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Motivation: Gravitational Wave Astronomy
Recent work in numerical relativity is aimed at providing model
waveforms for gravitational wave (GW) astronomy (LIGO, etc.).

Binary black hole systems emit large amounts of GW as the holes
inspiral and ultimately merge. These are expected to be among
the strongest sources detectable by LIGO.
Numerical waveforms may be useful in detection (to construct
better data filters), and/or in modeling detected signals.
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Gravitational Wave Data Analysis
Signals s(t) are detected in the noisy LIGO data by projecting
them onto a template h(λ, t) using a noise-weighted inner product:

ρ(λ) = 2
∫ ∞

0

s̃(f )h̃ ∗(f , λ)

Sh(f )
df

[∫ ∞
0

h̃(f , λ)h̃ ∗(f , λ)

Sh(f )
df

]−1/2

.

The signal to noise ratio, ρ(λ), is maximized by adjusting the
template parameters λ.
A detection occurs whenever a signal is present that matches a
signal template with ρ(λ) > ρmin.

For LIGO searches ρmin ≈ 8.
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Why Is Numerical Relativity So Difficult?

Dynamics of binary black hole problem is driven by delicate
adjustments to orbit due to emission of gravitational waves.
Very big computational problem:

Must evolve ∼ 50 dynamical fields (spacetime metric plus all first
derivatives).
Must accurately resolve features on many scales from black hole
horizons r ∼ GM/c2 to emitted waves r ∼ 100GM/c2.
Many grid points are required & 106 even if points are located
optimally.

Most representations of the Einstein equations have
mathematically ill-posed initial value problems.
Constraint violating instabilities destroy stable numerical solutions
in many well-posed forms of the equations.

Unstable BBH Movie
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Recent Progress in Numerical Relativity

Frans Pretorius performs first numerical BBH inspiral, merger and
ringdown calculations in the spring of 2005 using a “generalized
harmonic” formulation of the Einstein equations. Pretorius Inspiral
Movie

Groups at NASA GSFC and U. Texas–Brownsville simultaneously
announce similar BBH simulations in the fall of 2005 using very
different methods (BSSN–puncture).
LSU/AEI collaboration obtains similar results in Dec. 2005.
Penn State group begins the study of physical properties of BBH
orbits in early 2006 by evolving unequal mass binaries and
measuring the kick velocity using BSSN–puncture methods.
...
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Outline of Remainder of Talk:

Technical issues:

Constraint Damping.
Pseudo-Spectral Methods.
Feedback Control Systems.

Science results:

Compare numerical waveforms with post-Newtonian
approximations.
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Gauge and Constraints in Electromagnetism
The usual representation of the vacuum Maxwell equations split
into evolution equations and constraints:

∂t
~E = ~∇× ~B, ∇ · ~E = 0,

∂t
~B = −~∇× ~E , ∇ · ~B = 0.

These equations are often written in the more compact
4-dimensional notation: ∇aFab = 0 and ∇[aFbc] = 0,
where Fab has components ~E and ~B.

Maxwell’s equations are often re-expressed in terms of a vector
potential Fab = ∇aAb −∇bAa :

∇a∇aAb −∇b∇aAa = 0.
This form of Maxwell’s equations is manifestly hyperbolic as long
as the gauge is chosen correctly, e.g., let ∇aAa = H(x , t), giving:

∇a∇aAb ≡
(−∂2

t + ∂2
x + ∂2

y + ∂2
z

)
Ab = ∇bH.
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Constraint Damping

Where are the constraints: ∇a∇aAb = ∇bH?

Gauge condition becomes a constraint: 0 = C ≡ ∇aAa − H .

Maxwell’s equations imply that this constraint is preserved:

∇a∇a C = 0.

Modify evolution equations by adding multiples of the constraints:

∇a∇aAb = ∇bH+γ0tb C = ∇bH+γ0tb (∇aAa − H).

These changes also affect the constraint evolution equation,

∇a∇a C−γ0tb∇b C = 0,

so constraint violations are damped when γ0 > 0.
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Constraint Damped Einstein System
“Generalized Harmonic” form of Einstein’s equations have
properties similar to Maxwell’s equations:

Gauge (coordinate) conditions are imposed by specifying the
divergence of the spacetime metric: ∂agab = Hb + ...
Evolution equations become manifestly hyperbolic: �gab = ...
Gauge conditions become constraints.
Constraint damping terms can be added which make numerical
evolutions stable.
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Numerical Solution of Evolution Equations
∂tu = F (u, ∂xu, x , t).

Choose a grid of spatial points, xn.

x n−1 x n x n+1

Evaluate the function u on this grid: un(t) = u(xn, t).

Approximate the spatial derivatives at the grid points
∂xu(xn) =

∑
k Dn kuk .

Evaluate F at the grid points xn in terms of the uk : F (uk , xn, t).

Solve the coupled system of ordinary differential equations,

dun(t)

dt
= F [uk (t), xn, t ],

using standard numerical methods (e.g. Runge-Kutta).
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Basic Numerical Methods

Different numerical methods use different ways of choosing the
grid points xn, and different expressions for the spatial derivatives

∂xu(un) =
∑

k Dn kuk .

Most numerical groups use finite difference methods:
Uniformly spaced grids: xn − xn−1 = ∆x = constant.
Use Taylor expansions,

un−1 = u(xn−∆x) = u(xn)− ∂xu(xn)∆x + ∂2
x u(xn)∆x2/2 +O(∆x3),

un+1 = u(xn +∆x) = u(xn) + ∂xu(xn)∆x + ∂2
x u(xn)∆x2/2 +O(∆x3),

(1)to obtain the needed expressions for ∂xu:

∂xu(xn) =
un+1 − un−1

2∆x
+O(∆x2).

Grid spacing decreases as the number of grid points N increases,
∆x ∼ 1/N . Errors in finite difference methods scale as N−p.
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Basic Numerical Methods II

A few groups (including ours) use pseudo-spectral methods.

Represent functions as finite sums: u(x , t) =
∑N−1

k=0 ũk (t)eikx .
Choose grid points xn to allow exact (and efficient) inversion of the
series: ũk (t) =

∑N−1
n=0 wn u(xn, t)e−ikxn .

Obtain derivative formulas by differentiating the series:
∂xu(xn, t) =

∑N−1
k=0 ũk (t)∂xeikxn =

∑N−1
m=0 Dn m u(xm, t).

Errors in spectral methods are dominated by the size of ũN .
Estimate the errors (for Fourier series of smooth functions):

ũN =
1

2π

∫ π

−π
u(x)e−iNxdx =

1
2π

(−i
N

)∫ π

−π

du(x)

dx
e−iNxdx

=
1

2π

(−i
N

)p ∫ π

−π

dpu(x)

dxp e−iNxdx ≤ 1
Np max

∣∣∣∣dpu(x)

dxp

∣∣∣∣ .
Errors in spectral methods decrease faster than any power of N.
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N
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−π

dpu(x)

dxp e−iNxdx ≤ 1
Np max

∣∣∣∣dpu(x)

dxp
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Comparing Different Numerical Methods
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Wave propagation with spectral method:

Figures from Hesthaven, Gottlieb, & Gottlieb (2007).
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Moving Black Holes

Black hole interior is not in causal contact with exterior.
Interior is removed, introducing an excision boundary.

Numerical grid must be moved when black holes move too far.
Problems:

Difficult to get smooth extrapolation at trailing edge of horizon.
Causality trouble at leading edge of horizon.

x

Horizon

Horizon
Outside

t

Solution:
Choose coordinates that smoothly
track the motions of the centers
of the black holes.

x

Horizon

Horizon
Outside

t
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Horizon Tracking Coordinates

Coordinates must be used that track the motions of the holes.
A coordinate transformation from “inertial” coordinates, (x̄ , ȳ , z̄), to
“co-moving” coordinates (x , y , z), consisting of a rotation followed
by an expansion, x

y
z

 = e a(̄t)

 cosϕ(̄t) − sinϕ(̄t) 0
sinϕ(̄t) cosϕ(̄t) 0

0 0 1

 x̄
ȳ
z̄

 ,

is general enough to keep the holes fixed in co-moving
coordinates for suitably chosen functions a(̄t) and ϕ(̄t).
Since the motions of the holes are not known a priori, the
functions a(̄t) and ϕ(̄t) must be chosen dynamically and
adaptively as the system evolves.
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Horizon Tracking Coordinates II

x

δϕ y

c

c

Measure the co-moving centers of the holes: xc(t) and yc(t), or
equivalently

Qx (t) =
xc(t)− xc(0)

xc(0)
,

Qy (t) =
yc(t)
xc(t)

.

Choose the map parameters a(t) and ϕ(t) to keep Qx (t) and
Qy (t) small.
Changing the map parameters by the small amounts, δa and δϕ,
results in associated small changes in δQx and δQy :

δQx = −δa, δQy = −δϕ.
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Horizon Tracking Coordinates III
Measure the quantities Q y (t), dQ y (t)/dt , d 2Q y (t)/dt2, and set

d 3ϕ

dt3 = λ3Q y + 3λ2 dQ y

dt
+ 3λ

d 2Q y

dt2 = −d 3Q y

dt3 .

The solutions to this “closed-loop” equation for Q y have the form
Q y (t) = (At2 + Bt + C)e−λt , so Q y always decreases as t →∞.

0 1000 2000 3000 4000-2×10
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x
c
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x
c
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c
(0)

x
c
(0)

This works! This simple rotation
plus expansion map allows us
to evolve binary black holes
to just before merger.
More complicated maps that control
the shapes of the horizons allow us
to simulate the merger and ringdown
as well.
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Caltech/Cornell Spectral Einstein Code (SpEC):
Multi-domain pseudo-spectral method.

Constraint damped “generalized harmonic” Einstein equations:
�gab = Fab(g, ∂g).

Constraint-preserving, physical and gauge boundary conditions.
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Evolving Binary Black Hole Spacetimes
We can now evolve BBH spacetimes with excellent accuracy and
efficiency through many orbits plus merger plus ringdown.
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Numerical Gravitational Waveforms
We can now compute high precision gravitational waveforms for
equal mass non-spinning BBH systems.
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Post-Newtonian Gravitational Waveforms

Until recently the only way to compute the gravitational waveforms
predited by general relativity was through approximations.

The post-Newtonian approximation is an expansion of Einstein’s
equations appropriate for weak gravitational fields and slow
moving sources.
Post-Newtonian waveforms are very accurate for widely separated
binary systems, but fail when the black holes get too close.
All current compact binary searches on LIGO use PN based
waveform templates.
When do PN waveforms fail?
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Post-Newtonian Gravitational Waveforms
TaylorT1

1 Rewrite energy-balance equation

−dEbinary

dΩ

dΩ

dt
=

dEGW

dt
⇒ dΩ

dt
= − dEGW/dt

dEbinary/dΩ

2 Substitute Taylor series on right-hand side

dΩ

dt
= −Ω10/3 (A0 + . . .+ AnΩn/3)

Ω−1/3
(
B0 + . . .+ BnΩn/3

)
3 Numerically integrate once to find Ω
4 Numerically integrate once more to find Φ

5 Numerically integrate once more to find Φ

TaylorT2, TaylorT3, . . .
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Post-Newtonian Gravitational Waveforms
TaylorT4

1 Rewrite energy-balance equation

−dEbinary

dΩ

dΩ

dt
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dEGW

dt
⇒ dΩ

dt
= − dEGW/dt

dEbinary/dΩ

2 Substitute Taylor series on right-hand side

dΩ

dt
= −Ω10/3 (A0 + . . .+ AnΩn/3)

Ω−1/3
(
B0 + . . .+ BnΩn/3

)
3 Re-expand right-hand side as a Taylor series, and truncate

dΩ

dt
= −Ω11/3

(
C0 + . . .+ CnΩn/3

)
4 Numerically integrate once to find Ω
5 Numerically integrate once more to find Φ

TaylorT2, TaylorT3, . . .
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Comparing Various Order PN with NR Waveform
Comparison of the numerical gravitational wave phase with
predictions of various post-Newtonian orders.
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Comparing Various PN Methods

-4000 -3000 -2000 -1000 0
t / M

-4

-3

-2

-1

0

1

Ph
as

e 
di

ffe
re

nc
e 

(ra
di

an
s)

02468101214
Orbits before coalescence

TaylorT1 - TaylorT4

TaylorT3 - TaylorT4

TaylorT2 - TaylorT4

Lee Lindblom (Caltech) Numerical Black Hole Simulations LANL – 3/5/2008 25 / 27



Comparing Various PN Methods with NR Waveform
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Summary

Advances in understanding the Einstein
equations provide new formulations
suitable for numerical evolutions:
hyperbolic formulations with constraint
damping and well posed initial-boundary
value problems.
High accuracy multi-orbit binary black hole
simulations are now routine (but not yet
cheap).
Numerical waveforms suitable for LIGO
data analysis are starting to be generated.
Interesting non-linear dynamics of binary
black hole mergers are beginning to be
investigated.
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