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What Do We Mean By Hyperbolic?

@ We have argued that Einstein’s equation is “manifestly hyperbolic”
because its principal part is the same as the scalar wave equation.

@ Exactly what does this mean? Does this make sense?
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What Do We Mean By Hyperbolic?

@ We have argued that Einstein’s equation is “manifestly hyperbolic”
because its principal part is the same as the scalar wave equation.

@ Exactly what does this mean? Does this make sense?

@ From a pragmatic physicist’s point of view, hyperbolic means
anything that acts like the wave equation, i.e. any system of
equations having a well posed initial-boundary value problem.

@ Symmetric hyperbolic systems are one class of equations for
which suitable well-posedness theorems exist, and which are
general enough to include Einstein’s equations together with most
of the other dynamical field equations used by physicists.
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What Do We Mean By Hyperbolic?

We have argued that Einstein’s equation is “manifestly hyperbolic”
because its principal part is the same as the scalar wave equation.

Exactly what does this mean? Does this make sense?

From a pragmatic physicist’s point of view, hyperbolic means
anything that acts like the wave equation, i.e. any system of
equations having a well posed initial-boundary value problem.

Symmetric hyperbolic systems are one class of equations for
which suitable well-posedness theorems exist, and which are
general enough to include Einstein’s equations together with most
of the other dynamical field equations used by physicists.

Evolution equations of the form,
U™ + AR g(u, x, HoguP = F*(u, x, t),

for a collection of dynamical fields u“, are called symmetric

hyperbolic if there exists a positive definite S, 5 having the

property that S, AK7 5 = AKX, = A%

Ba*
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Example: Scalar Wave Equation

@ Consider the scalar wave equation in flat space, expressed in
terms of arbitrary spatial coordinates:
0 = —02¢ + VKV p = =020 + gK*(0k0p — T,0n0).
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Example: Scalar Wave Equation

@ Consider the scalar wave equation in flat space, expressed in
terms of arbitrary spatial coordinates:
0= 8%y + ViV = =07 + g (9Dt — T}, 0m).
@ Define the first-order dynamical fields, u® = {«, I, 4}, which
satisfy the following evolution equations:
opp = —n, N+ VKo, =0, O1dk + Vi = 0.
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Example: Scalar Wave Equation

@ Consider the scalar wave equation in flat space, expressed in
terms of arbitrary spatial coordinates:
0 = 02 + VAV itp = —024 + gK(OkOptp — T2,0m).
@ Define the first-order dynamical fields, u® = {«, I, 4}, which
satisfy the following evolution equations:
opp = -1, N+ VKo, =0, O1dk + Vi = 0.
@ The principal part of this system, o;u® + A"%&kuﬁ ~ 0, is given:

) 0 0 O 0 0 P
n 0 0 g* g¥ g¥ M
ol o |+ 01 0 0 O Ox| &x | +...~0
o, 00 0O 0 O o,
o, 00 0O 0 O o,
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Example: Scalar Wave Equation |l

@ The symmetrizer for the first-order scalar field system is:

dS? = S, gdu*du’ = N2dy? + dN? + g™dd dd,,.

Lee Lindblom (CASS UCSD) 2014/11/28-MSC Tsinghua U 4/18



Example: Scalar Wave Equation |l

@ The symmetrizer for the first-order scalar field system is:
dS? = S, zdu®du’ = N2dy? + dN? + g™ dd pdd .

@ Check the symmetrization of the characteristic matrices:

A0 0 0 0 00 0O O o

o1 0 0 O 0 0 g% g¥ g¥
S A73=| 0 0 g* g¥ g¥ 01 0 0 O

0 0 g™ g¥ g% 00 O 0 O

0 0 g g¥ g# 00 0O O O

O 0o 0 o0 O

0 0 gxx gxy gxz

=1 0g*¥ 0 0 O =A%g
0 g 0 0 O
0 g 0 0 O
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First Order Generalized Harmonic Evolution System

@ The GH Einstein evolution system can also be written as a
symmetric-hyperbolic first-order system (Fischer and Marsden
1972, Alvi 2002).
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First Order Generalized Harmonic Evolution System

@ The GH Einstein evolution system can also be written as a

symmetric-hyperbolic first-order system (Fischer and Marsden
1972, Alvi 2002).

@ We denote the principal part of these first order systems using the
notation o;u® + Ak"gakuﬁ ~ (0. The principal part of the first-order
GH Einstein equations can be written as:

Orthar — N¥OK) ap = —NTg,
OMap — N¥OKMap + NgKO(Piay ~ 0,
O Piab — N Ok ®Piap + NO a5 0,
where cbkab = ak’(bab.

12
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First Order Generalized Harmonic Evolution System

@ The GH Einstein evolution system can also be written as a
symmetric-hyperbolic first-order system (Fischer and Marsden
1972, Alvi 2002).

@ We denote the principal part of these first order systems using the
notation 0;u® + Ak ;0,u” ~ 0. The principal part of the first-order
GH Einstein equations can be written as:

Otthap — Nk(()k'l/jab = —NTlg,
OMap — N Ok Nap + Ng¥ 0k Py ~ 0,
O Piab — N Ok ®Piap + NO a5 0,
where cbkab = ak’(&ab.

12

@ This system has two immediate problems:
e This system has new constraints, Cxap = Oxt0ap — Prap, that tend
to grow exponentially during numerical evolutions.
e This system is not linearly degenerate, so it is possible (likely?) that
shocks will develop (e.g. the components that determine the shift
evolution have the form O;N' — N¥ O, N’ ~ 0).
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A ‘New’ Generalized Harmonic Evolution System

@ We can correct these problems by adding additional multiples of
the constraints to the evolution system:

Oap — (1 + 1)N Oktpap = — N gp—y4 NKDyap,
M ap — N OkMap + NGX 0k iab—7172N* Okt ab =~ —v172N* Okap,
O Piap — N OkDiap + NON ap—72 N ap ~ —72ND ap.
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A ‘New’ Generalized Harmonic Evolution System

@ We can correct these problems by adding additional multiples of
the constraints to the evolution system:

Orthab — (1 4+ 11)N Oxtpap = —NMap—71 N* D peap,
ONap — N Ok ap + NG 0k Diap—7172N“Okthap ~ =172 N Pap,
OrPiab — N Ok Piap + NON ap—12NOpap =~ —72 NP jap.
@ This ‘new’ generalized-harmonic evolution system has several
nice properties:
e This system is symmetric hyperbolic for all values of 1 and 2.

e The ®j,, evolution equation can be written in the form,
0:Ciap — N¥OxCiap ~ —72NCiap, s0 the new constraints are
damped when 72 > 0.

e This system is linearly degenerate for v = —1 (and so shocks
should not form from smooth initial data).
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Constraint Evolution for the New GH System

@ The evolution of the constraints,
A = {Ca, Crab, Fa = t°0cCa, Cka ~ OkCa, Criab = OCrap} are
determined by the evolution of the fields u® = {12y, Map, Prap }:

orc? + AKAg(u)0ke® = FAg(u, 0u) cB.
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Constraint Evolution for the New GH System

@ The evolution of the constraints,
c* = {Ca, Cxap, Fa = 1°0:Ca, Cka ~ OCa, Ciab = OCpjan} are
determined by the evolution of the fields u® = {12y, Map, Prap }:
o’ + A g(U)okc® = FAg(u, 0u) c®.
@ This constraint evolution system is symmetric hyperbolic with
principal part:
afCa ~ O7

OrFa — NCOFo — Ng"0Cly =~
OiCia — N¥OkCia — NOIF, =~
OCiab — (1 +71)N Ok Ciap =~

0tCijab — Nkak(,’,-,-ab ~

coceo e
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Constraint Evolution for the New GH System

@ The evolution of the constraints,
c* = {Ca, Cxap, Fa = 1°0:Ca, Cka ~ OCa, Ciab = OCpjan} are
determined by the evolution of the fields u® = {9, Map, Prap }:
orc? + AR Ag(u)okec® = FAg(u, 0u) c®.
@ This constraint evolution system is symmetric hyperbolic with
principal part:

0C; ~ 0,

OrFa— NCOFo — Ng"0iCls =~ 0,
OiCia — N¥OkCia — NOJF, ~ O,

OCiab — (1 +71)NOkCiap ~ 0,

OtC,-,-ab—NkE)kC,-,-ab ~ O

@ An analysis of this system shows that all of the constraints are
damped in the WKB limit when 7, > 0 and ~» > 0. So, this
system has constraint suppression properties that are similar to
those of the Pretorius (and Gundlach, et al.) system.
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Numerical Tests of the New GH System

@ 3D numerical evolutions of static black-hole spacetimes illustrate
the constraint damping properties of our GH evolution system.

@ These evolutions are stable and convergent when vy = v = 1.
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@ The boundary conditions used for this simple test problem freeze
the incoming characteristic fields to their initial values.
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Boundary Condition Basics

@ We impose boundary conditions on first-order hyperbolic evolution
systems, O;u” + Ak 5(u)Ou” = F2(u) in the following way
(where in our case U” = {1ap, Map, Prap}):
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Boundary Condition Basics
@ We impose boundary conditions on first-order hyperbolic evolution
systems, 0;u® + Ak 5 (u)Oku® = F*(u) in the following way
(where in our case U” = {1ap, Map, Pran }):
@ We first find the eigenvectors of the characteristic matrix 11, A g
at each boundary point:
e’ nkAka(j = V(&)edﬁ-,
where ny is the (spacelike) outward directed unit normal; and then
define the characteristic fields:
u* = et u”.
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Boundary Condition Basics
@ We impose boundary conditions on first-order hyperbolic evolution
systems, 0;u® + Ak 5 (u)Oku® = F*(u) in the following way
(where in our case U” = {1ap, Map, Pran }):
@ We first find the eigenvectors of the characteristic matrix 11, A g
at each boundary point:

e’ nkAka(j = V(&)edﬁ-,
where 1y is the (spacelike) outward directed unit normal; and then
define the characteristic fields:
u* = et u”.
@ Finally we impose a boundary condition on each incoming

characteristic field (i.e. every field with v(4) < 0), and impose no
condition on any outgoing field (i.e. any field with v(5) > 0).
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Boundary Condition Basics
@ We impose boundary conditions on first-order hyperbolic evolution
systems, 0;u® + Ak 5 (u)Oku® = F*(u) in the following way
(where in our case U” = {1ap, Map, Pran }):
@ We first find the eigenvectors of the characteristic matrix 11, A g
at each boundary point:

e’ nkAka(j = V(&)e&ﬁ-,
where 1y is the (spacelike) outward directed unit normal; and then
define the characteristic fields:
u* = et u”.
@ Finally we impose a boundary condition on each incoming

characteristic field (i.e. every field with v(4) < 0), and impose no
condition on any outgoing field (i.e. any field with v(5) > 0).

@ At internal boundaries (i.e. interfaces between computational
subdomains) use outgoing characteristics of one subdomain to fix
data for incoming characteristics of neighboring subdomain.
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Characteristic Fields and Characteristic Speeds

@ Consider very short wavelength plane-wave perturbations that
propagate normal to a particular boundary: du® = Vg~ witiknax?
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Characteristic Fields and Characteristic Speeds

@ Consider very short wavelength plane-wave perturbations that
propagate normal to a particular boundary: du® = Vg~ witiknax?

@ For suitably large k the linearized evolution system becomes:
oou* + A"“g&kéuﬁ ~ —| (w(so“‘g — knkAk“ﬁ) VP ~ 0.
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Characteristic Fields and Characteristic Speeds

@ Consider very short wavelength plane-wave perturbations that
propagate normal to a particular boundary: du® = Vg~ witiknax?

@ For suitably large k the linearized evolution system becomes:
0t5u“ + Akas(f)k(suﬁ ~ —| (wé“(g — knkAk“g) Vd ~ 0.

o If Vo = S°Pe; is one of the eigenvectors of n A% ; with
eigenvalue v(,), then the short wavelength dispersion relation for
this perturbation becomes: w = k v(4) for this perturbation.
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Characteristic Fields and Characteristic Speeds

@ Consider very short wavelength plane-wave perturbations that
propagate normal to a particular boundary: du® = Vg~ witiknax?

@ For suitably large k the linearized evolution system becomes:
oou* + Akag(r)k(suﬁ ~ —| (wéf“ﬁ — K nkAk“g) VP ~0.

e If Vo = S2%e%; is one of the eigenvectors of n, A%< ; with
eigenvalue v(,), then the short wavelength dispersion relation for
this perturbation becomes: w = k v(4) for this perturbation.

@ The phase velocity of this perturbation is just the characteristic
speed V().
e If v4) < 0, this represents an incoming perturbation that requires a
boundary condition.
e If vi4) > 0, this represents an outgoing wave that is determined
completely by the fields inside the boundary, so no boundary
condition is allowed.
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Characteristic Fields for the Scalar Field System

@ Consider the scalar field equation V2V ;1) = 0 on a spacetime
with fixed metric ds® = —N2dt* + g;(dx’ + N'dt)(dx/ + N/dt). The
first order form of this system (including constraint damping):

o — NK(1 + 1)y ~ 0,
Ol — Nkakl'l + Ngkiakd), ~ 0,
o0td; — N"Okd),- + Naiﬂ—’}/gNaﬂ/J ~ 0.
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Characteristic Fields for the Scalar Field System

@ Consider the scalar field equation V2V 3 = 0 on a spacetime
with fixed metric ds® = —N2dt* + g;(dx’ + N'dt)(dx/ + N/dt). The
first order form of this system (including constraint damping):

oy — NK(1 +4)ky ~ 0,
o — N¥o, M + Nghod; ~ 0,
0td; — N Okcb + No; |_| ’72N(?,1/J ~ 0.

@ The characteristic fields u® = eau for this system consist of the
fields u® = {10, u'*, 12}, given by
[ UE = N+ rf o0, U2 = (5K — nfn))oy,
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Characteristic Fields for the Scalar Field System
@ Consider the scalar field equation V2V 3 = 0 on a spacetime
with fixed metric ds® = —N2dt* + g;(dx’ + N'dt)(dx/ + N/dt). The
first order form of this system (including constraint damping):
oy — NK(1 +4)ky ~ 0,
o — N¥o, M + Nghod; ~ 0,
0td; — N Okcb + No; |_| ’72N(?,1/J ~ 0.
@ The characteristic fields u® = eau for this system consist of the
fields u® = {10, u'*, 12}, given by
[ UE = N+ rf o0, U2 = (5K — nfn))oy,
@ The coordinate characteristic speeds associated with these fields
are vj5, = — (1471 )N for the field w9, Viie) = —nKNy £ N for
the fields u'*, and Vig) = —nkN¥ for the fields u;2
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Characteristic Fields for the Scalar Field System

@ Consider the scalar field equation V4V ) = 0 on a spacetime
with fixed metric ds® = —N?dt? + g;(dx’ + N'dt)(dx/ + N/dt). The
first order form of this system (including constraint damping):

o) — NK(1 +41)0kyp ~ 0,
AN — N o, M + Ngh'o,d; ~ 0,
ord; — Nk Ok P +N0ﬂ —voNojp ~ 0.

@ The characteristic fields u® = eau for this system consist of the

fields u® = {ué H é} glven by )
L =y, =N+ nfdp—py, U2 = (6K — nkn))dy,
@ The coordinate characterlstlc speeds assomated with these fields

are vy, = (1+71)nka for the field 10, v Viggy = —N KNy + N for

the fields u'*, and v 5. = —n, N for the fields u

@ A boundary condltloﬁ must be imposed on each characteristic
field whose characteristic speed is negative on that boundary.

@ A boundary condition may not be imposed on any characteristic
field whose characteristic speed is non-negative on that boundary.
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = efu” for the generalized harmonic

version of the Einstein evolutlon equahons Iook very much like
their scalar field counterparts: u® = {uab, o u,ab} given by

Lee Lindblom (CASS UCSD)
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Uab

2
Uiab

z/jabv

Nab £ N*Ohab—Y2t b,

(07 ~

nkn;)®yap,
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = efu” for the generalized harmonic

version of the Einstein evolutlon equahons Iook very much like
their scalar field counterparts: u® = {uab, o u,ab} given by

Uab
1+
Uab

2
Uiab

1/)8b7

Nab £ N*Ohab—Y2t b,

(07 ~

nkn;)®yap,

@ The coordinate characteristic speeds associated with these fields

also have the same forms as those for the scalar field system:
Vig) = (1+71)nka for the fields 13, v(5.) =

fields '+, and Vz) = —nkN* for the fields w2,
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = e u” for the generalized harmonic
version of the Einstein evolutlon equations Iook very much like

their scalar field counterparts: u® = {uab, o ulab} given by

uab - 1/)8b7
i+ k

Uy = Nap N Puap—y2vap,
> k Kk

Ugp = (67 —n"n;)®gap,

@ The coordinate characteristic speeds associated with these fields
also have the same forms as those for the scalar field system:
Vig) = —(1471) N for the fields u2,, Vie) = —n*Ny + N for the

fields uab ,and v = —n,N¥ for the fields u?ab.
@ A boundary condition must be imposed on each characteristic
field whose characteristic speed is negative on that boundary.
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Characteristic Fields for the Einstein System

@ The characteristic fields u® = e u” for the generalized harmonic
version of the Einstein evolutlon equations Iook very much like

their scalar field counterparts: u® = {uab, o ulab} given by

uyp = Yab
i+ k
Uy = Nap N Puap—y2vap,
> k Kk
Ugp = (67 —n"n;)®gap,

@ The coordinate characteristic speeds associated with these fields
also have the same forms as those for the scalar field system:
Vo) = —(1+71)mN* for the fields 13y, v5.) = —n“Ni = N for the
fields uab ,and v = —ni N for the fields u2,.

@ A boundary condition must be imposed on each characteristic
field whose characteristic speed is negative on that boundary.

@ A boundary condition may not be imposed on any characteristic
field whose characteristic speed is non-negative on that boundary.
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Evolutions of a Perturbed Schwarzschild Black Hole

@ The simplest boundaryAconditions that correspond (roughly) to “no
incoAming yvaves” set u® = 0 for each incoming field, or
diu® = e%30,u” = 0 for fields that include static “Coulomb” parts.
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Evolutions of a Perturbed Schwarzschild Black Hole

@ The simplest boundary conditions that correspond (roughly) to “no
incoAming yvaves” set u® = 0 for each incoming field, or
diu® = e%30,u” = 0 for fields that include static “Coulomb” parts.

@ A black-hole spacetime is
perturbed by an outgoing
gravitational wave.

@ Use boundary conditions that
Freeze the incoming )
characteristic fields: d;u* = 0.
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Evolutions of a Perturbed Schwarzschild Black Hole

@ The simplest boundary conditions that correspond (roughly) to “no
incoAming yvaves” set u® = 0 for each incoming field, or
diu® = e%30,u” = 0 for fields that include static “Coulomb” parts.

@ A black-hole spacetime is 102
perturbed by an outgoing
gravitational wave.

{13, 11}

@ Use boundary conditions that el

Freeze the incoming 10

- . A {17, 15}
characteristic fields: d;u® = 0.

{21, 19}

@ The outgoing waves interact vo oy .
with the boundary of the
computational domain and Play W4 Movie
produce constraint violations. Play Constraint Movie
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, eA = eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, eA = eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.

@ The constraints depend on the primary evolution fields (and their
derivatives). We find that ¢~ for the GH system can be expressed:

¢ =dil + F(u, dju).
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Constraint Preserving Boundary Conditions

@ Construct the characteristic fields, &A= eAAcA, associated with
the constraint evolution system, 0;¢* + A*4g0,c? = FAzcP.

@ Split the constraints into incoming and outgoing characteristics:
&={&, e}

@ The incoming characteristic fields mush vanish on the boundaries,
¢~ = 0, if the influx of constraint violations is to be prevented.

@ The constraints depend on the primary evolution fields (and their
derivatives). We find that ¢~ for the GH system can be expressed:

¢ =d.U + F(u,dju).
@ Set boundary conditions on the fields &/~ by requiring
d 0~ = —F(u, dju).
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Constraint Characteristic Fields

@ The characteristic fields associated with the constraint evolution
system, and their associated characteristic speeds for the
first-order Einstein system are:

FaF N*Cha = t°0cCa T MOkCa,
Ca,

PXiCha ~ (6% — n¥n;)okCa,
Ciab,

Cijab = 20(jCijap,

Lee Lindblom (CASS UCSD)
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Constraint Characteristic Fields

@ The characteristic fields associated with the constraint evolution
system, and their associated characteristic speeds for the
first-order Einstein system are:

Ciab

4
Cijab

FaF M'Ca = t°06Ca F N OkCa,
Ca,

P¥iCa ~ (6% — n*nj)0xCa,
Ciab

Cijab = 20[iCijab,

i

K
0+) = —nkN + N,
i =0

Vs = —neNK,

(2 —
Via) = —(1 +71)nka:

V(a) = —nka.

@ The constraint characteristic fields 02*, c,%b and ¢’ have the

ijab

same characteristic speeds as the principal dynamical fields u;tj,

ugb and u,-éab respectively. These constraint fields will be incoming
under the same conditions as these dynamical fiels.
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Constraint Characteristic Fields Il

@ Fortunately, the incoming constraint characteristic fields, cg’*, c

. iab
and cj_,, can be expressed in terms of the corresponding
principal dynamical characteristic fields:

Q= V2 kCyD, — Tkap®| d uly,
k -3 N 0

N Ciap =~ diUgp,

k 4 - >

N Ciap =~ dLUgp,

where k2 = (12 — n?)/+/2 is the ingoing null vector.
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Constraint Characteristic Fields Il

o Fortunately, the incoming constraint characteristic fields, cJ -, c%b

and cf;‘(ab, can be expressed in terms of the corresponding
principal dynamical characteristic fields:

Cgf ~ V2 |kCyd, - %kaq/)Cd dlu;;,
ka3 0
N Ciap = diUgp,
k 4 - >
N Cyigp = A1 Ujgp,
where k% = (12 — n?)//2 is the ingoing null vector.

@ Setting these incoming characteristic constraint fields to zero
therefore provides boundary conditions on the normal derivatives
d, u® = e*3n* o, u” of some of the primary dynamical
characteristic fields.
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Physical Boundary Conditions
@ The Weyl curvature tensor C,,y satisfies a system of evolution
equations from the Bianchi identities: V[aCbc]de =0.
@ The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:
Wi = (P.°Pp® — 1 PpP)(t° F n®)(t" = n") Coear,
where {9 is a unit timelike vector, n? a unit spacelike vector
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Physical Boundary Conditions

@ The Weyl curvature tensor C,,y satisfies a system of evolution
equations from the Bianchi identities: V[aCbc]de =0.

@ The characteristic fields of this system corresponding to physical
gravitational waves are the quantities:

W;E - (PaCPbd - %PabPCd)(te + ne)(tf + nf)Ccedfa

where {9 is a unit timelike vector, n? a unit spacelike vector
(with 17n; = 0), and Pap = Vap + oty — Nalp.

@ The incoming field W, can be expressed in terms of the
characteristic fields of the primary evolution system:

Wy, = diuls + Fa(u, dju).

@ We impose boundary conditions on the physical graviational wave
degrees of freedom then by setting:

dyufy = ~Fan(u, dju) + o
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬂ dJ_U = dJ_U |BC
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬁ dJ_ dJ_U&|BC.

@ The characteristic field projections of the evolution equations are:
dtU& = e&“g@tuﬁ = edg(—Ak‘ﬁvakU’Y + F’B) = DtUd.
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
e nk(?kuﬁ dJ_ dJ_U&|BC.

@ The characteristic field projections of the evolution equations are:
dtU& = e&“g@tuﬁ = edg(—Ak‘ﬁvakU’Y + F’B) = DtUd.

@ The spatial derivatives of 1" in this expression can be re-written:
e%Akﬁﬂ,Oku“/ = v(&)eaw,nk(?ku”’ + edgA[‘BA/((Skg — nkng)(?kuv.
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Imposing Neumann-like Boundary Conditions

@ Consider Neumann-like boundary conditions of the form
ed‘gnkakuﬁ = dJ_U& = dJ_U&|BC.
@ The characteristic field projections of the evolution equations are:
dtU& = e&;gatuﬁ = edg(—Ak‘ﬁvakU’y + F’B) = DtUd.
@ The spatial derivatives of 1" in this expression can be re-written:
G&QAK‘BT,@;(U«/ = v(d)eaw,nk(?ku”’ + edgA[‘HA/((Skg — nkng)(?ku”.

@ We impose these Neumann-like boundary conditions by changing
the appropriate components of the evolution equations at the
boundary to:

diu® = D™ + viay (dLu® — d % [se).
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