalized harmonic condition: A, = —Hz(1¢g).
@ The vacuum Einstein equations then become:

VNNV aar = —2V(aHp) + 209 (VeheaVtbap — Dacelnar)
*Zi/JCd'E?ecd(awb)e + Y {2(5&1’[3) — L/)abtc} (Hc + AC) .
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Covariant Representations of Einstein’s Equation Il
@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )
u® = {thap, Map = —t°Veap, Piab = Vitbap},
which are tensors with respect to spatial coordinate
transformations.
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Covariant Representations of Einstein’s Equation Il

@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )

u® = {thap, Map = —t°Vetap, Piap = Vithap},
which are tensors with respect to spatial coordinate
transformations.

@ The first order equation that arises from the definition of I,
eV et ap = —4p is NOW covariant, as is the equation for (V4
that follows from the covariant constraint evolution equation,
t°V¢Ciap = —72Ciap, Where Cigp = ®iap — Vithap.
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Covariant Representations of Einstein’s Equation Il

@ A first-order representation of the Einstein equations can be
obtained from this covariant generalized harmonic representation
by choosing dynamical fields: ) )

u® = {thap, Map = —t°Vetap, Piap = Vithap},
which are tensors with respect to spatial coordinate
transformations.

@ The first order equation that arises from the definition of I,
eV et ap = —4p is NOW covariant, as is the equation for (V4
that follows from the covariant constraint evolution equation,
t°V¢Ciap = —72Ciap, Where Cigp = ®iap — Vithap.

@ The resulting first-order Einstein evolution system,

Opu” + A 4(u)Vu® = F(u), is symmetric-hyperbolic and
covariant with respect to spatial coordinate transformations.

@ The characteristic speeds and fields of this covariant system have
the same forms as the standard ones in terms of the dynamical
fields 4, M4, and ;4. These fields are now tensors, however,
so the actual characteristic fields are somewhat different.

Lee Lindblom (Caltech) UWM 5/24/2013 15/21



Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”
geometry:

ds? = —df+ RZ|dy? +siny (0 + sin®0 d?) | |

Lee Lindblom (Caltech) UWM 5/24/2013 16/21



Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [df +sin?y <d62 +sin?4 d902>] ,
o+ (@)2 (U XD+ YDA+ ZD [+ XD+ YE+20) o 1+ YD +XF+2Z0) o
2L (1+ X3 + Y2+ 232 1+ Y1 +23) (1+X2)(1 + 22)

14+22) 1+ X2 +v2 2X,Y, 2XsZ, 2Y,Z,
( A)(Z A ZA)d227 AL dxdy — A A dxdz A dy az| .
(1+XA)(1+YA) 1+ZA 1+YA 1+XA
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Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [dx2+sun X <d02 +sin ngozﬂ ,
i <LF’3>2 A+XD0+ YDA+ ZD) [+ XD+ Ya+28) o 1+ YD +XE+20) »
2L (1+ X3 + Y2+ 232 (1+Y2)(1 + 22) (1+X2)(1 + 22)
(1 +Z)(1+ X5+ Yj)dz2 C2XaYa . 2XaZa . 2YaZa dydz]
(1+X3)(1+ ¥2) 1+ 22 1+v2 1+ X2

@ This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S°.

Lee Lindblom (Caltech) UWM 5/24/2013 16/21



Testing the Einstein Solver: Static Universe on S®

@ Metric initial data is taken from the “Einstein Static Universe”

geometry:
P2 P2
ds? = —df* + R [dx2+sun X <d02 +sin 9d<p2>} ,
o+ <’i’3>2 (U XD+ YDA+ ZD [+ XD+ YE+20) o 1+ YD +XF+2Z0) o
2L (1+ X3 + Y2+ 232 (1+Y2)(1 + 22) (1+X2)(1 + 22)
(1 +Z)(1+ X5+ Yg)dz2 C2XaYa . 2XaZa . 2YaZa dydz]
(1+X3)(1+ ¥2) 1+ 22 1+v2 1+ X2

@ This metric solves Einstein’s equation with cosmological constant
and complex scalar field source on a manifold with spatial
topology S°.

@ Evolution of these initial data is the static universe geometry, if the
cosmological constant is chosen to be A = 1/RZ, and the
complex scalar field is o = poe’™ with 1%|pg|> = 1/47RZ.
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions ~ “f —  ~ —i¢]
satisfy the Einstein system by evaluating .| g

the norm of the various constraints: & owmﬂh/ //-
|

10°F

&, — / J’Z\CF\@dsx wof ]
¢ S22 10iul?\/gdPx” 10§ 5 5 w
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions ~ *f

satisfy the Einstein system by evaluating

107F

the norm of the various constraints: gl ]
o M//’
—_»¢_,-~/ 3

g J— JZ\CF\/?C’SX 10%°F
¢ =V T oupr/gdx-

@ Monitor the physical volume V of the S° in
comparison with the Einstein Static
Solution value Vo = 272 R3:
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Testing the Einstein Solver: Static Universe on S®

@ Monitor how well the numerical solutions

satisfy the Einstein system by evaluating

@ Monitor the physical volume V of the S° in
comparison with the Einstein Static
Solution value Vo = 272 R3:

Lee Lindblom (Caltech)
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the norm of the various constraints: Ay

10°
g — jz ‘Clz\/gdsx 10"
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Testing the Einstein Solver: Static Universe on S° ||

@ Monitor how well the numerical solutions
satisfy the Einstein system by evaluating
the norm of the various constraints:

& — ] JEICPvadx
€™V T [ouP vadx
@ Monitor the physical volume V of the S° in

comparison with the Einstein Static
Solution value Vo = 272 R3:

@ Monitor the accuracy of numerical metric
solution by evaluating the norm of its error,
Atpap = VYnab — Y aab:

g, — [ ZalbiaPVadx
TS0 et Vaex
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Testing the Einstein Solver: Static Universe on S° Il
@ The constraints are well satisfied for ¢ < 20, so these are good
(approximate) solutions for early times.
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Testing the Einstein Solver: Static Universe on S° Il
@ The constraints are well satisfied for ¢ < 20, so these are good
(approximate) solutions for early times.

@ The static Einstein-Klein-Gordon solution has unstable kK = 0 and
k = 1 modes with frequencies given by

wsRZ = 2u°RZ -2 - 2\///‘,‘?34 — pPR2 4+ 1,

i [ 2 o2
w1 R3 = é <HGR3 - 4+ M2GR§> .

For the mass and radius parameters used in these simulations
1/79 = |wp| = 1.100 and 1/7y = |w¢| ~ 0.618.
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Testing the Einstein Solver: Static Universe on S° Il
@ The constraints are well satisfied for ¢ < 20, so these are good
(approximate) solutions for early times.
@ The static Einstein-Klein-Gordon solution has unstable k = 0 and
k = 1 modes with frequencies given by

wsRZ = 2u°RZ -2 - 2\///‘,‘?34 — pPR2 4+ 1,

i [ oo
w1 R3 = é <HGR3 - 4+ M2GR§> .

For the mass and radius parameters used in these simulations
1/79 = |wp| = 1.100 and 1/7y = |w¢| ~ 0.618.

4 T T T 4 - T T
10 —N=16 10 iy —N=15

—N=20 6 W / — N=20

108 1V V-1 =hE 100 ) e

10’8*//,—J 1 0% S0 .
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Testing the Einstein Solver: Static Universe on S IV
@ Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.
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Testing the Einstein Solver: Static Universe on S IV
@ Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.

@ Define the spherical harmonic projection QK™ of a quantity Q by
Qkem — f y*kﬂmo\/@ d3x.
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Testing the Einstein Solver: Static Universe on S IV
@ Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.

@ Define the spherical harmonic projection Q" of a quantity Q by
Qkém f y*kimo\f d3x.
@ Modify the Einstein-Klein-Gordon evolution system by adding
terms that damp out this particular perturbation, e.g.

3ol Fkim kém kem
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Testing the Einstein Solver: Static Universe on S IV
@ Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.
@ Define the spherical harmonic projection Q" of a quantity Q by
Qkém f y*k(ma\f dS
@ Modify the Einstein-Klein-Gordon evolution system by adding
terms that damp out this particular perturbation, e.g.

oy = fy — mfém + ] yRem,
@ Check this equation by multiplying the modified evolution
equations by Y**" and integrating to obtain the modified

evolution of the damped mode, e.g., for the ¥+ equation you get:
O™ = —mpgt™.
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Testing the Einstein Solver: Static Universe on S IV

@ Test long term stability by damping out the unstable modes while
leaving the other parts of the dynamics untouched.

@ Define the spherical harmonic projection QK™ of a quantity Q by

Qkem — f y*kZmO\/E d3x.

@ Modify the Einstein-Klein-Gordon evolution system by adding

terms that damp out this particular perturbation, e.g.
Oy = Ty — mtdm + M YR,

@ Check this equation by multiplying the modified evolution
equations by Y**" and integrating to obtain the modified
evolution of the damped mode, e.g., for the vy equation you get:

) ktim T kém
Orhg ™ = =y ™.

1070720 40 60 80 100 1076720 40 60 80 100
t/R, t/R,
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Testing the Einstein Solver: Perturbed Static S3

@ Find the normal modes of the perturbed Einstein-Klein-Gordon
system analytically, e.g., vy = R (Ag YKIMelt), ..
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Testing the Einstein Solver: Perturbed Static S3

@ Find the normal modes of the perturbed Einstein-Klein-Gordon
system analytically, e.g., vy = R (Ag YKIMelt), ..

@ The frequencies of the “scalar” modes of this system for k > 2 are
given by wi RS = k(k + 2) and

PR = k(k+2)+2(2RE 1)
/(2R —1)2 + [k(k +2) + 1]2RE.
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Testing the Einstein Solver: Perturbed Static S3

@ Find the normal modes of the perturbed Einstein-Klein-Gordon
system analytically, e.g., vy = R (Ag YKIMelt), ..
@ The frequencies of the “scalar” modes of this system for k > 2 are
given by wi RS = k(k + 2) and
WER: = Kk(k+2)+2(ufR2 —1)
/(2R —1)2 + [k(k +2) + 1]2RE.

@ Evolve initial data constructed from three superimposed normal
modes (one from each frequency class wy and w4).

@ Compare non-linear evolution with analytical perturbation solution:

. . -
. — = — 10
10°f Nz 10°F NI
NZ NZ
NZ NI
8 1070 [ b d
107 . e 7 10°F B e (Ll Ll
e £, ®
N e —— 1 I Lotz [
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o A
12 12 14 { vy
07620 40 60 80 100 107620 40 60 80 100 1070 20 40 60 80 100
t/R, t/R, tR,
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Testing the Einstein Solver: Perturbed Static S3

@ Find the normal modes of the perturbed Einstein-Klein-Gordon
system analytically, e.g., vy = R (Ag YKIMelt), ..
@ The frequencies of the “scalar” modes of this system for k > 2 are
given by wi RS = k(k + 2) and
WERE = k(k+2)+2(uPRE —1)

/(2R —1)2 + [k(k +2) + 1]2RE.

@ Evolve initial data constructed from flfteen superimposed normal
modes (with modes from each frequency class wy and w.).

@ Perturbed S° Evolution Movie.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

Lee Lindblom (Caltech) UWM 5/24/2013 21 /21



Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:
o A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.
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e A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.
@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:

e A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.

e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.

@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

@ A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.
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Summary

@ We have developed a simple and flexible multi-cube numerical
method for solving partial differential equations on manifolds with
arbitrary spatial topologies.

@ Each new topology requires:
e A multi-cube representation of the topology, i.e. a list of cubic
regions and a list of boundary identification maps.
e A smooth reference metric g.» to define the global differential
structure on this multi-cube representation of the manifold.
@ These methods have been tested by solving simple elliptic and
hyperbolic equations on several compact manifolds.

@ A first-order symmetric-hyperbolic representation of the
generalized harmonic Einstein evolution equations has been
constructed that is covariant with respect to general spatial
coordinate transformations.

@ These methods have been tested successfully for Einstein
evolutions by finding simple solutions numerically on compact

manifolds using our new covariant Einstein evolution system.
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