Solving Einstein's Equation Numerically on Manifolds with Arbitrary Spatial Topology

Lee Lindblom and Béla Szilágyi

Theoretical Astrophysics, Caltech

Numerical Relativity Beyond Astrophysics International Center for Mathematical Sciences Edinburgh, Scotland — 15 July 2011

- Representations of arbitrary 3-manifolds.
- Boundary conditions for elliptic and hyperbolic PDEs.
- Numerical tests for solutions of simple PDEs.
- Boundary conditions for Einstein's equation.
- Simple numerical Einstein evolutions.

 Goal: Develop numerical methods that are easily adapted to solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and hyperbolic PDEs on manifolds with topology *R* × Σ.

- Goal: Develop numerical methods that are easily adapted to solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and hyperbolic PDEs on manifolds with topology *R* × Σ.
- Every 3-manifold admits a triangulation (Moire 1952), i.e. can be represented as a set of tetrahedrons, plus a list of rules for gluing their faces together.

- Goal: Develop numerical methods that are easily adapted to solving elliptic PDEs on 3-manifolds Σ with arbitrary topology, and hyperbolic PDEs on manifolds with topology *R* × Σ.
- Every 3-manifold admits a triangulation (Moire 1952), i.e. can be represented as a set of tetrahedrons, plus a list of rules for gluing their faces together.

- Cubes make "better" computational domains than tetrahedrons.
- Can arbitrary 3-manifolds be "cubed", i.e. represented as a set of cubes plus a list of rules for gluing their faces together?

• Every triangulation can be refined to a "cubed" representation: divide each tetrahedron into four "distorted" cubes.

• Every 3-manifold can therefore be represented as a set of cubes, plus maps that identify their faces in the appropriate way.

Solving PDEs on Cubed Manifolds

- Solve PDEs in each cubic block region separately.
- Use boundary conditions on cube faces to select the correct smooth global solution.

v

Solving PDEs on Cubed Manifolds

- Solve PDEs in each cubic block region separately.
- Use boundary conditions on cube faces to select the correct smooth global solution.
- For second-order strongly elliptic systems: enforce continuity on one face and continuity of normal derivatives on neighboring face,

$$u_A = u_B$$
 $\nabla_{n_B} u_B = -\nabla_{n_A} u_A.$

Solving PDEs on Cubed Manifolds

- Solve PDEs in each cubic block region separately.
- Use boundary conditions on cube faces to select the correct smooth global solution.
- For second-order strongly elliptic systems: enforce continuity on one face and continuity of normal derivatives on neighboring face,

$$u_A = u_B$$
 $\nabla_{n_B} u_B = -\nabla_{n_A} u_A.$

 For first-order symmetric hyperbolic systems: set incoming characteristic fields with outgoing characteristics from neighbor,

$$\tilde{u}_A^- = \tilde{u}_B^+ \qquad \qquad \tilde{u}_B^- = \tilde{u}_A^+.$$

Mapping Boundary Data: Scalars

- Choose the cubic-block coordinate patches to have uniform (coordinate) size and orientation.
- Maps $\Psi^{{\cal A} \alpha}_{{\cal B} \beta}$ between boundary faces are linear:

$$\boldsymbol{x}_{A}^{i} = \boldsymbol{c}_{A\alpha}^{i} + \boldsymbol{C}_{B\beta k}^{A\alpha i}(\boldsymbol{x}_{B}^{k} - \boldsymbol{c}_{B\beta}^{k}),$$

where $C_{B\beta k}^{A\alpha i}$ is a rotation-reflection matrix, and $c_{A\alpha}^{i}$ is the center of the α face of block *A*.

Mapping Boundary Data: Scalars

- Choose the cubic-block coordinate patches to have uniform (coordinate) size and orientation.
- Maps $\Psi_{B\beta}^{A\alpha}$ between boundary faces are linear:

$$\boldsymbol{x}_{A}^{i} = \boldsymbol{C}_{A\alpha}^{i} + \boldsymbol{C}_{B\beta k}^{A\alpha i}(\boldsymbol{x}_{B}^{k} - \boldsymbol{C}_{B\beta}^{k}),$$

where $C_{B\beta k}^{A\alpha i}$ is a rotation-reflection matrix, and $c_{A\alpha}^{i}$ is the center of the α face of block *A*. $z \not\models \Psi_{B\alpha}^{A\alpha}$ $z \not\models$

• This map provides the needed boundary transformation law for scalar fields: $\bar{u}_A(x_A^i) \equiv u_B(x_B^k)$, where x_A^i and x_B^k are related by the coordinate boundary map.

Mapping Boundary Data: Tensors

• Jacobian of the boundary coordinate map gives the appropriate transformation law for vectors tangent to the boundary surface:

$$\bar{v}^{\rho}_{A}(x^{i}_{A}) \equiv C^{A\alpha\rho}_{B\beta q} v^{q}_{B}(x^{k}_{B}).$$

Mapping Boundary Data: Tensors

 Jacobian of the boundary coordinate map gives the appropriate transformation law for vectors tangent to the boundary surface:

 $\bar{v}^p_A(x^i_A) \equiv C^{A\alpha p}_{B\beta q} v^q_B(x^k_B).$

 In general the normal coordinate basis vector ∂_{Aσ} is not the smooth extension of ∂_{Bσ}, so a more complicated transformation law is needed for generic vectors.

Mapping Boundary Data: Tensors

• Jacobian of the boundary coordinate map gives the appropriate transformation law for vectors tangent to the boundary surface:

 $\bar{v}^p_A(x^i_A) \equiv C^{A\alpha p}_{B\beta q} v^q_B(x^k_B).$

 In general the normal coordinate basis vector ∂_{Aσ} is not the smooth extension of ∂_{Bσ}, so a more complicated transformation law is needed for generic vectors.

 The outward directed geometrical normals, n^a_A and n^b_B, can be used to define the natural transformation law for smooth vectors, *v*^a_A(xⁱ_A) ≡ J^{A α a}_{B β b} v^b_B(x^k_B), with J^{A α a}_{B β b} = C^{A α a}_{B β c}(δ^c_b - n^c_Bn_{Bb}) - n^a_An_{Bb}.

• Solve the elliptic PDE, $\nabla^i \nabla_i \psi - c^2 \psi = f$ where c^2 is a constant, and *f* is a given function.

- Solve the elliptic PDE, $\nabla^i \nabla_i \psi c^2 \psi = f$ where c^2 is a constant, and *f* is a given function.
- Use the co-variant derivative ∇_i for the round metric on $S^2 \times S^1$:

$$ds^{2} = R_{1}^{2}d\chi^{2} + R_{2}^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right),$$

$$= \left(\frac{2\pi R_{1}}{L}\right)^{2}dz^{2} + \left(\frac{\pi R_{2}}{2L}\right)^{2}\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2})^{2}} \times \left[(1 + X_{A}^{2})\,dx^{2} - 2X_{A}Y_{A}\,dx\,dy + (1 + Y_{A}^{2})\,dy^{2}\right].$$
where $X_{A} = \tan\left[\pi(x - c_{A}^{x})/2L\right]$ and $Y_{A} = \tan\left[\pi(y - c_{A}^{y})/2L\right]$

are "local" Cartesian coordinates in each cubic-block.

- Solve the elliptic PDE, ∇ⁱ∇_iψ − c²ψ = f where c² is a constant, and f is a given function.
- Use the co-variant derivative ∇_i for the round metric on $S^2 \times S^1$:

$$ds^{2} = R_{1}^{2}d\chi^{2} + R_{2}^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right),$$

$$= \left(\frac{2\pi R_{1}}{L}\right)^{2}dz^{2} + \left(\frac{\pi R_{2}}{2L}\right)^{2}\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2})^{2}}$$

$$\times \left[(1 + X_{A}^{2})\,dx^{2} - 2X_{A}Y_{A}\,dx\,dy + (1 + Y_{A}^{2})\,dy^{2}\right].$$

where $X_{A} = \tan\left[\pi(x - c_{A}^{x})/2L\right]$ and $Y_{A} = \tan\left[\pi(y - c_{A}^{y})/2L\right]$

are "local" Cartesian coordinates in each cubic-block.

Let f = −(ω² + c²)ψ_A, where ψ_A = ℜ [e^{ikχ}Y_{ℓm}(θ, φ)]. The angles χ, θ and φ are functions of the coordinates x, y and z.

- Solve the elliptic PDE, $\nabla^i \nabla_i \psi c^2 \psi = f$ where c^2 is a constant, and *f* is a given function.
- Use the co-variant derivative ∇_i for the round metric on $S^2 \times S^1$:

$$ds^{2} = R_{1}^{2}d\chi^{2} + R_{2}^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\varphi^{2}\right),$$

$$= \left(\frac{2\pi R_{1}}{L}\right)^{2}dz^{2} + \left(\frac{\pi R_{2}}{2L}\right)^{2}\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2})^{2}}$$

$$\times \left[(1 + X_{A}^{2})\,dx^{2} - 2X_{A}Y_{A}\,dx\,dy + (1 + Y_{A}^{2})\,dy^{2}\right].$$
Here $X_{A} = \tan\left[\pi(x - c_{A}^{x})/2L\right]$ and $Y_{A} = \tan\left[\pi(y - c_{A}^{y})/2L\right]$

where $X_A = \tan \left[\pi (x - c_A^x)/2L \right]$ and $Y_A = \tan \left[\pi (y - c_A^y)/2L \right]$ are "local" Cartesian coordinates in each cubic-block.

- Let f = −(ω² + c²)ψ_A, where ψ_A = ℜ [e^{ikχ} Y_{ℓm}(θ, φ)]. The angles χ, θ and φ are functions of the coordinates x, y and z.
- The unique, exact, analytical solution to this problem is $\psi = \psi_A$, when $\omega^2 = \ell(\ell + 1)/R_2^2 + k^2/R_1^2$.

- Measure the accuracy of the numerical solution ψ_N as a function of numerical resolution N (grid points per dimension) in two ways:
 - First, with the residual $R_N \equiv \nabla^i \nabla_i \psi_N c^2 \psi_N f$, and its norm:

$$\mathcal{E}_{R} = \sqrt{rac{\int R_{N}^{2} \sqrt{g} d^{3}x}{\int f^{2} \sqrt{g} d^{3}x}}.$$

• Second, with the solution error, $\Delta \psi = \psi_N - \psi_A$, and its norm:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \Delta \psi^2 \sqrt{g} d^3 x}{\int \psi_A^2 \sqrt{g} d^3 x}}.$$

- Measure the accuracy of the numerical solution ψ_N as a function of numerical resolution N (grid points per dimension) in two ways:
 - First, with the residual $R_N \equiv \nabla^i \nabla_i \psi_N c^2 \psi_N f$, and its norm:

$$\mathcal{E}_{R} = \sqrt{rac{\int R_{N}^{2}\sqrt{g}d^{3}x}{\int f^{2}\sqrt{g}d^{3}x}}.$$

• Second, with the solution error, $\Delta \psi = \psi_N - \psi_A$, and its norm:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \Delta \psi^2 \sqrt{g} d^3 x}{\int \psi_A^2 \sqrt{g} d^3 x}}.$$

 All these numerical tests were performed by implementing the ideas described here into the Spectral Einstein Code (SpEC) developed originally by the Caltech/Cornell numerical relativity collaboration.

- Solve the equation $\partial_t^2 \psi = \nabla_i \nabla^i \psi$ with given initial data.
- Convert the second-order equation into an equivalent first-order system: $\partial_t \psi = -\Pi$, $\partial_t \Pi = -\nabla^i \Phi_i$ and $\partial_t \Phi_i = -\nabla_i \Pi$ with constraint $C_i = \nabla_i \psi \Phi_i$.

- Solve the equation $\partial_t^2 \psi = \nabla_i \nabla^i \psi$ with given initial data.
- Convert the second-order equation into an equivalent first-order system: $\partial_t \psi = -\Pi$, $\partial_t \Pi = -\nabla^i \Phi_i$ and $\partial_t \Phi_i = -\nabla_i \Pi$ with constraint $C_i = \nabla_i \psi \Phi_i$.
- Use the co-variant derivative ∇_i for the round metric on S^3 :

$$ds^{2} = R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\varphi^{2} \right) \right],$$

= $\left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + X_{A}^{2} + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx \, dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx \, dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy \, dz \right].$

- Solve the equation $\partial_t^2 \psi = \nabla_i \nabla^i \psi$ with given initial data.
- Convert the second-order equation into an equivalent first-order system: $\partial_t \psi = -\Pi$, $\partial_t \Pi = -\nabla^i \Phi_i$ and $\partial_t \Phi_i = -\nabla_i \Pi$ with constraint $C_i = \nabla_i \psi \Phi_i$.
- Use the co-variant derivative ∇_i for the round metric on S^3 :

$$ds^{2} = R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right],$$

= $\left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + X_{A}^{2} + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy dz \right].$

• Choose initial data with $\psi_{t=0} = \Re[Y_{k\ell m}(\chi, \theta, \varphi)]$, $\Pi_{t=0} = -\Re[i\omega Y_{k\ell m}(\chi, \theta, \varphi)]$ and $\Phi_{it=0} = \Re[\nabla_i Y_{k\ell m}(\chi, \theta, \varphi)]$ where $\omega^2 = k(k+2)/R_3^2$.

- Solve the equation $\partial_t^2 \psi = \nabla_i \nabla^i \psi$ with given initial data.
- Convert the second-order equation into an equivalent first-order system: $\partial_t \psi = -\Pi$, $\partial_t \Pi = -\nabla^i \Phi_i$ and $\partial_t \Phi_i = -\nabla_i \Pi$ with constraint $C_i = \nabla_i \psi \Phi_i$.
- Use the co-variant derivative ∇_i for the round metric on S^3 :

$$ds^{2} = R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right],$$

= $\left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Y_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy dz \right].$

- Choose initial data with $\psi_{t=0} = \Re[Y_{k\ell m}(\chi, \theta, \varphi)]$, $\Pi_{t=0} = -\Re[i\omega Y_{k\ell m}(\chi, \theta, \varphi)]$ and $\Phi_{i\,t=0} = \Re[\nabla_i Y_{k\ell m}(\chi, \theta, \varphi)]$ where $\omega^2 = k(k+2)/R_3^2$.
- The unique, exact, analytical solution to this problem is $\psi = \psi_A = \Re[e^{i\omega t} Y_{k\ell m}(\chi, \theta, \varphi)], \Pi = -\partial_t \psi_A$, and $\Phi_i = \nabla_i \psi_A$.

- Measure the accuracy of the numerical solution ψ_N as a function of numerical resolution N (grid points per dimension) in two ways:
 - First, with the solution error, $\Delta \psi = \psi_N \psi_A$, and its norm:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \Delta \psi^2 \sqrt{g} d^3 x}{\int \psi^2 \sqrt{g} d^3 x}},$$

• Second, with the constraint error, $C_i = \Phi_i - \nabla_i \psi$, and its norm:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int g^{ij} \mathcal{C}_i \mathcal{C}_j \sqrt{g} d^3 x}{\int g^{ij} (\Phi_i \Phi_j +
abla_i \psi
abla_j \psi) \sqrt{g} d^3 x}}$$

- Measure the accuracy of the numerical solution ψ_N as a function of numerical resolution N (grid points per dimension) in two ways:
 - First, with the solution error, $\Delta \psi = \psi_N \psi_A$, and its norm:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \Delta \psi^2 \sqrt{g} \mathrm{d}^3 x}{\int \psi^2 \sqrt{g} \mathrm{d}^3 x}}$$

• Second, with the constraint error, $C_i = \Phi_i - \nabla_i \psi$, and its norm:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int g^{ij} \mathcal{C}_i \mathcal{C}_j \sqrt{g} d^3 x}{\int g^{ij} (\Phi_i \Phi_j +
abla_i \psi
abla_j \psi) \sqrt{g} d^3 x}}$$

Lee Lindblom (Caltech)

Boundary Conditions for Einstein's Equation

Einstein's equation can be written as a first-order symmetric hyperbolic system: ∂_tu^α + A^{kα}_β(u)∂_ku^β = F^α(u), where u^α includes both spacetime metric ψ_{ab} and derivatives ∂_cψ_{ab}.

Boundary Conditions for Einstein's Equation

- Einstein's equation can be written as a first-order symmetric hyperbolic system: ∂_tu^α + A^{kα}_β(u)∂_ku^β = F^α(u), where u^α includes both spacetime metric ψ_{ab} and derivatives ∂_cψ_{ab}.
- Incoming characteristic fields must be specified on each boundary.
- At internal multi-cube boundaries, incoming fields are determined by the outgoing fields of neighbors.

Boundary Conditions for Einstein's Equation

- Einstein's equation can be written as a first-order symmetric hyperbolic system: ∂_tu^α + A^{kα}_β(u)∂_ku^β = F^α(u), where u^α includes both spacetime metric ψ_{ab} and derivatives ∂_cψ_{ab}.
- Incoming characteristic fields must be specified on each boundary.
- At internal multi-cube boundaries, incoming fields are determined by the outgoing fields of neighbors.

- For the Einstein system, characteristic fields depend on the spacetime metric ψ_{ab} and its derivatives ∂_cψ_{ab}.
- ψ_{ab} and its derivatives ∂_cψ_{ab} must be mapped between cubic-block regions to construct the needed boundary conditions.

Mapping Boundary Data for Einstein's Equation

• The cubic-block boundary maps have the form

 $t_A = t_B,$ $x_A^i = c_{A\alpha}^i + C_{B\beta k}^{A\alpha i}(x_B^k - c_{B\beta}^k),$ where $C_{B\beta k}^{A\alpha i}$ is a rotation-reflection matrix.

Mapping Boundary Data for Einstein's Equation

• The cubic-block boundary maps have the form

$$t_A = t_B, \qquad x_A^i = c_{A\alpha}^i + C_{B\beta k}^{A\alpha i}(x_B^k - c_{B\beta}^k),$$

where $C_{B\beta k}^{A\alpha i}$ is a rotation-reflection matrix.

 The Jacobians needed to map tensor fields can be constructed using the outward directed normals,
 n^a_A and
 n^b_B:

$$J^{A\alpha a}_{B\beta b} = C^{A\alpha a}_{B\beta c} (\delta^c_b - \tilde{n}^c_B \tilde{n}_{Bb}) - \tilde{n}^a_A \tilde{n}_{Bb}.$$

Mapping Boundary Data for Einstein's Equation

• The cubic-block boundary maps have the form

$$t_A = t_B, \qquad x_A^i = c_{A\alpha}^i + C_{B\beta k}^{A\alpha i}(x_B^k - c_{B\beta}^k),$$

where $C_{B\beta k}^{A\alpha i}$ is a rotation-reflection matrix.

 The Jacobians needed to map tensor fields can be constructed using the outward directed normals,
 n^a_A and
 n^b_B:

$$J^{A\,\alpha\,a}_{B\,\beta\,b} = C^{A\,\alpha\,a}_{B\,\beta\,c} (\delta^c_b - \tilde{n}^c_B \tilde{n}_{Bb}) - \tilde{n}^a_A \tilde{n}_{Bb}.$$

• Assume there exists a smooth (time independent) "reference" metric, whose representation \tilde{g}_{ab} is known in terms of the global cubic-block Cartesian coordinates. Use this metric to construct the normals \tilde{n}_{A}^{a} , \tilde{n}_{B}^{b} and \tilde{n}_{Bb} needed for these boundary Jacobians.

Mapping Boundary Data for Einstein's Equation II

• The physical spacetime metric ψ_{ab} is a tensor mapped across region boundaries using the (inverse) boundary Jacobians:

 $\bar{\psi}_{Aab} = J^{B\beta c}_{A\alpha a} J^{B\beta d}_{A\alpha b} \psi_{Bcd}.$

• Continuity of the metric across boundaries means $\psi_{Aab} = \bar{\psi}_{Aab}$.

Mapping Boundary Data for Einstein's Equation II

• The physical spacetime metric ψ_{ab} is a tensor mapped across region boundaries using the (inverse) boundary Jacobians:

 $\bar{\psi}_{Aab} = J^{B\beta c}_{A\alpha a} J^{B\beta d}_{A\alpha b} \psi_{Bcd}.$

- Continuity of the metric across boundaries means $\psi_{Aab} = \psi_{Aab}$.
- The derivatives of the physical spacetime metric $\partial_c \psi_{ab}$ are mapped across region boundaries using the covariant derivative $\tilde{\nabla}_c$ associated with the smooth reference metric \tilde{g}_{ab} .
- The covariant derivative of the physical spacetime metric
 [˜]_cψ_{ab} is
 a tensor mapped by the (inverse) boundary Jacobians:

$$\tilde{\nabla}_{Ac}\bar{\psi}_{Aab} = J^{B\beta\,d}_{A\,\alpha\,c}J^{B\beta\,e}_{A\,\alpha\,a}J^{B\,\beta\,f}_{A\,\alpha\,b}\tilde{\nabla}_{Bd}\psi_{Bef}.$$

Mapping Boundary Data for Einstein's Equation II

• The physical spacetime metric ψ_{ab} is a tensor mapped across region boundaries using the (inverse) boundary Jacobians:

 $\bar{\psi}_{Aab} = J^{B\beta c}_{A\alpha a} J^{B\beta d}_{A\alpha b} \psi_{Bcd}.$

- Continuity of the metric across boundaries means $\psi_{Aab} = \bar{\psi}_{Aab}$.
- The covariant derivative of the physical spacetime metric
 [˜]_cψ_{ab} is
 a tensor mapped by the (inverse) boundary Jacobians:

 $\tilde{\nabla}_{Ac}\bar{\psi}_{Aab} = J^{B\,\beta\,d}_{A\,\alpha\,c} J^{B\,\beta\,e}_{A\,\alpha\,a} J^{B\,\beta\,f}_{A\,\alpha\,b} \tilde{\nabla}_{Bd} \psi_{Bef}.$

 The derivatives of the physical metric needed to construct the characteristic fields of the Einstein system are then determined from ∇˜_{Ac}ψ˜_{Aab}:

$$\partial_{Ac}\bar{\psi}_{Aab}=\tilde{\nabla}_{Ac}\bar{\psi}_{Aab}+\tilde{\Gamma}^{d}_{Aca}\bar{\psi}_{Adb}+\tilde{\Gamma}^{d}_{Acb}\bar{\psi}_{Aad}.$$

Testing the Einstein Solver: Non-Linear Gauge Wave

This simple test evolves the non-linear gauge wave solution,

 $ds^2 = \psi_{Aab}dx^a dx^b = -(1+F)dt^2 + (1+F)dx^2 + dy^2 + dz^2$, for the case $F = 0.1 \sin[2\pi(2x-t)]$, on a manifold with spatial topology T^3 .

Testing the Einstein Solver: Non-Linear Gauge Wave

This simple test evolves the non-linear gauge wave solution,

 $ds^2 = \psi_{Aab}dx^a dx^b = -(1+F)dt^2 + (1+F)dx^2 + dy^2 + dz^2$, for the case $F = 0.1 \sin[2\pi(2x-t)]$, on a manifold with spatial topology T^3 .

 Monitor how well the numerical solutions satisfy the Einstein system by evaluating the norm of the various constraints:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{\frac{\int \sum |\mathcal{C}|^2 \sqrt{g} d^3 x}{\int \sum |\partial_i u|^2 \sqrt{g} d^3 x}}.$$

Testing the Einstein Solver: Non-Linear Gauge Wave

This simple test evolves the non-linear gauge wave solution,

 $ds^2 = \psi_{Aab}dx^a dx^b = -(1+F)dt^2 + (1+F)dx^2 + dy^2 + dz^2$, for the case $F = 0.1 \sin[2\pi(2x-t)]$, on a manifold with spatial topology T^3 .

 Monitor how well the numerical solutions satisfy the Einstein system by evaluating the norm of the various constraints:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int \sum |\mathcal{C}|^2 \sqrt{g} d^3 x}{\int \sum |\partial_i u|^2 \sqrt{g} d^3 x}}.$$

• Monitor the accuracy of the numerical solution by evaluating the norm of its error, $\Delta \psi_{ab} = \psi_{Nab} - \psi_{Aab}$:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \sum_{ab} |\Delta \psi_{ab}|^2 \sqrt{g} d^3 x}{\int \sum_{ab} |\psi_{ab}|^2 \sqrt{g} d^3 x}}.$$

 Metric initial data is taken from the "Einstein Static Universe" geometry:

$$ds^{2} = -dt^{2} + R_{3}^{2} \left[d\chi^{2} + \sin^{2}\chi \left(d\theta^{2} + \sin^{2}\theta \, d\varphi^{2} \right) \right],$$

 Metric initial data is taken from the "Einstein Static Universe" geometry:

$$ds^{2} = -dt^{2} + R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta d\varphi^{2} \right) \right],$$

$$= -dt^{2} + \left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + X_{A}^{2} + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy dz \right].$$

 Metric initial data is taken from the "Einstein Static Universe" geometry:

$$ds^{2} = -dt^{2} + R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\varphi^{2} \right) \right],$$

$$= -dt^{2} + \left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + X_{A}^{2} + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx \, dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx \, dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy \, dz \right].$$

• This metric solves Einstein's equation with cosmological constant and complex scalar field source on a manifold with spatial topology *S*³.

 Metric initial data is taken from the "Einstein Static Universe" geometry:

$$ds^{2} = -dt^{2} + R_{3}^{2} \left[d\chi^{2} + \sin^{2} \chi \left(d\theta^{2} + \sin^{2} \theta \, d\varphi^{2} \right) \right],$$

$$= -dt^{2} + \left(\frac{\pi R_{3}}{2L} \right)^{2} \frac{(1 + X_{A}^{2})(1 + Y_{A}^{2})(1 + Z_{A}^{2})}{(1 + X_{A}^{2} + Z_{A}^{2})^{2}} \left[\frac{(1 + X_{A}^{2})(1 + Y_{A}^{2} + Z_{A}^{2})}{(1 + Y_{A}^{2})(1 + Z_{A}^{2})} dx^{2} + \frac{(1 + Y_{A}^{2})(1 + X_{A}^{2} + Z_{A}^{2})}{(1 + X_{A}^{2})(1 + Z_{A}^{2})} dy^{2} + \frac{(1 + Z_{A}^{2})(1 + X_{A}^{2} + Y_{A}^{2})}{(1 + X_{A}^{2})(1 + Y_{A}^{2})} dz^{2} - \frac{2X_{A}Y_{A}}{1 + Z_{A}^{2}} dx \, dy - \frac{2Y_{A}Z_{A}}{1 + Y_{A}^{2}} dx \, dz - \frac{2Y_{A}Z_{A}}{1 + X_{A}^{2}} dy \, dz \right].$$

- This metric solves Einstein's equation with cosmological constant and complex scalar field source on a manifold with spatial topology *S*³.
- Evolution of these initial data is the static universe geometry, if the cosmological constant is chosen to be $\Lambda = 1/R_3^2$, and the complex scalar field is $\varphi = \varphi_0 e^{i\mu t}$ with $\mu^2 |\varphi_0|^2 = 1/4\pi R_3^2$.

Testing the Einstein Solver: Static Universe on S³ II

 Monitor how well the numerical solutions satisfy the Einstein system by evaluating the norm of the various constraints:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int \sum |\mathcal{C}|^2 \sqrt{g} d^3 x}{\int \sum |\partial_i u|^2 \sqrt{g} d^3 x}}.$$

• Monitor how well the numerical solutions satisfy the Einstein system by evaluating the norm of the various constraints:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int \sum |\mathcal{C}|^2 \sqrt{g} d^3 x}{\int \sum |\partial_i u|^2 \sqrt{g} d^3 x}}.$$

 Monitor the accuracy of numerical metric solution by evaluating the norm of its error, Δψ_{ab} = ψ_{Nab} - ψ_{Aab}:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \sum_{ab} |\Delta \psi_{ab}|^2 \sqrt{g} d^3 x}{\int \sum_{ab} |\psi_{ab}|^2 \sqrt{g} d^3 x}}.$$

• Monitor how well the numerical solutions satisfy the Einstein system by evaluating the norm of the various constraints:

$$\mathcal{E}_{\mathcal{C}} = \sqrt{rac{\int \sum |\mathcal{C}|^2 \sqrt{g} d^3 x}{\int \sum |\partial_i u|^2 \sqrt{g} d^3 x}}.$$

 Monitor the accuracy of numerical metric solution by evaluating the norm of its error, Δψ_{ab} = ψ_{Nab} - ψ_{Aab}:

$$\mathcal{E}_{\psi} = \sqrt{rac{\int \sum_{ab} |\Delta \psi_{ab}|^2 \sqrt{g} d^3 x}{\int \sum_{ab} |\psi_{ab}|^2 \sqrt{g} d^3 x}}.$$

• Monitor the accuracy of numerical scalar field solution by evaluating norm of its error, $\Delta \varphi = \varphi_N - \varphi_A$:

$$\mathcal{E}_{arphi} = \sqrt{rac{\int |\Delta arphi|^2 \sqrt{g} d^3 x}{\int |arphi|^2 \sqrt{g} d^3 x}}.$$

- What is going on? Clues:
 - The constraints are well satisfied for *t* \lesssim 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.

• What is going on? Clues:

- The constraints are well satisfied for t < 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.
- The physical volume evolves exponentially away from the static universe value $V_0 = 2\pi^2 R_3^3$: growing in some evolutions, contracting in others.

• What is going on? Clues:

- The constraints are well satisfied for *t* \lesssim 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.
- The physical volume evolves exponentially away from the static universe value $V_0 = 2\pi^2 R_3^3$: growing in some evolutions, contracting in others.

• What is going on? Clues:

- The constraints are well satisfied for t < 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.
- The physical volume evolves exponentially away from the static universe value $V_0 = 2\pi^2 R_3^3$: growing in some evolutions, contracting in others.

• The metric, volume and scalar field all evolve exponentially, $\propto e^{t/\tau}$, away from the static solution at the same rate $1/\tau \approx 1.1/R_3$.

• What is going on? Clues:

- The constraints are well satisfied for *t* \lesssim 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.
- The physical volume evolves exponentially away from the static universe value $V_0 = 2\pi^2 R_3^3$: growing in some evolutions, contracting in others.

- The metric, volume and scalar field all evolve exponentially, $\propto e^{t/\tau}$, away from the static solution at the same rate $1/\tau \approx 1.1/R_3$.
- The norm of the spatial gradient of the scalar field remains small.

• What is going on? Clues:

- The constraints are well satisfied for t < 25. So the evolutions represent real solutions to the Einstein-Klein-Gordon system.
- The physical volume evolves exponentially away from the static universe value $V_0 = 2\pi^2 R_3^3$: growing in some evolutions, contracting in others.

- The metric, volume and scalar field all evolve exponentially, $\propto e^{t/\tau}$, away from the static solution at the same rate $1/\tau \approx 1.1/R_3$.
- The norm of the spatial gradient of the scalar field remains small.

 These solutions appear to be unstable, spatially uniform (k = 0) modes of the static Einstein-Klein-Gordon system.

Summary

• We have developed a simple and flexible multi-block numerical method for solving partial differential equations on manifolds with arbitrary spatitial topology.

Summary

- We have developed a simple and flexible multi-block numerical method for solving partial differential equations on manifolds with arbitrary spatitial topology.
- Each new spatial topology requires:
 - A cubic-block representation of the topology, i.e. a list of cubic-block regions and a list of boundary identification maps.
 - A smooth reference metric \tilde{g}_{ab} to define the global differential structure on this cubic-block representation of the manifold.

Summary

- We have developed a simple and flexible multi-block numerical method for solving partial differential equations on manifolds with arbitrary spatitial topology.
- Each new spatial topology requires:
 - A cubic-block representation of the topology, i.e. a list of cubic-block regions and a list of boundary identification maps.
 - A smooth reference metric \tilde{g}_{ab} to define the global differential structure on this cubic-block representation of the manifold.
- These methods have been tested by solving simple elliptic and hyperbolic equations on several compact manifolds.
- These methods have also been tested by finding simple solutions to Einstein's equation on several compact manifolds.