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Overview

Lectures will discuss two broad classes of problems associated with
solving Einstein’s equation numerically:

@ Spacetimes describing interesting souces of gravitational waves.
Binary black hole problem.

Gravitational waveform accuracy requirements for GW astronomy.
How to solve PDEs numerically.

Einstein’s equations: hyperbolicity, constraints, gauge conditions,
boundary conditions.

o Feedback control for grid tracking.
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Overview

Lectures will discuss two broad classes of problems associated with
solving Einstein’s equation numerically:

@ Spacetimes describing interesting souces of gravitational waves.
Binary black hole problem.
Gravitational waveform accuracy requirements for GW astronomy.
How to solve PDEs numerically.
Einstein’s equations: hyperbolicity, constraints, gauge conditions,
boundary conditions.

o Feedback control for grid tracking.
@ Spacetimes with interesting topological structures.
Multicube representations of manifolds.
Fixing the global differentiable structure.
Interface boundary conditions.
Examples of elliptic and hyperbolic numerical solutions.
Examples of Einstein evolutions on R x S°.
Constructing reference metrics on arbitrary multicube manifolds.
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Binary Black Hole Problem

@ Two black holes orbiting each other are expected to be the
strongest astrophysical sources of gravitational waves.
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Binary Black Hole Problem

@ Two black holes orbiting each other are expected to be the
strongest astrophysical sources of gravitational waves.

@ Gravitational waves are emitted at twice the orbital frequency with
an amplitude that scales roughly as the frequency squared.

@ As gravitational waves are emitted, energy is removed from the
system. Orbit becomes smaller and the frequency of the waves
becomes higher as the binary evolves.

@ Strongest waves (and perhaps the most easily detectable waves)
are emitted as the two black holes merge into a single hole.

@ Full non-linear numerical relativity is needed to construct accurate
model waveforms for these spacetimes.
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Why Is Numerical Relativity So Difficult?

@ Very big computational problem:
o Must evolve ~ 50 dynamical fields (spacetime metric plus all first
derivatives).
o Must accurately resolve features on many scales from black hole
horizons r ~ GM/c? to emitted waves r ~ 100GM/c?.
e Evolutions must be stable and accurate for very long times
t~10°M.
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Why Is Numerical Relativity So Difficult?

@ Very big computational problem:
o Must evolve ~ 50 dynamical fields (spacetime metric plus all first
derivatives).
o Must accurately resolve features on many scales from black hole
horizons r ~ GM/c? to emitted waves r ~ 100GM/c?.
e Evolutions must be stable and accurate for very long times
t~10°M.
@ Many representations of the Einstein equations have
mathematically ill-posed initial value problems.
@ Constraint violating instabilities destroy stable numerical solutions
in many well-posed forms of the equations.

@ Dynamics of binary black hole problem is driven by delicate
adjustments to orbit due to emission of gravitational waves.
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History of Numerical Solution of the BBH Problem:

@ First Axisymmetric Head-On — Hahn & Lindquist (1964).
@ Better Axisymmetric Head-On — Eppley & Smarr (1975-77).
@ Good Axisymmetric Head-On — Seidel NCSA group (1993-94).
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History of Numerical Solution of the BBH Problem:

First Axisymmetric Head-On — Hahn & Lindquist (1964).
Better Axisymmetric Head-On — Eppley & Smarr (1975-77).

Good Axisymmetric Head-On — Seidel NCSA group (1993-94).
Full 3D one orbit, no merger — Brigmann Penn State (2003-04).

First full inspiral + merger + ringdown — Pretorius (2005).
Moving puncture method — UT Brownsville + Goddard (2005).
Unequal masses — Goddard + Penn State groups (2006).
Non-zero spins — Brownsville + AEI (2006-07).
Post merger recoils (up to ~ 4000 km/s)

—Jena + AEI + Rochester (2007).
Large mass ratios (1:10) — Jena (2009).
Generic spins with precession — Rochester (2009).
High precision inspiral + merger + ringdown waveforms

— AEI + Caltech/Cornell (2009).

Very large mass ratios (1:100) — Rochester (2010).
Very high spins (y ~ 0.95) — Caltech/Cornell (2010).
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State of the Art Numerical Relativity

@ At the present time the best numerical relativity code is SpEC
(Spectral Einstein Code) developed by the SXS Collaboration
(Caltech, Cornell, ...). Best accuracy and efficiency. Widest range
of parameters: spins to 0.95, mass ratios to 1:10.
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@ At the present time the best numerical relativity code is SpEC
(Spectral Einstein Code) developed by the SXS Collaboration
(Caltech, Cornell, ...). Best accuracy and efficiency. Widest range
of parameters: spins to 0.95, mass ratios to 1:10.

@ Catalog of 174 waveforms available on the SXS Collaboration web
site http //black-holes.org/waveforms/
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@ 175 orbit simulation by Szilagyi and Blackman at Caltech.
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Binary Black Hole Evolution Movies

Equal Mass BBH Simulation Better Equal Mass BBH Simulation

Generic BBH Simulation Generic Event Horizon Merger
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Overview

@ Spacetimes describing interesting souces of gravitational waves.
Binary black hole problem.

Gravitational waveform accuracy requirements for GW astronomy.
How and why to solve PDEs with spectral methods.

Einstein’s equations: hyperbolicity, constraints, gauge conditions,
boundary conditions.
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Gravitational Wave Data Analysis

@ Gravitational wave signals are very weak.

@ Current generation of detectors are fairly noisy (compared to the
expected strengths of the signals.)

@ Weakest detectable signal has signal-to-noise ratio p ~ 8.

@ Figures illustrate a p = 8 signal from a binary black hole merger,
compared to Initial LIGO noise.

@ High quality gravitational waveforms are needed to allow these
signals to be “seen” at all.
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Basic GW Data Analysis:

@ Data analysis identifies and then measures the properties of
signals in GW data by matching to model waveforms.

@ Think of a waveform h(t) as a vector, h, whose components are
the amplitudes of the waveform at each time, or equivalently at

each frequency:
h(f) = / h(t)e " "tdt = Ap(f)e )
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Basic GW Data Analysis II:

o Let h, = he(f) denote the exact waveform for some source, and
let hy, = hpy(f) denote a model of this waveform.

@ Define a waveform inner product that weights frequency
components in proportion to the detector’s sensitivity:

P = hg () hm(f) + he(f)hy(f)
he - hyy = (helhm) = g m
o Fin = theltn) = [ S0
where S,(f) is the power spectral density of the detector noise.
@ This inner product is normalized 10%
so that p = /(he|he) is the
optimal signal-to-noise ratio for
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Basic GW Data Analysis I:

@ Search for signals by prOJectlng data onto model waveforms: p, is
the signal-to-noise ratio for he projected onto A

he - P = (ho|hm) = M W
{Am| i)

=l

normalized so that (A, h,) =
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Basic GW Data Analysis I:

@ Search for signals by prOJectlng data onto model waveforms: p, is
the signal-to-noise ratio for he projected onto A

he - A = (he|Pm) = M B
{Am| i)

=l

normalized so that (A, h,) =

@ A detection is made when he has a projected signal-to-noise ratio
pm that exceeds a predetermined threshold.

@ Measured signal-to-noise ratio, p, is largest when the model
waveform Bm is proportional to the exact Be;
in this case p,, equals the optimal signal-to-noise ratio p:

_ (helhs) [ anne
m= et = \/Thelhe] = \/ | Fser
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Accuracy Standards for Detection

@ The measured signal-to-noise ratio p, for detecting the signal /.
is the projection of h, onto h,:
2 (he|hm)
={(he|lhp) = ——F—5.
Pm < e‘ m> <hm|hm>1/2

@ Errors in model waveform, h,, = h. -+ dh, result in reduction
of p,, compared to the optimal signal-to-noise ratio p:

pm=p(1—¢€).
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Accuracy Standards for Detection

@ The measured signal-to-noise ratio p, for detecting the signal /.
is the projection of h, onto h,:

7 (Me| i)
pm = (Ne|hm) = W

@ Errors in model waveform, h,, = h. -+ dh, result in reduction
of p,, compared to the optimal signal-to-noise ratio p:

pm=p(1—¢€).
@ Evaluate this mismatch ¢ in terms of the waveform error:

_ (6h.|éohy) _ bR
€= 2Pl ) where 0h, = dh— hp(hy|0h).
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Accuracy Standards for Detection |l

@ If the maximum range for detecting a signal using an exact model
waveform is R, then the effective range for detections using an
inexact model waveform will be R(1 — ¢).
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@ The rate of detections is proportional to the volume of space
where sources can be seen. So when model waveform errors
exist, the rate of detections is reduced by the amount:
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Accuracy Standards for Detection |l

@ If the maximum range for detecting a signal using an exact model
waveform is R, then the effective range for detections using an
inexact model waveform will be R(1 — ¢).

@ The rate of detections is proportional to the volume of space
where sources can be seen. So when model waveform errors
exist, the rate of detections is reduced by the amount:

R — R3(1 —¢)®
[=%)
@ The loss of detections can be limited to an acceptable level, by
limiting the mismatch e to an acceptable range: € < €,.«.

@ Consequently model waveform accuracy must satisfy the
requirement for detection:  (5h, [0h ) < 2emaxp®.

=1-(1—-¢)°~3e
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Accuracy Standards for Measurement

@ How close must two waveforms, he(f) and h,(f), be to each
other so that observations are unable to distinguish them?

@ Consider the one-parameter family of waveforms:

A(A, £) = he(F) + Alm(7) — he(F)] = he(f) + AGA(1)
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Accuracy Standards for Measurement

@ How close must two waveforms, he(f) and h,(f), be to each
other so that observations are unable to distinguish them?

@ Consider the one-parameter family of waveforms:
h(A ) = he(f) + Alhn(f) — he(f)] = he(f) + ASh(f)
@ The variance for measuring the parameter )\ is given by

1 oh |oh
N shshy.
? <8A 8>\> \hish)
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Accuracy Standards for Measurement
@ How close must two waveforms, he(f) and h,(f), be to each
other so that observations are unable to distinguish them?
@ Consider the one-parameter family of waveforms:

h(X, f) = he(f) + Alhm(f) — he(f)] = he(f) + Adh(f)
@ The variance for measuring the parameter )\ is given by

1 oh | dh
— = { |0 = (shlshy.
2 <8A 8)\> hloh)

o If the parameter distance between the two waveforms, (A))? = 1,
is smaller than the variance af for measuring that parameter,
then the waveforms are indistinguishable.

@ So hy, is indistinguishable from h, if 1 < o5 = 1/(5h|dh),
i.e., if 1 > (dh|oh).
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Accuracy Requirements for Advanced LIGO

@ It is useful to define amplitude 0, and phase &, errors:
5hm — hee6Xm+16¢m - he % he(éXm + i6¢m).
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Accuracy Requirements for Advanced LIGO

@ It is useful to define amplitude 0, and phase &, errors:
5hm = hee5Xm+16¢m - he ~ he(éXm + i6¢m).
@ The basic accuracy requirements can be written as

5Xm + 5¢2 5/7‘()/7 770/ Pmax IMEasurement,
(h|h) V/2éemax  detection,
where the signal-weighted average errors are defined as

2 - - )
(5Xm / 5Xm2’h‘ df, and (5<D$n:/ 502 2|2f'18] Jf.
—00 P=On

and 0 < 7, <1 depends on the instrument calibration error.
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Accuracy Requirements for Advanced LIGO

@ It is useful to define amplitude 0, and phase &, errors:
5hm — hee5Xm+16¢m - he % he(éXm + i6¢m).
@ The basic accuracy requirements can be written as

— /{ 5h\()h 17 /p measurement,
Sh2 c max
OXin + 0P (h|h) V/2éemax  detection,
where the signal-weighted average errors are defined as
2|h? — o 2|h|?
0x2, = / 5xm | ‘ df, and 5%:/ 5b2 |2 | df,
—00 [) Sn
and 0 < 7, <1 depends on the instrument calibration error.
@ For Advanced LIGO, pmayx could be as large as pmax ~ 100, and

calibration accuracy will (optimally) be comparable to model
waveform accuracy, making 7. ~ 1/2, so

\/OX2, + 692, < e~ 0.005 for measurement.

Pmax
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Detection Accuracy Requirements for LIGO
@ Accuracy requirement for detection depends on the parameter
€max, the maximum allowed mismatch between an exact waveform

and its model counterpart.

@ The maximum mismatch is chosen to assure searches miss only
a small fraction of real signals. The common choice ¢y2x = 0.035
limits the loss rate to about 10%.
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Detection Accuracy Requirements for LIGO

Accuracy requirement for detection depends on the parameter
€max, the maximum allowed mismatch between an exact waveform
and its model counterpart.

The maximum mismatch is chosen to assure searches miss only
a small fraction of real signals. The common choice ¢y2x = 0.035

limits the loss rate to about 10%. he

. ) max
Real searches are more complicated: et 44 ep
comparing signals with a discrete o
template bank of model waveforms. hy MM Pm o hm Pw

For Initial LIGO, template banks are constructed with ¢y, = 0.03,
SO €pp = €Epr — €EMM — 0.035 - 0.03 = 0.005.

To ensure this condition, ¢,,2x Must be chosen so that

emax < 0.005.
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Detection Accuracy Requirements for LIGO

Accuracy requirement for detection depends on the parameter
€max, the maximum allowed mismatch between an exact waveform
and its model counterpart.

The maximum mismatch is chosen to assure searches miss only
a small fraction of real signals. The common choice ¢y2x = 0.035

limits the loss rate to about 10%. he

. ) max
Real searches are more complicated: egfS-o T 44 ep
comparing signals with a discrete -
template bank of model waveforms. hy MM Pm o hm Pw

For Initial LIGO, template banks are constructed with ¢y, = 0.03,
SO €pp = €Epr — €EMM — 0.035 - 0.03 = 0.005.

To ensure this condition, ¢,,2x Must be chosen so that

emax < 0.005.

Accuracy requirement for BBH waveforms for detection in LIGO:

0v2 4 692 < \/2¢max = 0.1 for detection.
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