Solving Einstein's Equations for Binary Black Hole Spacetimes

Lee Lindblom

Theoretical Astrophysics, Caltech

MESGW 2010, São Sebastião, Brazil 30 November 2010

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On NCSA group (1993-94).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On NCSA group (1993-94).
- Full 3D one orbit, no merger Penn State group (2003-04).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On NCSA group (1993-94).
- Full 3D one orbit, no merger Penn State group (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On NCSA group (1993-94).
- Full 3D one orbit, no merger Penn State group (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).
- Moving puncture method Brownsville + Goddard (2005).

- First Axisymmetric Head-On Hahn & Lindquist (1964).
- Better Axisymmetric Head-On Eppley & Smarr (1975-77).
- Good Axisymmetric Head-On NCSA group (1993-94).
- Full 3D one orbit, no merger Penn State group (2003-04).
- First full inspiral + merger + ringdown Pretorius (2005).
- Moving puncture method Brownsville + Goddard (2005).
- Unequal masses Goddard + Penn State groups (2006).
- Non-zero spins Brownsville + AEI (2006-07).
- Post merger recoils (up to \sim 4000 km/s)

- Jena + AEI + Rochester (2007).

- Large mass ratios (1:10) Jena (2009).
- Generic spins with precession Rochester (2009).
- High precision inspiral + merger + ringdown waveforms
 AEI + Caltech/Cornell (2009).
- Very large mass ratios (1:100) Rochester (2010).
- Very high spins ($\chi \approx 0.95$) Caltech/Cornell (2010).

Outline of Talk:

- Fundamental Einstein Equations Issues.
 - Specifying the Gauge in Einstein's Equations.
 - Making Einstein's Equations Hyperbolic.
 - Constraints and Constraint Damping.
 - "Good" Gauge Conditions for Binary Black Holes.
- Numerical Method Issues.
 - Solving Evolution Equations.
 - Horizon Tracking Coordinates.
 - Dual-Frame Evolution.
 - Horizon Distortion Maps.
 - Spectral AMR.
- A Sample of Recent BBH Evolution Results.
 - Post-Merger Recoils.
 - Accurate Long Waveforms.
 - Very High Mass Ratios.
 - Very High Spins.

Traditional ADM Gauge Conditions

- Construct a foliation of spacetime by spatial slices.
- Choose a time function with *t* = const. on these slices.
- Choose spatial coordinates, *x^k*, on each slice.

• The lapse *N* and shift *Nⁱ* measure how coordinates are laid out on spacetime: $\vec{n} = \partial_{\tau} = \frac{\partial x^{a}}{\partial \tau} \partial_{a} = \frac{\partial t}{\partial \tau} \partial_{t} + \frac{\partial x^{k}}{\partial \tau} \partial_{k},$

 $\vec{n} = \partial_{\tau}$

 (t, x^k)

 $= \frac{1}{N}\partial_t - \frac{N^k}{N}\partial_k.$

ð٢

• Spacetime coordinates are determined in the traditional ADM method by specifying the lapse *N* and shift *N*^{*i*}.

Lee Lindblom (Caltech)

Binary Black Holes

 $(t + \delta t, x^k)$

ADM Evolution System

When the gauge is determined by specifying the lapse N and shift N^k, the Einstein equations becomes a set of evolution equations for the spatial metric g_{ii} and extrinsic curvature K_{ii}:

 $\begin{array}{lll} \partial_t g_{ij} &=& -2NK_{ij} + E_{ij}(g,N,\partial_x g,\partial_x N), \\ \partial_t K_{ij} &=& F_{ij}(g,K,N,\partial_x g,\partial_x K,\partial_x N,\partial_x \partial_x g,\partial_x \partial_x N). \end{array}$

• The Einstein equations also include constraints:

$$0 = \mathcal{M}_t \equiv \mathcal{M}_t(g, K, \partial_x g, \partial_x \partial_x g),$$

$$0 = \mathcal{M}_i \equiv \mathcal{M}_i(g, K, \partial_x g, \partial_x K).$$

- Einstein's equations do not determine the time derivatives of the lapse *N* and shift *N*^{*i*}.
- This traditional form of the Einstein equations is not hyperbolic, and numerical solutions are non-convergent.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the gauge (i.e. coordinates) in the Einstein equations is through the gauge source function H^a:
- Let *H^a* denote the function obtained by the action of the covariant scalar wave operator on the coordinates *x^a*:

$$\mathcal{H}^{a}\equiv
abla^{c}
abla_{c}x^{a} \ = \ \psi^{bc}(\partial_{b}\partial_{c}x^{a}-\Gamma^{e}_{bc}\partial_{e}x^{a})=-\Gamma^{a},$$

where $\Gamma^{a} = \psi^{bc} \Gamma^{a}{}_{bc}$ and ψ_{ab} is the 4-metric.

Generalized Harmonic Gauge Conditions

- An alternate way to specify the gauge (i.e. coordinates) in the Einstein equations is through the gauge source function H^a:
- Let *H^a* denote the function obtained by the action of the covariant scalar wave operator on the coordinates *x^a*:

$$H^{a} \equiv \nabla^{c} \nabla_{c} x^{a} = \psi^{bc} (\partial_{b} \partial_{c} x^{a} - \Gamma^{e}_{bc} \partial_{e} x^{a}) = -\Gamma^{a},$$

where $\Gamma^{a} = \psi^{bc} \Gamma^{a}{}_{bc}$ and ψ_{ab} is the 4-metric.

 Specifying coordinates by the *generalized harmonic* (GH) method can be accomplished by choosing a gauge-source function H^a(x, ψ), e.g. H^a = ψ^{ab}H_b(x), and requiring that

$$H^{a}(x,\psi) = -\Gamma^{a} = \partial_{b}\left(\sqrt{-\psi}\psi^{ab}\right)/\sqrt{-\psi}.$$

Einstein's Equation with the GH Method

• The spacetime Ricci tensor can be written as:

 $R_{ab} = -\frac{1}{2}\psi^{cd}\partial_c\partial_d\psi_{ab} + \nabla_{(a}\Gamma_{b)} + F_{ab}(\psi,\partial\psi),$

where ψ_{ab} is the 4-metric, and $\Gamma_a = \psi^{bc} \Gamma_{abc}$.

• The Generalized Harmonic Einstein equation is obtained by replacing Γ_a with $-H_a(x, \psi) = -\psi_{ab}H^b(x, \psi)$:

 $R_{ab} - \nabla_{(a} \left[\Gamma_{b} + H_{b} \right] = -\frac{1}{2} \psi^{cd} \partial_{c} \partial_{d} \psi_{ab} - \nabla_{(a} H_{b)} + F_{ab}(\psi, \partial \psi).$

• The vacuum GH Einstein equation, $R_{ab} = 0$ with $\Gamma_a + H_a = 0$, is therefore manifestly hyperbolic, having the same principal part as the scalar wave equation:

$$\mathbf{0} = \nabla_{\mathbf{a}} \nabla^{\mathbf{a}} \Phi = \psi^{\mathbf{a}\mathbf{b}} \partial_{\mathbf{a}} \partial_{\mathbf{b}} \Phi + F(\partial \Phi).$$

Gauge and Hyperbolicity in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

Gauge and Hyperbolicity in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0, \partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations can then be re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

Gauge and Hyperbolicity in Electromagnetism

 The usual representation of the vacuum Maxwell equations split into evolution equations and constraints:

$$\partial_t \vec{E} = \vec{\nabla} \times \vec{B}, \qquad \nabla \cdot \vec{E} = 0,$$

$$\partial_t \vec{B} = -\vec{\nabla} \times \vec{E}, \qquad \nabla \cdot \vec{B} = 0.$$

These equations are often written in the more compact 4-dimensional notation: $\nabla^a F_{ab} = 0$ and $\nabla_{[a} F_{bc]} = 0$, where F_{ab} has components \vec{E} and \vec{B} .

 Maxwell's equations can then be re-expressed in terms of a vector potential F_{ab} = ∇_aA_b − ∇_bA_a :

$$\nabla^a \nabla_a A_b - \nabla_b \nabla^a A_a = 0.$$

 This form of Maxwell's equations is manifestly hyperbolic as long as the gauge is chosen correctly, e.g., let ∇^aA_a = H(x, t, A), giving:

$$\nabla^{a} \nabla_{a} A_{b} \equiv \left(-\partial_{t}^{2} + \partial_{x}^{2} + \partial_{y}^{2} + \partial_{z}^{2} \right) A_{b} = \nabla_{b} H.$$

The Constraint Problem

- Fixing the gauge in an appropriate way makes the Einstein equations hyperbolic, so the initial value problem becomes well-posed mathematically.
- In a well-posed representation, the constraints, C = 0, remain satisfied for all time if they are satisfied initially.

The Constraint Problem

- Fixing the gauge in an appropriate way makes the Einstein equations hyperbolic, so the initial value problem becomes well-posed mathematically.
- In a well-posed representation, the constraints, C = 0, remain satisfied for all time if they are satisfied initially.
- There is no guarantee, however, that constraints that are "small" initially will remain "small".
- Constraint violating instabilities were one of the major problems that made progress on binary black hole solutions so slow.
- Special representations of the Einstein equations are needed that control the growth of any constraint violations.

Constraint Damping in Electromagnetism

Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?

Constraint Damping in Electromagnetism

- Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

 $\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$

Constraint Damping in Electromagnetism

- Electromagnetism is described as the hyperbolic evolution equation ∇^a∇_aA_b = ∇_bH.
 Where have the usual ∇ · E = ∇ · B = 0 constraints gone?
- Gauge condition becomes a constraint: $0 = C \equiv \nabla^a A_a H$.
- Maxwell's equations imply that this constraint is preserved:

 $\nabla^a \nabla_a \mathcal{C} = \mathbf{0}.$

• Modify evolution equations by adding multiples of the constraints:

 $\nabla^{a} \nabla_{a} A_{b} = \nabla_{b} H + \gamma_{0} t_{b} C = \nabla_{b} H + \gamma_{0} t_{b} (\nabla^{a} A_{a} - H).$

• These changes effect the constraint evolution equation,

$$\nabla^a \nabla_a \mathcal{C} - \gamma_0 t^b \nabla_b \mathcal{C} = \mathbf{0},$$

so constraint violations are damped when $\gamma_0 > 0$.

Generalized Harmonic Evolution System

 A similar constraint damping mechanism exists for the GH evolution system:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$. Without constraint damping, these equations are very unstable to constraint violating instabilities.

Generalized Harmonic Evolution System

• A similar constraint damping mechanism exists for the GH evolution system:

$$0 = R_{ab} - \nabla_{(a}\Gamma_{b)} - \nabla_{(a}H_{b)},$$

= $R_{ab} - \nabla_{(a}C_{b)},$

where $C_a = H_a + \Gamma_a$. Without constraint damping, these equations are very unstable to constraint violating instabilities.

• Imposing coordinates using a GH gauge function profoundly changes the constraints. The GH constraint, $C_a = 0$, where

$$\mathcal{C}_{a}=H_{a}+\Gamma_{a},$$

depends only on first derivatives of the metric. The standard Hamiltonian and momentum constraints, $M_a = 0$, are determined by the derivatives of the gauge constraint C_a :

$$\mathcal{M}_{a} \equiv \left[R_{ab} - \frac{1}{2} \psi_{ab} R \right] n^{b} = \left[\nabla_{(a} \mathcal{C}_{b)} - \frac{1}{2} \psi_{ab} \nabla^{c} \mathcal{C}_{c} \right] n^{b}.$$

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2} \psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

Constraint Damping Generalized Harmonic System

 Pretorius (based on a suggestion from Gundlach, et al.) modified the GH system by adding terms proportional to the gauge constraints:

$$0 = R_{ab} - \nabla_{(a}C_{b)} + \gamma_0 \left[n_{(a}C_{b)} - \frac{1}{2} \psi_{ab} n^c C_c \right],$$

where n^a is a unit timelike vector field. Since $C_a = H_a + \Gamma_a$ depends only on first derivatives of the metric, these additional terms do not change the hyperbolic structure of the system.

• Evolution of the constraints C_a follow from the Bianchi identities:

$$0 = \nabla^{c} \nabla_{c} \mathcal{C}_{a} - 2\gamma_{0} \nabla^{c} [n_{c} \mathcal{C}_{a}] + \mathcal{C}^{c} \nabla_{c} \mathcal{C}_{a} - \frac{1}{2} \gamma_{0} n_{a} \mathcal{C}^{c} \mathcal{C}_{c}.$$

This is a damped wave equation for C_a , that drives all small short-wavelength constraint violations toward zero as the system evolves (for $\gamma_0 > 0$).

Numerical Tests of the GH Evolution System

- 3D numerical evolutions of static black-hole spacetimes illustrate the constraint damping properties of the GH evolution system.
- These evolutions are stable and convergent when $\gamma_0 = \gamma_2 = 1$.

• The boundary conditions used for this simple test problem freeze the incoming characteristic fields to their initial values.

Dynamical Gauge Conditions

• The spacetime coordinates *x^b* are fixed in the generalized harmonic Einstein equations by specifying *H^b*:

 $\nabla^a \nabla_a x^b \equiv H^b.$

- The generalized harmonic Einstein equations remain hyperbolic as long as the gauge source functions H^b are taken to be functions of the coordinates x^b and the spacetime metric ψ_{ab} .
- The simplest choice $H^b = 0$ (harmonic gauge) fails for very dynamical spacetimes, like binary black hole mergers.
- We think this failure occurs because the coordinates themselves become very dynamical solutions of the wave equation ∇^a∇_ax^b = 0 in these situations.
- Another simple choice keeping *H^b* fixed in the co-moving frame of the black holes works well during the long inspiral phase, but fails when the black holes begin to merge.

Dynamical Gauge Conditions II

• Some of the extraneous gauge dynamics could be removed by adding a damping term to the harmonic gauge condition:

$$\nabla^a \nabla_a x^b = H^b = \mu n^a \partial_a x^b = \mu n^b = \mu \psi^{bt} / \sqrt{-\psi^{tt}}.$$

 This works well for the spatial coordinates xⁱ, driving them toward solutions of the spatial Laplace equation on the timescale 1/μ.

Dynamical Gauge Conditions II

 Some of the extraneous gauge dynamics could be removed by adding a damping term to the harmonic gauge condition:

$$\nabla^a \nabla_a x^b = H^b = \mu n^a \partial_a x^b = \mu n^b = \mu \psi^{bt} / \sqrt{-\psi^{tt}}.$$

- This works well for the spatial coordinates xⁱ, driving them toward solutions of the spatial Laplace equation on the timescale 1/μ.
- For the time coordinate *t*, this damped wave condition drives *t* to a time independent constant, which is not a good coordinate.
- A better choice sets H_t proportional to $\mu \log \sqrt{-\det g_{ij}/\psi^{tt}}$. This time coordinate condition keeps the ratio $\det g_{ij}/\psi^{tt}$ close to unity, even during binary black hole mergers where it becomes of order 100 using our simpler gauge conditions.

Outline of Talk:

- Fundamental Einstein Equation Issues.
 - How Gauge is Specified.
 - Making Einstein's Equation Hyperbolic.
 - Constraints and Constraint Damping.
 - Good Gauge Conditions.

Numerical Method Issues.

- Solving Evolution Equations.
- Horizon Tracking Coordinates.
- Dual-Frame Evolution.
- Horizon Distortion Maps.
- Spectral AMR.
- A Sample of Recent BBH Evolution Results.
 - Post-Merger Recoils.
 - Accurate Long Waveforms.
 - Very High Mass Ratios.
 - Very High Spins.

$$\partial_t u = F(u, \partial_x u, x, t).$$

• Choose a grid of spatial points, *x_n*.

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$\begin{array}{cccc} U_{n-1} & U_n & U_{n+1} \\ \bullet & \bullet & \bullet & \bullet \\ X_{n-1} & X_n & X_{n+1} \end{array}$$

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} \quad U_n \quad U_{n+1}$$

$$X_{n-1} \quad X_n \quad X_{n+1}$$
Approximate the spatial derivatives at the grid points
$$\partial_x u(x_n) = \sum_k D_{nk} u_k.$$

٠

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, x_n .

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *F* at the grid points x_n in terms of the u_k : $F(u_k, x_n, t)$.

 $\partial_t u = F(u, \partial_x u, x, t).$

• Choose a grid of spatial points, *x_n*.

• Evaluate the function *u* on this grid: $u_n(t) = u(x_n, t)$.

$$U_{n-1} U_n U_{n+1}$$

$$X_{n-1} X_n X_{n+1}$$

- Approximate the spatial derivatives at the grid points $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$
- Evaluate *F* at the grid points x_n in terms of the u_k : $F(u_k, x_n, t)$.
- Solve the coupled system of ordinary differential equations,

$$\frac{du_n(t)}{dt}=F[u_k(t),x_n,t],$$

using standard numerical methods (e.g. Runge-Kutta).

Lee Lindblom (Caltech)

Binary Black Holes

 Different numerical methods use different ways of choosing the grid points X_n, and different expressions for the spatial derivatives

 $\partial_x u(x_n) = \sum_k D_{n\,k} u_k.$

- Different numerical methods use different ways of choosing the grid points x_n , and different expressions for the spatial derivatives $\partial_x u(x_n) = \sum_k D_{nk} u_k$.
- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $X_n X_{n-1} = \Delta X = \text{constant}.$
 - Use Taylor expansions to obtain approximate expressions for the derivatives, e.g.,

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

- Different numerical methods use different ways of choosing the grid points x_n , and different expressions for the spatial derivatives $\partial_x u(x_n) = \sum_k D_{nk} u_k$.
- Most numerical groups use finite difference methods:
 - Uniformly spaced grids: $x_n x_{n-1} = \Delta x = \text{constant}.$
 - Use Taylor expansions to obtain approximate expressions for the derivatives, e.g.,

$$\partial_x u(x_n) = \frac{u_{n+1} - u_{n-1}}{2\Delta x} + \mathcal{O}(\Delta x^2).$$

- Grid spacing decreases as the number of grid points *N* increases, $\Delta x \sim 1/N$. Errors in finite difference methods scale as N^{-p} .
- Many NR groups with finite difference codes now use 6th or 8th order codes.

• A few groups (Caltech/Cornell, Meudon) use spectral methods.

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (e.g. for Fourier series of *smooth* functions):

$$\begin{split} \tilde{u}_{N} &= \frac{1}{2\pi} \int_{-\pi}^{\pi} u(x) e^{-iNx} dx = \frac{1}{2\pi} \left(\frac{-i}{N}\right) \int_{-\pi}^{\pi} \frac{du(x)}{dx} e^{-iNx} dx \\ &= \frac{1}{2\pi} \left(\frac{-i}{N}\right)^{p} \int_{-\pi}^{\pi} \frac{d^{p} u(x)}{dx^{p}} e^{-iNx} dx \leq \frac{1}{N^{p}} \max \left|\frac{d^{p} u(x)}{dx^{p}}\right|. \end{split}$$

- A few groups (Caltech/Cornell, Meudon) use spectral methods.
- Represent functions as finite sums: $u(x, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) e^{ikx}$.
- Choose grid points x_n to allow efficient (and exact) inversion of the series: $\tilde{u}_k(t) = \sum_{n=0}^{N-1} w_n u(x_n, t) e^{-ikx_n}$.
- Obtain derivative formulas by differentiating the series: $\partial_x u(x_n, t) = \sum_{k=0}^{N-1} \tilde{u}_k(t) \partial_x e^{ikx_n} = \sum_{m=0}^{N-1} D_{nm} u(x_m, t).$
- Errors in spectral methods are dominated by the size of \tilde{u}_N .
- Estimate the errors (e.g. for Fourier series of *smooth* functions):

• Errors in spectral methods decrease faster than any power of N.

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).

Lee Lindblom (Caltech)

Binary Black Holes

Comparing Different Numerical Methods

• Wave propagation with second-order finite difference method:

Lee Lindblom (Caltech)

Binary Black Hole

• Spectral: Excision boundary is a smooth analytic surface.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

- Spectral: Excision boundary is a smooth analytic surface.
 - Cannot add/remove individual grid points.
- Straightforward method: re-grid when holes move too far.
- Problems:
 - Re-gridding/interpolation is expensive.
 - Difficult to get smooth extrapolation at trailing edge of horizon.
 - Causality trouble at leading edge of horizon.

Solution:

Choose coordinates that smoothly track the location of the black hole.

For a black hole binary this means using coordinates that rotate with respect to inertial frames at infinity.

Horizon Tracking Coordinates

- Coordinates must be used that track the motions of the holes.
- This can be implemented by using a coordinate transformation from inertial coordinates, x
 ⁱ, to co-moving coordinates xⁱ, consisting of a rotation followed by an expansion:

$$\begin{aligned} \mathbf{x}^{i} &= \mathbf{a}(\bar{t}) \, \mathbf{R}^{(z)\,i}{}_{j}[\varphi(\bar{t})] \, \mathbf{R}^{(y)\,j}{}_{k}[\xi(\bar{t})] \, \bar{\mathbf{x}}^{k}, \\ t &= \bar{t}. \end{aligned}$$

- This transformation keeps the holes fixed in co-moving coordinates for suitably chosen a(t
 t), φ(t
 t) and ξ(t
 t).
- Motions of the holes are not known *a priori*, so *a*(*t*), φ(*t*), and ξ(*t*) must be chosen dynamically and adaptively.
- A simple feedback-control system has been used to choose a(t
 t), φ(t
 t) and ξ(t
 t) by fixing the black-hole positions, even in evolutions with precession.

Evolving Black Holes in Rotating Frames

- Coordinates that rotate with respect to the inertial frames at infinity are needed to track the horizons of orbiting black holes.
- Evolutions of Schwarzschild in rotating coordinates are unstable.

- Evolutions shown use a computational domain that extends to r = 1000M.
- Angular velocity needed to track the horizons of an equal mass binary at merger is about Ω ≈ 0.2/M.
- Problem caused by asymptotic behavior of metric in rotating coordinates: ψ_{tt} ~ ρ²Ω², ψ_{ti} ~ ρΩ, ψ_{ij} ~ 1.

Dual-Coordinate-Frame Evolutions

• Evolve inertial frame components of tensors using a rotating frame coordinate grid.

Dual Frame Evolution

Single Frame Evolution

• Dual-frame evolution shown here uses a comoving frame with $\Omega = 0.2/M$ on a domain with outer radius r = 1000M.

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.

Horizon Distortion Maps

• Tidal deformation, along with kinematic and gauge effects cause the shapes of the black holes to deform:

- If the holes become significantly distorted relative to the spherical excision surface – bad things happen:
 - Some points on the excision boundary are much deeper inside the singular black hole interior. Numerical errors and constraint violations are largest there, sometimes leading to instabilities.
 - When the horizons move relative to the excision boundary points, the excision boundary can become timelike, and boundary conditions are then needed there.

Horizon Distortion Maps II

 Adjust the placement of grid points near each black hole using a horizon distortion map that connects grid coordinates xⁱ to points in the black-hole rest frame xⁱ:

$$\begin{aligned} \tilde{\theta}_A &= \theta_A, \qquad \tilde{\varphi}_A = \varphi_A, \\ \tilde{r}_A &= r_A - f_A(r_A, \theta_A, \varphi_A) \sum_{\ell=0}^L \sum_{m=-\ell}^\ell \lambda_A^{\ell m}(t) \, Y_{\ell m}(\theta_A, \varphi_A). \end{aligned}$$

- Adjust the coefficients $\lambda_A^{\ell m}(t)$ using a feedback-control system to keep the excision surface the same shape and slightly smaller than the horizon, and to keep the characteristic speeds from becoming ingoing.
- Choose f_A to scale linearly from $f_A = 1$ on the excision boundary, to $f_A = 0$ on cut sphere.

Spectral AMR (As Implemented by Belá Szilágyi)

 Measure the truncation error in each sub-domain by comparing the power in the lowest spectral coefficients with the highest:

 $\mathcal{E} = \frac{\text{Power in high order modes}}{\text{Power in low order modes}}.$

- Add more spectral coefficients when/where \mathcal{E} gets too large.
- Remove spectral coefficients when/where \mathcal{E} gets too small.

 High spin evolutions of Lovelace, Scheel, & Szilágyi (2010) required AMR to achieve successful merger.

Caltech/Cornell Spectral Einstein Code (SpEC):

• Multi-domain pseudo-spectral evolution code.

Lovelace, Scheel, & Szilágyi (2010) high spin evolution grids.

- Constraint damped "generalized harmonic" Einstein equations: $\psi^{cd}\partial_c\partial_d\psi_{ab} = F_{ab}(\psi,\partial\psi).$
- Dual frame evolutions with horizon tracking and distortion maps.
- Spectral AMR.
- Constraint-preserving, physical and gauge boundary conditions.

Outline of Talk:

- Fundamental Einstein Equation Issues.
 - How Gauge is Specified.
 - Making Einstein's Equation Hyperbolic.
 - Constraints and Constraint Damping.
 - Good Gauge Conditions.
- Numerical Method Issues.
 - Solving Evolution Equations.
 - Horizon Tracking Coordinates.
 - Dual-Frame Evolution.
 - Horizon Distortion Maps.
 - Spectral AMR.
- A Sample of Recent BBH Evolution Results.
 - Post-Merger Recoils.
 - Accurate Long Waveforms.
 - Very High Mass Ratios.
 - Very High Spins.

Post-Merger Recoils

- Mergers of asymmetric binaries (unequal masses and/or unequal or nonaligned spins) emit gravitational waves asymmetrically.
- Resulting single black hole has a "kick" velocity relative to the pre-merger center of mass.
- Kicks in asymmetric non-spinning binaries first studied by the Penn State and Jena groups (2006-07).
- Figure from González, Sperhake, and Brügmann (2009).

Lee Lindblom (Caltech)

Post-Merger Recoils with Spin

- Mergers of spinning black-hole binaries can result in large recoils.
- Maximum kicks are produced by mergers with anti-parallel spins tangent to the orbital plane.

- Campanelli, et al. (2007): Kick velocities as function of orbital phase for black holes with spin $\chi \approx 0.5$.
- Brügmann, et al. (2007): Analogous results for black holes with spin $\chi \approx 0.72$.
- Maximum kick velocity $v_{max} \approx 4000$ km/s predicted for maximum spin, $\chi_1 = -\chi_2 = 1$, equal-mass black-hole mergers.

Lee Lindblom (Caltech)

Binary Black Holes

Accurate Long Waveform Simulations

- Numerical waveforms must be accurate enough to satisfy LIGO's data analysis requiements.
- Numerical waveforms must be long enough to allow matching onto PN or EOB waveforms without loss of accuracy.

 Recent Caltech/Cornell: accurate aligned-spin waveforms, Pan, et al. (2010).

 Recent AEI/LSU: accurate non-spinning waveforms, Pollney, et al. (2010).

Very High Mass Ratios

- Numerical simulation of high mass-ratio binaries is very difficult:
 - Very high spatial resolution needed near the smaller black hole.
 - Time steps set by the smallest spatial resolution (explicit schemes).
 - Radiation reaction timescale proportional to mass ratio $M/m \gg 1$, so many orbits required to achieve merger.
- Jena group performed $M/m \approx 10$ simulations (2009), RIT group recently announced $M/m \approx 100$ simulations (2010).

Lee Lindblom (Caltech)

High Spin Evolutions

- Lovelace, Scheel, & Szilágyi (2010) use high spin conformal initial data from superimposed boosted Kerr-Schild black holes.
- Spins $\chi \approx 0.95$ anti-aligned with orbital angular momentum.
- Evolve through 12.5 orbits, merger, and ringdown.
- High accuracy gravitational waveform extracted.
- Lovelace, et al. Spin Movie.

Summary

- The NR community has made great progress on a number of fundamental problems:
 - Numerous hyperbolic representations of GR: BSSN and GH and ...
 - Constraint violating instabilities controlled.
 - Inner boundary problems controlled: moving puncture or excision.
 - Effective gauge conditions: 1+log, Γ-driver, damped harmonic, ...
 - Effective outer boundary conditions: outgoing physical gw, constraint preserving, ...
- Great progress on numerical and code development issues:
 - Higher order FD and spectral numerical methods.
 - AMR for FD and spectral methods.
 - Moving puncture methods.
 - Excision plus dual-frame dynamical horizon-tracking coordinates using feedback-control.
- Interesting physical results:
 - Large astrophysically interesting post-merger kicks.
 - Accurate emperical post-merger parameter estimation.
 - Long acccurate waveforms for GW data analysis.